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Summary

Modern-day hybridwind farm operation is fundamentally dependent on the accu-

racy of short-term wind power forecasts. However, the inevitable error in wind

power forecasting limits the power transfer capability to the utility grid, which

calls for battery energy storage systems to furnish the deficit power. This manu-

script addresses a wind forecasting based penalty cost minimization solution for

hybrid wind-battery farms. We choose six wind farm sites (three offshore and the

other three onshore) to study machine intelligent forecasting based solutions and

compare the performance of a wavelet-Twin support vector regression (TSVR)

based wind power forecasting model with ε-Twin support vector regression,

Random forest, and Gradient boosted machines, for penalty cost minimization.

We access the penalties that arise as power imbalances along with the battery

system's cost. We find that TSVR based wind power forecasting method results

in a minimum global operational cost for all the wind farm sites under study.

KEYWORD S
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1 | INTRODUCTION

Various studies concerning optimal allocation of power units of for planning and operation have been carried out.1

Multi-objective optimization-based studies have demonstrated that it is convenient to design a hybrid power system
comprising wind farm as a base power plant. However, the inherent intermittency in wind resource makes it difficult
for grid operators to plan their dispatch in a congested power system network.2 Stochastic nature of wind speed makes
it difficult for the wind farm operators to plan their dispatch. This stochastic nature can be typically modeled in the
form of a nonstationary and nonlinear time-series. Statistical models used to predict wind speed often fail as they lack
the ability to trace the nonlinear trend in a wind speed time-series. An efficient wind farm operation is based on achiev-
ing economies of scale depending on the nature of the associated electricity market.

With increased wind power penetration globally, the importance of the time-scale in wind power forecasting has
increased. Statistical model-based forecasting methods allow wind speed prediction over a large horizon, while the vari-
ations in wind speed on a smaller time-scale like that of 1-minute to 10-minutes give a deeper insight into various
dynamic phenomena occurring in atmospheric boundary layer.3 Wind turbine and farm control in modern power
plants also rely on the preview wind speed information to be available in the range of 1-second to 10-minutes.

List of Abbreviations: ANN, Artificial Neural Network; BESS, Battery Energy Storage System; GBM, Gradient Boosted Machines; QPP, Quadratic
Programming Problem; RF, Random Forest; SVR, Support Vector Regression; TSVR, Twin Support Vector Regression.
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Commonly used induction control and yaw control techniques are used when preview information is available at a
higher frequency, thus allowing a precision equipment like Light Detection and Ranging (LIDAR) to effectively control
the wind turbines.4 A choice of forecasting model either based on the statistical model or LIDAR based scanning is
essential for wind farm control.

In terms of energy trading, minute-scale forecasting allows wind farm operators to obtain short-term forecasts
where the imbalance is created due to the stochastic nature of wind speed. Minute-scale forecasts are also necessary for
providing ancillary services, secondary or tertiary reserve for balancing capacity of a large pool of utilities. Grid stability
is dependent on the balance between generation and demand. With fluctuations in wind power, it is important for wind
generation companies to participate in the reserve power market according to their generations. It has also been
observed that the spot price in an electricity market increases if the wind power forecasts are made for a longer hori-
zon.5,6 Previous studies have shown the usage of thermal power generation in order to control imbalances by wind
power generation.7 In the present case, a hybrid wind farm is utilized in order to reduce the costs incurred by a trans-
mission system operator (TSO) for dispatch windows with imbalances. A TSO is responsible for maintaining coordina-
tion between generation and demand and also to handle any contingencies that may jeopardize the system security.
Incurring a penalty cost to wind generation companies will encourage the usage of accurate wind forecasting methods.

Time horizon based forecasting is another important aspect in wind power forecasts.8,9,10 A Majority of related
research is now progressing towards machine learning algorithms that have the ability to derive a regression function to
be used on new data. Wind speed data for a particular regime can be assessed in different time intervals like very short-
term, short-term, and medium-term forecasting. Individual machine learning methods like Artificial neural networks
(ANN), Support vector regression (SVR), Extreme learning machine (ELM), and Gaussian process regression are used in
tandem with signal preprocessing methods like wavelet transform and empirical mode decomposition. Signal decomposi-
tion techniques segment the time-series into sub-series which are forecasted and then an aggregation provides the series.
These techniques form the basis of a hybrid forecasting model where the advantages of individual models are synthesized
to arrive. Among these methods, Yuan et al provides a hybrid forecast using auto-regressive fractionally integrated mov-
ing average (ARIFMA) and least-square support vector regression for short-term wind power prediction.11

Machine-learning algorithms have significant edge over classical statistical models like ARMA, ARIMA, and Gener-
alized AutoRegressive Conditional Heteroskedasticity (GARCH). Furthermore, signal decomposition based techniques
have shown significant improvement in prediction accuracy in tandem with optimization of hyper-
parameters.12,13,14,15,16 In this work, we study Support vector regression (SVR) and its variants along with random for-
ests and gradient boosted machines as regression models for short-term wind speed forecasting. SVR is derived from
the core idea of support vector machines where a regressor function is determined based on a nonlinear mapping
from input space to a higher dimension space. Similar to SVR, Least square support vector regression (LS-SVR), Twin
support vector regression (TSVR), and ε-Twin support vector regression (ε-TSVR) are used for regression analy-
sis.17,18,19,20,21 A hybrid model based on wavelet transform and variants of SVR is discussed in Dhiman et al.22 All these
methods discussed use large historical data to train their respective algorithms. Computational complexity also plays an
important role in formulating the hybrid models for wind speed forecasting. LS-SVR based model uses equality con-
straints in formulating the optimization problem and takes less time than conventional SVR. In terms of prediction
accuracy, tuning of hyper-parameters results in a lower error which can be beneficial from reserve capacity point of
view when dealing with imbalances in a hybrid wind farm. For random forests and gradient boosted machines, parame-
ter tuning in form of the number of trees, and learning rate results in an improved prediction.23

For hybrid wind farms, decision-making strategies like Simple additive weighting (SAW), Technique for the order
of preference by similarity to ideal solution (TOPSIS), and Complex proportional assessment (COPRAS) are used to find
the preferred alternative.24 Conceptually, a hybrid wind-battery farm focuses on penalty cost minimization achieved
with accurate wind power forecasting. A wind farm operator ensures that the power schedules are available ahead in
time in order to facilitate optimal power flow in a power system network.25 Wind power is variable in nature and hence
the excess or deficit in wind power accounted via forecasting can be treated with reserve power capacity. Battery energy
storage systems are commonly employed for this purpose. However, due to its high investment cost and limited life-
time, modeling its operation with grid-connected power system is challenging. Hence, we formulate an analysis that
takes into consideration the degree of accuracy with which wind power forecasts can be made. The formulation of pen-
alty cost(s) incurred is purely as per the actual and predicted wind powers. The details of these costs are provided in the
next section. The associated decision-making idea for a hybrid wind farm consists of tangible and intangible parts that
determine the most preferred strategy for a wind farm operator at a given time. However, this is not the case when it
comes to a particular dispatch window where different approaches incur different costs, depending on the type of fore-
casting method used. This manuscript aims to find the best forecasting approach among various possible ones.
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The decision and control aspect in a hybrid wind farm faces continuous challenges, and with increasing
wind power penetration the need for an efficient solution that ultimately aims to increase the annual energy
production, is to be looked at closely.26 Simultaneously, the advancement in the field of machine learning, accu-
rate wind forecasts will potentially help the wind generation companies to operate in a higher margin of profit
and dispatch maximal power to the utility grid.27 Thus, in order to arrive at a holistic solution aimed at achiev-
ing an economic benefit to the wind farm operator, an integrated solution based on machine intelligent forecast-
ing is proposed in this manuscript which stems from the efficacy of machine learning models to perform well
for wind speed datasets as discussed in Dhiman and Deb.21 The main contributions of this work can be summa-
rized as follows:

1. A penalty cost minimization for wind-battery farm using wavelet-Twin support vector regression (TSVR) and a col-
lective objective aimed to increase battery lifetime.

2. Evaluate various penalty costs incurred to farm operator due to wind power imbalances. Costs in the form of penal-
ties are evaluated for the proposed forecasting methods for wind farm sites. This analysis gives direction to new ave-
nues in the field of hybrid wind-battery farms.

3. The aim is not only to achieve maximum profit by implementing a superior forecasting method but also to enhance
the lifetime of battery storage systems. Hence, the battery is taken into consideration by assessing the consecutive
battery state changes from charging to discharging.

4. A common cost metric for the forecasting technique under consideration is evaluated under two different scenarios:
(a) static which acts as a baseline case, and (b) dynamic, a more realistic case where the farm operator may not
always have the choice to operate at an optimal battery threshold point is evaluated.

The remainder of the manuscript is structured as follows: Section 2 discusses the modeling of an integrated solution
based on short-term power forecasts followed by Section 3 where Twin support vector regression is discussed along with
its mathematical formulation. Section 4 presents results and discussions based on real-time data for wind farm sites
followed by a concluding section. The basis of selection of these four machine learning methods is based on the ability
of these regressors to perform equally well for wind speed forecasting problem as discussed in Dhiman et al.22 The
extension of these four machine learning techniques for penalty cost minimization also ascertains the ability of these
techniques to be leveraged in short-term wind power dispatch.

2 | MODELING AN INTEGRATED SOLUTION FOR WIND FARMS

A grid-connected hybrid wind-battery system deals with specific challenging issues during its lifetime. Installation of
Wind turbines in a given land area occurs as per the micro-siting results for optimal power capture.28,29,30 However, in
real-time, the market-driven scenarios do not guarantee an adequate power transfer to the grid. In the next subsections,
we discuss the decision-making and battery health improvement aspects in hybrid wind farms. The operator tries to
minimize the penalties incurred due to power generation imbalances and battery health assessment as per the number
of consecutive charging-discharging instances.

2.1 | Decision-making environment

The decision-making environment for a hybrid wind farm involves an appropriate operational strategy that results in a
minimum cost over a period of time. A wind farm operating with its aim to deliver power to the grid often has auxiliary
power support in the form of BESS which operates either in charging or discharging mode. For deploying the integrated
solution, we consider a multi wind farm dispatch scenario where every wind farm under consideration tries to mini-
mize its cost incurred. The Operational cost incurred to a wind farm operator is purely based on the available forecast
schedules. The availability of wind power forecast for a definite time horizon is an important factor that must match
with the market timing where the energy balances are cleared between 5 minutes to 6 hours. For wind generation sta-
tions participating in short-term electricity markets, accurate forecasting method results in lower penalty costs and also
auxiliary costs for the TSO. Figure 1 illustrates an infographic regarding different types of penalty costs considered for
modeling an integrated solution for a hybrid wind-battery farm.
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Consider a wind farm operator for farm A who faces four penalty costs in the form of T1, T2, T3, and T4 as described
in Figure 1. The wind farm operator working closely with the electricity market has to provide the wind power genera-
tion forecasts ahead in time in order to schedule a dispatch requiring auxiliary support to satisfy the grid requirements.
Thus, for modeling an integrated solution, we take up the tangible part of the decision-making and analyze the same
under different forecasting schemes.

Under this environment, a wind farm operator tries to minimize the cost incurred due to an imbalance in the fore-
casted wind power generation and the actual one. Imbalances are dealt with in terms of penalty which the farm opera-
tor minimizes by implementing a superior forecasting method. We determine the four penalty costs for wind farm A in
each dispatch window. The wind farm operator of farm A follows the strategy resulting in minimum cost. The total cost
is an aggregated value in each dispatch window, given as

J� ¼
Xk
i¼1

min T1,i,T2,i,T3,i,T4,if g, ð1Þ

where Tj,i refers to the Tjth cost for the ith dispatch window, i¼ 1,2,…k and j¼ 1,2,…,4. The above cost J� differs as the
forecasting scheme changes. Individually, these costs can be expressed as follows

• Cost T1 is based on the fact that hybrid wind-battery farm operator pays penalty when actual wind power is lower
than the forecasted one. Consider p̂i as the predicted wind power and pi be the actual one, for ka such scenarios, pen-
alty cost is

T1 ¼ βw
Xka
i¼1

p̂A,i�pA,i
� �

, ð2Þ

where βw is cost incurred to operator for $ per 1 kW of shortfall in predicted wind power.

• Cost T2 considers a scenario where the power from battery energy storage is used up to a certain threshold. Given
there are ms such instances where the deficit power exceeds threshold, this cost can be expressed as

FIGURE 1 Framework under decision-making environment of integrated solution

4 of 15 DHIMAN ET AL.



T2 ¼

Pms

i¼1
ζs pthb � p̂A,iþpA,i
� �þδx p̂A,i�pi

� �� �
,

if pA,i� p̂A,i > pthb ,

βw
Pms

i¼1
pA,i� p̂A,i
� �

, Otherwise,

8>>>>><
>>>>>:

ð3Þ

where ζs denotes per kW penalty in $ when deficit exceeds battery threshold.

• Cost T3: Consider multiple wind farms, for example three in this case. The farms in proximity to each other can
deliver deficit wind power in lieu of the wind farm under consideration. Hence, a penalty corresponding to the
borrowed power must be paid. Let pB,i, p̂B,i, pC,i and p̂C,i be the measured and predicted powers for wind farms B and
C respectively, the operator of farm A pays a penalty that is expressed as

T3 ¼

αz
Plz
i¼1

pB,i� p̂B,i
� �

, if pB,i > p̂B,i,

αz
Plz
i¼1

pC,i� p̂C,i
� �

, if pC,i > p̂C,i,

δx
Plz
i¼1

p̂A,i�pA,i
� �

,

8>>>>>>>><
>>>>>>>>:

ð4Þ

where αz and δx penalty cost for per kW of borrowed power and penalty for power delivered through battery energy
storage.

• Cost T4 considers a scenario where the penalty cost is paid for power delivered entirely by battery energy storage.
This cost can be expressed as

T4 ¼ δx
Xul
i¼1

p̂A,i�pA,i
� �

: ð5Þ

Evaluation of this cost is also important from a transmission system operator's point of view as any imbalance
caused in wind power generation reflects on the ancillary cost to be borne by the TSO. Under the current sce-
nario, we evaluate costs using Twin support vector regression, ε-Twin support vector regression, Random forest,
and Gradient boosted machines. Such supervised machine learning based regression models use historical data. This
generalization capability of machine learning models avoid over-fitting and thus increases the accuracy of the models
which ultimately reduce the penalty on a wind farm operator. Cost T2 which uses power from battery to be dispatched
during imbalance, is only paid if the deficit exceeds a battery threshold Pth

b . The variation of this cost with different
battery threshold naturally affects the overall cost incurred. A farm operator chooses the battery threshold which
leads to minimum cost. With respect to the penalty costs, the objective is to minimize them (penalty costs) by
incorporating an accurate machine intelligent forecasting technique (such as TSVR, epsilon-TSVR, RF, and GBM).
The accuracy of the forecasts affects the magnitude of these penalty costs. Thus, in this work, the forecast that
yields minimum cost common cost (CC), is found optimal for the operation of hybrid wind-battery farms. In
terms of the profit, the penalty costs can be minimized in a particular dispatch window by carrying out an accu-
rate wind power forecast.
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2.2 | Battery state change cost under wind power forecasting

Recent wind farms are equipped with BESS to provide auxiliary support during imbalances in power generation. Often
a battery system goes through a period of successive charging and discharging which can be harmful for its lifetime.
Battery health is of prime importance as the need for charging and discharging BESS may arise due to constraints
placed on the transmission network. Imbalance markets may also need to be in a state to accept excess wind power dur-
ing such scenarios. With the availability of wind power forecasts, the damage done to a battery can be assessed in terms
of number of successive state changes from charging to discharging. State change qþi , i∈ℕ can be defined as an event in
a battery system which corresponds to a charging-discharging instance.

When a battery undergoes change in its state from charging to discharging, a state change is counted as 1. A charg-
ing event can be assigned discrete values of either 1 or 0 and vice-versa for discharging event. A simple algorithm for
determining the number of state changes with the availability of measured and predicted wind powers is illustrated in
Figure 2. The actual and forecasted wind powers are compared and a charging event is identified if the actual wind
power exceeds the forecasted one. For a BESS, the discharging and charging powers are defined as

pbatt ¼
pch ¼ Pw� P̂w >0

pdis ¼ P̂w�Pw >0,

(
ð6Þ

FIGURE 2 Battery state change algorithm based on charging and discharging powers
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where Pw and P̂w are the actual and predicted wind powers. In this regard, the number of consecutive battery state
changes (charging to discharging) are associated with error in wind forecast. Consider standard error in terms of
Pw� P̂w
� �

, an increase in this error leads to continuous battery charging. Thus, minimizing this error can certainly pre-
vent violation of SoC limits. With the help of machine learning forecasting techniques, it is possible to minimize the
aforementioned error and thus one can estimate the condition of battery charging-discharging profile. The charging of
BESS is only done if the battery is in a stage where it can accept power, that is, when the SoC limits are not vio-
lated. Further, BESS is allowed to discharge if the actual wind power falls short of the forecasted one. This charg-
ing and discharging instance of BESS is assigned 1 and 0 respectively. A counter NchE(i) = 1 indicating charging
instance and NchE(i) = 0 indicating discharging instance, is evaluated. Further, for N samples, the difference for
each consecutive value of NchE is determined and a state change qþi ¼ 1 is assigned if the difference is 1, else 0 is
assigned.

Higher number of state changes that arise from poor wind forecasting algorithm can degrade the battery life
and necessitates frequent maintenance and the cost incurred can be as high as 11 000 USD/year.31 Imposing a
penalty cost for consecutive state changes will induce the operator to use an efficient scheme. This penalty cost is
expressed as

Nsc ¼ qþ1 ,q
þ
1 þqþ2 ,…,

XN
i¼1

qþi

* +
, Fcost ¼ κNsc, ð7Þ

where κ is the penalty cost paid per consecutive state change in a battery system, Nsc represents the number of state
changes, and qþi is a state change index, and cost Fcost is a metric to evaluate the battery health in terms of number
of successive state changes. The cost corresponding to an efficient forecasting method is likely to benefit the
operator.

3 | TWIN SUPPORT VECTOR REGRESSION

For an integrated solution, we achieve Penalty cost minimization via wind power forecasting by adopting a twin sup-
port vector regression (TSVR) method and compare with ε-TSVR, random forest, and gradient boosted machines. We
use a wavelet transform based signal processing to decompose the wind power obtained from wind speed data into low
and high-frequency components. The forecasting model's inputs are the approximate and detail signals, and wind
power is taken as output.22

Xinjun18 paved a way for the solution of regression based problems by formulating a twin-hyperplane
based support vector machines known as twin support vector regression. This technique computes the
nonparallel hyperplanes around the data points by solving two quadratic programming problems (QPPs).
Similar to classical SVR, TSVR evaluates two ε-insensitive functions which are up-bound and down-
bound regressors. For training data x1,y1ð Þ, x2,y2ð Þ,…, xn,ynð Þ�X�R, where X represents the input feature space with
dimension Rn, consider Y ¼ y1,y2,…,yið Þ as target output, i¼ 1,2,…,n and yi∈R. The mathematical formulation of
TSVR is

min
1
2

Xn
i¼1

yi� eε1�ψ1ið ÞT yi� eε1�ψ1ið ÞþC1e
T
Xn
i¼1

ξi,

s:t: yi�ψ1i ≥ eε1�ξi,

min
1
2

Xn
i¼1

yi� eε2�ψ2ið ÞT yi� eε2�ψ2ið ÞþC2e
T
Xn
i¼1

ηi,

s:t: ψ2i� yi ≥ eε2�ηi,

where ψ1i ¼ xiw1þ eb1,ψ2i ¼ xiw1þ eb2, C1,C2 > 0 and ε1,ε2 ≥ 0 are the TSVR hyperparameters and ξi,ηi denote the
slack variables acting as soft margin to the error ε. The formulation of dual of the TSVR problem can be expressed in
terms of Lagrangian operator given as
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L w1,b1,εi,αi,βið Þ¼ 1
2

Xn
i¼1

yi� eε1� xiw1þ eb1ð Þð ÞT

yi� eε1� xiw1þ eb1ð Þð Þ

þC1e
T
Xn
i¼1

ξi�
Xn
i¼1

αi yi� eε1� xiw1þ eb1ð Þð Þ�
Xn
i¼1

βiξ,

ð8Þ

where αi,βi for i¼ 1,2,…,nð Þ are the Lagrangian multipliers. The KKT conditions can be evaluated as follows

@L
@w1

¼ 0)�XT Y �Xw1� eb2� eε1ð ÞþXTα¼ 0

@L
@b1

¼ 0)�eT Y �Xw1� eε1� eb2ð Þþ eTα¼ 0

@L
@ξ

¼ 0)C1eT �α�β¼ 0

@L
@α

¼ 0)Y � Xw1þ eb1ð Þ≥ eε�ξ, ξ≥ 0,

8>>>>>>>>>>><
>>>>>>>>>>>:

For the TSVR optimization problem, the equality constraints are given as

αT Y � Xw1þ eb1ð Þ� eε1þ ξð Þ¼ 0, α¼ 0, βTξ¼ 0 ð9Þ

where α∈ 0,C1e½ � for β≥ 0, and (9) is unified and written as

� XT

eT

" #
Y � eε1ð Þ� X e½ � w1

b1

� �� �
þ XT

eT

" #
α¼ 0: ð10Þ

Let us define

Q¼ X e½ �, t¼Y � eε1, u1 ¼ wT
1 b1

� 	T
, ð11Þ

�QTtþQTQu1þQTα¼ 0,

u1 ¼ QTQ
� ��1

QT t�αð Þ ð12Þ

where Q¼ X e½ � and t¼Y � eε1. The matrix QTQ
� �

is a positive semi-definite one with positive eigen values. This matrix
is often an “ill-conditioned” matrix, where calculating its inverse can stir up computation errors and as a solution, a
small regularization term σI, of order 10�7, and I of appropriate dimensions is added to it. The dual corresponding to
(8) can be simplified as

max �1
2
αTQ QTQ

� ��1
QTαþ tTQ QTQ

� ��1
QTα� tTα

s:t: α∈ 0,C1½ �
ð13Þ

max �1
2
γTQ QTQ

� ��1
QTγþmTQ QTQ

� ��1
QTγ�mTγ

s:t: γ∈ 0,C2½ �,
ð14Þ

where m¼Y þ eε2 and u2 ¼ QTQ
� ��1

QT m� γð Þ. Equations (13) and (14) refer to the dual of original convex optimiza-
tion problem. The final predictions for new data samples can be expressed in form of a mean regressor
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f TSVR xð Þ¼ 1
2

w1þw2ð ÞTxþ b1þb2ð Þ

 �

: ð15Þ

Next, we discuss the simulation results obtained under the decision-making environment for a hybrid wind-battery sys-
tem for penalty cost minimization.

4 | RESULTS AND DISCUSSIONS

For penalty cost estimation by forecasting the wind power, the performance of Twin support vector regression (TSVR),
as discussed in the previous section, is compared with ε-Twin support vector regression (ε-TSVR), random forest (RFR),
and gradient boosted machines (GBM). For validation with real-time wind data, three offshore wind farm sites namely,
Gemini (Netherlands), Veja Mate (Germany), and Walney (UK) located on the western coast of Denmark and Ger-
many, capable of generating bulk power owing to high wind resource, are chosen. Further, three onshore wind farm
sites namely, Clyde (Scotland), McCain Foods (UK), and Nygårdsfjellet (Norway) are also taken into consideration. The
wind speed data for all the six wind farm sites is collected from MERRA-232 for the month of March 2019 with a
10 minute sampling interval. The wind turbine diameter is taken as 120m. Out of 4320 samples collected for wind
speed data, 3000 samples are used for training and remaining for testing. Further, training phase is treated with 10-fold
cross-validation. Further, the forecast horizon is one-day ahead in blocks of 10-minutes. The hyper-parameters for
TSVR, ε-TSVR are tuned in set 2i, where i¼�9, �8,…,10. Further, for random forest and gradient boosted machines,
the number of trees are tuned from 1 to 10000.

In Table 1, the root mean square error for wind speed prediction is depicted. This analysis is carried out to validate
that a similar pattern is observed in penalty cost. TSVR based prediction technique results in superior wind speed fore-
casting followed by ε-TSVR, RFR, and GBM. The basis of wind power forecasting is a hybrid model using wavelet trans-
form and an ML algorithm. Penalty cost assessment with dispatch window of 10 minutes is described in Figure 1. The
values of βw ¼ 0:9, ζs ¼ 0:75, αz ¼ 0:4, and δx ¼ 0:8 in $=kW are chosen so as to implement an accurate wind forecasting
method. Table 2 highlights the penalty cost incurred to each wind farm site's operator for a given dispatch horizon.
Considering the penalty costs for offshore sites, we find that TSVR based forecasting method results in minimum cost
among the four regressors as indicated by bold numerals. For wind farm site Gemini, TSVR results in 85.74%, 92.40%,
and 93.25% saving in penalty cost compared to ε-TSVR, RFR, and GBM methods, respectively. Similarly, for the site
Veja Mate, TSVR yields 92.05%, 96.41%, and 95.83% saving when compared to other models as listed in Table 2.

The accuracy in wind power forecasts for TSVR and ε-TSVR are achieved by tuning the hyper-parameters like band-
width (σ) of radial basis kernel function and regularization constant (C1, C2).

33 Forecast quality, which is often assessed
by the coefficient of determination (R2), varies with hyper-parameters.22 Similarly, with RFR and GBM models, hyper-
parameter tuning in several trees and learning rate affects the prediction. The mean squared loss, which is a measure of
accuracy, decreases with an increase in trees number. Penalty costs are subjected to a change with a hyper-parameter
variation for TSVR, ε-TSVR, RFR, and GBM model. As discussed, by knowing the number of state changes apriori, we
calculate the cost incurred due to consecutive state changes. The value of κ is taken as $15, and Table 3 depicts the pen-
alty cost paid for consecutive state changes for BESS with different forecasting methods. The parameter κ demonstrates
the penalty cost imposed on the farm operator for consecutive battery state changes. A consecutive change in battery
state, that is, charging to discharging leads to degradation in its life. In this manuscript, we have assumed a value of

TABLE 1 Performance metric using selected ML methods

Root mean square error (RMSE)

Method Gemini Veja Mate Walney

TSVR 1.1103 1.5805 1.1213

ε-TSVR 2.2908 3.1788 2.6715

RFR 3.4254 4.2732 4.0887

GBM 4.0778 5.1316 4.6597

Note: The bold values indicate the best regression model with respect to a specific wind farm site.
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USD 15/kW which is 6% of the capital cost in the range of (200-250 USD/kW). The range of the penalty cost is kept on
the higher side in order to encourage the farm operator to adopt accurate forecasting technique.

From Figure 3, we observe the quantitative aspect of a battery system for various wind farm sites. From Table 3, we
find that for all the wind farm sites, TSVR based method yields minimum state changes and thus results in minimum
penalty cost followed by ε-TSVR, RFR, and GBM model. The variations of penalty cost T2 with battery threshold power
(Pth

b ) are illustrated in Figure 4.
The cost incurred in strategy T2 allows a wind farm operator to conserve the battery health in multiple charging-

discharging instances. The cost approaches a minimum value for a given threshold battery power expressed in maxi-
mum discharging power. The superiority of TSVR over other methods is reflected in the penalty costs calculated in
Tables 2 and 3, and Figure 4. From Figure 4, we can observe that cost is minimum for Pth

b =max Pdisð Þ¼ 0:8 and increases
thereafter. This threshold battery power where the cost incurred T2 is minimum, is called optimal threshold battery
power Pth

b,opt. This cost is prone to increase with a poor forecasting method. Therefore, wind farm operators are always
encouraged to use an accurate forecasting method. The point Pth

b,opt ¼ 0:8 is zoomed and the same is illustrated in
Figure 4 for different forecasting methods. Results reveal the minimum cost corresponding to optimal threshold battery

TABLE 2 Penalty cost (J�) per 1000 USD with four forecasting models

Offshore wind farm sites

Method Gemini Veja Mate Walney

TSVR 212.62 109.65 77.07

ε-TSVR 1491.70 1380.70 716.37

RFR 2798.9 3057.90 1532.60

GBM 3151.40 2631.9 1523.10

Persistence 3312.6 2815.3 1735.80

Onshore wind farm sites

Method Clyde McCain Foods Nygå rdsfjellet

TSVR 31.72 39.40 86.35

ε-TSVR 265.92 751.45 530.24

RFR 5519.60 11 627 2007.20

GBM 6184.40 10 155 1472.1

Persistence 7132.1 12 158.3 2165.16

Note: The bold values indicate the best regression model with respect to a specific wind farm site.

TABLE 3 Penalty cost (in $) for successive battery state changes

Offshore wind farm sites

Method Gemini Veja Mate Walney

TSVR 1245 1965 1380

ε-TSVR 1995 2940 2655

RFR 2940 3630 3585

GBM 4995 6480 5610

Onshore wind farm sites

Method Clyde McCain Foods Nygårdsfjellet

TSVR 150 450 570

ε-TSVR 1005 780 2355

RFR 2565 1095 1965

GBM 3495 2925 3570

Note: The bold values indicate the best regression model with respect to a specific wind farm site.
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power for TSVR. The overall scenario of arriving at an integrated solution is based on finding the best possible regressor
capable of minimizing the penalties imposed on the operator. Cost minimization is an important aspect that must be
evaluated when dealing in electricity markets where trading is done on a minute to minute scale. Providing short-term
wind forecasts to TSO benefits the wind farm operators especially when the need for reserve power capacity can esca-
late operating costs. To evaluate the scenario for a hybrid wind farm, two cases: (a) static and (b) dynamic are assessed.
A static scenario is defined as one where the optimal threshold battery power (Pth

b,opt ¼ 0:8) as discussed in penalty cost
T2, is available to wind farm operator to pay the respective penalty. On the other hand, a dynamic case for a wind farm
operator is when the power available in BESS is not the optimal threshold battery power. In such a case, the farm oper-
ator has no option but to operate at a nonoptimal battery power which results in a higher penalty cost as illustrated in
Figure 4. A common cost metric for each forecasting method needs to be evaluated in the static and dynamic scenario.
Let us define V1,V2,V3 as the three individual costs as J�, T2, and Fcost depicted in Table 2, Figure 4 and Table 3 respec-
tively, and h1,h2,h3 as the weights associated with these costs. A common cost metric is given as

FIGURE 3 Number of distinct battery state changes for different wind farm sites under different forecasting models

FIGURE 4 Penalty cost T2 variation with threshold battery power
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CCj ¼ h1V 1þh2V2þh3V3, ð16Þ

where CCj is the cost metric for the jth forecasting method. The weights h1,h2 and h3 attain a value of 1 for static case
but weight h2 associated with cost V2 needs to be tuned and lies in the range 0,1ð �. The static case where the weights
h1,h2 and h3 are assigned a value of 1 result in a common cost metric CC depicted in Table 4. It is observed that, for the
static scenario, TSVR based forecasting method yields in minimum common cost for all the datasets. The increase in
common cost metric as we change the forecasting method is associated with the accuracy of the method.

Thus, when a wind farm operator has the possibility to operate BESS at optimal threshold point, minimum cost is
incurred and the weight assigned to cost V 2 is 1. For the dynamic scenario case, the weight h2 can take values between
0 and 1. In a nonoptimal battery threshold scenario, the wind farm operator will attempt to use a better forecasting
scheme which will ultimately reduce the overall cost. When the threshold battery power is less than the optimal thresh-
old battery power (Pth

b,opt ¼ 0:8), the wind farm operator is likely to incur a higher operating cost as observed from the
Figure 4. Thus the value of weight h2 corresponding to this cost V2 has to be assigned higher value to penalize the farm
operator irrespective of the forecasting method used. This value of h2 is tunable and may attain lesser values when a
superior battery technology is used. On the other hand, if the threshold battery power is more than the optimal thresh-
old battery power (Pth

b,opt ¼ 0:8), the farm operator has a better chance to incur lesser overall cost due to proximity to the
optimal threshold power. Thus, in this case, the weight h2 is assigned a value less than or equal to 0.5. The weight h2 is
expressed as

h2 ¼
≤ 0:5, if Pth

b >Pth
b,opt

0:5, if Pth
b < Pth

b,opt

:

(
ð17Þ

Consider a scenario where the weight h2 attains a value of 0.75 and 0.4, the common cost metric CC corresponding to
this scenario is depicted in Table 5.

As observed from these tables, the scenario with h2 ¼ 0:4, yields a lower overall cost than h2 ¼ 0:75. That is, when
the threshold battery power available is near the optimal point, the cost incurred is less. It also strengthens the fact that
a superior battery technology with a higher power density and discharge efficiency will allow the wind farm operator to
operate near optimal battery threshold power. The superior battery technology will also be beneficial in providing sus-
tainable solutions to the wind farm operators in terms of the sudden changes like that of wind speed ramp events. Sur-
plus power from large power reversal caused due to ramp events can be stored in battery storage. In Table 6, the
common cost metric is evaluated for a wind speed dataset having a length of 3 months. The wind speed data for sites is
collected from May 2019 to July 2019. With the wind speed data from May 2019 being used for training and data
corresponding to June to July 2019, that is a total of 8784 samples being used for the testing phase. It is observed that

TABLE 4 Common cost CC (in $) for static scenario

Offshore wind farm sites

Method Gemini Veja Mate Walney

TSVR 1465.60 2086.26 1480.13

ε-TSVR 3551.98 4460.13 3526.46

RFR 5842.04 6960.68 5397.09

GBM 8286.77 9413.75 7470.01

Onshore wind farm sites

Method Clyde McCain Foods Nygårdsfjellet

TSVR 187.10 492.98 660.79

ε-TSVR 1303.95 1651.74 2962.77

RFR 8203.79 13 156.06 4092.30

GBM 9914.33 13 873.47 5165.44

Note: The bold values indicate the best regression model with respect to a specific wind farm site.
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TSVR based forecasting technique outperforms the rest in terms of the common cost metric. The magnitude of common
cost increases compared to 1 month testing results as discussed in Table 5.

Furthermore, in terms of the best forecasting method for penalty cost minimization, the accuracy obtained from
TSVR is the highest, followed by ε-TSVR, Random forest, and Gradient boosted machines. The high accuracy of the
TSVR method is primarily due to the resultant regressor's ability to capture noise present in the wind speed dataset.
The superior prediction performance of TSVR thus yields minimum penalty costs for the wind farms under consider-
ation. Figure 5 illustrates the accuracy and the computation time of forecasting methods tested for penalty cost minimi-
zation. We observe that TSVR has the least computation time than ε-TSVR, RFR, and GBM. The provision in TSVR of
solving two quadratic programming problems provides faster computation.

TABLE 5 Common cost CC (in $) for dynamic scenario

Method Gemini Veja Mate Walney

h2 ¼ 0:75

TSVR 1463.60 2083.35 1474.37

ε-TSVR 3535.66 4425.27 3487.69

RFR 5823.01 6892.48 5327.21

GBM 8251.68 9338.29 7385.78

h2 ¼ 0:4

TSVR 1460.81 2079.29 1466.29

ε-TSVR 3512.81 4376.47 3433.40

RFR 5783.75 6797.01 5229.39

GBM 8202.55 9232.64 7267.86

Note: The bold values indicate the best regression model with respect to a specific wind farm site.

TABLE 6 Common cost CC (in $) for dynamic scenario for 3-month wind dataset

Method Gemini Veja Mate Walney
h2 ¼ 0:75

TSVR 2463.51 3083.35 2474.37

ε-TSVR 3415.36 4054.71 3853.29

RFR 6123.41 5992.18 4194.12

GBM 7528.28 8083.91 4956.83

Note: The bold values indicate the best regression model with respect to a specific wind farm site.

FIGURE 5 Comparison of accuracy and computation time for tested methods
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5 | CONCLUSIONS

This manuscript presents a machine learning-based integrated solution for penalty cost minimization of a hybrid wind-
battery farm. We compare the wavelet-Twin support vector regression-based forecasting method with ε-TSVR, Random
forest, and Gradient boosted machine. Maximizing the annual energy production (AEP) is a significant concern for a
wind farm operator. For validation, we consider six wind farm sites with real-time wind speed data and find that the
wavelet-Twin support vector regressor yields minimum cost followed by ε-TSVR, Random forest, and Gradient boosted
machines. Furthermore, the impact of consecutive battery charging-discharging is also analyzed and penalized at a rea-
sonable cost. Results reveal that wavelet-TSVR yields minimum penalty cost among the four tested methods. Wavelet-
TSVR forecasting method results in an accuracy of 92.33%, followed by ε-TSVR with 82.45%, random forest with
67.89%, and Gradient boosted machines with 59.01%. In terms of computation speed, wavelet-TSVR is the fastest. Over-
all, for a hybrid wind-battery farm, an accurate wind forecasting scheme is an important parameter to materialize key
events like imbalance in power generation and battery charging-discharging states.
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