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Abstract—The theoretical analysis of evolutionary algorithms
is believed to be very important for understanding their internal
search mechanism and thus to develop more efficient algorithms.
This paper presents a simple mathematical analysis of the ex-
plorative search behavior of a recently developed metaheuristic
algorithm called harmony search (HS). HS is a derivative-free real
parameter optimization algorithm, and it draws inspiration from
the musical improvisation process of searching for a perfect state
of harmony. This paper analyzes the evolution of the population-
variance over successive generations in HS and thereby draws
some important conclusions regarding the explorative power of
HS. A simple but very useful modification to the classical HS has
been proposed in light of the mathematical analysis undertaken
here. A comparison with the most recently published variants
of HS and four other state-of-the-art optimization algorithms
over 15 unconstrained and five constrained benchmark functions
reflects the efficiency of the modified HS in terms of final accuracy,
convergence speed, and robustness.

Index Terms—Explorative power, global optimization, har-
mony search (HS), particle swarm optimization (PSQO), population
variance.

I. INTRODUCTION

N THE recent past, with the computational cost having been

almost dramatically reduced, researchers all over the world
are attracted toward the nature-inspired metaheuristics [1]-[4]
on a regular basis to meet the demands of the complex,
real-world optimization problems. Following this tradition, in
2001, Geem et al. proposed harmony search (HS) [5]-[7], a
derivative-free metaheuristic algorithm, mimicking the impro-
visation process of music players. Since its inception, HS has
successfully been applied to a wide variety of practical opti-
mization problems like pipe-network design [8], structural op-
timization [9], the vehicle routing problem [10], the combined
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heat and power economic dispatch problem [11], the scheduling
of a multiple dam system [12], and so on. A significant amount
of research has already been undertaken to investigate the
application of HS in solving difficult engineering optimization
problems, as well as to improve the performance of HS by
tuning its parameters and/or blending it with other powerful
optimization techniques like particle swarm optimization (PSO)
[4]. However, to the best of our knowledge, no significant
research work has so far been reported in the context of the
mathematical analysis of the underlying search mechanisms of
HS. We believe that such an analysis may provide important
guidelines to the researchers regarding the selection of control
parameters for HS. It can also help us to understand the strong
and weak points of this new algorithm that, within a short span
of time, gained wide popularity among the researchers from
diverse domains of science and engineering.

The efficiency of most evolutionary algorithms (EAs) de-
pends on their extent of explorative and exploitative tendencies
during the course of search. Exploitation means the ability of
a search algorithm to use the information already collected
and thus to orient the search more toward the goal, while
exploration is the process that allows introduction of new infor-
mation into the population. Exploration helps the algorithm to
quickly search the new regions of a large search volume. Proper
balance between these two characteristics results into enhanced
performance [13]. Generally, EAs explore the search space by
the (genetic) search operators, while exploitation is done via
selection that promotes better individuals to the next generation.

In this paper, we focus on the evolution of the population
variance of HS and its influence on the explorative power of
the algorithm. We first find an analytical expression for the
expected population variance of HS, taking inspiration from
the works of Beyer [14], [15], who did a conceptually similar
analysis for evolution strategies (ESs)/evolutionary program-
ming (EP) [1]. We then draw a few important conclusions re-
garding the explorative power of HS by observing the change in
expected population variance over generations with and without
selection. Based on the analysis presented here, we propose a
simple modification of the classical HS. In the modified HS, a
control parameter known as the distance bandwidth (bw) has
been made proportional to the standard deviation of the current
population. This way, the proportionality constant provides us
an extra control over the population variance, as well as the
explorative power of HS over generations. Experimental results
on a testbed of 20 well-known numerical benchmarks and one
real-world optimization problem show that the modified HS can
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outperform the three most recently published variants of HS and
can provide better or at least comparable results with respect
to four powerful optimization algorithms of current interest, in
a statistically meaningful way. At this point, we would like
to mention that a preliminary version of Theorem 1 (to be
presented in Section IV) with very limited simulation results
appeared as a conference article in [16]. However, the present
version has considerably been enhanced and differs in many
respects from [16].

The rest of this paper is organized in the following way.
Section II outlines the classical HS in a comprehensive style.
Section III provides a brief survey on the present state-of-the-
art research on HS and its applications. Section IV presents
the main theoretical results and the corresponding improvement
scheme for HS. Experimental settings and simulation strategies
for comparing the modified HS with other population-based
optimization algorithms are explained in Section V. Section VI
presents and discusses the results of the comparative study.
Finally, Section VII concludes the paper and unfolds a few
important future research issues.

II. HS METAHEURISTIC ALGORITHM—AN OVERVIEW

HS was devised as a new metaheuristic algorithm, taking
inspiration from the music improvisation process, where mu-
sicians improvise their instruments’ pitches searching for a
perfect state of harmony. Although the estimation of a har-
mony is aesthetic and subjective, on the other hand, there are
several theorists who have provided the standard of harmony
estimation: Greek philosopher and mathematician Pythagoras
(582-497BC) worked out the frequency ratios (or string length
ratios with equal tension) and found that they had a partic-
ular mathematical relationship, after researching what notes
sounded pleasant together. French composer Jean-Philippe
Rameau (1683-1764) established the classical harmony theo-
ries in the book “Treatise on Harmony,” which still form the
basis of the modern study of tonal harmony [17].

The analogy between music improvisation and engineer-
ing optimization is illustrated in Fig. 1. Each music player
(saxophonist, double bassist, and guitarist) can correspond
to each decision variable (x1,x2,x3) and the range of each
music instrument (saxophone = {Do, Re, Mi}; double bass =

=700 nm

Analogy between music improvisation and engineering optimization (figure adopted from [6]).

{Mi, Fa, Sol}; and guitar = {Sol, La, Si}) corresponds to
the range of each variable value (x; = {100, 200, 300}; 23 =
{300, 400, 500}; and x5 = {500, 600, 700}). If the saxophonist
toots the note Re, the double bassist plucks Mi, and the guitarist
plucks Si, their notes together make a new harmony (Re, Mi,
Si). If the new harmony is better than the existing harmony,
it is kept. Likewise, the new solution vector (200, 300, and
700 mm) is kept if it is better than the existing harmony in
terms of the objective function value. The harmony quality is
improved by practice after practice.

Similarly, in engineering optimization, each decision vari-
able initially chooses any value within the possible range,
together making one solution vector. If all the values of decision
variables make a good solution, that experience is stored in each
variable’s memory, and the possibility of making a good solu-
tion is also increased next time. When a musician improvises
one pitch, he (or she) has to follow any one of three rules:
1) playing any one pitch from his (or her) memory; 2) playing
an adjacent pitch of one pitch from his (or her) memory; and
3) playing a totally random pitch from the possible range of
pitches. Similarly, when each decision variable chooses one
value in the HS algorithm, it follows any one of three rules:
1) choosing any one value from the harmony memory (HM),
which is defined as memory considerations; 2) choosing an
adjacent value of one value from the HM, which is defined as
pitch adjustments; and 3) choosing a totally random value from
the possible range of values, which is defined as randomization.
According to the above algorithm concept, the HS metaheuris-
tic algorithm consists of the following five steps [5], [6]:

Step 1) Initialization of the optimization problem and
algorithm parameters: In the first step, the opti-
mization problem is specified as follows:

Minimize (or Maximize) f(Z)

subjectedto x; € X;, i=1,2,... N. )
where f(.) is a scalar objective function to be opti-
mized; 7 is a solution vector composed of decision
variables x;; X is the set of possible range of values
for each decision variable x; (continuous decision

variable), that is, pxz; < X; < yz;, where px; and
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uyx; are the lower and upper bounds for each deci-
sion variable, respectively, and N is the number of
decision variables. In addition, the control parame-
ters of HS are also specified in this step. These pa-
rameters are the HM size (HMS) i.e., the number of
solution vectors (population members) in the HM (in
each generation); the HM considering rate (HMCR);
the pitch-adjusting rate (PAR); and the number of
improvisations (NI) or stopping criterion.

HM initialization: In this step, each component
of each vector in the parental population (HM),
which is of size HMS, is initialized with a uniformly
distributed random number between the upper and
lower bounds [1,x;, yx;], where 1 <14 < N. This is
done for the ¢th component of the jth solution vector
using the following equation:

Step 2)

- rx; +rand(0,1) - (ya; — px;)

i 2)
where j = 1,2,3... ,HMS, and rand(0, 1) is a uni-
formly distributed random number between 0 and 1,
and it is instantiated anew for each component of
each vector.

New harmony improvisation: In this step, a
new harmony vector & = (z,xh, a5, 2, ..., 2'y)
is generated based on three rules: 1) memory con-
sideration; 2) pitch adjustment; and 3) random se-
lection. Generating a new harmony is called ‘impro-
visation.” In the memory consideration, the value of
the first decision variable 2} for the new vector is
chosen from any of the values already existing in
the current HM, i.e., from the set {x},... 2xfIMS},
with a probability HMCR. The values of the other
decision variables x5, %, 2, ..., oy are also cho-
sen in the same manner. The HMCR, which varies
between 0 and 1, is the rate of choosing one value
from the previous values stored in the HM, while
(1 — HMCR) is the rate of randomly selecting a
fresh value from the possible range of values, i.e.,

T

Step 3)

z; € {x%,m?, x?, e ,xiHMS
with probability HMCR
R P Y (3)

with probability (1 — HMCR).

For example, an HMCR = (.80 indicates that the
HS algorithm will choose the decision variable value
from historically stored values in the HM with an
80% probability or from the entire possible range
with a 20% probability. Every component obtained
by the memory consideration is further examined to
determine whether it should be pitch adjusted. This
operation uses the parameter PAR (which is the rate
of pitch adjustment) as follows:

Pitch-Adjusting Decision for
o x; £ rand(0, 1) - bw with probability PAR
¢ 7 | «} with probability (1 — PAR)
where bw is an arbitrary distance bandwidth (a scalar
number), and rand() is a uniformly distributed ran-

“4)
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dom number between O and 1. Evidently, step 3)
is responsible for generating new potential variation
in the algorithm and is comparable to mutation in
standard EAs.

HM update: If the new harmony vector # =
(xh, xh, a5, 2, ..., 'y ) is better than the worst har-
mony in the HM, judged in terms of the objective
function value, the new harmony is included in the
HM, and the existing worst harmony is excluded
from the HM. This is actually the selection step of
the algorithm where the objective function value is
evaluated to determine if the new variation should be
included in the population (HM).

Check stopping criterion: If the stopping criterion
(maximum NI) is satisfied, the computation is termi-
nated. Otherwise, steps 3) and 4) are repeated.

Step 4)

Step 5)

III. RELATED WORKS

HS was first proposed in 2001 by Geem et al. [5] (primarily
for discrete search variables), and the authors demonstrated the
superior performance of the algorithm by comparing it with a
standard genetic algorithm (GA), an EP, and the generalized
reduced gradient algorithm on the traveling salesperson prob-
lem, a 2-D constrained benchmark function, and a least-cost
pipe network design problem. HS was subsequently extended
by Lee and Geem to tackle continuous engineering optimiza-
tion problems [6], [18]. Lee and Geem [6] reported superior
performance of the algorithm in comparison to the state-of-the-
art GA-based approaches proposed by Deb [19], Fogel [20],
and Coello Coello et al. [21] on several constrained engineering
optimization problems in two dimensions.

Geem added a new operation called ensemble consideration
to the original HS algorithm structure in [22]. The new opera-
tion considers the relationship among decision variables, and
the value of each decision variable can be determined from
the strong relationship with other variables. In [23], Geem pro-
posed a new stochastic derivative for discrete variables based
on the HS algorithm.

Mahdavi et al. proposed an improved HS algorithm (IHS)
[24] that employs a novel method generating new solution vec-
tors with enhanced accuracy and convergence speed. The orig-
inal HS keeps two of its control parameters PAR and bw fixed
over generations. In IHS, both the parameters are dynamically
changed with generations; more specifically, PAR is linearly
increased, while bw is exponentially decreased between the
predefined minimum and maximum values. IHS was found to
outperform the classical HS over several benchmark problems.
Omran and Mahdavi tried to improve the performance of HS
by incorporating some ideas borrowed from the g_best PSO
[4] into the algorithm. The new approach, called Global-best
HS (GHS) [25], modifies the pitch-adjustment step of the HS
such that the new harmony can mimic the best harmony in the
HM, thus replacing the bw parameter altogether and adding
a social dimension to HS. More recently, based on concepts
that the better harmony vector should enjoy higher selection
probability and that several new harmonies are generated in
every iteration, Cheng et al. [26] developed another improved
HS algorithm, called modified HS (MHS), which was found to
be more efficient than the basic HS algorithm for slope stability
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analysis. Some of the very interesting applications of HS can be
found in [27]-[36].

IV. ANALYTICAL TREATMENT
A. Computation of the Expected Population Variance

The explorative power of an EA expresses its capability
to explore the search space. The evolution of the expected
population variance over generations provides a measure of
the explorative power of the algorithm. In the original HS
algorithm, we do not have to deal with any population of vectors
in step 3) (new harmony improvisation). Instead, a single new
harmony vector is created in this step. However, for the sake of
analysis, here, we assume that a population of vectors is created
in its variation step (step 3), i.e., the step that is responsible for
exploring new variations in the search space. After the selection
step (step 4) of HS, the population variance may increase or
decrease. To avoid any premature convergence or stagnation
in the successive generations and to ensure that most of the
regions in the search space have been explored, the variation
operators must adjust the population variance such that it has
a reasonable value from one generation to another. Thus, if the
selection step decreases the population variance, the variation
operators must necessarily increase it so as to achieve a proper
balance between exploration and exploitation. For the sake
of the analysis of the explorative power of an EA, we keep aside
the selection steps involved in the algorithm and only consider
the variation steps. Now, if we can show that the population
variance over generations is increasing by applying only the
variation operators, it can be inferred that the algorithm has
good explorative power.

Thus, in step 3), i.e., the new harmony improvisation process,
we consider a population of new harmonies instead of a sin-
gle harmony. This is done for the sake of the analysis of
the evolution of population variance. This new population is
referred toas Y = [Y1, Y2 ... YHMS] \where each vector Y*
is generated following the rules described in step 3).

Since, in HS, the perturbations are made independently for
each decision variable, we can say that it will not be a loss of
generality if we conduct our analysis for single-dimensional
vectors, i.e., scalars. To do this, we will consider an initial
population of scalar variables = = {x1,x9, X3, ..., T, With
elements (z; € R), where we have taken HMS = m. The vari-
ance of the population z is given by

1 m ) 72 )
Var(x) = - Z(xl T) =12 -7

=1

where Z=population mean and 22 =quadratic population
mean. If the elements of the population are perturbed with
some random numbers, Var(z) will be a random variable, and
E(Var(z)) will be a measure of the explorative power. The
main analytical result in this context is expressed in the form of
the following theorem.

Theorem 1: Let x = {x1,x2,23,...,2,} be the current
population of HS and Y = {Y1,Y5,...,Y,,} be the intermedi-
ate population obtained after the new harmony improvisation
step. If HMCR is the HM consideration probability, PAR is
the pitch-adjustment probability, bw is the arbitrary distance
bandwidth, and we consider the allowable range for the decision

variables (z;) to be {Zmin, Tmax }>» Where Tmax = a and iy =
—a with a € R, then

(m-1)

E(Var(Y)) = -

HMCR - Var(z) + HMCR

1
- (1 — HMCR) - 7% + 5 - HMCR
2

"PAR - buw? + % “(1-HMCR)|. (5

Proof: Here, x = {xy,29,23,...,2,} is the current
scalar population. Therefore, the population mean is x =
(1/m) ;" x;, and the quadratic population mean is 22 =
(1/m)> "z Y ={Y1,Ys,...,Y,,} is the intermediate
population of scalars obtained after the new harmony improvi-
sation step. Each element Y; of the population Y is obtained as

Ly with probability HMCR - (1 — PAR)
T, + bw
Vi -rand, with probability 0.5 - HMCR - PAR
!
T, — bw

-rand, with probability 0.5 - HMCR - PAR
with probability (1 — HMCR)

xnewa

where r is a uniformly chosen random number from the set
{1,2,...,m}, Tnew is a new random value in the allowable
range {Tmin, Tmax} Or {—a,a}, and rand is a uniformly
chosen random number between O and 1. Since the index
r is a uniformly distributed random variable with values in
{1,2...,m}, the probability p, = P(r = k) = (1/m), where
k is a number within the set. Thus, x, is a random variable, and

E(mT):Zpkxk:ZP(T:k)l'k:%Zl‘k =7
k=1 k=1 k=1

3

(6)
with
m m 1 m
E 2 - . 2 = = 2 = — 2 :72.
(xr) Zpk Tk ZP(T k) - xj; m Tp=2
k=1 k=1 k=1
)
We now compute E(Y;) and E(Y;?) by using the following
lemma, the proof of which can be found in [37]. |

Lemma 1 [37]: Let Z1,Zs, ..., Z be the bounded random
variables that are independent with respect to any discrete
random variable V' having the distribution P(V = v;) = p;,

Jj=12,...,k p;j €[0,1], Z;“:lpj = 1. Then, the random
variable
Z1, with probability p;
Zo, with probability p,
Z =\ .
Zy, with probability pg

has the mean

k
M(Z) = p;.M(Z;). )
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Fig. 2. Continuous uniform probability distribution.

Using the above lemma, we get the following expressions for
E(Y}) and E(Y}?):

E(Y;)=HMCR - (1 — PAR) - E(,) + 0.5 - HMCR
-PAR - E(z, + bw - rand) + 0.5 - HMCR - PAR
- E(z, —bw - rand)+(1 — HMCR)- E(Zpew) (9)
E (Y2)=HMCR - (1 — PAR) - E(22) + 0.5 - HMCR

-PAR - E(z, + bw - rand)® + 0.5 - HMCR
-PAR - E(x, — bw - rand)?® + (1 — HMCR)
- K (a?2 ) .

new

(10)

Therefore, now, we need to find out F(zpew) and E(z
Tnew 18 taken from the search range in the following way:

ncw)

Tnew = Lmin T rand((), 1) : (xmax - :Cmin)

where rand(0,1) denotes the uniformly distributed random
number lying between 0 and 1. Furthermore, we consider
—0a, Tiaz = a, and rand(0, 1) = R. Therefore, now

Y
12)

Tmin =
Tpew = —a+2-a-R
2w =0 +4-a® R*—4

Thow -a*-R.

The probability distribution of the random numbers is as-
sumed to obey a continuous uniform probability density func-
tion, which is shown in Fig. 2. ¢/(z) is the continuous uniform
probability distribution function. In this case, p =0, ¢ =1,
and z = R. Thus, F(Zpew) = —a+2-a - E(R) [from (11)].

Therefore, E(R) is computed as follows:
1 1
RN 1
E(R)= [ R-¢(R)-dR= [ R-dR = 5| =35 (13)
0
0 0

Therefore

E(pew) =—a+2-E(R)-a=—a+2a-(1/2) — at+a=0.
(14)

Furthermore, F(Zpew)=-0+2-E(R)-a=—a+2a-
(1/2) — a+ a = 0 [from (12)], and

3
E(R?) = /R% YdR = /R2dR [R} :1. (15)
3], 3

93

Therefore
E(22.) = a® —4a*- % 4402 2o ‘LQ. (16)
3 3
Thus, from (9), we get
E(Y;) =HMCR - T 17
and from (10), we get
E (Y) = HMCR - 22 + (1 — HMCR)
a? bw?
5 THMCR-PAR- ——. (18)

We know that E(Var(Y)) = E(Y?) — E(Y"); hence, we
shall have to separately compute £(Y2) and F(Y
square value of the population is given by

1
@Yk

). The mean-

Therefore

G

k=1

S\H

-} |HMCR - 22 + (1 — HMCR)
k=1

S\H

a2 bw?

— + HMCR - PAR - —
3 + 3

[by (18)]

=HMCR - 22 + (1 — HMCR)

2 be

% +HMCR - PAR - ~—. (19)

2

Now, we need to determine E(Y ™). We know that the popu-

lation mean is given as Y = (1/m) > -, Y We have
9 1 m 2 1 m
-2 J1 1 ) '
Y e e
k=1 k=1 k£l

Furthermore

m 2 m
EY?) :E{;Zyk} = %E V4D VY
k=1

k=1 k£l
B ||+ | Y
m m k k !
k=1 k#l
-1 + Z E(Yz)
m k:

k£l
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[as Y} and Y] are independent random variables FE (Y} - Y;) =
E(Yy) E(Y))]

= E(Y) :% B+ - m (m— 1) BV

" e B — B(Y)
= BT :%oE(W)+%~(m—l)-[E(Yk 2.
Therefore
E(Var(Y)) = E(Y?) — E(Y?)
- (1 - ;) - B(Y?) + (mn; DA
L U I 1078 B’

Putting values from (17) and (19) in (20), we get

E(WVar(v)) ="~ 1.

HMCR - 22 + (1 — HMCR)
m

2 2
~C;+HMCR-PAR-M§]

(m—1)

- [HMCR - 7]°.
Simplifying further, we have
E (Var(Y))

1
="~ |HMCRVar(z)+HMCR- (1 — HMCR) 7>
m

1 2
+3 -HMCR~PAR~bw2+% -(1—HMCR)

and the theorem is proved.

Lemma 1.1: If HMCR is chosen to be very high (i.e., very
near to 1) and the distance bandwidth parameter (bw) is chosen
to be proportional to the standard deviation of the current
population (i.e., bw x o(x) = /Var(x)), then the expected
population variance (without fitness-based selection) can expo-
nentially grow over generations.

Proof: The expected variance of the intermediate Y pop-
ulation (obtained after the improvisation process) is given by
Theorem 1 in (5). Now, in (5), if we make HMCR = 1, then
the terms containing 7, 72, and a have very less contribution to
the overall expected population variance. Hence, if we choose
bw = o(z) = k- +/Var(x) (i.e., the standard deviation of the
current population), the expression becomes

(m—1)

E(Var(Y)) ~
1
: [HMCR -Var(z) + 3 HMCR - PAR - bwz]

[neglecting the terms containing (1 — HMCR) as it becomes
insignificantly small for HMCR — 1]

_(m—-1)
= E(Var(Y)) = E—
: [HMCRJr % k2 . HMCR - PAR} Var(z). (21)

From (19), it is evident that if we do not include selection in
the algorithm, then the expected variance of the gth population
(x4) becomes

E (Var(z,)) = {(mm_l) -HMCR
: {1 + % k2 ~PAR]g} Var(zg) (22)

where ¢ is the initial population at generation g = 0. In (22),
if we choose the values of the parameters HMCR, PAR, and &
in such a way that the term within the second brackets becomes
grater than unity, then we can expect an exponential growth of
population variance. This growth of expected population vari-
ance over generations gives the algorithm a strong explorative
power, which is essential for an EA. This completes the proof of
Lemma 1.1. Now, consider the following numerical example.

Example 1: If m =10, HMCR = 1.00, k= 1.17, and
PAR = 0.67, we have

—1 1
{(m ) HMCR - (1 +3- 2 ~PAR>} — 1.175167
m

and just after 100 generations, the factor
1 1 100

{(m) - HMCR - (1 ok -PAR)} = 1.0216 x 107
m 3

which implies a very large population variance as per (22).

B. EHS

Note that taking bw o o(z) = bw = k - /Var(x) provides
us an additional control over the explorative power of HS
through the proportionality constant k. It is evident from (22)
that, by choosing a suitable value of k, for a given set of values
of HMCR and PAR, we can make the population variance
of HS exponentially vary over generations without selection.
Selection in an EA generally promotes exploitation and helps
the solutions to converge to a specific point of the search space.
The new scheme of tuning bw (by making it proportional to the
current population variance) provides HS with high explorative
power that, together with the exploitative behavior due to selec-
tion, can yield very good results on a wide variety of objective
functions. From this point onward, this new variant of HS will
be called explorative HS (EHS). Note that according to [11],
the expected population variance for an ES without fitness-
based selection and with a mutation based on the addition
of a random vector (having mutually independent normally
distributed components with zero mean and variance ¢2) and
dominant recombination (global discrete recombination) is

E(Var(z,))= (1—7711)9 -Var(zo)+m - [1— (1—;” o?
(23)

where m is the population size (analogous to HMS in HS). For
a large m, (23) reduces to

E (Var(z,)) = Var(zo) + g - o°. (24)

Since, in (24), ((m —1)/m)-[HMCR + (1/3) - k?-
HMCR - PAR] can be greater than 1 depending on the value
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of k and this is more obvious for a large m as (m —1)/m
tends to 1, then it follows that the expected population variance
(after applying the new HM improvisation) in the case of
EHS can be greater than that in the case of the classical ES
algorithm analyzed in [14], as the former may exponentially
grow. Thus, the EHS algorithm has an explorative power
greater than that of some of the classical ES algorithms. Note
that the assumption |pz;| = |px;| was taken while proving
Theorem 1 only to simplify the mathematical derivations and
the closed-form expression for the evolution of the population
variance. However, even if the absolute values of the lower and
upper bound do not match, the basic assumptions derived on
the nature of the evolution of the population variance remains
valid, and EHS with the suggested adaptation rule for the
bandwidth parameter performs much better as compared to the
state-of-the-art HS variants. This is supported in Section VI
by the results on constrained benchmarks f14 and f17. In what
follows, we shall extensively compare the performance of
EHS with other state-of-the-art variants of HS, as well as with
a few prominent swarm algorithms and EAs. The effect of
varying the parameter k on the performance of EHS will also
be investigated in Section VI-C.

C. Experimental Validation of Theorem 1 and Lemma 1.1

This section presents some computer simulation results to
validate the results obtained in the previous sections. In Fig. 3,
we compare the expected population variance plot and the
theoretical variance plot [obtained from (5)] over generations
for the classical HS. The expected population variance has been
calculated by averaging the sample variance for all components
and for 100 independent runs. In all the runs, the values of
the parameters are chosen as follows: PAR = 0.5, HMS = 10,
and bw = 0.01. The different curves in the plot are obtained
for different values of the parameter HMCR. Note that for the
plots shown in Fig. 3, the above parameter setting is not in
accordance with Lemma 1.1. Therefore, instead of an exponen-
tial growth, the population variance gets saturated after a few
generations. Fig. 3(a) and (b) shows the actual variance and the
theoretical variance plots, respectively. Close correspondence
of these two plots indicates the correctness of the expression
(5) obtained through Theorem 1 in modeling the population
variance of HS.
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Fig. 4. Evolution of the expected population variance without selection and
after choosing the parameter values in accordance with Lemma 1.1.

To justify the claim made in Lemma 1.1, the parameters
HMCR, PAR, and k are chosen in such a way that the
value of the expression {((m — 1)/m) - HMCR - (1 + (1/3) -
k? - PAR)} becomes greater than unity. Here, the value of PAR
is kept constant at 0.5. The parameter HMCR is changed to
meet the above criterion. While doing so, it is to be considered
that the value of HMCR should be chosen to be very close
to unity so that the dependence of the population variance
on the population mean (Z) becomes negligible. HMS = m
is chosen to be 10 (which is the usual choice in HS com-
munity). Under these circumstances, the value of HMCR is
conveniently chosen at 0.99, and k is kept at 1.17 and 1.20 (in
this range, k gives very good results on benchmark functions,
as discussed later in Section VI-C). The resultant evolution
of population variance exhibited by HS is shown in Fig. 4.
Fig. 5 shows an exponential growth of the expected population
variance over generations. This supports the assertion made in
Lemma 1.1. This exponential growth of population variance
gives the algorithm a strong explorative power, which is essen-
tial for an EA.

Fig. 5(a) and (b) shows the evolution of the population
variance over generations when selection is taken into account
for two functions from our test suite provided in Table I,
namely, the unimodal sphere model (f1) and the multimodal
generalized Rastrigin’s function (f5), in 15 dimensions, where
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(b) Generalized Rastrigin’s function (f5).

the search range for all the variables were kept in [—100, 100]
for both the functions. We omit plots for rest of the functions for
the sake of space economy and also considering the fact that the
omitted plots show a more or less similar trend.

Note that, in HS-type selection, the new solution replaces
the worst solution of the current generation provided that the
fitness of the former is better. The selection process tends to
remove the worse solutions that are far apart from the optima
from the population and thereby promotes exploitation. The
graphs indicate that, in EHS, the selection provides a good
tradeoff to the high explorative power, which prevails during
the earlier stages of the search. The population variance shows
a steady fall toward zero, whence the solutions in the population
converge to a small basin around the optima for EHS. However,
for the classical HS, we see that the initial variance of the
population is small (indicating a poor explorative power) and
also the population variance shows fluctuating behavior over
generations, a feature indicative of a poor tradeoff between
exploration and exploitation.

V. EXPERIMENTAL SETUP FOR
NUMERICAL BENCHMARKS

A. Unconstrained Benchmark Functions

We have used a testbed of 15 well-known unconstrained
benchmark functions [38]-[40] to evaluate the performance of
the EHS algorithm. The unconstrained benchmarks are briefly
described in Table I. Note that the rotated and shifted functions
are particularly challenging for many existing optimization
algorithms. In case of rotations, when one dimension in the
original vector & is changed, all dimensions of the rotated vector
will be affected. Hence, the rotated function cannot be solved by
just N 1-D searches. The composition functions are character-
ized by nonseparable search variables, rotated coordinates, and
strong multimodality due to a huge number of local optima.
They blend together the characteristics of different standard
benchmarks.

vatiance plat comparison for rastrigin function
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Evolution of the expected population variance after HM improvisation process for the classical HS and EHS with selection. (a) Sphere model (f1).

B. Constrained Benchmark Functions

The functions fi6—f20, listed below, are examples of GA-
hard constrained optimization problems, extensively studied in
[21] and [42]-[45], and in this paper, we have transformed
them into an unconstrained one by adding a penalty term in
the following way:

C;
i(E) = fi() + A - > max {0,g;(&)} (25)
j=1
where i = 16, ..., 20, C; is the number of constraints with the

ith benchnark, and A; is the static penalty coefficient for the ith
constrained benchmark problem.

The function f5( includes an equality constraint, which has
been converted into an inequality constraint by using |h(Z) —
§| < 0 using the degree of violation § = 10~*. The values of
the static penalty coefficients are given as follows [46]: A1 =
0.5, A17 = 104, A18 = 1000, A19 = 500, and A20 = 10. The
following constrained optimization functions were considered
in this paper.

1) fi6(Z)=5. Z?:l x; — 5. Z?Zl 2?2 — 3%z, subject
to g1(%) = 2x1 + 229 + x10 + 11 — 10 <0, ¢o2(F) =
221 4 2x3 + 210 + 212 — 10 <0, 93(%) = 2x1 +
2x3 +x11 + 12 — 10 <0, g4(f) = —8x1 +x109 <0,
95(%) = =8xa + 211 <0,  g6(¥) = —8xz + 212 <0,
g7(x) = =2x4 — x5 + 210 < 0, gs(¥) = —206 — 27 +
x11 <0, and go(¥) = —2x5 — x9 + 212 < 0, where the
bounds are 0 < z; < 1(: =1,...,9),0 < x; < 100(i =
10,11,12), and 0 < x13 < 1. The global minimum value
is—15at#=(1,1,1,1,1,1,1,1,1,3,3,3, 1).

2) fi17(¥) = (1 + x2 + x3), subject to ¢1(Z) = —1 +
0.0025(xz4 + 26) <0, g2(Z) = —1 + 0.0025(z5 +
Ty — IE4) <0, gg(f) =—-1+ 001(568 - 1'5) <0, gsq
(Z) = —x126 + 833.325224 + 10027 — 83333.33 < 0,

g5(f) = —xox7 + 1250x5 + xoxy — 125024 <0, and

96(T) = —x328+1250000+ 2325 — 250025 < 0, where

100 < 27 < 10000, 1000 < z; < 10000(i = 2,3), and
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UNCONSTRAINED BENCHMARK FUNCTIONS [38], [39]. IN FUNCTIONS f19 AND fi1, Z = & — 0, WHERE & = {o1, . ..
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3)

TABLE 1
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,on } IS THE SHIFTED GLOBAL
,oN} IS THE SHIFTED AND ROTATED GLOBAL

OPTIMUM, AND M Is THE LINEAR TRANSFORMATION (ROTATION) MATRIX OBTAINABLE FROM [39]

Function Name Expression Search Range Optimum Value
Sphere Function . N ~100<x <100 min{ =£(0,...00=0
P x, ()= £0....0)
il
Generalized = Nl ~_30< x. < min| =£(1,...H)=0
Rosenbrock’s Function fr(x)= z [100 (x,,, —)c,.z)2 +(x, - 1?1 30=<x, =30 ()= A )
i=1
Step Function N -100<x. <100 min(f;) = £,(p)=0
- 2 =X, = 3 3
S (D)= Z(I}Q +0'5J) such that
i=1
— l <p < l for
2 T2
i=12,...N
ﬁotate(cil Hyper- v (i 2 -100<x, <100 | min(f,)= f,(0,...0)=0
Fllinsoid Functi ;
ipsoid Function f4 (x) Z {Z‘; xlj
=1\ =
Generalized ~ -5.12<x, £5.12 | min(f5) = £5(0....0)=0
Rastrigin’s Function fe(X)= z [x} =10 cos( 27x,) +10] ! ’ :
Generalized Griewank N N x —600<x. <600 | min(f,)=£(,..,0)=0
2 = = 6 6 \Useens
i x; - cos( —=) + 1 ‘
Function fs(3) = 2000 gl i 11 ( \/—)
Ackley’s Function v _32<x <32 min(f;) = £;(0,...,0) =0
f7(x)——206xp[ {%Z } ! g !
1 &
exp[ﬁz cos(ch[)J +20 +exp(1)
i=1
Generalized N —500 <x, <500 | min(fy)=
Sehwefel's Problem £,E) =2 xsin({l 1) i(4209687....4209687)
- i=1
=-Nx4189829
Weierstrass Function N_(kmax _ <y < min = £,(0,...,0)=0
190=3( St cosens 5, +0.91)- 0.55x <05 | mlh)= 400
i=1 \ k=0
k max
N Y [a* cos(2abp”-0.5)]
k=0
where g =0.5,b =3, kmax =20
Shifted Rosenbrock’s = . ~100 < x. <100 min(f,,) = f _bias,
Function fo(®)= Y1100z, —2)* +(z, ~)*1+ f _bias, i a0 ¢
i=1 _
Shifted Rastrigin’s R N . _8<y < min =
Functon Fu(B)= [ ~10c0s(2z) +10]+ £ _bias, | ~5SX S5 Ui
=) f_biasy =-330
Schiftzd RotaiteclilHigh xS 5 —-100 < x, <100 min(f;,) =
onditional Elliptic X) = 10°) 1.z + ias. .
Function Fa%) Z( )7 E + T bias, Jf _bias, =—450
Shifted Rotated R ~100< x. <100 min(CF1) =120
Griewank’s Function | f};(¥) = 2000 4 Z zZ; H COS( ) +1+ f _bias, T (CFh
Rotated Hybrid marked as f16 (x ) in the CEC 2005 benchmark problem -5<x <5 min(CF1) =10
Composition Function I
1(CF1) set [39] and is composed of two rotated Ackley’s functions,
two rotated sphere functions, two rotated Rastrigin’s
functions, two rotated Weierstrass functions, and two rotated
Griewank’s functions.
Rotated Hybrid marked as fis (X) in the CEC 2005 benchmark problem -5<x <5 min(CF2) =10
Composition Function !
2 (CF2) set [39]. It has the same composition as that of CF1,
however, the rotation and shift parameters are different

10 < x; <1000(¢ = 4,5, ...,8). The global minimum
value is 7049.3307 at = (579.3167,1359.943,
5110.071,182.0174,295.5985, 217.9799, 286.4162, 395.
5979).

flg(f):x% + 3?% + x1xo — 1421 — 1625 + (.’L‘g — 10)2

+4(zg —5)% + (x5 — 3)2 + 2(w6 — 1)?+522+7(ws —
11)2 + 2(zg — 10)2 + (219 — 7)% + 45,  subject  to
gl(f):—105+41’1+5$2—3$7 +9£L'8 < 0, gg({f):
10x1 — 8x9 — 17x7 4+ 228 < 0, gg(f) = —8x1 + 219 +
5339 — 2.7310 —12 S 0, g4(.f) = 3(.131 - 2)2 + 4(332 —
3)2 + 222 — Tey — 120 <0, g5(%) = SaH8xat(ws —
6)2 — 2w4 — 40 <0, g6(F) =27 +2(wy — 2)%—27170+

4)

l4zs — 626 < 0, g7(f) = 05(3“1 — 8)2 + 2(%2 — 4)2 +
322 — 26 — 30 <0, and gs(7) =—3x1 +622+12(zg —
8)2 — Tw1o < 0, where —10 < 2;<10(i=1,2,...,10).
The global minimum value is 24.3062091 at & =
(2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.
430547,1.321644,9.828726, 8.280092, 8.375927).

flg(.’f) = (!,Cl — 10)2 + 5(%2—12)2+$§+3(l’4—11)2

1028 + 722 + 2% — 4z6a7 — 1026 — 827, subject to
g1(T) = =127 + 223 + 323 + z3 + 4w+ 5zs <0,
g2(T) = =282 + Tzy + 3w + 1023 + z4—75 <0,
g3(%) = —196 + 23z; + 23 + 622 —8z7 <0, and
94(Z) = 422 + 23 —3wy29 + 22% + Hag — 1127 <0,
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where —10<uz; <10(i =1,2,...,7). The global
minimum value is 680.6300573 at & = (2.330499, 1.
951372, —0.4775414,4.365726, —0.6244870, 1.038131,
1.594227).

5) fa0(Z) = (exp(z122237475)), subject to hy (L) = xF +
I% + Ig + 1’3 + l’% —10 = O, hg(f) = X3 — 5I4$5 =
0, and h3(?) =23 +25+1=0, where -2.3<
2; <23(i=1,2), and —3.2<z; <3.2(i =3,4,5).
The global minimum value is 0.0539498 at Z = (—1.
717143,1.595709, 1.827247, —0.7636413, —0.763645).

C. Algorithms Compared and Their Parametric Setup for the
Unconstrained Optimization Problems

The proposed EHS algorithm is compared with three state-
of-the-art variants of HS called IHS [24], MHS [25], and GHS
[26]. We omit results of the comparison with the classical HS to
save space and also in consideration of the fact that, according
to [24]-[26], GHS, MHS, and IHS perform much better than
the classical HS over most of the benchmark instances. GHS
and IHS use the same HMS = 30. Here, we disallow any kind
of hand tuning of the parameters of the algorithms compared
here over any benchmark problem. Hence, after performing a
series of hand-tuning experiments, for IHS, we choose

HMCR =0.95 PAR,;, = 0.35
PAR2x =0.99  bwpmin = 1.00e — 06
bwmax = 1/20 . (mmax - xmin)

over all the unconstrained problems, as our preliminary experi-
ments suggest that the THS with this parametric setup provides
uniformly good results over all the benchmarks presented here.
Similarly, for GHS, we choose PAR,;;, = 0.01, PAR,.x =
0.99, and HMCR = 0.9. The parameters for the MHS algo-
rithm are set as those in [26], i.e., HMCR = 0.98, PAR = 0.1,
Nhm = 0.1 x HMS, Nm; = 500, and Nmy = 200.

Finally, for the proposed EHS, following values were se-
lected: HMCR = 0.99, PAR = 0.33 (same as the classical HS),
and bw = k+/Var(x) with k = 1.17.

The value of k£ was selected after a series of hand-tuning
experiments to provide consistently good performance over
all the benchmarks presented here. Section VI-C empirically
investigates the effect of k£ on the performance of EHS. Our
empirical experiments indicate that like IHS and GHS, EHS
also is not quite sensitive to the choice of HMS, and no single
choice is universally good over a large variety of problems. In
general, HM resembles the short-term memory of a musician
and should be small in size. However, since MHS uses a
comparatively large HMS, we set the HMS for all algorithms to
be equal to 50. This is done primarily to make the comparison
fair enough, so that all HS variants may start from the same
initial population over all the problems, and any difference in
their performance may be attributed to their internal search
operators.

Over the unconstrained optimization problems, we also com-
pare the performance of EHS with that of four state-of-the-
art evolutionary computing algorithms. These competitors are,
respectively, known as LEA (an EA based on level-set evolu-
tion and Latin squares) [47], ALEP (EP with adaptive Lévy
mutation) [48], CPSO-Hg (a hybrid cooperative particle swarm
optimizer) [49], differential evolution (DE) [50], [51], and G3

with PCX (a real coded GA with a generalized generation
gap model and parent-centric recombination) [52]. For these
five algorithms, we employ the best-suited parametric setup as
available from their respective literatures. In the case of DE, we
used the most widely used DE scheme known as DE/rand/1/bin
with scale factor F' = 0.5 and crossover rate Cr = 0.9. The
detailed description of these algorithms can be found in the
corresponding references, and we do not reiterate them here for
the sake of space economy.

D. Algorithms Compared on the Constrained
Optimization Problems

Apart from the classical HS, GHS, and IHS, we also compare
the performance of EHS with two state-of-the-art EAs on the
constrained optimization problems f15—f29. The first of these
algorithms is the Runarsson—-Yao (RY) [42] algorithm. It is
a recently proposed method and obtains good performance
on constrained optimization problems. The algorithm attempts
to stochastically balance objective and penalty functions, i.e.,
via stochastic ranking, and presents a new view on penalty
function methods in terms of the dominance of penalty and
objective functions. The RY algorithm is used here with the
probability parameter value Py = 0.475 (for details, see [42]).
The second competitor is a micro-GA (MGA) as a generalized
hill-climbing operator for GA (GA-MGA) [43], which was also
used to optimize the difficult constrained benchmarks. We will
use these existing results for direct comparison in Section VI-B.
In particular, the results for GA-MGA with the (35-35) fitness
allocation scheme is used here, the details of which can be
found in [43]. For testing over the constrained benchmarks, we
keep the same parametric setup for the three HS variants, as
described in Section V-B.

VI. NUMERICAL RESULTS AND DISCUSSIONS
A. Unconstrained Benchmark Functions

The comparative study presented on the unconstrained
benchmarks focuses on the following performance metrics:
1) the quality of the final solution; 2) the convergence speed
[measured in terms of the number of fitness function eval-
uations (FEs)]; and 3) the frequency of hitting the optima.
For unconstrained benchmarks, an asymmetric initialization
procedure was adopted here following [53] and [54].

1) Comparison of the Quality of the Final Solution: To
judge the accuracy of different algorithms, we first let each of
them run for a very long time over every benchmark function,
until the number of FEs exceeds a given upper limit (fixed here
to 4 x 10° for N = 50 dimensions). The mean and the standard
deviation (within parentheses) of the best-of-run errors for 50
independent runs of each of the six algorithms are presented in
Table II. Note that the best-of-the-run error corresponds to the
absolute difference between the best-of-the-run value f(Zpest)
and the actual optimum f* of a particular objective function,
i.e., | f(Zpest) — f*|- The experiments reported here are for the
number of dimensions N = 50 for functions f;—f5.

A nonparametric statistical test called Wilcoxon’s rank sum
test for independent samples [55], [56] is conducted at the 5%
significance level in order to judge whether the results obtained
with the best performing algorithm differ from the final results
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TABLE II
AVERAGE ERROR AND STANDARD DEVIATION (IN PARENTHESIS) OF THE BEST-OF-RUN SOLUTIONS FOR 50 INDEPENDENT RUNS TESTED ON 15
UNCONSTRAINED BENCHMARK FUNCTIONS, EACH IN N = 50 DIMENSIONS. EACH RUN OF EACH ALGORITHM WAS CONTINUED UP TO 4 X 105 FEs

Func Wil f 5 fa 5
(Sphere) (Rosenbrock) (Step) (Rotated Hyper- (Rastrigin)
Algorithms Ellipsoid)
CPSO_H6 5.7534e-11% 3.7263e-011 4.9283e-05t 3.5712e-14% 7.5712e-01%
(2.1094e-11) (1.8376e-01) (2.0146e-05) (7.2393¢-13) (1.2439¢-01)
LEA 6.8594e-15% 4.9274e-01% 6.2713e-07 3.5358e-14% 2.5358e-17}
(4.9847¢-15) (8.7231e-01) (8.5322¢-07) (1.4923¢-10) (6.9563e-16)
ALEP 6.3244e-04+ 2.8263e+011 1.1463e+00% 1.4257e-02% 6.0499¢+00+
(5.3432¢-04) (4.9826e+00) (2.2437+00) (4.2926¢-03) (8.3452¢-01)
G3 with PCX 4.82834¢-05t 627136+001 49871e-037 377659605t 1504101+
(2.9387e-06) (8.5223¢-01) (4.9127e-04) (2.5936e-05) (9.4235¢-01)
DE/rand/1/bin 95340¢-15% 1.9325¢+00t 4.8372¢-08% 4.9384¢-10% 57362¢-12
(3.2981¢-15) (2.8271+00) (3.7263¢-07) (1.4628¢-08) (3.8273¢-14)
IHS 8.3392¢-01% 6.2761e+041 1.6472e+04+ 3.7552e+03+ 2.3468e+02F
(4.8337¢-02) (3.8157¢+03) (2.6378¢+03) (9.3242¢+02) (2.8233e+01)
GHS 8.9437¢-02+ 4.8610e+041 4.0361e+027 1.3482e+031 7.5463e+01%
(1.0433¢-02) (2.7963e+03) (2.9431e+00) (6.5124e+01) (4.9806e+00)
MHS 3.3574¢-04 6.3198¢+021 1.0333e+00% 4.6308¢+031 9. 6429¢-011
(2.4474¢-04) (4.8722¢+01) (1.3457+00) (1.2458¢+03) (5.5854e-01)
EHS 3.0610e-12 1.2094¢-03 1.9283¢-07 1.6362¢-15 6.3927¢-12
(4.2572e-12) (3.8237¢-04) (5.8672¢-08) (4.1904¢-15) (4.0475e-12)
Funce fe i fs o Jio
(Griewank) (Ackley) (Schwefel’s (Weierstrass) (Shifted
Algorithms Problem 2.26) Rosenbrock)
CPSO.H6 5.6548e-021 1.7725¢-091 1. 7685¢-02% 8.5829¢-14% 4.8274¢+01%
(2.3031¢-02) (2.4893¢-10) (4.9249¢-03) (1.6792¢-09) (3.9217¢-01)
LEA 6.5132e-15% 5.0520e-15 4.8865e-041 2.9890e-12}% 1.7183e+00t
(1.7965¢-13) (7.638e-14) (2.4209¢-06) (7.0836e-10) (7.8713e-01)
ALEP 1.7382¢-01% 3.71596e-02+ 1.4823¢-01 9.6648e-05% 7.9283¢+02%
(4.093¢-02) (9.3228¢-02) (3.7743¢-02) (2.3331e-04) (2.0635¢+03)
G3 with PCX 6.8649¢-04t 3 4743¢-06F 49274e-02% 1.7984¢-02% 5.0982¢+01%
(8.0353e-04) (7.146¢-06) (7.9237e-04) (6.8324e-03) (3.5365¢+02)
DE/rand/1/bin 34837e-14% 1.1253¢-15 146724017 1.8092¢+01F 2.4819¢+01F
(2.6367¢-15) (3.4536e-14) (5.9283e+00) (6.1253e+00) (1.7365¢+01)
IHS 1.9238e+027 1.1802e+01F 5.9281e+01% 1.6353e-03% 7.2314¢+05%
(3.1569¢+01) (9.4657¢-01) (4.5331e+00) (8.2304¢-02) (1.0882¢+05)
GHS 4.9728e+011 8.76312e+00t 1.1263e+02% 9.5278e-01% 4.0155e+07t
(9.8384¢+00) (7.9245¢-01) (2.9041e+01) (4.4272¢-01) (3.8080e+08)
MHS 1.0609¢+00% 9.3747¢-061 7.6601e+001 7.6687¢-051 3.6718e+061
(3.4546€-07) (3.1042¢-06) (6.8161¢+00) (6.7367¢-05) (2.8266¢+06)
EHS 5.8924e-16 2.0345¢-15 1.7542¢-01% 6.0189¢-09 1.9273¢-01
(6.0042¢-15) (6.7564¢-16) (1.3425¢-01) (3.8271e-07) (4.0183¢-01)
Func Ju Sz Sis Hybrid Composite Hybrid Composite
(Shifted (Shifted Rotated (Shifted Rotated Function 1 (CF1) Function 2 (CF2)
Rastrigin) High Conditional Griewank)
Algorithms Elliptic Function)
CPSO_H6 3.0831e+00} 8.0937e+03F 1.8276e+00% 1.2836e+021 7.5849¢+02+
(4.9291e-01) (5.9284e+00) (1.8276e+00) (1.7004¢+00) (1.4642¢+02)
LEA 5.9834e-02% 2.1284e+03F 1.3224e-02t 1.1952e+02F 5.1254e+02F
(2.9931e-02) (3.9435¢+01) (8.3000e-04) (3.2841e+00) (2.5865¢+02)
ALEP 4.2632¢+00% 5.7352¢+031 9.5343¢-011 1.8723¢102t 7.1672e+02%
(2.5162¢-01) (3.1426e+00) (2.8835¢-03) (8.9284e-01) (2.8364¢+02)
G3 with PCX 1.8284e+001 4.7271e+03% 4.5624e-01t 2.2411e+021 1.9142e+03}
(7.5361¢-01) (8.1152¢+01) (2.8374¢-02) (1.8287¢+01) (2.643¢+02)
DE/rand/1/bin 2.0468¢+00% 4.67290+04% 38279¢-03t 1.8371c+02t 6.2317¢+02F
(3.8271+00) (2.6371e+01) (2.6621¢-03) (1.1281e+02) (1.5728¢+02)
IHS 3.4409¢+011 7.3722e+06% 7.7171e+03% 4.7381e+021 1.7423e+04%
(1.8129¢+00) (1.7541e+04) (8.3477e+01) (1.8286e+01) (5.8471e+03)
GHS 1.3821e+021 9.1354e+071 3.0574e+03% 5.7583¢+021 1.2043e+04+
(2.1635¢+01) (8.6607¢+06) (9.7056e+01) (7.6361e+01) (1.0031e+01)
MHS 5.7898e+01+ 5.8944e+07+ 7.7929¢+03% 4.09323e+02% 2.6472e+03%
(8.0086e+00) (3.5743e+07) (2.7504e-02) (1.7772e+01) (8.2537+02)
EHS 1.0289e-03 1.3561e+03 8.5462e-04 1.1031e+02 4.3595e+02
(3.0189¢-03) (1.8382¢+02) (3.6172¢-05) (2.0293¢+00) (7.2617e+01)

of rest of the competitors in a statistically significant way.
In Table II, the mark { indicates that EHS performs statisti-
cally better than the corresponding algorithm as the P-values
obtained with the rank sum test are less than 0.05 (5% signif-
icance level). On the other hand, the I mark indicates that the
corresponding algorithm is better than EHS.

Table II indicates that EHS performed better than the three
most recently published HS variants over all the 15 benchmark
instances. As revealed by Table II, over 10 out of 15 functions,
EHS alone achieved the mean best final accuracy, beating all
the competitor algorithms in a statistically significant manner
(in 5% significance level). In two cases (f5 and fg), LEA out-
performed EHS, which, however, managed to remain the third
best algorithm (for f5, the second best was DE/rand/1/bin, and
for fg, CPSO-Hg occupied the second rank). DE/rand/1/bin re-
mained another tough competitor of EHS, beating it statistically
over functions f1, f3, and f7. Furthermore, from Table II, we
observe that, out of these three instances, for f7, the differences
of the final accuracy values obtained by EHS and the best

algorithm, i.e., DE/rand/1/bin, are not statistically significant.
CPSO-Hg could beat EHS only in one case corresponding to
function fg9. We also note that, in all benchmark instances, the
performance of EHS is statistically superior to the performance
of the three other state-of-the-art variants of HS. Since all the
four HS variants start from the same initial population and
maintained the same HMS, this difference in performance must
be attributed to their internal search mechanisms, a fact that
substantiates the usefulness of the modifications incorporated
in EHS.

The convergence characteristics of the nine algorithms over
eight representative benchmark instances in 50 dimensions have
been shown in Fig. 6 in terms of the error (in logarithmic scale)
of the median run of each algorithm versus the number of FEs.
We omitted plots for all functions to save space and also in
consideration of the fact that they display more or less the
same trend. For the step function f3, characterized by plateaus
and discontinuity, owing to its higher explorative power, EHS
maintained a steady convergence rate right from the start and
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Fig. 6. Progress toward the optimum solution for the median run of nine algorithms over eight unconstrained test functions. (a) Generalized Rosenbrock’s
function (f2). (b) Step function (f2). (c) Generalized Schwefel’s problem 2.26 (f3). (d) Shifted Rastrigin’s function (f11). (¢) Shifted and rotated hyperellipsoid
(f12)- () Shifted and rotated Griewank’s function (f13). (g) Composite function 1 (CF1). (h) Composite function 2 (CF2).

finally finished at the lowest mean error, while the other two
variants of HS showed a much slower convergence.

2) Comparison of the Convergence Speed and Success Rate:
In order to compare the speeds of different algorithms, we select
a threshold value of the error for each benchmark problem. For
functions f; to fy, this threshold is fixed at 10~°; however,

for more difficult functions (shifted, rotated, and composite)
fio to fis, the threshold is set to 1072, in order to give a
fair chance to all the metaheuristics compared. We run each
algorithm on a function and stop as soon as the best error
value determined by the algorithm falls below the predefined
threshold or a maximum number of FEs is exceeded. Then, we
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TABLE III
NUMBER OF SUCCESSFUL RUNS, MEAN NUMBER OF FES, AND STANDARD DEVIATION (IN PARANTHESIS) REQUIRED TO CONVERGE TO THE
THRESHOLD ERROR LIMIT OVER THE SUCCESSFUL RUNS FOR FUNCTIONS f1 TO f15

Func
A ) S A S5
(Sphere) Rosenbrock) (Step) (Rotated (Rastrigin)
Hyper-
Algorithms Ellipsoid)
CPSO_H6 50, 114563.25 18, 176253.24 40, 26747425 50, 134983.68 21, 237583.67
(72653.44) (34645.34) (15327.08) (14481.73) (17432.82)
LEA 50, 84628.60 26, 268931.52 50,273483.50 | 50,123924.16 50, 152483.50
(6583.23) (5712.65) (13142.76) (14028.47) (15622.76)
ALEP 31,137822.63 0 0 43,129834.31 7, 163586.82
(7198.45) (10835.44) (35271.78)
G3 with PCX 44,157364.32 4,15456325 | 27,312833.73 | 26,254982.74 16, 236061.52
(21235.83) (7653.44) (29738.62) (32432.87) (14100.97)
DE/rand/1/bin 50, 87364.32 6,132763.70 | 50,127512.34 | 50,131357.68 | 50, 178359.25
(13428.71) (5582.48) (17238.49) (17283.48) (5172.84)
THS 0 0 0 25, 376093.80 0
(54827.57)
GHS 24, 136523.46 ] 0 15,324782.17 0
(17326.74) (12283.49)
MHS 34, 121196.57 0 0 33, 318769.67 9, 284722.59
(6374.25) (23692.58) (15174.38)
EHS 50, 103932.64 29, 172228.72 50, 141029.75 50, 186793.67 50, 250039.62
(5450.492) (16473.45) (32732.68) (12634.58) (24831.23)
Fune Js S ] Jo Sio
(Griewank) (Ackley) (Schwefel’s | (Weierstrass) (Shifted
Problem Rosenbrock)
Algorithms 2.26)
CPSO.H6 32, 257833.49 50, 237263.92 18, 231633.92 50, 137357.83 0
(15352.58) (56432.45) (64192.57) (18527.45)
LEA 50, 169203.62 50, 173945.56 25, 285092.02 50, 150923.56 4,276371.25
(27311.46) (27465.26) (71023.19) (31364.29) (17184.66)
ALEP 15,345218.47 23,335411.45 4,232744.50 43,117232.25 0
(27123.46) (12893.56) (27583.41) (34812.67)
(G3 with PCX 37, 263586.82 46, 230272.50 18, 233623.46 32, 163778.58 7,287093.76
(55271.78) (13642.289) (11964.38) (25385.31) (14258.03)
DE/rand/1/bin 50, 133425.58 50, 166783.62 50, 185562.84 0 9, 22635831
(14247.39) (8835.56) (7382.48) (9470.37)
THS 0 0 24,308794.25 | 34,205472.02 0
(46068.45) (13109.56)
GHS 3,272185.33 4, 338392.75 13, 145732.67 20, 265978.50 0
(10382.29) (10231.48) (2527.35) (20741.27)
MHS 5,368138.80 42,279372.87 28, 326713.25 42,216279.52 0
(6937.383) (18242.03) (11093.33) (723.47)
EHS 50, 124371.46 50, 164722.34 41, 209183.67 50, 170473.50 14, 206712.84
(11409.26) (47212.38) (21253.24) (23412.67) (46352.61)
Func fin fiz Sfis Hybrid Hybrid
(Shifted (Shifted (Shifted Composite CornP_OSIle
Rastrigin) Rotated High Rotated Function 1 Function 2
Conditional Griewank) (CF1) (CF2)
Elliptic
Algorithms Function)
CPSO_H6 42, 328934.50 0 42, 304982.64 16, 191935.40 2,378273.50
(45132.46) (15182.67) (3008.45) (20938.47)
LEA 50, 86374.92 6,273922.67 50, 138720.84 | 11,298521.54 3,354261.33
(5783.38) (23814.25) (20731.88) (10832.41) (18362.08)
ALEP 41, 197539.57 2,298342.22 50, 206742.28 15, 247234.72 3,366472.67
(14648.33) (1421.68) (18534.55) (14451.72) (16869.32)
G3 with PCX 35, 131453.20 6, 2462744.69 50,257362.57 11, 378357.83 0
(12873.66) (44583.41) (13417.34) (23423.45)
DE/rand/1/bin 4,301637.75 1, 342495 50, 142735.64 | 3,354726.67 0
(51526.58) (23718.59) (44721.68)
14S 9, 358242.73 0 0 10, 350528.60 0
(20946.37) (13873.51)
GHS 0 0 ] 7,363728.43 0
(24279.53)
MHS 4,234722.25 0 0 11, 294812.82 0
(13432.67) (36173.52)
EHS 50, 75834.68 10, 209309.20 50,126473.93 18,213698.45 4,312673.25
(5942.76) (17829.46) (27268.45) (34812.47) (14824.32)

note the number of FEs the algorithm takes. A lower number
of FEs corresponds to a faster algorithm. Like the previous
experiment (Section VI-A1l), the maximum number of FEs for
each function is kept at 4 x 10° for all the functions. Table III
reports the number of runs (out of 50) that managed to find the
optimum solution (within the given tolerance) without exceed-
ing the maximum number of FEs, the mean number of FEs,
and standard deviations (within parenthesis) required by the
algorithms to converge within the prescribed threshold value.
Entries marked as O indicate that no runs of the corresponding
algorithm converged below the threshold objective function

value without exceeding the upper limit of the number of
FEs. Missing values of standard deviation in these tables also
indicate a zero standard deviation. Table IIT shows that not only
does EHS yield the most accurate results for nearly all the
benchmark problems, but also it does so consuming the least
amount of computational time. In addition, the number of runs
that converge below a prespecified cutoff value is also greatest
for EHS over most of the benchmark problems covered here.
This indicates the higher robustness (i.e., the ability to produce
similar results over repeated runs on a single problem) of the
algorithm as compared to its other seven competitors.
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TABLE 1V
RESULTS OF THE COMPARATIVE STUDY ON FIVE CONSTRAINED NUMERICAL BENCHMARKS WHERE THE RESULTS FOR THE
RY AND GA-MGA ALGORITHMS ARE OBTAINED FROM [42] AND [43], RESPECTIVELY

Func Value type EHS IHS GHS RY GA-MGA
Mean -15.000 -14.9924 -14.9961 -15.000 -15.000
f]6 Best -15.000 -14.9956 -14.9989 -15.000 -15.000
Worst -15.000 -14.9918 -14.9946 -15.000 -15.000
Std. Dev 0.00 0.00167 0.00235 0.00 0.00
Mean No. of FEs 38478.64 176390.82 152 738.56 350,000 350,000
(Std. Dev) (1827.46) (20193.57) (11378.36)
% of Trials giving Feasible 100% 70% 90% 100% 100%
Solutions
Mean 7264.854 7708.648 7634.833 7559.613 7673.22
ﬁ7 Best 7053.065 7064.832 7061.465 7053.316 7055.15
Worst 7463.273 11726.576 10736.537 8835.655 11860.88
Std. Dev 124.262 904.731 815.36 530 888.4
Mean No. of FEs 68273.72 109294.84 89283.07 350,000 350,000
(Std. Dev) (3726.68) (6351.48) (7728.41)
% of Trials giving Feasible 100% 80% 90% 100% 90%
Solutions
Mean 24.363 24.762 24.712 24.374 24.567
Best 24.312 24.573 24.486 24.307 24.332
fl 8 Worst 24.538 25.174 25.095 24.642 25.177
Std. Dev 0.0526 0.4712 0.3889 0.066 0.1615
Mean No. of FEs 67932.56 217841.49 117264.68 350,000 350,000
(Std. Dev) (10928.52) (9825.37)
% of Trials giving Feasible 100% 90% 100% 100% 100%
Solutions
Mean 680.632 721.472 694.738 680.656 680.632
Best 680.630 680.685 680.658 680.630 680.630
f19 Worst 680.637 764.307 732.814 680.763 680.635
Std. Dev 0.00133 34.732 21.652 0.036 0.000924
Mean No. of FEs 70936.48 192831.29 90293.76 350,000 350,000
(Std. Dev) (4838.77) (26712.43) (7362.48)
% of Trials giving Feasible 100% 70% 60% 100% 100%
Solutions
Mean 0.053986 0.068372 0.067613 0.067543 0.054198
f20 Best 0.053948 0.056735 0.053978 0.053957 0.053951
Worst 0.054013 0.276368 0.187264 0.216915 0.055813
Std. Dev 6.732x10° 0.084 0.067 0.031 0.000629
Mean No. of FEs 28983.78 57583.30 48723.42 350,000 350,000
(Std. Dev) (3008.46) (1272.84) (2957.03)
% of Trials giving Feasible 100% 60% 90% 100% 100%
Solutions

B. Results for Constrained Benchmark Functions

To further investigate the performance of the EHS algorithm,
we use the five well-known constrained objective functions
listed in Section V-A. In addition to comparing EHS with the
two state-of-the-art HS variants, we also take into account two
recent EAs—RY [42] and GA-MGA [43]—that were partic-
ularly devised for optimizing constrained objective functions.
The numerical results for RY and GA-MGA have been taken
from [42] and [43], respectively. Since Runarsson and Yao [42]
used a termination criterion of 1750 generations (corresponding
to 350000 FEs) for the RY algorithm (GA-MGA results were
also reported in [43] for termination criteria of 350000 FEs)
over the five benchmarks, in order to make the comparison
fair, we compare both the qualities of their final solutions and
the computational cost at the same value. Accordingly, the
termination criterion of the three HS variants is that the quality
of the best solution cannot further be improved in the successive
50 generations for each function. We reported the results for
100 independent runs of EHS, GHS, and IHS with different
random seeds. In each run, the three HS variants start from
the same initial population. The results for the RY and GA-
MGA algorithms are for 30 and 100 independent trials for each

function. Table IV reports the comparative performance of the
five algorithms over the constrained benchmarks in terms of the
following: 1) the mean function value of the n trials (Mean);
2) the best solution in n trials (Best); 3) the worst solution in
the n trials (Worst); 4) the standard deviation of function values
(Std. dev.); 5) the mean number of FEs with corresponding
standard deviations, and 6) the percentage of trials that give
feasible solutions, where n = 100 for EHS, GHS, IHS, and GA-
MGA and n = 30 for the RY algorithm.

A detailed view of Table IV indicates that EHS outperforms
both GHS and IHS on all the problem instances in terms of
all the six metrics we considered. Table IV also compares EHS
with RY. As can be seen, EHS and RY can find the exact global
optimum in all the trials for f,¢. For functions f17, fis, f19, and
f20, the final solutions of EHS are better than or comparable
to those of RY in terms of the six performance metrics. EHS
gives a smaller standard deviation of the final objective function
values than RY in these cases, and hence, EHS has a more stable
solution quality.

For function fig, the best solution found by RY (24.307)
is better than that by EHS (24.312); however, the mean and
worst solutions obtained with EHS are much better than those
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Fig. 7. Evolution of the expected population variance after HM improvisation process in EHS with selection for different values of k. (a) Sphere model (f1).
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obtained using the RY algorithm. As can be seen from Table IV,
EHS and GA-MGA can find the exact global optimum in all
trials for f14. For functions f17, f1s, and fo, the solutions of
EHS are better than those of GA-MGA. In particular, for fi7,
the percentage of feasible solutions supplied by GA-MGA is
90%, while that of EHS is 100%. Only in case of function
f19, the best and worst solutions found by GA-MGA and the
standard deviation of the function values were better than EHS,
although both yielded an equal mean value over 100 trials. Note
that the mean number of FEs per independent run of EHS is
about 20000 to 60000 for all the functions, whereas that of
RY and GA-MGA is 350000. Therefore, EHS appears to be
computationally more efficient than these two algorithms, at
least over the test suite used here.

C. Effect of the Parameter k on EHS Performance

The proper selection of the proportionality constant k in
the relation bw = o(x) = k- \/Var(x) for EHS affects the
tradeoff between exploitation and exploration. For solving any
given optimization problem, this selection remains an open
problem. Some empirical guidelines may, however, be provided
based on the fact that if the value of k is very high, then
despite the selection, after only a few iterations, the population
variance will increase so much that, due to overexploration, all

the population members will be roaming near the boundary
of the search volume. In that case, the convergence of the
algorithm below a given threshold within a specified number
of generations is nearly impossible. In fact, due to HS-type
selection, it is observed that the best solution of the population
will no longer improve after a few generations if the value of &
is greater than 2.00. Fig. 7 shows the evolution of the expected
population variance over generations for two representatives
from the unconstrained test suite, i.e., functions f; (unimodal
sphere model) and f5 (generalized Rastrigin’s function), in 30
dimensions, while rest of the functions show a similar trend.
Here, we fix the maximum number of generations at 150 and
observe that the HS population shows a trend of anticonver-
gence behavior due to overexploration for higher values of k.
The graphs show a mean behavior of 50 independent trials over
both functions.

Again, a too small value of k runs the risk of losing the
diversity of the population, as the term within brackets ({((m —
1)/m) - HMCR - (1 + (1/3) - k* - PAR)}) in (22) may become
much smaller than 1, leading the population variance near
zero after only a few iterations. Our experiments suggest that
the value of k around 0.5-0.6 makes the performance of
EHS comparable to that of the classical HS and inferior to
IHS, MHS, and GHS due to the lack of sufficient explorative
power.
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In Fig. 8, we provide the overall success rate of the EHS al-
gorithm for a k varying from 0.5 to 3.0 over four representative
unconstrained functions f1, f3, fs, and f7 in 50 dimensions. We
again do not iterate through the plots of all the functions to save
space and time and also since they exhibit a similar trend. Since
all the functions have their optima at the origin (0), we plot
the percentage of runs that successfully yielded a final accuracy
value below 10~ for different k values. Fifty independent
trials were executed in each case on each function. Thorough
experimentation with all the test problems shows that keeping
k around 1.2 (we kept it at 1.17) provides reasonably accurate
results with high success rates over most of the benchmark
problems covered here.

VII. CONCLUSION

This paper has presented a mathematical analysis of the
evolution of population variance for the HS metaheuristic algo-
rithm. The theoretical results indicate that the population vari-
ance of HS can be made to exponentially vary by making the
distance bandwidth of HS proportional to the standard deviation
of the current population. The proportionality constant provides
us an additional control over the explorative power of HS for
fixed values of other control parameters. An attractive property
of the EHS algorithm proposed here is that it does not introduce
any complex operations or additional burdens to the original
simple HS framework in terms of FEs. The only difference from
the original PSO is the way the parameter bw is adapted.

The new EHS algorithm has been compared with the most
recently published HS variants and a few other well-known EAs
and swarm-based algorithms over a testbed of 15 unconstrained
and five constrained numerical benchmarks. The following per-
formance metrics have been used: 1) solution quality; 2) speed
of convergence; and 3) frequency of hitting the optimum. The
EHS algorithm has been shown to always outperform the other
three HS variants over all of the tested problems. Moreover,
EHS has been found to meet or beat a state-of-the-art variant
of PSO (CPSO-Hg), two standard real-coded EAs (LEA and
G3 with PCX), and an improved version of EP (ALEP) in a
statistically significant fashion.

Future research should address the issues like theoretically
establishing an optimal range of values for &, which improves
the performance of the algorithm over a wide range of func-
tions. The parameter £ may be made time varying or adapted in
such a way that, during the early stages of search, exploration is
emphasized, but during the later stages of search, exploitation is
favored, depending on the nature of the fitness landscape. The
parameter may even be self-adapted so that the algorithm itself
determines the optimal value of %, capturing any special feature
of the problem at hand. Other modifications to the algorithm
leading to better tradeoffs between explorative and exploitative
tendencies should also be investigated both empirically and
theoretically. An analysis of the timing complexity of HS-type
algorithms may also be worth considering in the future.
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