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ABSTRACT Up to one third of the global food production depends on the pollination of honey bees, making
them vital. This study defines a methodology to create a bee hive health monitoring system through image
processing techniques. The approach consists of two models, where one performs the detection of bees in an
image and the other classifies the detected bee’s health. The main contribution of the defined methodology
is the increased efficacy of the models, whilst maintaining the same efficiency found in the state of the art.
Two databases were used to create models based on Convolutional Neural Network (CNN). The best results
consist of 95% accuracy for health classification of a bee and 82% accuracy in detecting the presence of bees
in an image, higher than those found in the state-of-the-art.

INDEX TERMS Bee monitoring, convolutional neural network, deep learning.

I. INTRODUCTION
Honey bees (i.e. western honey bees Apis mellifera) are
the world’s most frequent pollinators of natural ecosystems,
averaging 13% of all floral visits. Furthermore, around 5%
of plant species worldwide are exclusively visited by honey
bees [1], with 200 economically important plants that require
bee pollination for reproduction. In countries where agricul-
tural production is an active role, honey bees are accepted as
an important factor in modern agriculture, since they thrive in
diverse climates, are domesticated, and can be manipulated
by people. Related academic work indicates that crop quality
and quantity can be increased by using honey bees to facilitate
crop pollination, even in self-pollinating plant species, with
some crops’ yields depending 100% on honey bees and other
pollinator insects [1], [2]. As stated by the UN Food and
Agriculture Organization [3], more than 75% of the world’s
food crops rely to some extent on pollination for yield and
quality. Without pollinators, apples, coffee, tomatoes, and
cocoa, among others, would not exist. The European Com-
mission highlights that pollinators provide vital ecosystem
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services to crops and wild plants, forming a key component
of European biodiversity [4].
However, the honey bee species should be constantly mon-

itored to prevent problems and diseases. For example, Colony
Collapse Disorder (CCD) is a phenomenon characterized by
an unexplained rapid loss (60-90%) of a colony’s adult popu-
lation [5], [6]. One odd characteristic of CCD colonies is that
they usually have plenty of food stores and can even contain a
queen and a small number of young workers, and the colony’s
reserves remain untouched by robbing bees or honey bee
comb pests for several weeks after the collapse. Furthermore,
CCD colonies rarely have the bodies of the dead bees in the
hive [5]–[7]. Some of the potential causes for CCD consist
in parasites (e.g., varroa destructor, acaparis woodi), insecti-
cides, genetic mutations, climate conditions and viruses and
fungi [7]. Fig. 1 shows that in the United States, the total
winter loss of bees has been exceeding the acceptable loss
since 2009, and is expected to keep this trend [8]. Further-
more, small cases of CCD still exist in specific regions and
apiaries [6].
Forest fires, human induced stress, poor nutrition, pollu-

tion, biodiversity loss and intensive agriculture still pose as
threats for the survival of honey bees [3], [9], [10]. Human
induced stress can occur when beekeepers tend to their bee
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FIGURE 1. US honey bee losses between 2006 and 2019 [8].

hives, as it is often interpreted as an intrusion by the colony’s
bees. Furthermore, from interviewswith companies that work
in the area, a beekeeper might be required to inspect up to
100 hives daily, making the detection of health problems in
each hive have a short amount of time.
The world population is expected to rise in the upcoming

years, creating a demand for higher food production to sustain
this growth. The western honey bees pollinate crop species
that compose up to one third of the average diet, world-
wide [11]. Considering this expected growth and the current
methodology of hive health detection, there is a demand for
the development of solutions that can aid preserving honey
bees in a healthy state, since these play a vital role in the
produces provided to humans by ecosystem services.
On the context of hive health classification, it is impor-

tant to state how a hive’s health can be assessed. From
literature, it can be stated that the health of a population
can be obtained by aggregating the health of its individuals
(i.e. ‘‘rolling up’’ the individual level data), which results in a
summary statistic that can be used to measure the population
health [12]. However, surveying or analysing an entire popu-
lation of individuals can often be impossible or impractical,
requiring that the analysis is conducted only on a sample of
the population [13]. As such, in order to assess the health
status of a bee hive (the population), one must be able to first
assess the health of the bees (individuals). Advances in Deep
Learning (DL) and Computer Vision (CV) have shown poten-
tial applications in the automatic detection of bees and their
respective health, such as detecting environment conditions
(i.e., temperature, humidity, etc.), detecting signs of varroa

destructor, among others [11], [14]–[18]. Considering these
advancements, the classification of a bee’s health status can
be performed through images of the specimen, using CV and
DL. However, in order to obtain images of bees, there must
also exist a previous task that can detect images of bees in
a scene and automatically crop the detected bees into new
images.
This work aims to develop a system to solve a class of

applications by monitoring the health status of honey bee
hives using CV and DL techniques. The proposed system
can decrease the need for human intervention in the hive,
lowering induced stress in bees and increasing expected
yield. Furthermore, considering that treatment effectiveness
of hives with diseases, and neighboring healthy hives, can be
increased depending onwhether the treatment is administered
at an early stage, it is also important to have a system that can
aid with an early detection of health problems. The work done
in [21], made available on Kaggle, was used as the basis for
this study. The novelty of the methodology proposed in this
paper consists in its high bee health classification accuracy
when compared to those found in the state of the art, whilst
maintaining the same efficiency.
On the context of the goals of this study, the following tasks

for the development of a hive health classification system
were identified:

• Object Detection: develop an algorithm to detect the
presence of honey bees in images. The algorithm will
detect and crop any honey bees detected in an image
that have the minimum required quality to be later
analysed.

89010 VOLUME 9, 2021



D. Braga et al.: Intelligent Monitoring System for Assessing Bee Hive Health

• Health Classification: develop an algorithm to classify
the health status of a bee hive, using cropped images
of honey bees. Considering the work developed in [21],
the approach defined for this task will consist in improv-
ing the classification results obtained by the authors,
using hyper-parameter optimization, and the application
of image filters and mathematical morphology opera-
tors, separately. The health status of the bee will be used
to assess the overall health of the colony, as previously
mentioned.

The remainder of this paper is structured as follows: Section II
provides a brief overview of available literature and concepts
used in this work; Section III describes the data used for the
purposes of this study; Section IV specifies the methodology
defined in this study, which also details the proposed sys-
tem architecture design; Section V details the experimental
results of the stated trials, along with respective results dis-
cussion; Section VI summarizes the major findings of this
work.

II. LITERATURE REVIEW
As stated above, contributions have been made in DL and
CV, which show potential applications in this study’s scope.
Furthermore, work has been made regarding DL and bees.
This section aims to provide a review of these contributions.
In the last decade, advances have been made to the

CNN architecture, depending on the goal of its application
(i.e., image classification, object detection, image segmen-
tation). Some of the most significant contributions are [22]:
AlexNet, which won the 2012 ILSVRC competition (one of
the most difficult challenges for image detection and classifi-
cation, at the time); GoogleNet, which won the 2014 ILSVRC
competition (introduced the concept of split, transform and
merge blocks); ResNet, proposed by Microsoft, for the net
training of 150 layers deep networks; and DenseNet, which
uses the idea of cross channel connectivity. One of the
most significant contributions is Mask-RCNN, which is a
Recurrent Convolutional Neural Network that extends Faster
R-CNN, which is one of the best architectures for object
detection and image segmentation [23]. Mask-RCNN imple-
ments a branch for predicting an object mask in parallel with
the branch that performs bounding box recognition. With this
architecture, Mask-RCNN can perform faster and simpler
training, with only a 5 Frames Per Second (FPS) loss [23].
In the literature, recent contributions have been made

involving Machine Learning (ML) algorithms and bee health
monitoring. The work done by Kulyukin et al. [15] used
9110 audio samples, equally distributed by ‘‘Bee Sound’’,
‘‘Noise Sound’’ and ‘‘Cricket Sound’’, in order to monitor
a bee hive. The approach used a CNN based architecture,
and was tested on the BUZZ1 and BUZZ2 [24] data sets
against other types of ML & DL algorithms. The study con-
cluded that DL can be used to monitor bees in a bee hive,
with the CNN based approach having obtained an accuracy
of 95.21% and 96.53% on the BUZZ1 and BUZZ2 data sets,
respectively. The study conducted in [18] analysed standard

ML techniques (Random Forest, SVM, KNN and Logistic
Regression) to perform classification of bee audio between
3 classes (bee, noise and cricket). The work concluded
that ML based techniques can aid in the classification of
bees using audio, as well as help monitoring a bee hive’s
health. In [16], the authors compared DL (DCNN) and ML
(SVM with linear, RBF and 3rd order polynomial kernels)
approaches for bee hive sound recognition. The study used
an annotated data set of 78 recordings, comprising approx-
imately 12 hours of audio. From the compared approaches,
the study concluded that the SVM outperformed CNN.
However, the authors also recognized that CNN showed room
for improvement, highlighting the impact that samples with
large context and the size of training data have on CNN.
The authors in [25] used video and CNN for the auto-
matic detection of honey bees in a hive, using approximately
11 hours of video footage, where bees have been placed with
a tag. The best F1-score value achieved in the study was
of 0.686 and the authors concluded that the manual label-
ing provided by the tags may not suffice for bee detection.
F1-score is ametric to evaluatemodels that corresponds to the
harmonic mean between the precision and recall metrics [26].
Both [14]– [17] used CNN andML algorithms to perform bee
hive monitoring, aiming at the detection of mites and varroa
destructor. The first study obtained an accuracy of 93% detec-
tion of varroa destructor using a training data set of 5000 arti-
ficially generated images, tested with different CNN config-
urations [14]. The second study used different configurations
of lights in a special camera setup, using 1920⇥1080 images
recorded at 50-60 FPS. The authors highlighted the challenge
in detecting mites on moving bees or on bees where wings
occlude the mites [17]. The work done in [21] provides a
thorough explanation and exploration of the data set publicly
available in [27]. The approach consists of 2 CNN models to
perform the classification of a bee’s health and subspecies.
The author of [21] provides several methods to analyse and
remove bias from the data set, as well as a solid pipeline
for the modular training of the CNN models. Furthermore,
using the data set provided in [27], the author was able to
obtain a best accuracy of 84.92% and 86.54% on the health
and subspecies models, respectively. Due to the solid pipeline
and results presented in [21], the author’s work will be used
as a baseline for the image classification task of this study,
as well as a comparison for obtained results. In the Kaggle
kernel of [21], the author implemented a basic pipeline to
load the data set in an efficient manner and to train classifiers
using a balanced data set. When any data set is loaded,
the pipeline checks how many instances belong to each class
and proceeds to balance the data by splitting in accordance
with class distribution, forcing all classes to have the same
distribution, minimizing bias. Additionally, the pipeline also
implements an image data generator (i.e., the standard Keras
ImageDataGenerator) which randomizes image attributes by
applying operations such as scaling, skewing, translation,
flipping and zooming, among others. The baseline work’s
learning algorithm is DCNN. In the baseline work, the author
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FIGURE 2. DCNN architecture of the baseline approach for the health
classification of bees.

also created methods to visualize the kernel matrices pro-
duced by developed DCNN, as well as developed a few clas-
sifier models for the health, subspecies and pollen_carrying
attributes, which will be used in this study for comparison
of the results obtained. All images are scaled to have the
same size (i.e., 100·100 pixels). Fig. 2 showcases the DCNN
architecture used in [21] for the health classification, which
is similar to the architectures used for the subspecies and
pollen_carrying classifiers.
This paper’s proposed approach is able to obtain a higher

efficacy in respect to the work described in [21], whilst main-
taining similar efficiency. Furthermore, it can also be stated
that this work adds onto the work conducted in [21], as an
object detection model for the automatic image cropping
of bees and subsequent health classification was developed,
so that the task of classifying a hive’s health can be fully
automated.

III. DATA DESCRIPTION
For this study, different data sets were required for each
problem task. The goal of this section is to provide a detailed
description about the data used for each problem task, includ-
ing decisions made about labels used for the bee health clas-
sification task and the conditions related to the data collection
process of the bee object detection.

A. BEE HEALTH CLASSIFICATION
Considering the task of bee health classification through
image, the data set used in this study is from [27]. The data
corresponds to a set of cropped honey bee images, each anno-
tated with several attributes. Of these, the health, subspecies,
and pollen_carrying are particularly relevant to this study,
as they correspond, respectively, to the current state of the bee
hive’s health, the subspecies of the honey bee and whether it
is carrying pollen or not. Considering these attributes, health
was considered for the development of a classifier, as it
directly reflects the health status of the corresponding bee.
Furthermore, subspecies and pollen_carrying were also con-
sidered for separate classifiers, as they can be used to further
determine health problems in a bee hive. On the case of the
pollen_carrying attribute, counting the number of bees with
pollen and analysing shifts in this count can help determine if
a hive has food supplies, whilst the subspecies can determine
if hive robbing is occurring. Hive robbing occurs when the

TABLE 1. Possible values of each attribute of the bee image health
classification data set.

bees of a different hive (which can contain a separate species
of bees) invade another hive with the goal of collecting nectar
and honey [28]. From these examples, the potential of the
attributes in bee health classification can be identified.
Table 1 shows the different values (classes) that each

attribute can have on the context of the data set’s problem.
As can be seen, some of the attributes (like subspecies)
account for unknown examples. The health attribute was
annotated by experts in the field, when the image of the honey
bee was taken. Furthermore, the health attribute also contains
some problems related to the hive (such as ‘‘Ant Problems’’)
as the state of bee hives can reflect changes in honey bees and
vice versa [29].
The data set is composed of 5,172 RGB images of honey

bees, with varying sizes (width between 27 and 392 pixels;
height between 24 and 520 pixels). As this study’s work will
use the baseline in [21], the data preparation methods devel-
oped in the baseline were also used. Specifically, the data
is split in accordance with class distribution, and an image
data generator is used to randomize images by applying
scaling, skewing, translation, flipping and zooming operators.
Furthermore, the images were all scaled to have the same size
(i.e., 100·100 pixels).

B. BEE OBJECT DETECTION
Considering the task of developing the object detection
model to automatically crop images of bees, the data
set was extracted from Explore’s honey bee live streams
(i.e., [30] and [31]). The first is an RGB live stream from the
perspective of the landing pad of two different apiaries. The
perspective and angle of the camera is distinct in each apiary
and provides clear sight of the bees that are landing, as well
as those immediately outside of the apiary, as can be seen
in Fig. 3, with two perspectives of honey bees’ landing. Fig. 4
shows the second live stream of Grayscale images bees inside
an apiary, from a top-down perspective.

A total of 2,750 honey bee footage images were extracted
from the live streams (at a rate of 5 frames per second).
Of these images, 1,533 and 1,217 correspond to the first
and second live streams, respectively. All images were
extracted with an image size of 990·504 pixels. For this
data, the Gold Standard (manual) was chosen for the anno-
tation process (versus an automated approach, i.e., Silver
Standard), as the quality of the annotations produced by the
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FIGURE 3. Example of footage from the first live stream of honey bees.

FIGURE 4. Example of footage from the second live stream of honey bees.

FIGURE 5. Example of annotations for object detection.

Gold Standard are usually of higher quality than those of the
Silver Standard, which can affect the quality of the developed
model [32]. During manual annotation, images that were too
blurry were not annotated. As such, with the Gold Standard
high quality image annotation can be obtained, despite a
potential decreased number of samples, when considering
the same annotation timespan. The images were manually
annotated in accordance with the following criteria: only bees
that are at least 50% visible and whose blur is minimal are
annotated for object detection. As such, Fig. 5 showcases an
example of the annotations made following the previously
mentioned criteria, using a custom-made tool for annotation.
As can be seen in Fig. 5, bees whose quality is too low
(e.g., blurry) are not annotated.

The Gold Standard annotation produced 251 images,
which were used for the object detection phase. Of these

images, 32 correspond to empty bee hive, 17 contain flowers
with no bees and the remaining are in respect to the second
data set. The empty images have the goal to further refine
the model with examples of scenes where bees normally are
present. Due to computational restrictions, all images and
respective annotations were scaled down to 576·290 pixels.

IV. PROPOSED METHODOLOGY
Considering the goals set for the work conducted in this
study, it can be stated that the methodology branches into
two different classes ofmethods: health classification through
images of bees (where the object in focus is a bee), and
automatic detection and cropping of bees in images (so that
these images can be provided to the health classification
model). The remainder of this section details the bee health
classification and object detection methods, each in their
respective subsection.

A. BEE HEALTH CLASSIFICATION
The proposed methodology for the health classification of
bees follows a computational schema to the one developed
in [21]. As stated previously, considering the goal of improv-
ing the results obtained by the authors of [21], the following
approaches can be defined:

• Application of image filters and mathematical morphol-
ogy operators, such as opening and closing.

• Hyper parameter optimization of the classifiers and
respective architecture.

TABLE 2. Image filters and mathematical morphology operators used on
the health classification task.

Table 2 shows the image filters and mathematical mor-
phology operators used to improve the classification results.
Both preprocessing techniques were tested independently of
each other, but the possible values within each of the pre-
processing techniques were combined, as to determine their
effectiveness at improving the classification results. Fig. 6
and Fig. 7 exhibit the application of different image filters and
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FIGURE 6. Application of image filters and mathematical morphology
operators in a bee that is carrying pollen.

FIGURE 7. Application of image filters and mathematical morphology
operators in a bee that is not carrying pollen.

mathematical morphology operators on a bee that is carrying
pollen and another that is not, respectively.
Considering the case depicted in Fig. 6, some filters seem

to brighten the region where the pollen is seen (near the bee’s
legs), such as the case of Color Dodge, whilst others seem
to make it more difficult to identify any visual clues. On the
case of Fig. 7, which corresponds to a bee not carrying pollen,
somefilters seem to highlight some information, whilst others
seem to make it more difficult to identify visual clues.
Regarding the hyper parameter optimization, the goal is to

improve the classification results by finding the best combi-
nation of values for the DCNN architecture of the baseline
work, in a grid search like fashion. Table 3 summarizes the
hyper parameters that were optimized in this study. Regard-
ing the variation in the number of layers, preliminary test-
ing showed that there were no significant improvements
in increasing the number of convolutional layers past 4.
Similarly, the same results were obtained regarding the num-
ber of neurons in each layer, as when compared to those
in Table 3. Regarding other parameters’ possible values,
as the goal is to improve the results obtained from the baseline
approach, performing an exhaustive search on a wide variety
of values is important, as to ensure a desirable confidence
on statements about the best configuration for the CNN.
Furthermore, several random seeds were used in order to
determine which initial configuration of the weights of the
CNN provided better results, as well as to assess the overall
improvement of the architectural changes to the CNN. The
latter motive arises from the fact that if a change in the

TABLE 3. CNN hyper-parameters that were optimized in this study.

TABLE 4. Different possible values tested for each hyper parameter
during the optimization trial.

architecture improves the obtained results, then it should do
so in several random states, therefore reducing the possibility
that an increase in classification results was due to a beneficial
random state.
Furthermore, each of the values of the hyper-parameters

were combined with the others in separate phases, in order
to reduce the total number of combinations tested in one
given test setup (which would total to around 516 thousand
different runs). After each phase, values that produced signif-
icantly poor results were discarded for next setups. This pro-
cess was repeated until all hyper parameters were stabilized
(i.e., had obtained the best possible results). The last setup
was composed of a total of 576 different tested combinations.
Additionally, only the last setup used all random seed values,
whereas the others used at least 3. Table 4 shows each of
the values that were tested, discriminated by their respective
hyper parameter.
Each model configuration, was run for 20 epochs, with

50 steps per epoch, as to match the same training efforts
conducted on the baseline approach. The data set was split
into train, test, and validation data, with a split weight of 0.65,
0.25 and 0.10, respectively. The validation set was used dur-
ing training to provide continuous validation of the model,
whilst the test set was used for the final validation. As men-
tioned previously, by using the same training conditions as
those of the baseline approach, a further comparison can be
made on the beneficial impacts of the defined approaches.
Additionally, every time a new configuration of the CNNwas
executed, the image data generator was reset, as to ensure that
any improvements of the classification results happen due to
a change in the preprocessing and/or architecture of the CNN,
instead of different quality images.
The accuracy, validation loss and FPSmetrics were consid-

ered the most meaningful attributes to evaluate the data set.
Since the data set was always balanced in accordance with
class distribution, the accuracy metric can be used, as bias is
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minimal [33]. However, recall, precision and F1-score were
also used during model validation, for confirmation of the
accuracy scores. Validation loss was used as it empirically
corresponds to a measure of how well a model was gener-
alizing to unseen records [34]. Finally, the FPS was used to
assess the speed at which the model can operate, as well as its
fitness for a real-time system. All FPS results were obtained
using the same measurement method, which consisted of
executing the model’s detection method as many times as
possible, within 60 seconds. The result was then calculated
by averaging the number of detections performed over the
60 second period.

B. BEE OBJECT DETECTION
The bee health classification task depends on images of
cropped bees. Considering this dependency, and as stated
previously, the goal of this task is to develop an object
detection model that provides cropped images of bees. The
model achieves this end using an image that may contain bees
as input and obtaining the bounding box coordinates of any
bees present in the image as output, allowing for automatic
cropping of bee images that can be used by the bee health
classifiers.
For this task, the proposed methodology consists in using

a Mask-RCNN with its default configuration and specific
altered hyper-parameters. Additionally, the Mask-RCNN
algorithm used was trained from scratch, without transfer
learning (i.e., no pre-trained weights were provided to the
network).

TABLE 5. Computational environment details, discriminated by physical
and virtual setup.

For the bee object detection task, accuracy and average
Intersection over Union (aIoU) were used as the evaluation
metrics. The latter corresponds to the intersection of the
predicted mask and ground truth mask, over the union of the
two masks. The accuracy was measured using IoU, with a
threshold of 0.5 (i.e., an IoU higher than 0.5 is considered a
true positive). Table 5 shows the computational environment
on which all trials and development efforts were conducted.

Regarding the object detection task, the cross validation
technique chosenwas the train/test split. Even though the data
set is not as voluminous as the health classification task’s data
set, the chosen cross validation still provides reliable results,
since, regarding object detection, cross-validation techniques
provide minimal differences in accuracy [35]. Furthermore,
due to resource constraints, other cross validation methods
are impractical to use. The train/test split was of 0.7/0.3, and

all splits of the data set were balanced in accordance with
class distribution.

V. EXPERIMENTAL RESULTS & DISCUSSION
This section provides details about the experimental results
obtained for the bee health classification and detection tasks,
including constraints considered. Finally, it provides a discus-
sion of the obtained results.

A. EXPERIMENTAL RESULTS
This subsection provides details about the approach used for
both tasks, such as results obtained for each model, con-
straints considered, and optimizations performed.

1) BEE HEALTH CLASSIFICATION
As mentioned previously, the purpose of the health clas-
sification task is to determine the health, subspecies, and
pollen_carrying values of a bee through image. In order to
improve the results found in the baseline work [21], the fol-
lowing trials were conducted:

1) Use a combination of image filters and mathematical
morphology operators to enhance features of the image,
to improve the validation accuracy.

2) Optimize the hyper parameters used in the CNN to
achieve the best validation accuracy, considering the
optimal values for the architecture.

TABLE 6. Best results obtained using baseline work’s optimal CNN.

TABLE 7. Best results obtained using image filters and morphology
operators applied to the baseline work’s optimal CNN.

To compare any results obtained with the approaches
defined in this study, the baseline work’s (developed in [21]
optimal CNN was run for each of the target attributes, as per
Table 6. The best results obtained with hyper parameter
optimization trial are available in Table 8. Table 7 shows
the results obtained from the application of image filters and
morphology operators, using the baseline CNN model best
configuration present in [21]. Each filter was applied during
the preprocessing phase when the image is loaded.
From the results shown in Table 8, it can be stated that

these are significantly better than the ones proposed in the
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FIGURE 8. DCNN architecture of the hyper parameter optimized approach for the health classification of bees, developed in this
study.

TABLE 8. Best results obtained with hyper-parameter optimized version
of the baseline work’s CNN.

base methodology. Table 9 shows the best architecture found
for each of the attributes tested, whose results are summa-
rized in Table 8. Fig. 8 showcases an example of the best
hyper-parameters found for the health label converted into
the respective CNN architecture. A similar architecture like
the one found in Fig. 8 can be obtained for the case of
subspecies attribute, using values [15, 25, 30, 15] for neurons
and AveragePooling2D, and the same can be applied to the
pollen_carrying attribute, using values [10, 20, 20, 5] and
AveragePooling2D. All these values can be found in Table 9.

2) BEE OBJECT DETECTION
The goal for the object detection task is to detect bees in
images, so that these can be cropped and analysed by the
health classification task. To perform the object detection,
the default configuration of Mask RCNN was used with
the changes stated in Table 10 added to the training con-
figuration. The NUM_CLASSES parameter was changed to
reflect the number of classes for the detection (i.e., ‘back-
ground’ and ‘bee’). The TRAIN_ROIS_PER_IMAGE and
IMAGES_PER_GPU were reduced due to computational
constraints, as to lower the amount of VRAM required
to train the model. Furthermore, IMAGE_MAX_DIM and
IMAGE_MIN_DIM reflect the minimum values for the
dimensions of the images to be used in the model that are
divisible by 64, which corresponds to a requirement of Mask
RCNN.

TABLE 9. CNN best architecture for maximizing the classification results,
discriminated by attribute.

TABLE 10. Mask RCNN configuration for training the object detection
model.

For the object detection, each model was trained up to
100 epochs. Additionally, each training session’s random
seed was set to 800, as to have a reference for performance
comparison.
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FIGURE 9. Train and test aIoU scores over each epoch.

TABLE 11. Best results obtained for the bee detection task using mask
RCNN (epoch 063).

From the results depicted in Table 11, it can be stated that
the aIoU is very promising (0.6773), including the respective
accuracy of the aIoU value (which is 82.89%), despite the
number of images used for the training process. Furthermore,
as can be seen in Fig. 9, there seems to be no significant
increase in test aIoU scores past epoch 011, meaning that
there is also no significant increase in accuracy. The same
occurs for train aIoU scores after epoch 037. Regarding
the FPS, it can be stated that it is significantly low. Even
when tested with lighter configurations (resnet50 instead of
resnet101; 320 ⇥ 256 images), the max FPS reached is 3.
Additionally, Table 11 does not present any result comparison
between state of the-art techniques, as it was not possible to
find related relevant work for comparison.

B. RESULTS DISCUSSION
Comparing the results obtained in the health classification
task, it can be stated that the approach defined in this study
yielded significantly better results than those obtained in
the baseline work [21], which corresponds to the best work
available in the literature. The hyper parameter optimization
was able to achieve significantly better results across sev-
eral metrics, with highlight to the increase in accuracy. The
health attribute yielded the most significant improvement in
accuracy, as it increased by 10% (95%), when compared to
the baseline work (85%). The attribute pollen_carrying had
the least increase across all scores, having only increased its
accuracy in approximately 2%. Furthermore, it was possible
to obtain the architecture configuration for each of the best
results obtained. However, the FPS of all developed mod-
els for the health classification have lowered. This result is
expected, as the architectures obtained either contain addi-
tional preprocessing (i.e., image filters), or have a more
complex structure (i.e., hyper parameter optimization).
Nevertheless, the decrease in FPS is low enough not to have
any significant impact in the viability of the monitoring sys-
tem’s real time operation capabilities. This can be verified
by converting the FPS of the baseline and hyper-parameter

optimized approaches for the health attribute to milliseconds,
which equal respectively to 1.56 and 1.76. The difference
between the times is 0.2 milliseconds, which can be discarded
as significant in the context of this study.
Regarding the image filters and mathematical morphology

operators, it can be concluded that there is a significant
decrease across all scores when using these, except for the
case of pollen_carrying, as there was an increase in accuracy
when using the opening operator. These results suggest that
image operators will only aid the classification process for
the pollen_carrying and should not be used for any of the
other attributes. This arises from the fact that, for example,
the best accuracy obtained for the health attribute was 70%,
which corresponds to 15% less than the one obtained with the
baseline model.
An analysis of the obtained results in the object detec-

tion task concludes that the obtained accuracy is promis-
ing. Therefore, there is potential in integrating the approach
defined for the object detection task with the health classi-
fication model. Regarding the FPS of the object detection
approach, it can be stated that it is significantly lower than
the value required for a real time system. As such, although
the health classification model can be applied in a real time
scenario, the addition of the model that performs object
detection makes it unsuitable for such a scenario’s require-
ments. However, it can be concluded that the efficiency of the
model developed in this is as expected for the algorithm used
(i.e. Mask RCNN), since the FPS results obtained for the
object detection are similar to those found in [23] (when also
considering differences in hardware). However, it is also pos-
sible to state that a better computational environment, specifi-
cally hardware, might make the object detection’s integration
feasible.

VI. CONCLUSION
In sum, it can be stated that honey bees have a vital role
in human activities worldwide. From the literature review,
it can be concluded that there is potential for the application
of CV and DL to aid the survival of honey bees. Furthermore,
the creation of automatic bee monitoring techniques can
greatly benefit the health of honey bees and global food pro-
duction. As such, it is expected that the system can perform
detection with high frequency, nearing a real-time system.
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The approach developed for the health classification of
honey bee images was able to obtain significantly better
results than those obtained by the baseline methodology
(i.e., the one defined in [21]). The developed approaches’ FPS
is not significantly high for the overall methodology to be
feasibly implemented in a real time system-like environment.
Although the health classification task yielded very high
FPS for each classifier (over 500FPS), the object detection
approach runs at 2 to 3 FPS, slowing the health classification
task’s speed. However, this efficiency is expected when using
Mask RCNN [23], and may be able to be increased using
better hardware. The health classification model’s results
show great potential for the reduction of human induced stress
associated with the monitoring of honey bees, being feasible
to implement this model with other approaches.
The next steps will consist of improving both the detection

accuracy and speed of the proposed model, as well as apply-
ing the system in a practical scenario, to assess any needs and
adjustments for the successful implementation of the bee hive
health monitoring system. Additionally, Faster R-CNN will
be considered for searching a classifier able to achieve similar
accuracy, but with a faster computational time with respect to
the one presented in this work.
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