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Abstract

Typically, in sparse representation-based classifiers, the weight associated with

each training sample is ignored, resulting in reduced accuracy. Moreover, indi-

vidual binary classifiers solved a multiclass problem. It requires more time as

multiple runs are needed to compute the accuracy. In this paper, we propose a

novel optimal sparse representation-based classifier. It solves the ternary classi-

fication problem with improved accuracy in a single run. The ternary classifi-

cation considers Alzheimer's disease versus mild cognitive impairment versus

normal control in a single run. A two-stage sparse representation model is

used to design the proposed classifier. To update the weight coefficients, we

suggest a regularized Levenberg–Marquardt learning. It allows selecting a sub-

set of significant training samples. To determine the appropriate subset size,

we investigate an objective function in terms of classification accuracy. For

optimization, we suggest a hybrid particle swarm optimization–squirrel search
technique. The experiment conducted on the Alzheimer's Disease Neuroimag-

ing Initiative database shows our method outperforms other state-of-the-art

methods in terms of computation time and accuracy. The use of different

training–testing partition ratios makes the proposed method immune to biased

results, overfitting, and underfitting difficulties. Moreover, results are obtained

from 100 iterations to confirm its stability. The suggested model may be help-

ful for further research in medical image analysis.
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1 | INTRODUCTION

Alzheimer's Disease (AD) is a degenerative brain disease.
It is a common form of dementia and a progressing irre-
versible disease that mainly occurs in adults. According
to the Alzheimer's Association, around 50 million people
worldwide suffer from AD and associated dementia.1

Mild cognitive impairment (MCI) is a stage of memory

loss or other cognitive ability declines in people who can
still conduct most activities of daily living independently.
It can develop for a variety of causes. Some people with
MCI may go on to acquire dementia, while others may
not. If the hallmark alterations in the brain are present,
MCI can be an early stage in the illness continuum for
neurodegenerative disorders such as Alzheimer's. MCI
can recover to normal cognition or remain stable in some
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people. Thus, people who are suffering cognitive changes
should seek help as soon as possible for proper diagnosis
and treatment options. There exists a high probability
that subjects with MCI may develop AD. Despite its
severity, there is no report on treatment planning to cure
AD or to stop its progression. However, early detection
could be a preventive measure to diagnose the develop-
ment of AD and its prodromal stage MCI. Researchers
around the globe are working to develop computerized
techniques for the early diagnosis of AD.2–12 The primary
motivation behind the development of these techniques
are helping experts interpret the disease, reducing work-
load, reducing false treatment planning due to exhaus-
tion, minimizing intra- and inter-expert variation, and so
on. Furthermore, experts may use them to provide a sec-
ond opinion.

A large and growing body of literature has investi-
gated varieties of methods to solve the AD classification
task. A weighted multi-modality sparse representation
classification method (wmSRC) is studied in Reference 5.
It utilized a weighted combination scheme to extract the
complementary information (features) from different
modalities like magnetic resonance imaging (MRI),
fluorodeoxyglucose-positron emission tomography (FDG-
PET), and florbetapir PET. In this approach, 340 subjects
(113 AD, 110 MCI, and 117 normal control [NC]) are
used for experimentation. The method's performance is
measured using two binary classification problems: AD
versus NC and MCI versus NC. The authors employed
performance metrics such as accuracy, sensitivity, speci-
ficity, and area under receiver operating characteristics
(AUC) for validation. At the same time, every subject
may not go through multimodality tests for diagnosis.
Multitemplate-based methods are also utilized to perform
AD/MCI classification from NC.6,7 Unlike traditional
template-based methods, these schemes use multiple
templates during the registration to avoid the biasing
problem. In addition, they employ these templates to take
out numerous sets of feature representations. A sparse
feature selection algorithm is applied to reduce the
dimension of the feature representation derived from the
multitemplate method in.6 Finally, an ensemble-based
classifier using multiple support vector machine (SVM)
outputs performs the classification. The multitemplate
learning method utilized 459 subjects (97 AD, 234 MCI,
and 128 NC). To assess its performance, the researchers
used a 10-fold cross-validation technique. They supplied
average values of their classification results.

An inherent structure-based multi-view learning
(ISML) method is reported in Reference 7. It extracts the
multiview feature representations of each individual
using the selected template. It is tested on 459 subjects
(97 AD, 234 MCI, and 128 NC). Three binary

classification tasks are employed to evaluate the ISML
method: AD versus NC, progressive MCI versus NC, and
progressive MCI versus stable MCI. For the validation, it
applied a 10-fold cross-validation approach. The average
result of the 10-folds in the cross-validation is utilized to
assess the ISML method's performance. However, it does
not consider a similarity among the individual subjects
during the feature selection. Consideration of this could
probably improve the feature selection strategy. Some-
times, the nonlinear registration methods in AD classifi-
cation may increase the computational complexity and
response time. Taking this into consideration, a
landmark-based model that avoids the registration, as
well as the tissue segmentation, is suggested.8 The
landmark-based technique used 358 AD, 831 MCI, and
430 NC subjects. The authors presented results of two
binary classification problems: AD versus NC and MCI
versus NC. The authors employed a two-fold cross-
validation technique to validate their approach. Never-
theless, its performance relies on the number of training
images. Insufficient training images may decrease the
accuracy.

More recent attention is focused on the machine
learning techniques with the feature selection strategy in
AD diagnosis. They allow us to reject irrelevant features
to avoid high-dimensionality problems. The feature selec-
tion is also referred to as the detection of effective bio-
markers. A relational regularized discriminative least
square regression (R2DLSR) algorithm is proposed for
the diagnosis of AD or MCI using multimodal images.9

In this technique, the feature selection is achieved by
using a sparse learning method that contains multi-
relation regularization. The algorithm utilizes 805 subjects
(226 AD, 393 MCI, and 186 NC) in the experiment. To
evaluate the classification performance 10-fold cross-
validation method is employed. However, it integrates a
few relational information for the feature selection.
Inclusion of the more effective relationships could proba-
bly boost the performance. An approach incorporating
voxel-based morphometry (VBM) followed by the feature
ranking is used for the early diagnosis of AD.10 Genetic
algorithm (GA) is utilized to capture an optimal feature
subset. Then classification is performed using the SVM.
The approach is tested on 458 subjects (160 AD, 136 MCI,
and 162 NC). It is validated by utilizing the 10-fold cross-
validation strategy. It is evaluated using performance
metrics like accuracy, sensitivity, specificity, and AUC.
The approach shows satisfactory results using the
T1-weighted (T1-w) brain MRI. Thin-plate spline metric
learning for the SVM (TML-SVM)——a deep learning
(DL) method, is studied for AD as well as MCI classifica-
tion.11 The model uses a nonlinear metric learning algo-
rithm, which transforms the features into a linearly
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separable space for the SVM. It experiments on 338 sub-
jects (94 AD, 121 MCI, and 123 NC). Two binary classifi-
cation problems: AD versus NC and MCI versus NC are
used to assess the approach. The authors divided their
samples into five-folds: three-folds for training, one-fold
for hyper-parameter validation, and one-fold for testing.
They repeated the experiment 10 times with several ran-
dom five-splits to confirm generalizability. The technique
is evaluated utilizing three assessment metrics: accuracy,
sensitivity, and specificity. It shows successful results
using the T1-w brain MRI. However, it is suggested that
fine-tuning could further improve the performance.

Recent studies during the last 5 years also demon-
strate that techniques combining information from
multi-modal medical images are proven to give accurate
results. For instance, nonlinear graph fusion (NGF) uses
the complementary information from multiple bio-
markers: MRI, FDG-PET, and cerebrospinal fluid.12 The
NGF technique employed a total of 147 subjects (37 AD,
75 MCI, and 35 NC) in the study. The technique is inves-
tigated in a variety of settings, including AD versus NC,
MCI versus NC, and AD versus MCI versus NC with
multiclass classification. The authors used a 25%-out
cross-validation method. Seventy-five percent of the total
samples are randomly picked for training in each valida-
tion, while the remaining 25% are used for testing. To
eliminate the sample bias, the validation is done over
100 times. Over 100 iterations, the average classification
accuracy and average AUC are calculated. However, the
technique is validated with few medical images only. The
performance of all the models discussed above is listed in
Table 5. In view of all the literature that is mentioned so
far, most of the baseline methods use the binary classi-
fier. They need three runs to solve the ternary classifica-
tion problem—AD versus MCI versus NC, that is, AD
versus MCI, AD versus NC, and MCI versus NC, which
requires more computational time. This has motivated us
to develop a single classifier to perform the ternary classi-
fication task in a single run.

Despite the advancements in the last few decades,
early detection of AD and its prognosis remains a difficult
task and requires further research. Another reason for
our motivation is to develop a better substitute for the
existing techniques. In this context, a sparse
representation-based classifier is a better substitute to
solve the problem at hand. It uses sparse coding to repre-
sent a test sample as a weighted linear mixture of the
training samples. It is effectively used in a variety of pat-
tern recognition and medical image processing tasks. The
benefits of using the sparse representation-based classi-
fier are manifold. It transforms the input data to the
sparse domain, resulting in several zeros in the data
matrix. This transformation helps to keep the

information in a compressed form. It is also cheaper to
store. Sparse representation-based classifiers have excel-
lent properties of self-learning, adaptivity, generalizing
tasks, nonlinearity, and so on. The goal is to classify the
unknown test sample to its relevant class. If we transform
the original representation into a sparse representation,
then it aids in deciding the contribution of relevant and
irrelevant training examples for accurate classifica-
tion.13–15

Typically, such approaches rely on sparsity. It is eval-
uated using l0-norm or l1-norm technique. As noted by
Zhang et al., instead of evaluating sparsity utilizing l0-
norm or l1-norm, the collaborative representation in
sparse-based classifiers is mainly responsible for improv-
ing the classification accuracy.16 The method implements
a l2-norm-based regularized least square approach to
evaluate the sparsity in the representation. It performs
the classification with less computational complexity as
well as response time. The l2-norm-based sparse repre-
sentation approaches have achieved much attention in
the face recognition application.16–18 In most of the
sparse representation-based classifiers, the sparsity is
evaluated for all the training samples. Recently, a new
subset selection strategy is implemented in the sparse
representation-based classifier for face recognition.18 The
approach implements a similarity measure such as
Euclidean distance to extract a group of important train-
ing samples neighbors to the unknown test sample. This
strategy allows rejecting some of the undesired training
samples. Their inclusion in the representation may
increase the misclassification rate. The classification is
performed by evaluating the sparsity in the selected sub-
set using the l2-norm minimization. We have used the
sparse representation concept for breast cancer classifica-
tion using a Gauss–Newton representation-based algo-
rithm with numerical data only.19 However, these
approaches suffer from drawbacks like (1) ignore weights
during the evaluation of similarity measure and (2) lacks
in deciding the optimal size of the subset (number of sig-
nificant training samples) during its selection, which ulti-
mately affects the classification accuracy. Traditional
approaches decide the size of the subset on a trial and
error basis. These deficiencies motivated us to create a
better alternative to the existing sparse representation-
based classifiers.

In this paper, to solve the ternary classification prob-
lem, that is, AD versus MCI versus NC in a single run,
we suggest a novel optimal sparse representation (OSR)-
based classifier. The proposed classifier combines sparse
representation with the RLM and optimization to obtain
improved classification results. The necessities of com-
bining these methods are (1) the suggested OSR updates
the weights to neglect some insignificant training
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samples in the feature space. (2) To avoid computational
complexity, the RLM is used instead of the l0- or l1-norm
to get the updated weights. (3) To overcome computa-
tional complexity which may arise due to the large train-
ing dataset, we suggest a PSO–SSA optimization to obtain
an optimal subset size for the subset selection instead of
applying a trial and error approach. Thus, a novel combi-
nation of these methods is quite essential. Nevertheless,
it is a better substitute for the existing techniques. The
results show promising improvement in the classification
performance compared to the baseline methods. We
highlight our simulation analysis on the ADNI database.
In the simulation, we use different ratios of training–
testing partitions to avoid biased results, overfitting, and
underfitting problems. The reported results are obtained
over 100 iterations, which confirm its stability. The fol-
lowing section provides a detailed explanation of the pro-
posed scheme.

The overall structure of this paper takes the form of
four sections, including this introductory section. Sec-
tion 2 is concerned with the methodology employed in
this study. The simulation results, implementation, eval-
uation, and comparison with the state-of-the-art are pres-
ented in Section 3, which includes a discussion about the
database used for simulation and the implications of the
suggested method. Finally, Section 4 is the conclusion,
which gives a summary and critique of the findings.

2 | PROPOSED OSR-BASED
CLASSIFIER

In this work, we propose an OSR-based classifier. The
classifier is applied to the ternary classification
problem—AD versus MCI versus NC. Most of the previ-
ously reported sparse-based classifiers make use of the
input image in the representation. The novel idea of per-
forming classification in a low dimensional feature space
improves the computational efficiency of the proposed

classifier. Unlike previous sparse representation-based
classifiers, our proposed classifier performs the classifica-
tion in two different stages. The first stage considers the
weights associated with all the training samples in the
feature space for the subset selection. Here, RLM learn-
ing is incorporated to update the weight coefficients in
both the stages with less computational complexity. In
addition, to tackle the exhaustive search for deciding the
size of the subset, we suggest a hybrid PSO–SSA optimi-
zation method. The optimum value of K (size of the sub-
set) is obtained by maximizing a new objective function
based on the classification accuracy. In this context, a
first-hand objective function is proposed. Hence, the first
stage allows selecting an optimum group of significant
training instances considering that it affects the final clas-
sification decision. In the second stage, the unknown test
sample is expressed as the linear weighted sum of the
determined K training feature vectors. It uses the repre-
sentation results to classify the test sample using a maxi-
mum class contribution criterion.

Before classification, the standard multiview approach
is utilized to extract the features from the input images.20–22

To be precise, having a feature extraction as a preprocessing
step (instead of using the original image) ahead of the
classifier stage is an advantage because it reduces the
dimensional complexity. Figure 1 shows the block dia-
gram of the proposed OSR-based classifier. It is clear from
the figure that features from the training images are
extracted only once. Every time a new test image is classi-
fied, features are extracted from the test image. The train-
ing instances, randomly initialized weights, and the test
instances are input to the proposed classifier. These
inputs are utilized to form a sparse representation, y = f
(X, W), where X indicates the training feature vector,
W denotes the random weight vector, and y is the test
feature vector. In the first stage, updated weights (ϕ) are
calculated using an RLM technique to maintain consis-
tency in the representation y = f(X, W). Now, after
obtaining the updated weights y = f(X, W) is represented
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Test feature vector
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representation

using random

weight

Update
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RLM
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of the proposed method
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as y = f(X, ϕ). Secondly, a group of (size K) significant
training instances is extracted. A hybrid PSO–SSA optimi-
zation technique is introduced to find the optimal size
of the subset (K). This subset is used to form a new
sparse representation of the test feature vector, that is,
y = f(U, ϕ). Thirdly, the weights are further updated
(ψ). Finally, each class contribution towards the test
instance is computed. A detailed explanation of the clas-
sifier is given below.

In the first stage, the feature vector of a test image is
represented as a weighted linear sum of the training fea-
tures. Let X = [x1, x2, …, xN] is the set of training feature
vectors, where N is the total number of training images.
Consider y be the feature vector of an unknown test
image. The proposed scheme assumes the feature vec-
tor y as:

y¼w1x1þw2x2þ…þwNxN : ð1Þ

Each xi is a training feature vector, and wi is a random
weight component associated with each xi. The contribu-
tion of the ith vector is wixi. The random values of wi

results in incorrect contribution of each xi. So an updated
W = [w1, w2, …, wN] is required to maintain the consis-
tency. Literature study suggests that it can be obtained by
minimizing the sum of square error, as discussed in Ref-
erences 19,23, and 24. In this context, we propose the
RLM technique to generate the updated W. It is a modi-
fied version of Levenberg–Marquardt. A regularization
parameter (λ) is introduced in this technique to make the
least square solution stable. It also imposes a weaker
sparsity constraint on the solution. Additionally, it avoids
the singularity problem in the data matrix during the
classification process. The strategy to obtain the updated
W is given below:

Wnext ¼WnowþΔw, ð2Þ

where Δw = (XTX + λI)�1XTΔf. Note that λ is a regulari-
zation term, I represents the identity matrix, and Δf
denotes the deviation of the actual output from the
desired output. Here, λ = 0.1, after testing with different
values of λ in the range [0, 0.5].

Here, all the xi in Equation (1) are from different clas-
ses. However, in Equation (1), some unsuitable training
feature vectors give an adverse influence in representing
y belonging to a specific class. Thus, if all the N feature
vectors in Equation (1) are used for the classification, this
may increase the misclassification rate.

In this paper, we suggest finding a group of
K significant training instances. Since the K useful train-
ing feature vectors may be from different classes, we
must exploit all of the training feature vectors from each

class to obtain an OSR. Furthermore, we must efficiently
explore the search space. To put it in another way, the
two most important conditions for searching a collection
of K relevant training feature vectors are exploitation and
exploration. That is why a hybrid PSO–SSA is proposed.
It combines the advantages of exploring and exploiting
the training feature vectors to find an optimal K value. At
the same time, since there are fewer parameters to tune
and constraints to consider, it can achieve a better global
convergence. The suggested solution may be helpful in
future research to solve problems of this nature. The
value of K is obtained by optimizing a new objective func-
tion, based on the classification accuracy, using the
suggested hybrid PSO–SSA. It has the characteristics of
PSO25,26 and SSA.27 It can reach the global minima com-
pared to individual optimization techniques like GA,
PSO, and SSA because of its superior exploration and
exploitation capabilities. The suggested hybrid technique
integrates the intrinsic social quality of PSO with the for-
aging behavior of squirrels. It uses a co-evolutionary algo-
rithm that can simultaneously update the position of a
particle. Like other optimization techniques, the popula-
tion is initialized within the exploration domain. Each
particle in the population is called a candidate solution.
The position of each particle is updated:

P tþ1ð ÞPSO-SSA ¼ P tð ÞPSO-SSAþ V tþ1ð ÞPSOþP tþ1ð ÞSSA
� �

:

ð3Þ

The velocity in PSO is updated as

Vi tþ1ð ÞPSO ¼ b tð ÞVi tð Þþ c1r1 pbesti�Pi tð Þð Þ
þ c2r2 gbesti�Pi tð Þð Þ, ð4Þ

where Vi(t) is the velocity of ith particle at tth iteration,
Pi(t) is the current location of the ith particle. The value
of t starts from 1. So, Pi(0) signifies the initial position of
the particles with 0 iteration, c1 and c2 are acceleration
coefficients, r1 and r2 are random values within [0, 1],
b tð Þ¼ rand� t

tmax
bmax�bminð Þþbmin is the inertia weight

function in which bmax and bmin are the range of inertia
weight and tmax is the total iteration. The gliding of flying
squirrel in SSA is given as:

P tþ1ð ÞSSA ¼

Pat tð ÞþdgGc Pht tð Þ�Pat tð Þð ÞR1 ≥ δ

Pnt tð ÞþdgGc Pat tð Þ�Pnt tð Þð ÞR2 ≥ δ

Pnt tð ÞþdgGc Pht tð Þ�Pnt tð Þð ÞR3 ≥ δ

rand,otherwise

8>>><
>>>:

, ð5Þ

where dg is the random gliding distance, Pht(t) is the posi-
tion of flying squirrel that reached hickory nut tree, Pat(t)
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is the position of flying squirrel on acorn nut tree, Pnt(t)
is the position of flying squirrel on normal tree, Gc indi-
cates gliding constant, δ denotes predator presence proba-
bility, and R1, R2, and R3 are random numbers. The
objective function used in the hybrid PSO–SSA to find
the local/global best particle is given as

F Pð Þ¼ argmax CAð Þ, ð6Þ

where CA¼ TPþTN
TPþTNþFPþFN, TP is true positive, TN is true

negative, FP is false positive, and FN is false negative.28

The focus of this work is to get an optimal K for minimiz-
ing the classification error. Any comparison among dif-
ferent optimization techniques is beyond the scope of this
paper. The optimal K obtained from the hybrid PSO–SSA
is used to choose an optimal subset using Euclidean dis-
tance measure, given as29:

Di ¼ y�ϕixik k2; i¼ 1,2,…,N , ð7Þ

where ϕ = [ϕ1, ϕ2, …, ϕN] is the updated set of weight
vector W. An optimal subset, that is, bU ¼ bu1,bu2,…,buK½ � is
selected from X based on K smallest Di value. Every time
a new test sample is presented, the proposed classifier
needs to run the whole optimization process to get new
updated ϕ. However, the strategy is efficient even if a
large training dataset is used. This is because, during the
optimization, the whole training dataset is not used. Only
the optimum number of subsets is used to get the
updated ϕ.

In the second stage, y is expressed as a linear
weighted sum of bU, given as:

y¼ϕ1bu1þϕ2bu2þ…þϕKbuK , ð8Þ

where bui for (i = 1, 2, …K) are the identified nearest train-
ing feature vectors and ϕi are the updated weight values
from the first stage. The new representation in Equa-
tion (8) now contains the subset, due to which the impact
of the training instances is altered. Moreover, the weights
are no longer optimum. So, we have further updated the
weights using the process as discussed in the first stage.

Consequently, the role of each Lth class in the subset
towards y is computed:

bUL ¼
XnL
i¼1

ψ ibui, L¼ 1,2,…,C, ð9Þ

where ψ = [ψ1, ψ2, …, ψK] is the set of updated weight
components of ϕ obtained using the learning technique
discussed earlier. Note that nL represents the number of
training instances in the Lth class. For instance, in a two-
class problem, Equation (9) results in two vectors: U1 and

U2. These two vectors indicate the contribution of the
two classes towards the test feature vector. This idea is
extended here to generate more than two vectors to cre-
ate a multiclass space. This idea of the proposed classifier
makes it a multiclass classifier, which helps to output the
contributions of the multiple classes in a single run. It is
the main contribution of the work. The class of the test
feature vector is calculated as

C¼min
L

y� bUL

��� ���
2

n o
: ð10Þ

In Equation (10), a smaller distance between y andbUL indicates a maximum contribution of the Lth class.
Hence, it is classified to the class L. The algorithm of the
proposed method is given in Algorithm 1.

3 | RESULTS AND DISCUSSIONS

This section contains a thorough examination and expla-
nation of the findings. Before that, the database used,

Algorithm 1

Proposed OSR-based classifier

Step 1: Initialize the random weight vector
W = [w1, w2, …, wN].
Step 2: Update weight vector W, that is, ϕ = [ϕ1,
ϕ2, …, ϕN] using RLM technique in Equation (2).
Step 3: Initialize the parameters of PSO–SSA (c1,
c2, r1, r2, bmax, bmin, dg, Gc, δ, R1, R2, R3

and t = 1).
Step 4: Initialize a swarm of S particles, velocity,
local best particle (Lbest) and global best particle
(Gbest) for the swarm.
Step 5: Evaluate the fitness value of each particle
using Equation (6).
Step 6: Update the position using Equation (3).
Step 7: Update Lbest and Gbest.
Step 8: If not converged (t < 100) go to Step 5.
Step 9: Find the optimal subset bU ¼ bu1,bu2,…,buK½ �
using Equation (8).
Step 10: Represent y in terms of bU using
Equation (8).
Step 11: Again update weights ψ = [ψ1, ψ2, …,
ψK] of y in Step 10 using RLM technique.
Step 12: Calculate the contribution of each classbUL

� �
using Equation (9).

Step 13: Identify the class of y using
Equation (10).
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simulation setting, assessment approach, and some
details about the suggested method implementation are
covered.

3.1 | Database

Data used in the preparation of this article are obtained
from the ADNI database (http://adni.loni.usc.edu). The
ADNI was launched in 2003 as a public-private partner-
ship, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical
and neuropsychological assessment can be combined to
measure the progression of MCI and early AD. For up-to-
date information, see www.adni-info.org.

In this paper, we have used the brain MRI samples of
200 cases, which include 76 NC subjects, 72 MCI subjects,
and 52 AD patients. The parameters used to select these
subjects from the whole database are illustrated in Table 1.

Representative images (ADNI database) are displayed
in Figure 2.

3.2 | Implementation

We have implemented the suggested technique in
MATLAB on a MAC platform with Intel core i5. The
parameter sets used in the proposed method are shown
in Table 2.

We have employed different ratios of training–testing
partition splits to validate the robustness of the suggested
technique, as shown in Figure 3. Here, the entire dataset

containing 200 brain MRI samples is partitioned into
10 equal-sized blocks. Each block contains 200/10 = 20
brain MRI samples. To avoid overfitting, we employ the
partition blocks in nine different training–testing ratios,
such as 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, and 9:1. In these
ratios, the first number is the number of blocks used for
training (green color blocks). Moreover, the second num-
ber is the number of blocks used for testing (orange color
blocks). For instance, in the 1:9 ratio, one block (20 brain
MRI samples) is used for training, and nine blocks
(9 � 20 = 180 brain MRI samples) are used for testing.
These test samples are used to generate the test score
(shown as test score #1 in Figure 3), which measures the
model's performance on the 1:9 ratio. It is to be noted
that the test score represents the different performance
metric values obtained using the test samples. The perfor-
mance metrics utilized to evaluate the model are dis-
cussed in the following subsection. Likewise, test results
(or scores) are obtained for the other ratios. The final test
score is the average of the nine test scores. It shows the
proposed model's overall performance in one iteration. It
is to be noted that, to demonstrate the stability of the pro-
posed model, we have reported the average mean, and
average standard deviation of the test scores obtained
over 100 iterations.

3.3 | Evaluation

The suggested technique is validated using different per-
formance indices such as classification accuracy (CA),
sensitivity (SEN), specificity (SPE), confusion matrix
(CM), and AUC are utilized.28,30 In the context of a

TABLE 1 Subjects demographic

information from the ADNI database
Parameter

Diagnostic group

AD MCI NC

Age (75–85) Mean 80.15 79.69 79.03

SD 3.1239 2.7759 2.8549

Gender Male 27 49 41

Female 25 23 35

Mini-mental state
examination (20–30)

Mean 24.83 24.69 25.26

SD 3.3159 3.1644 2.8281

Clinical dementia rating
(0–1)

Mean 0.5301 0.4955 0

SD 0.3931 0.4035 0

Research group Patient

Slice thickness 3–5 mm

View Axial

Scanner 1.5 Tesla MRI

Modality T2-weighted (T2) MRI
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ternary classification problem, sensitivity and specificity
are defined as follows:

SEN¼ TP
TPþFN

, ð11Þ

SPE¼ TN
TNþFP

, ð12Þ

where, TP ! true positives, TN ! true negatives, FP !
false positives, and FN ! false negatives. A CM is used
to determine the TP, TN, FP, and FN for each class in a
ternary classification problem. Table 3 illustrates one of
the best performing results of the CM for the AD versus
MCI versus NC, obtained using the proposed technique.
It is a 3� 3 matrix (ternary classification problem). The
diagonal elements represent the correct classification.
For instance, 327, 322, and 219 indicate the correct classi-
fication of normal subjects, MCI subjects, and AD
patients, respectively. The value off the diagonal denotes
misclassification, such as a value of 4 (3rd element in the
2nd column) indicates misclassification of 4 MCI subjects
as normal. It is to be noted that the CM in Table 3 is
obtained by summing the CMs of all training–testing
ratios, that is, summation of nine CMs in one iteration. A
greater summation value of the elements along the diago-
nal indicates better accuracy.

If we consider class AD, the TP, TN, FP, and FN
values are calculated as follows:

• TP: All AD instances that are classed as AD, that is,
219, are included in the TP of AD.

• TN: All non-AD occurrences that are not identified as
AD are included in the TN of AD, that is, 322 + 327
+ 5 + 4 = 658.

• FP: All non-AD cases that are classed as AD, that is, 3
+ 7 = 10, are included in the FP of AD.

• FN: All AD instances that are not classed as AD, that
is, 6 + 7 = 13, are included in the FN of AD.

By replacing AD with MCI or NC, the four metrics
TP, TN, FP, and FN of the MCI or NC class are obtained.

3.4 | Simulation results

In this section, quantitative evaluation results are pres-
ented for the ternary classification task at hand. Simula-
tions are performed using different training–testing
partition ratios, as discussed above. Table 4 shows the
classification performance of the proposed OSR method
in terms of accuracy, sensitivity, specificity, and AUC
obtained by averaging over 100 iterations. To calculate
these validation measures, we have employed the stan-
dard approach used in ternary classification problems.
The accuracy, sensitivity, specificity, and AUC are calcu-
lated for each class in one iteration. Then, these measures
are computed for 100 iterations to demonstrate the stabil-
ity of the proposed model, as shown in Table 4. Finally,
the overall validation measure is evaluated by averaging
over each class. For instance, overall average
CA = (97.85% + 98.15% + 92.06%)/3 = 96.02%.

3.5 | Comparison with the state-of-
the-art

We compared the suggested OSR-based classifier with
state-of-the-art methods in Table 5. For comparison, the
baseline methods used for AD classification are selected

FIGURE 2 Examples of

brain MR images. (A) NC;

(B) MCI; (C) AD

TABLE 2 Parameter setting for the proposed classifier

Parameter Value

Particle dimension 1

Population size 30

Acceleration co-efficient (c1, c2) 2

Inertia weight (bmax) 0.9

Inertia weight (bmin) 0.4

Gliding constant (Gc) 1.9

Predator presence probability (δ) 0.1

Number of iteration in hybrid PSO–SSA (t) 100

Termination criteria of learning technique 100 iterations

Regularization parameter, λ 0.1
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from the recent literature published during the last
5 years. In addition to different baseline methods (dis-
cussed in the introduction section), Table 5 also includes
DL models like convolutional neural network (CNN) and
the Interpretable DL model. A total of 1409 subjects
(294 AD, 763 MCI, and 352 NC) are used in Reference
31. The technique uses various binary classification prob-
lems: AD versus NC, AD versus MCI, MCI versus NC,
and so on. To validate their technique, the authors per-
formed 10-fold cross-validation. In the interpretable DL
model, 417 subjects (188 AD and 229 NC) are utilized for
investigation. The researchers have solved a single binary
classification problem, namely AD versus NC. The
approach is validated on accuracy, sensitivity, and
specificity.

From Table 5, it is observed that the suggested OSR-
based method outperforms all other methods. The accu-
racy, sensitivity, and specificity of CNN reported for AD
versus NC are 99.2%, 0.9890, and 0.9950, respectively in
Reference 31. It is more than our suggested method.

However, the authors have solved three binary classifi-
cation problems to achieve the task at hand. Moreover,
the values of the performance metrics of CNN for AD
versus MCI and MCI versus NC are much low com-
pared to the suggested method. Furthermore, if we take
the average of the three binary classifications, then its
performance is much lower than our suggested
approach. Unlike other methods, the suggested model
is effective in solving the ternary classification
problem—AD versus MCI versus NC in a single run,
which is usually solved as AD versus NC and MCI ver-
sus NC. Finally, we can observe that it also outperforms
the NGF method in the AD versus MCI versus NC
classification case.

In this work, the Friedman test is performed to
show the statistical significance of the proposed OSR
method.33 Table 6 shows the p values from this test. It
is observed that the proposed method gives a p value
less than 0.05 for all the methods. Hence, it indicates
that our approach is significantly different from other
methods. It provides improved results, as confirmed
from the above tables.

In this study, the central contribution is the subset
selection stage in the sparse representation. For demon-
strating the significance of the subset selection stage,
the classification performance of using only the first
stage sparse representation is reported and compared
with the suggested OSR in Table 7 using the ADNI
database. It is witnessed that the subset selection stage
in the proposed method yields improved classification
results.

TABLE 3 Confusion matrix for the ternary classification

problem

Predicted class

True class

AD MCI NC

AD 219 3 7

MCI 6 322 5

NC 7 4 327

Training Testing Testing Testing Testing Testing Testing Testing Testing Testing

Training Training Testing Testing Testing Testing Testing Testing Testing Testing

Training Training Training Testing Testing Testing Testing Testing Testing Testing

Training Training Training Training Testing Testing Testing Testing Testing Testing

Training Training Training Training Training Testing Testing Testing Testing Testing

Training Training Training Training Training Training Testing Testing Testing Testing

Training Training Training Training Training Training Training Testing Testing Testing

Training Training Training Training Training Training Training Training Testing Testing

Training Training Training Training Training Training Training Training Training Testing

Database partitioned into 10 blocks

1 2 3 4 5 6 7 8 9 10

Ratio – 5:5

Ratio – 1:9

Ratio – 2:8

Ratio – 3:7

Ratio – 4:6

Ratio – 6:4

Ratio – 7:3

Ratio – 8:2

Ratio – 9:1

Test score #1

Test score #2

Test score #3

Test score #4

Test score #5

Test score #6

Test score #7

Test score #8

Test score #9

Final Score: 

Average

FIGURE 3 Training–testing partition splits utilized in the suggested method
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TABLE 4 Classification performance of the proposed OSR over

100 iterations

Class CA (%) SEN SPE AUC

AD

Average value 97.85 0.9825 0.9528 0.9937

SD 0.1882 0.6053 0.0011 0.0013

MCI

Average value 98.15 0.9906 0.9954 0.9847

SD 0.1614 0.6086 0.0013 0.0020

NC

Average value 92.06 0.9891 0.9894 0.9941

SD 0.1925 0.6125 0.0015 0.0012

Overall average value 96.02 0.9874 0.9792 0.9908

TABLE 5 Comparison of CA, SEN and SPE using the ADNI database

Method CA (%) SEN SPE

VBM + Feature ranking+GA10

AD vs. NC 93.01 0.8913 0.9680

TML-SVM11

AD vs. NC 91.95 0.8949 0.9382

MCI vs. NC 83.72 0.8474 0.8272

NGF12

AD vs. NC 91.80 0.8890 0.9470

MCI vs. NC 79.50 0.8510 0.6710

AD vs. MCI vs. NC 60.20 � �
wmSRC5

AD vs. NC 94.80 0.9560 0.9400

MCI vs. NC 74.50 0.6640 0.8210

Landmark-based method8

AD vs. NC 83.1 0.8050 0.8510

MCI vs. NC 73.6 0.7530 0.6970

ISML7

AD vs. NC 93.83 0.9278 0.9569

Multiple template learning method6

AD vs. NC 93.06 0.9485 0.9071

R2DLSR9

AD vs. NC 94.68 0.9790 0.9138

MCI vs. NC 80.32 0.6435 0.8667

CNN31

AD vs. MCI 85.90 0.8360 0.8830

MCI vs. NC 76.10 0.7510 0.7710

Interpretable DL32

AD vs. NC 83.40 0.7670 0.8890

Proposed OSR

AD vs. MCI vs. NC 96.02 0.9874 0.9792

TABLE 6 Statistical analysis result using the Friedman test

Method p value

R2DLSR9 0.0016

Multiple template learning method6 0.0027

ISML7 0.0027

Landmark-based method8 0.0016

wmSRC5 0.0016

NGF12 0.0016

TML-SVM11 0.0016

VBM + feature ranking+GA10 0.0016

CNN31 0.0027

Interpretable DL32 0.0016
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Table 8 presents the computation complexity (based on
the number of executions) of the different baseline
methods and the proposed method for AD versus MCI ver-
sus NC classification. From the table, it is observed that all
the baseline methods except NGF use the binary classifier.
Thus, it is implicit that they need to execute the algorithm
three times to solve the ternary disease classification prob-
lem at hand. Like the proposed OSR technique, the NGF
method needs only a single run to perform the same task.
However, its performance in terms of the evaluation metric
values (reported above) is low compared to the proposed
OSR method. Hence, the suggested OSR scheme is a better
substitute in terms of the computational complexity to
solve the multiclass disease classification problem.

3.6 | Discussions

In this paper, we have investigated a novel OSR-based
scheme for the AD classification task. A standard data-
base involving three different classes is used for the clas-
sification task. The overall performance is measured by
evaluating different performance indices (CA, SEN, SPE,
CM, and AUC). The classification is achieved in two
stages. In the first stage, the main objective is to choose
an optimal group containing the significant training
instances for accurate classification. The approach used
in this stage for the subset selection provides two advan-
tages: (1) adds self-learning capability to the sparsity in
the representation and (2) obtain the optimal value of
K (size of the subset) using a new objective function
based on CA. The objective function based on CA used
for obtaining the optimal value of the subset size is very
encouraging. An optimum value of K is obtained by max-
imizing the CA. This objective function may help to
design such classifiers in the future.

In the second stage, the RLM technique is used for
the calculation of the updated weight vector in the sub-
set. It facilitates us to measure the sparsity in the selected
subset. The ultimate purpose of this stage is the assess-
ment of the class contribution in expressing the test fea-
ture. Notably, the results demonstrate that the proposed
OSR-based classifier yields better performance compare
to the other relevant methods.

The main reason for its improved performance is
maybe the optimal subset selection (using sparse repre-
sentation at two stages) in representing the test feature
vector. Since the suggested method takes advantage of
this strategy, it is able to discard some unsuitable training
feature vectors. Furthermore, it retains the suitable train-
ing feature vectors in the representation. The inclusion of
these suitable training feature vectors eases in evaluating
the influence of the class to which a test instance is likely
to belong. Moreover, RLM learning is used to evaluate
the optimum sparsity at both stages. Due to this optimum
sparsity evaluation, better optimal subset selection is
achieved in the first stage. Additionally, the optimum
class contribution ability is calculated in the second stage,
which improves the classification performance.
Researchers have suggested methods using multi-modal
images.5,9,10,12 However, their methods need the subjects
to undergo multiple scanning, which is not desirable.
This is a limitation of their methods. Our method pre-
vents subjects from undergoing multiple scanning. The
time complexity (number of runs) of our method is dis-
cussed in Table 8. Although the time complexity of our
method is higher than the binary classifier for its
increased number of stages, there is a merit of achieving
reduced overall time complexity while dealing with
multiclass problems. Since the methods reported are
binary in nature, they fail to solve the AD versus MCI
versus NC problem in a single run.5,9,10,12 Alternatively,
our method is quite intriguing and helps us to solve this
problem in a single run. The reason behind our success is
due to the improvements in sparsity utilizing the second
stage. Furthermore, the suggested objective function
inherently includes the mechanism for maximizing CA.

3.7 | Technical novelty

In this section, we highlight the technical novelties of this
research work. The proposed technique makes several
noteworthy contributions: (1) using features to create a

TABLE 7 Comparison of one-stage and two-stage sparse

representation methods

Method

Indices

CA (%) SEN SPE

One-stage 92.15 0.8930 0.8997

Two-stage 96.02 0.9874 0.9792

TABLE 8 Number of executions for AD versus MCI versus NC

classification

Method No. of execution

wmSRC5 3 runs

R2DLSR9 3 runs

VBM + feature ranking+GA10 3 runs

NGF12 1 run

CNN31 3 runs

Interpretable DL32 3 runs

Proposed OSR 1 run
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single feature vector makes the proposed OSR-based clas-
sifier more robust for classification. In this way, it adds a
synergistic behavior to the classifier. (2) We introduced a
hybrid PSO–SSA for optimum subset selection that helps
us to achieve improved classification results. (3) Due to
the incorporation of the optimization technique, the sub-
set selection is optimal when a new test instance is found.
(4) The use of different proportions for validation ensures
that there is no overfitting problem. (5) the reported
results are obtained over 100 iterations, which confirms
its stability, and (6) the novelty of the objective function
reported in this work lies in the fact that it may generate
curiosity among the researchers for its worthy application
in the related field. This proposal gives a new direction to
solve the problem like AD versus MCI versus NC in a sin-
gle run. Our classifier can identify whether AD versus
MCI versus NC from the brain MR image in a single run.
Furthermore, the computational complexity is reduced
by using a regularized term instead of using an l1 or l2
norm for the weight update.

4 | CONCLUSION

Unlike the conventional classifiers based on the sparse rep-
resentation methods, our proposed classifier based on the
OSR works on two stages to perform coarse-to-fine classifi-
cation of an unknown test sample. We have obtained an
improved classification accuracy because an optimal subset
is used that includes the most appropriate training feature
vectors only. The new objective function reported yields an
optimum subset size due to its inbuilt ability (in terms of
CA). The individual weight components are updated in
both stages, which leads to the improvement in the repre-
sentation. Usually, the AD versus MCI versus NC classifi-
cation is solved as an individual binary classification
problem. On the other hand, the suggested research work
is best suited to solve ternary classification tasks in a single
run. The introduction of two stages in sparse representa-
tion shows its uniqueness in solving such problems. The
classification rate is significantly improved compared to the
one-stage sparse representation method. The simulation
results explicitly reveal that our scheme achieved the best
performance. Unlike the existing classifiers, which depend
on the whole training dataset through the entire classifica-
tion process making the task inefficient, our proposed clas-
sifier uses an optimal subset only that makes it efficient. It
is believed that the results of CM using the ADNI database
presented in this paper may attract researchers for their
future references.

The current study has examined only one database.
The future scope of the work is the assessment of its per-
formance using various modalities. In addition, the idea

can be extended to design a computer-aided diagnosis
(CAD) system. A graphical user interface can be devel-
oped for the CAD system.
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