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A B S T R A C T

Recently, the entropic based multilevel threshold selection methods use 2D histogram, which is constructed
using the local averages, leading to a loss of edges. Further, the computation of the entropy using the diagonal
pixel values only leads to a loss of information. Nevertheless, traditional 2D histogram based multilevel
thresholding methods suffer from efficiently retaining the spatial correlation information. In addition, the
conventional entropy uses logarithmic function, which has inherent problems, thereby, reducing the accuracy
at some situations. To solve these issues, a differential exponential entropy (DEE) -based multilevel threshold
selection methodology is proposed. To suppress the high magnitude peaks in the 2D histogram, the normalized
local variance is used while the construction. A novel objective function is suggested to compute the DEE. A
new Equilibrium-Cuckoo Search Optimizer (ECSO) is suggested to maximize the DEE. For testing, standard
benchmark functions are used. The results are compared with the physics-based Equilibrium Optimizer (EO)
and the nature-inspired Cuckoo Search Algorithm (CSA). Different benchmark colour satellite images are
acquired from the Landsat Image Gallery database for the experiment. The performances are compared with
the state-of-the-art methods. Different metrics such as PSNR, SSIM and FSIM are used for the image quality
assessment. A statistical analysis is presented in terms of the Box plots. Our proposed DEE-ECSO outperforms
the other techniques. The suggested algorithm would be useful for segmentation of the brain MR images for
biomedical engineering applications.
. Introduction

The relevance of vision in humans was at the root of the incor-
oration of image processing into a variety of fields, as well as the
rowth of science and emerging topics in the area of the Artificial
ntelligence (AI). Among these fields, one can mention remote sensing,
hich has seen an increase in interest in recent years, especially in
ll things related to satellite image segmentation and interpretation
echniques. In today’s AI image processing era, where the majority of
atellite images are virtually captured using digital format. In addition,
I image processing helps us to combine intelligence with machine

earning and computer vision to process large volumes of images very
asily and speedily. Note that the image perception and analysis entail
ome level of digital processing (Awad and Chehdi, 2009) methods
sing AI. Digital image processing may include a variety of procedures
uch as data formatting and correction, digital enhancement to aid
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visual perception, and even computer-assisted classification of targets
and features. Large quantities of satellite image data are generated due
to the creation/presentation of numerous remote sensing platforms. As
a result, efficient querying and browsing in these image databases are
becoming increasingly important (Pandey et al., 2018). It is intended
to get useful information from satellite imagery to get the advantages,
making the effective utility of the data. Indeed, the detection and/or
quantity of different goals in an image to obtain useful knowledge about
them are a part of satellite imagery interpretation and analysis.

There are different types of image processing techniques to analyse
the satellite images such as pre-processing, transformation, segmen-
tation and analysis. Pre-processing techniques include a variety of
operations that can be applied to satellite images, including information
analysis and retrieval. As a result, these techniques adequately depict
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the sensor’s measured, reflected or released radiation, as well as ge-
ometric distortion adjustment due to Sensor-Earth geometry changes.
Segmentation techniques are used for classifications of different regions
(Rekik et al., 2007). Image segmentation is the method in which various
regions of an image are divided using similarity of the pixel values,
intensity homogeneity, texture, and contrast (Deepika and Vishnu,
2016). Therefore, it is needed to investigate a profound segmentation
method for analysis and interpretation of colour satellite images.

There are different types of image segmentation techniques. In
this work, we use the thresholding-based image segmentation, because
it makes the analysis of an image simpler. The thresholding-based
segmentation is divided into two types such as bi-level threshold-
ing (BTH) and multi-level thresholding (MTH). Especially, for colour
satellite image segmentation, MTH-based segmentation technique is
preferable, because it provides more information for analysis. There
are two types of approaches based on both BTH and MTH methods such
as: Parametric-based segmentation approach and Non-parametric-based
segmentation approach. In parametric-based segmentation approach,
every class’s grey-level distribution is comprised of a probability density
function which follow the Gaussian distribution (Pare et al., 2020).
These methods attempt to estimate the distribution parameters, which
match the given histogram data. It usually results in a nonlinear opti-
mization problem with a time-consuming solution. The non-parametric-
based segmentation approach determines the best threshold for separat-
ing the pixel areas of an image through different selective criteria such
as: Otsu’s between class variance (Otsu, 1979), Kapur’s entropy (Kapur
et al., 1985), Shannon’s entropy (El-Sayed and Tarek Abd-El Hafeez,
2011), Renyi’s entropy (Sahoo et al., 1997), Cross entropy (Pal, 1996),
Tsallis entropy (Portes de Albuquerque et al., 2004), Masi entropy
(Masi, 2005) etc. This has motivated the authors to investigate a new
class of entropic-based methodology for MTH.

Mostly, recent entropic-based methods are extended to 2D. All these
techniques explicitly use a 2D histogram. Usually, a 2D histogram is
constructed utilizing the local averaging scheme, which fails to retain
the edge (high frequency) information. Moreover, the logarithmic func-
tions are used while defining the entropy mentioned above, which have
inherent problems. It is observed that − log 𝑝𝑖 = ∞ 𝑤𝑖𝑡ℎ 𝑝𝑖 = 0, where p
is the probability of occurrence of a pixel. This may lead to a reduced
accuracy. On the contrary, the exponential entropy has certain merits
over the Shannon related entropy functions used in MTH applications.
To figure out — (i) it is always non-negative, (ii) its value at a given
probability is higher than the Shannon entropy, (iii) the function is
concave, (iv) well suited for MTH applications. This is the motivation
behind the development of our proposal. In this context, we suggest
novel differential exponential entropy (DEE) -based MTH method. A
first hand objective function is proposed.

Now days, for reducing time and complexity of the image segmen-
tation algorithm, to compute the optimal thresholds, various kinds of
optimization techniques, i.e. Metaheuristic algorithms (MA) are used.
The MAs maximize or minimize an objective function for getting the op-
timal solutions. The MAs are well-known for solving exhaustive search
optimization problems, which cannot be solved using a deterministic
method in a reasonable amount of time. There are two features of MA
such as the exploration and exploitation. The exploration is the ability
to search the globally associated solutions with an easy escape from
the local optima. The exploitation is the ability to search the local best
solutions for increasing their quality (Oliva, 2019).

It is noteworthy to mention here that Equilibrium Optimizer(EO)
(Faramarzi et al., 2020) is a physics-based MA and Cuckoo Search
Algorithm (CSA) (Yang and Deb, 2009) is a nature inspired MA. Gen-
erally, EO possesses both exploration and exploitation ability, whereas
CSA is more efficient in exploration due to the use of Lévy flights
concept. The cuckoo search optimizer has very few parameters to be
tuned as compared to other metaheuristic algorithms, which results
in a faster convergence. These features motivated the authors to use

cuckoo search optimizer for the problem on hand. It is known that e

2

the optimization technique which has better exploration ability gives
optimal solution. This has motivated us to propose a new optimization
technique called Equilibrium-Cuckoo Search Optimizer (ECSO) by in-
tegrating the features of EO with the CSA. The proposed optimizer is
applied to MTH-based colour satellite image segmentation problem by
maximizing the objective functions such as: (i) the proposed, (ii) Otsu’s
between class variance, (iii) Kapur’s entropy. The results are compared
with the EO and the CSA for the performance evaluation (validation)
of the ECSO. In summary, the main contributions of this article are
manifold. To figure out, (i) a novel objective function named DEE is
introduced, which is an original idea and may be very useful for solving
different real world engineering problems; (ii) a new optimizer called
ECSO is suggested, which may be useful for solving the optimization
problems. Although, the EO and CS are reported in the literature, their
combined approach seems to offer better performances in connection
with the optimization. Therefore, our contribution is better in terms
of the convergence and the accuracy; (iii) the experimental results on
colour satellite image segmentation using the artificial intelligence (AI)
may enrich the subject field of the image processing (Protasov and
Khan, 2021).

The rest of the Sections are as follows. The literature survey of our
work is presented in Section 2. Section 3 presents the preliminaries.
Our newly proposed Equilibrium-Cuckoo Search Optimizer is presented
in Section 4. Our suggested MTH technique is described in Section 5.
Results and discussions are highlighted in Section 6. The conclusion of
our work is drawn in Section 7.

2. Related work

Yang and Deb (2009) proposed a nature inspired Cuckoo Search
Algorithm (CSA) via 𝐿�́�𝑣𝑦 flight based on the cuckoo bird’s brood para-
sitism. Interestingly, Cuckoo birds place their eggs in horde nests. When
the horde bird ascertains eggs with a probability of 𝑝𝑎, it either discards
the eggs or builds a new nest. Suresh and Lal (2016) have proposed an
efficient CSA for MTH for satellite images by using Otsu between class
variance, Kapur’s entropy and Tsallis entropy as 3 different objective
functions. For testing, the results are compared with PSO, Darwinian
PSO, Artificial Bee Colony (ABC) and CSA. Otsu’s method has shown
better performance compared to Kapur’s method and Tsallis method
usingMcCulloch’s scheme. Tsallis entropy-based multilevel thresholding
y using the CSA is introduced by Agrawal et al. (2013) to perform
mage segmentation. From these papers, it is seen that CSA can be used
n image segmentation application efficiently.

The authors in Bhandari et al. (2015) have proposed the CSA based
TH of colour satellite images by maximization of Tsallis entropy.
handari et al. (2016) have proposed the nature inspired algorithm
ased MTH of colour images by maximization of Otsu’s method and Ka-
ur’s entropy in which Otsu’s method outperforms better than Kapur’s
ntropy. Jia et al. (2019) proposed Multi-Strategy Emperor Penguin
ptimizer (MSEPO) based MTH of colour satellite image by maxi-
ization of Masi entropy in which Masi entropy based MSEPO has

hown better results compared to Kapur’s and Tsallis entropy based
SEPO. Another technique is proposed, that is, hybrid Harris Hawks
ptimizer-Differential Evolution (HHO-DE) based MTH of colour im-
ges by maximization of 2 fitness functions namely Otsu’s method and
apur’s entropy in which HHO-DE has shown better results compared

o the HHO and DE (Bao et al., 2019). Shubham and Bhandari (2019)
ave proposed MTH of colour images by maximizing Masi entropy,
hich has shown better results compared to other techniques.

Faramarzi et al. (2020) proposed a novel physics-based optimization
lgorithm, that is, Equilibrium Optimizer (EO) which is inspired by
stimation of both dynamic and equilibrium states using control volume
ass balance models. A well-defined ‘‘generation rate’’ term has been

hown to improve EO’s ability in the exploration, exploitation while
voiding the local minima. EO balances both the exploration and

xploitation ability in a better way. Wunnava et al. (2020) proposed
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a new Adaptive Equilibrium Optimizer (AEO) for MTH-based image
segmentation. Interdependencies between the regions are minimized
using the AEO. For experiment, images of the BSDS500 dataset were
taken. For testing the effectiveness of the AEO, it is compared with
different types of algorithms. For a quantitative analysis, popular IQAs
namely PSNR, SSIM and FSIM are taken. They have claimed its future
uses in engineering applications like soft computing techniques, which
is the subfield of AI. Abdel-Basset et al. (2020) proposed MTH-based
image segmentation by using the EO to find the optimal threshold
values. Here Kapur’s Entropy is used as an objective function. For
testing the efficiency of EO, it is compared with different types of
popular optimization algorithms. They have shown how to use the EO
in MTH-based image segmentation.

An efficient Krill herd algorithm (EKH) was proposed by He and
Huang (2020) based on the MTH of the colour images by maximizing 3
objective functions such as: Otsu’s method, Kapur’s entropy and Tsallis
entropy. EKH shows good results than Krill Herd (KH) by maximizing
Kapur’s entropy. Naik et al. (2020) suggested a Normalized Square
Difference (NSD) based MTH of multispectral colour satellite images by
using the Leader Slime Mould Algorithm (LSMA), which outperforms
other algorithms.

Naik et al. (2021) proposed the Opposition Equilibrium Optimizer
(OEO) for MTH of colour satellite images by using a new objective func-
tion coined as Context-Sensitive Entropy Dependency (CSED). Their
proposed CSED-OEO method outperforms other existing optimization
algorithms. Rahaman and Sing (2021) proposed MTH of colour satellite
image using adaptive cuckoo search (ACS) method by using 2 fitness
functions namely Otsu and Tsallis entropy. They have compared with
the CSA and McCulloch’s method for 𝐿�́�𝑣𝑦 flight. The ACS algorithm
gives better results compared to the McCulloch’s method. Anitha et al.
(2021) proposed modified Whale Optimization Algorithm (MWOA)
based MTH for colour images. Otsu’s and Kapur’s schemes are utilized
as 2 different fitness functions. Maximizing Otsu’s method based MTH
using MWOA yields better performance than Kapur’s method.

3. Preliminaries

3.1. Equilibrium optimizer (EO)

A new physics-based ‘‘Equilibrium Optimizer’’ is suggested by Fara-
marzi et al. (2020). The inspiration for the Equilibrium Optimizer came
from a dynamic mass balance on a control volume. They have suggested
a mass balance equation for approximating both the dynamic and the
equilibrium states. More details on the concentration function is found
in Faramarzi et al. (2020). The EO, like most MA, starts the optimiza-
tion process with the initial population. The initial concentrations are
calculated using the particles and dimensions in the search space, with
uniform random initialization as follows:

𝐶 𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑖 (𝑖𝑡𝑒𝑟 = 1) = 𝐿𝐵 + 𝑟𝑎𝑛𝑑𝑖 (1, 𝐷) × (𝑈𝐵 − 𝐿𝐵) , 𝑖 = 1, 2,… , 𝑁 (1)

Here, 𝑈𝐵 𝑎𝑛𝑑 𝐿𝐵 represent upper bound and lower bound, respec-
tively, 𝐷 denotes the dimension of the problem, 𝑟𝑎𝑛𝑑𝑖 is the random
vector of 𝑖th search agent in the interval of 0 and 1, 𝑁 is represented
as the number of search agents.

Then the 𝑖th search agent’s position for a control volume 𝑉 in the
O is updated as:

�⃗� (𝑛𝑒𝑤) = 𝐶𝑒𝑞 (𝑖𝑡𝑒𝑟) +
(

𝐶𝑖 (𝑖𝑡𝑒𝑟) − 𝐶𝑒𝑞 (𝑖𝑡𝑒𝑟)
)

× 𝐹𝑖 (𝑖𝑡𝑒𝑟) +
�⃗�𝑖 (𝑖𝑡𝑒𝑟)

𝜆𝑖 (𝑖𝑡𝑒𝑟) × 𝑉

× (1 − 𝐹𝑖 (𝑖𝑡𝑒𝑟))

(2)

Here, 𝑉 = 1, 𝐶𝑒𝑞 is an equilibrium candidate that is selected at
random from an equilibrium pool 𝐶𝑒𝑞,𝑝𝑜𝑜𝑙 of four best search agents such
as: 𝐶𝑒𝑞(1), 𝐶𝑒𝑞(2), 𝐶𝑒𝑞(3), 𝐶𝑒𝑞(4). Note that 𝐶𝑒𝑞(𝑎𝑣𝑒) is the average of these
four best search agents. Then 𝐶 , 𝐶 , 𝐶 , 𝐶 are evaluated
𝑒𝑞(1) 𝑒𝑞(2) 𝑒𝑞(3) 𝑒𝑞(4)

3

by using their fitness values 𝑓𝑖𝑡
(

𝐶𝑒𝑞(1)

)

, 𝑓𝑖𝑡
(

𝐶𝑒𝑞(2)

)

, 𝑓𝑖𝑡
(

𝐶𝑒𝑞(3)

)

and

𝑖𝑡
(

𝐶𝑒𝑞(4)

)

. The search agents’ fitness values are:

𝑖𝑡 =
(

𝑓𝑖𝑡1, 𝑓 𝑖𝑡2,… , 𝑓 𝑖𝑡𝑁
)

(3)

The following values are listed in an ascending order:

[𝑠𝑜𝑟𝑡𝑒𝑑_𝑓𝑖𝑡, 𝑠𝑜𝑟𝑡_𝑖𝑛𝑑𝑒𝑥] = 𝑠𝑜𝑟𝑡 (𝑓𝑖𝑡) (4)

Here, the objective function values of the equilibrium candidates are
defined by:

𝑓𝑖𝑡
(

𝐶𝑒𝑞(1)

)

= 𝑠𝑜𝑟𝑡𝑒𝑑_𝑓𝑖𝑡(1) and 𝐶𝑒𝑞(1) = 𝐶 (𝑠𝑜𝑟𝑡_𝑖𝑛𝑑𝑒𝑥(1))

𝑓𝑖𝑡
(

𝐶𝑒𝑞(2)

)

= 𝑠𝑜𝑟𝑡𝑒𝑑_𝑓𝑖𝑡(2) and 𝐶𝑒𝑞(2) = 𝐶 (𝑠𝑜𝑟𝑡_𝑖𝑛𝑑𝑒𝑥(2))

𝑓𝑖𝑡
(

𝐶𝑒𝑞(3)

)

= 𝑠𝑜𝑟𝑡𝑒𝑑_𝑓𝑖𝑡(3) and 𝐶𝑒𝑞(3) = 𝐶 (𝑠𝑜𝑟𝑡_𝑖𝑛𝑑𝑒𝑥(3))

𝑓𝑖𝑡
(

𝐶𝑒𝑞(4)

)

= 𝑠𝑜𝑟𝑡𝑒𝑑_𝑓𝑖𝑡(4) and 𝐶𝑒𝑞(4) = 𝐶 (𝑠𝑜𝑟𝑡_𝑖𝑛𝑑𝑒𝑥(4))

(5)

The averaged candidate 𝐶𝑒𝑞(𝑎𝑣𝑒) is calculated as follows:

𝐶𝑒𝑞(𝑎𝑣𝑒) =
𝐶𝑒𝑞(1) + 𝐶𝑒𝑞(2) + 𝐶𝑒𝑞(3) + 𝐶𝑒𝑞(4)

4
(6)

Then the equilibrium pool can be expressed as:

𝐶𝑒𝑞,𝑝𝑜𝑜𝑙 =
{

𝐶𝑒𝑞(1), 𝐶𝑒𝑞(2), 𝐶𝑒𝑞(3), 𝐶𝑒𝑞(4), 𝐶𝑒𝑞(𝑎𝑣𝑒)

}

(7)

The exponential term 𝐹𝑖 (𝑖𝑡𝑒𝑟) is a term that contributes to the key
oncentration updating rule and assist the EO for the exploration and
xploitation ability for 𝑖th search agent in 𝑖𝑡𝑒𝑟 iteration is formulated
s:

�⃗� (𝑖𝑡𝑒𝑟) = 𝑎1𝑠𝑖𝑔𝑛
(

𝑟𝑖 (𝑖𝑡𝑒𝑟) − 0.5
)

[

𝑒−𝜆𝑖(𝑖𝑡𝑒𝑟)×𝑡 − 1
]

(8)

Here, 𝑡 is represented as the time which is described as the function
f iteration (𝑖𝑡𝑒𝑟) and 𝑡 is decreased with a decrement of the iteration
𝑖𝑡𝑒𝑟) using the following formula:

= (1 − 𝑖𝑡𝑒𝑟
max _𝑖𝑡𝑒𝑟 )

(𝑎2×
𝑖𝑡𝑒𝑟

max _𝑖𝑡𝑒𝑟 ) (9)

Here, 𝑎1 and 𝑎2 are utilized to control both exploration and exploita-
tion abilities, respectively. The 𝑠𝑖𝑔𝑛 is used for controlling direction
of the search, which depends on a random vector 𝑟𝑖 (𝑖𝑡𝑒𝑟) for the 𝑖th
search agent in 𝑖𝑡𝑒𝑟 iteration in the interval [0, 1]. Note that 𝑖𝑡𝑒𝑟 denotes
current iteration while max _𝑖𝑡𝑒𝑟 represents max number of iteration.
Here, 𝜆𝑖 (𝑖𝑡𝑒𝑟) is the random vector in the interval [0, 1]. This is used for
the 𝑖th search agent.

The generation term �⃗�𝑖 (𝑖𝑡𝑒𝑟) is the most important term in the EO
for getting exact solution by improving the exploitation phase for the
𝑖th search agent in 𝑖𝑡𝑒𝑟 iteration and it is formulated as:

�⃗�𝑖 (𝑖𝑡𝑒𝑟) = �⃗�0𝑖 (𝑖𝑡𝑒𝑟) × 𝐹𝑖 (𝑖𝑡𝑒𝑟) (10)

�⃗�0𝑖 (𝑖𝑡𝑒𝑟) and ⃗𝐺𝐶𝑃 𝑖 (𝑖𝑡𝑒𝑟) are formulated as:

�⃗�0𝑖 (𝑖𝑡𝑒𝑟) = ⃗𝐺𝐶𝑃 𝑖 (𝑖𝑡𝑒𝑟) × (𝐶𝑒𝑞 (𝑖𝑡𝑒𝑟) −
(

𝜆𝑖 (𝑖𝑡𝑒𝑟) × 𝐶𝑖 (𝑖𝑡𝑒𝑟)
)

) (11)

⃗𝐺𝐶𝑃 𝑖 (𝑖𝑡𝑒𝑟) =

{

0.5𝑟1 𝑟2 ≥ 𝐺𝑃

0 𝑟2 < 𝐺𝑃
(12)

Here, ⃗𝐺𝐶𝑃 𝑖 (𝑖𝑡𝑒𝑟) is the Generation rate Control Parameter for the
𝑖th search agent in 𝑖𝑡𝑒𝑟 iteration, 𝐺𝑃 is Generation Probability. Note
that 𝑟1 and 𝑟2 are the random variables in the interval [0, 1]. These are
the overall steps of the EO for updating the concentration.

3.2. Cuckoo search algorithm (CSA)

The nature inspired Cuckoo Search Algorithm was proposed by Yang
and Deb (2009). The cuckoo bird’s aggressive reproductive technique
is the inspiration for CS. During reproduction, these birds exhibit a
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sophisticated behaviour in which they delicately place eggs in other
host birds’ nest. The intelligence is ascribed to the female cuckoo’s
imitating of egg’s colour/shape, as well as the time of egg-laying, with
other horde birds. Three idealized laws underpin CSA as follow:

• Each cuckoo lay single egg at a time and deposits it in a nest that
is chosen at random;

• The best nests with the best quality of eggs would be passed on
to the next generation;

• The number of total host nests is set, and the host bird discovers
the cuckoo’s egg with a certain probability 𝑝𝑎 ∈ [0, 1]. Surpris-
ingly, the host bird has the choice of either throwing the egg
or immediately surrendering the nest. New solutions are used to
replace the number of nests ‘‘N’’ an𝑑 ‘‘𝑝𝑎’’.

The algorithm’s goal is to find the best-egg-laying nest. The finest
ests are the Cuckoo bird’s fresh eggs. The objective function with the
ighest value is taken into consideration, others are eliminated. To
xplore the search space, they employed Levy steps and Mantegna’s
cheme. The new solution is formulated as:
(𝑡+1)
𝑖 = 𝑋(𝑡)

𝑖 + 𝛼 ⊕ 𝐿�́�𝑣𝑦(𝜆) (13)

he idea of the levy flight is quite interesting and is defined here.

�́�𝑣𝑦 ∼ 𝑢 = 𝑡−𝜆, (1 < 𝜆 ≤ 3) (14)

Note that ‘u’ is a variable while ‘𝜆’ is a constant, 𝑋(𝑡)
𝑖 is the current

earch space at time 𝑡 and represented as 𝑋(𝑡)
𝑖 = 𝑥𝑖1 ,… .𝑥𝑖𝑑 … ..𝑥𝑖𝑛 and

> 0 (the value of 1 is mostly chosen), ⊕ is the entry-wise multipli-
ation while 𝐿�́�𝑣𝑦(𝜆) is the random work through 𝐿�́�𝑣𝑦 flight. Here, 𝑡
s represented by the number for a recent group 𝑡 =

(

1, 2, 3,… , 𝑡𝑚𝑎𝑥
)

and 𝑡𝑚𝑎𝑥 is the pre-determined extreme cohort position. These are the
overall process of the CSA.

Gonzalez et al. (2016) proposed optimization of the interval type-
2 fuzzy logic using the CS algorithm. Angelova et al. (2018) have
presented an efficient method for parameter identification using the
CS optimizer. The functioning of the CS algorithm is well explained
in Roeva et al. (2020). The authors have used the generalized nets
to describe the functioning of the CS optimizer. The fuzzy inference
systems are optimized using the CS optimizer. Recently, Guerrero-Luis
et al. (2021) presented a review of the CSA. More details on the CS
optimizer are found in this article. Readers can also refer the book
published by the Springer Nature (Castillo, 2021), which highlights the
features of the CS algorithm.

3.3. Otsu’s between class variance method

The between class variance method, a non-parametric scheme,
which is used to determine the optimal threshold values, was first
developed by Otsu (1979) for both BTH and MTH method. This tech-
nique aims for maximizing between class (inter-class) variance while
minimizing within-class (intra-class) variance measure between the
pixel in each class. To segment the image, it uses the maximum variance
value of the various classes as a criterion. The maximum variance is
calculated when BTH method or MTH method segment an image into
several classes. In this technique, the histogram of an image is the
input. Note that the probability distribution of the grey level values
is determined using the L intensity levels from an image intensity or
each component of an image as follow:

𝑃ℎ𝑐𝑖 =
ℎ𝑐𝑖
𝑁𝑃

, 𝑃ℎ𝑐𝑖 ≥ 0,
𝐿
∑

𝑖=1
𝑃ℎ𝑐𝑖 = 1,

𝑐 =

{

1, 2, 3, 𝑖𝑓 𝑅𝐺𝐵 𝑖𝑚𝑎𝑔𝑒

1, 𝑖𝑓 𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 𝐼𝑚𝑎𝑔𝑒

(15)

Here, 𝑖 represents a specific intensity level (0 ≤ 𝑖 ≤ 𝐿 − 1). 𝑐 is the
image component that determines the image is Greyscale or RGB. The
4

Fig. 1. Block diagram of the suggested method.

Fig. 2. 2D histogram for bi-level threshold selection.

Fig. 3. 2D histogram for multilevel threshold selection.

total number of pixels in the image is denoted by NP. The number
of pixels that relate to the 𝑖 intensity level in 𝑐 is denoted as ℎ𝑐𝑖
(histogram). Inside a probability distribution 𝑃ℎ𝑐𝑖 , the histogram is
normalized.

For the BTH-based image segmentation method, the two classes are
formulated as:

𝐶1 =
𝑃ℎ𝑐1

𝜔𝑐
0 (𝑡ℎ)

,… ,
𝑃 ℎ𝑐𝑡ℎ
𝜔𝑐
0 (𝑡ℎ)

, 𝐶2 =
𝑃ℎ𝑐𝑡ℎ+1
𝜔𝑐
1 (𝑡ℎ)

,… ,
𝑃 ℎ𝑐𝐿
𝜔𝑐
1 (𝑡ℎ)

(16)

Here, 𝐶1 and 𝐶2 are two classes and 𝜔0 (𝑡ℎ) and 𝜔1 (𝑡ℎ) are proba-
ility distributions of these 2 classes respectively.

𝑐
0 (𝑡ℎ) =

𝑡ℎ
∑

𝑃ℎ𝑐𝑖 , 𝜔𝑐
1 (𝑡ℎ) =

𝐿
∑

𝑃ℎ𝑐𝑖 (17)

𝑖=1 𝑖=𝑡ℎ+1
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𝜎

Fig. 4. Demonstration of 2D histogram (a) ‘#61086’ of BSDS500 data set (b) Otsu technique (c) Kapur’s technique (d) Proposed technique.
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𝐻
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𝐻

The mean levels 𝜇𝑐
0 and 𝜇𝑐

1 and the Otsu variance between classes 𝜎2𝑐𝐵
is determined as:

𝜇𝑐
0 =

𝑡ℎ
∑

𝑖=1

𝑖𝑃ℎ𝑐𝑖
𝜔𝑐
0 (𝑡ℎ)

, 𝜇𝑐
1 =

𝐿
∑

𝑖=𝑡ℎ+1

𝑖𝑃ℎ𝑐𝑖
𝜔𝑐
1 (𝑡ℎ)

(18)

2𝑐
𝐵 = 𝜎2

𝑐

1 + 𝜎2
𝑐

2 (19)

The type of the image is depended by 𝑐. Furthermore, 𝜎2𝑐1 and 𝜎2𝑐2
are the variance of 𝐶1 and 𝐶2 are formulated as follow:

𝜎2
𝑐

1 = 𝜔𝑐
0
(

𝜇𝑐
0 − 𝜇𝑐

𝑇
)2 , 𝜎2

𝑐

2 = 𝜔𝑐
1
(

𝜇𝑐
1 − 𝜇𝑐

𝑇
)2 (20)

Here, 𝜇𝑐
𝑇 = 𝜔𝑐

0𝜇
𝑐
0 + 𝜔𝑐

1𝜇
𝑐
1 and 𝜔𝑐

0 + 𝜔𝑐
1 = 1. For BTH-based image

segmentation technique the objective function is formulated as:

𝑓𝑂𝑡𝑠𝑢 (𝑡ℎ) = 𝑚𝑎𝑥
(

𝜎2
𝑐

𝐵 (𝑡ℎ)
)

, 0 ≤ 𝑡ℎ ≤ 𝐿 − 1,

𝑐 =

{

1, 2, 3, 𝑖𝑓 𝑅𝐺𝐵 𝑖𝑚𝑎𝑔𝑒

1, 𝑖𝑓 𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 𝐼𝑚𝑎𝑔𝑒

(21)

For MTH-based image segmentation technique, the objective function
is formulated as:

𝑓𝑂𝑡𝑠𝑢 (𝑇𝐻) = 𝑚𝑎𝑥
(

𝜎2
𝑐

𝐵 (𝑇𝐻)
)

, 0 ≤ 𝑡ℎ𝑖 ≤ 𝐿 − 1,

𝑖 = 1, 2,… , 𝑘, 𝑐 =

{

1, 2, 3, 𝑖𝑓 𝑅𝐺𝐵 𝑖𝑚𝑎𝑔𝑒

1, 𝑖𝑓 𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 𝐼𝑚𝑎𝑔𝑒

(22)

Here, 𝑇𝐻 =
[

𝑡ℎ1, 𝑡ℎ2, 𝑡ℎ3 ⋯⋯ , 𝑡ℎ𝑘−1
]

is a vector which contains
multiple threshold values. The variance is formulated as:

𝜎2
𝑐

𝐵 =
𝑘
∑

𝑖=1
𝜎2

𝑐
𝑖 =

𝑘
∑

𝑖=1
𝜔𝑐
𝑖
(

𝜇𝑐
𝑖 − 𝜇𝑐

𝑇
)2 (23)

Here, 𝑖 denotes a special class. The mean of a class and the prob-
ability of occurrence, respectively, are 𝜇𝑐

𝑖 and 𝜔𝑐
𝑖 . These values are

computed as follows in the case of MTH:
The probability of occurrence values is expressed as:

𝜔𝑐
0 (𝑡ℎ) =

𝑡ℎ1
∑

𝑖=1
𝑃ℎ𝑐𝑖 , 𝜔𝑐

1 (𝑡ℎ) =
𝑡ℎ2
∑

𝑖=𝑡ℎ1+1
𝑃ℎ𝑐𝑖 ,… , 𝜔𝑐

𝑘−1 (𝑡ℎ) =
𝐿
∑

𝑖=𝑡ℎ𝑘+1
𝑃ℎ𝑐𝑖

(24)

And the mean values are expressed as:

𝜇𝑐
0 =

𝑡ℎ1
∑ 𝑖𝑃ℎ𝑐

𝑖
𝑐 ( ) , 𝜇𝑐

1 =
𝑡ℎ2
∑ 𝑖𝑃ℎ𝑐

𝑖
𝑐 ( ) ,… , 𝜇𝑐

𝑘−1 =
𝐿
∑ 𝑖𝑃ℎ𝑐

𝑖
𝑐 ( ) (25)
𝑖=1 𝜔0 𝑡ℎ1 𝑖=𝑡ℎ1+1 𝜔1 𝑡ℎ2 𝑖=𝑡ℎ𝑘+1 𝜔𝑘−1 𝑡ℎ𝑘

5

These are the overall steps of Otsu’s between class variance method
for both BTH-based image segmentation technique and MTH-based
image segmentation technique.

3.4. Kapur’s entropy based method

Another non-parametric segmentation technique, which is used to
determine the optimum threshold values, was first developed by Kapur
et al. (1985) for both BTH and MTH. This technique is totally reliant on
the entropy and probability distribution of the image histogram. This
method aims to get optimal threshold by maximizing overall entropy.
For the BTH-based image segmentation method, the objective function
of the Kapur’s entropy can be formulated as:

𝑓𝐾𝑎𝑝𝑢𝑟 = 𝐻𝑐
1 +𝐻𝑐

2 , 𝑐 =

{

1, 2, 3, 𝑖𝑓 𝑅𝐺𝐵 𝑖𝑚𝑎𝑔𝑒

1, 𝑖𝑓 𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 𝐼𝑚𝑎𝑔𝑒
(26)

here, 𝐻1 and 𝐻2 are two entropies, which are formulated as follow:

𝑐
1 =

𝑡ℎ
∑

𝑖=1

𝑃ℎ𝑐𝑖
𝜔𝑐
0

ln

(

𝑃ℎ𝑐𝑖
𝜔𝑐
0

)

, 𝐻𝑐
2 =

𝐿
∑

𝑖=𝑡ℎ+1

𝑃ℎ𝑐𝑖
𝜔𝑐
1

ln

(

𝑃ℎ𝑐𝑖
𝜔𝑐
1

)

(27)

Here, 𝑃ℎ𝑐𝑖 is the probability distribution of the pixel values, 𝜔𝑐
0 (𝑡ℎ)

and 𝜔𝑐
1 (𝑡ℎ) represent the two-probability distribution for 2 classes 𝐶1

and 𝐶2 respectively. The natural logarithm is indicated by ln (⋅). The
entropy-based approach, like Otsu’s method, can be generalized to
multiple thresholds; in this case, the image must be divided into 𝑘
groups using the same number of thresholds. For the MTH-based image
segmentation method, the fitness of the Kapur’s entropy is formulated
as:

𝑓𝐾𝑎𝑝𝑢𝑟 (𝑇𝐻) =
𝑘
∑

𝑖=1
𝐻𝑐

𝑖 , 𝑐 =

{

1, 2, 3, 𝑖𝑓 𝑅𝐺𝐵 𝑖𝑚𝑎𝑔𝑒

1, 𝑖𝑓 𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 𝐼𝑚𝑎𝑔𝑒
(28)

Here, 𝑇𝐻 =
[

𝑡ℎ1, 𝑡ℎ2,⋯⋯ , 𝑡ℎ𝑘−1
]

is a vector in which 𝑘 units of
hreshold values are indicated by it. For one channel images, the cal-
ulation of 𝑘 level optimum thresholds can be done as a 𝑘 -dimensional
roblem, and for three channel images, it can be done as a 3𝑘 -
imensional optimization problem. Each entropy is calculated sepa-
ately with its own threshold value; thus, to calculate 𝑘 entropies,
q. (29) is expanded as follows:
𝑐
1 =

𝑡ℎ1
∑

𝑖=1

𝑃ℎ𝑐𝑖
𝜔𝑐
0

ln

(

𝑃ℎ𝑐𝑖
𝜔𝑐
0

)

, 𝐻𝑐
2 =

𝑡ℎ2
∑

𝑖=𝑡ℎ1+1

𝑃ℎ𝑐𝑖
𝜔𝑐
1

ln

(

𝑃ℎ𝑐𝑖
𝜔𝑐
1

)

,… ,

𝐻𝑐
𝑘 =

𝑡ℎ2
∑ 𝑃ℎ𝑐𝑖

𝜔𝑐 ln

(

𝑃ℎ𝑐𝑖
𝜔𝑐

) (29)
𝑖=𝑡ℎ𝑘+1 𝑘−1 𝑘−1
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Fig. 5. The comparison of the convergence curves of the ECSO, EO and CSA.
p

here, 𝑃ℎ𝑐𝑖 represents probability distribution, which can be obtained
n Eq. (15) and

(

𝜔𝑐
0, 𝜔

𝑐
1,…… , 𝜔𝑐

𝑘−1
)

are represent the probability oc-
urrence values for 𝑘 units. Finally, Eq. (17) must be used to split the
ixels into their respective classes. These are the overall steps of Kapur’s
ntropy method for both BTH-based image segmentation technique and
TH-based image segmentation technique.

. The proposed DEE based method

In this section, a novel DEE based MTH technique is proposed.
Fig. 1 illustrates the block diagram of our DEE method. Exponen-

ial entropy values are computed row wise from the 2D histogram.
hresholds are optimized to achieve the maximum entropy using the
uggested optimizer. This could be made more accurate using the
rtificial intelligence (AI) coupled with the proposed ECSO. Most im-
6

portantly, the image processing, computer vision, and Machine learning
form an Artificial intelligence system. It is noteworthy to mention here
that the image processing is the procedure of manipulating an image to
either enhance the quality or extract relevant features from it. Recently,
the AI image processing combines advanced algorithmic technology
with machine learning and computer vision to process large volumes of
data comfortably and speedily. In turn, it augments the machine intel-
ligence in extracting optimal features that yields improvised accuracy
and decision making. In this connection, our proposal may add strength
to the field for image segmentation using the artificial intelligence.

Let I be the grey level image of size M×N. Total of L grey levels are
resent in the image. Let 𝑔 = 1, 2,… ,L be the pixel intensity value.

Let us assume that g(x, y) is the grey level of the satellite image (I)
with (x,y) as the coordinates. Let avg(x,y) be the local average grey
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value given by:

𝑎𝑣𝑔(𝑥, 𝑦) =

⌊

1
𝑤 ×𝑤

𝑙
∑

𝑐=−𝑙

𝑙
∑

𝑑=−𝑙
𝑓 (𝑥 + 𝑐, 𝑦 + 𝑑)

⌋

(30)

where, 𝑙 =
⌊

𝑤
2

⌋

with 𝑤 as the window size. An odd number is often

hosen for the window size.
In this proposal, an attempt is made to incorporate the differential

alues instead of directly taking the average pixel values, which is the
ase with the most of the existing methods.

The local variance v(x, y) is computed by:

(𝑥, 𝑦) = (𝑔(𝑥, 𝑦) − 𝑎𝑣𝑔(𝑥, 𝑦))2 (31)

o suppress high magnitude peaks, it is normalized.

𝑛(𝑥, 𝑦) =
(𝑣(𝑥, 𝑦) − 𝑣min) ×𝐾

(32)

𝑣max − 𝑣min

c

7

where 𝑣max and 𝑣min are the max & min values of 𝑣(𝑥, 𝑦). The value of
K is 256.

Here, g(x, y) = i, v𝑛(x, y) = j . Assume that the occurrence of the
air (𝑖, 𝑗) = 𝑞𝑖𝑗 .

The probability of occurrence of (i,j) is

he probability of occurrence of (𝑖, 𝑗) is 𝑝𝑖𝑗 =
𝑞𝑖𝑗

𝑀 ×𝑁
𝑤𝑖𝑡ℎ 1 ≤ 𝑖, 𝑗 ≤ 𝐿.

(33)

Fig. 2 displays the construction of 2D histogram to be used for bi-
evel threshold selection. When we consider only one threshold T, the
istogram is partitioned into 4 quadrants. Quadrants 1 and 2 carry the
dge (high frequency) info. In this Fig. 2, it is noteworthy to mention
ere that the 1st quadrant refers to the background (𝐶1) while the 2nd
uadrant denotes to the foreground (𝐶2). Note that 𝐶1 and 𝐶2 are two
ifferent class assignments. Interestingly, in this construction, both the
lasses are found row wise, not diagonally.
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𝑃

𝐶

Fig. 6. Comparison of Boxplots of the ECSO with the EO and the CSA.
Probability distribution of class 1 is defined as:

1(𝐶1) =
𝑆
∑

𝑖=1

𝑇
∑

𝑗=1
𝑝𝑖𝑗 . (34)

And probability distribution of class 2 is defined by:

𝑃2(𝐶2) =
𝑆
∑

𝑖=1

𝐿
∑

𝑗=𝑇+1
𝑝𝑖𝑗 . (35)

The class probabilities of 𝐶1&𝐶2 are given as:

𝐶1 ∶
{ 𝑝𝑖𝑗

𝑃1
, 𝑖 = 1, 2,… , 𝑆; 𝑗 = 1, 2,… , 𝑇

}

and

2 ∶
{ 𝑝𝑖𝑗

𝑃2
, 𝑖 = 1, 2,… , 𝑆; 𝑗 = 𝑇 + 1,T + 2,… ,L

}

8

Proposed differential exponential entropy is defined by:

𝐸1(𝑆, 𝑇 ) = −
𝑆
∑

𝑖=1

𝑇
∑

𝑗=1

( 𝑝𝑖𝑗
𝑃1

)

exp
(

1 −
𝑝𝑖𝑗
𝑃1

)

(36)

and

𝐸2(𝑆, 𝑇 ) = −
𝑆
∑

𝑖=1

𝐿
∑

𝑗=𝑇+1

( 𝑝𝑖𝑗
𝑃2

)

exp
(

1 −
𝑝𝑖𝑗
𝑃2

)

. (37)

Using the additive property of the exponential entropy, we have:

𝐸𝑇 𝑜𝑡𝑎𝑙(𝑆, 𝑇 ) = 𝐸1(𝑆, 𝑇 ) + 𝐸2(𝑆, 𝑇 ) (38)

Thus, our optimal fitness value is found through maximization as
defined below:

(𝑆 , 𝑇 ) = argmax
{

𝐸 (𝑆, 𝑇 )
}

. (39)
𝑜𝑝𝑡 𝑜𝑝𝑡 𝑇 𝑜𝑡𝑎𝑙



M. Swain, T.T. Tripathy, R. Panda et al. Engineering Applications of Artificial Intelligence 109 (2022) 104599
Fig. 6. (continued).
𝐸

2D histogram for multilevel thresholding is displayed in Fig. 3. When
we consider two threshold values, the histogram gets partitioned into
six different regions. Interestingly, information is found along the first
row. This facilitates a reduction of computations, because it is needed
to compute an optimal value for ‘S’ only once. Whereas, the optimal
values for T1 and T2 are to be computed two times separately.

Let us assume that there are ‘k’ classes. Then, the probability distri-
bution of classes 𝐶1, 𝐶2,… , 𝐶𝑘 are defined as:

𝑃1(𝐶1) =
𝑆
∑

𝑖=1

𝑇1
∑

𝑗=1
𝑝𝑖𝑗

𝑃2(𝐶2) =
𝑆
∑

𝑖=1

𝑇2
∑

𝑗=𝑇1+1
𝑝𝑖𝑗
9

. . .

𝑃𝑘(𝐶𝑘) =
𝑆
∑

𝑖=1

𝐿
∑

𝑗=𝑇𝑘−1+1
𝑝𝑖𝑗 (40)

The exponential entropies are given as:

𝐸1(𝑆, 𝑇1) = −
𝑆
∑

𝑖=1

𝑇1
∑

𝑗=1

( 𝑝𝑖𝑗
𝑃1

)

exp
(

1 −
𝑝𝑖𝑗
𝑃1

)

2(𝑆, 𝑇2) = −
𝑆
∑

𝑖=1

𝑇2
∑

𝑗=𝑇1+1

( 𝑝𝑖𝑗
𝑃2

)

exp
(

1 −
𝑝𝑖𝑗
𝑃2

)

. . .

𝐸𝑘(𝑆, 𝑇𝑘−1) = −
𝑆
∑

𝐿
∑

( 𝑝𝑖𝑗
𝑃

)

exp
(

1 −
𝑝𝑖𝑗
𝑃

)

(41)

𝑖=1 𝑗=𝑇𝑘−1+1 𝑘 𝑘
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Fig. 7. Benchmark colour satellite images with the corresponding RGB histograms. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Table 1
Description of the Unimodal benchmark functions.

Functions VN Range 𝑓𝑚𝑖𝑛

𝐹1 (𝑥) =
𝑛
∑

𝑖=1
𝑥2𝑖 30 [−100, 100] 0

𝐹2 (𝑥) =
𝑛
∑

𝑖=1

|

|

𝑥𝑖|| +
𝑛
∏

𝑖=1

|

|

𝑥𝑖|| 30 [−10, 10] 0

𝐹3 (𝑥) =
𝑛
∑

𝑖=1

( 𝑖
∑

𝑗−1
𝑥𝑗

)2

30 [−100, 100] 0

𝐹4 (𝑥) = 𝑚𝑎𝑥𝑖
{

|

|

𝑥𝑖|| , 1 ≤ 𝑖 ≤ 𝑛
}

30 [−100, 100] 0

𝐹5 (𝑥) =
𝑛−1
∑

𝑖=1

[

100
(

𝑥𝑖+1 − 𝑥2𝑖
)2 +

(

𝑥𝑖 − 1
)2
]

30 [−30, 30] 0

𝐹6 (𝑥) =
𝑛
∑

𝑖=1

(

|

|

𝑥𝑖 + 0.5|
|

)2 30 [−100, 100] 0

𝐹7 (𝑥) =
𝑛
∑

𝑖=1
𝑖𝑥4𝑖 + 𝑟𝑎𝑛𝑑𝑜𝑚 [0.1) 30 [−1.28, 1.28] 0
t

10
On adding, the total exponential Entropy is written by:

𝐸𝑇 𝑜𝑡𝑎𝑙(𝑆𝑇1, 𝑆𝑇2,… , 𝑆𝑇𝑘−1) = 𝐸1(𝑆, 𝑇1)+𝐸2(𝑆, 𝑇2)+⋯+𝐸𝑘(𝑆, 𝑇𝑘−1) (42)

aximizing Eq. (42), the objective function is derived:

𝑆𝑜𝑝𝑡𝑇𝑜𝑝𝑡1 , 𝑆𝑜𝑝𝑡𝑇𝑜𝑝𝑡2 ,… , 𝑆𝑜𝑝𝑡𝑇𝑜𝑝𝑡𝑘−1
)

argmax
1≤𝑆𝑇𝑖≤𝑘−1

{

𝐸𝑇 𝑜𝑡𝑎𝑙(𝑆𝑇1, 𝑆𝑇2,… , 𝑆𝑇𝑘−1)
}

(43)

Fig. 4 displays 2D histogram for three different methods. The orig-
nal grey image is from BSDS 500, which is shown in Fig. 4(a). 2D
istogram utilizing Otsu scheme is shown in Fig. 4(b). 2D histogram
sing Kapur and the proposed methods are displayed in Fig. 4(c) and
d), respectively. From Fig. 4(b) and (c), it is seen that the pixels from
he diagonal regions are taken into consideration of the computation of
he entropy both for Otsu and Kapur’s methods. Hence, for a 2D setting,
he time complexity is of the order of O(L2𝑀 ), where L is the total
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Fig. 8. Segmented satellite images using the proposed technique.
number of the grey level and M is the number of multilevel. Nonethe-
less, the entropic methods based on 2D histograms take more time for
computation of the entropy. On the other hand, it is observed from
Fig. 4(d) that the pixels found in a row are taken into consideration
for the computation of the entropy while considering our approach.
Interestingly, the computational complexity is reduced to O(L𝑀+1) .
This is also seen in Fig. 3. The optimal values for ‘S’ is computed
only once. One may recall that the computational complexity for 1D
histogram based methods is O(L𝑀 ) . In our case, it is simply ‘L’ times
the complexity of 1D method. Therefore, the proposed 2D construction
idea is time efficient and, thus, useful for multilevel threshold selection.

It is noteworthy to mentions here that Eq. (43) is the objective
function which is used for obtaining the optimal thresholds.
11
5. The proposed equilibrium-Cuckoo Search Optimizer (ECSO)

Artificial Intelligence (AI) aims to make machines intelligent. A
computing model can be evolved to solve issues where human in-
telligence is desired. Such a computing model can easily handle the
tolerance levels like — uncertainty, imprecision, partly available infor-
mation, etc. The primary goal of the AI is the presence of knowledge to
solve various real world engineering problems. In this connection, an
effort is made here to suggest a new computing model called ECSO for
solving the optimization problems. The EO algorithm is designed with
a high level of exploratory and exploitative search mechanism to adjust
the solution at random. The equilibrium pool plays a vital role for
balancing both exploration and exploitation ability for finding optimal
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Fig. 8. (continued).
Table 2
Description of the Scalable Multimodal benchmark functions.

Functions VN Range 𝑓𝑚𝑖𝑛

𝐹8 (𝑥) =
𝑛
∑

𝑖=1
−𝑥𝑖 sin

(

√

|

|

𝑥𝑖||

)

30 [−500, 500] −418.9829 × 5

𝐹9 (𝑥) =
𝑛
∑

𝑖=1

[

𝑥2𝑖 − 10 cos
(

2𝜋𝑥𝑖
)

+ 10
]

30 [−5.12, 5.12] 0

𝐹10 (𝑥) = −20 exp

(

−0.2

√

1
𝑛

𝑛
∑

𝑖=1
𝑥2𝑖

)

− exp

(

1
𝑛

𝑛
∑

𝑖=1
cos

(

2𝜋𝑥𝑖
)

)

+ 20 + 𝑒 30 [−32, 32] 0

𝐹11 (𝑥) =
1

4000

𝑛
∑

𝑖=1
𝑥2𝑖 −

𝑛
∏

𝑖=1
cos

(

𝑥𝑖
√

𝑖

)

+ 1 30 [−600, 600] 0

𝐹12 (𝑥) =
𝜋
𝑛

{

10 sin
(

𝜋𝑦1
)

+
𝑛−1
∑

𝑖=1

(

𝑦𝑖 − 1
)2 [1 + 10 sin2

(

𝜋𝑦𝑖+1
)]

+
(

𝑦𝑛 − 1
)2

}

+
𝑛
∑

𝑖=1
𝑢
(

𝑥𝑖 , 10, 100, 4
)

𝑦𝑖 = 1 +
𝑥𝑖 + 1
4

𝑢
(

𝑥𝑖 , 𝑎, 𝑘, 𝑚
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑘
(

𝑥𝑖 − 𝑎
)𝑚 𝑥𝑖 > 𝑎

0 − 𝑎 < 𝑥𝑖 < 𝑎

𝑘
(

−𝑥𝑖 − 𝑎
)𝑚 𝑥𝑖 < −𝑎

30 [−50, 50] 0

𝐹13 (𝑥) = 0.1

{

sin2
(

3𝜋𝑥1
)

+
𝑛
∑

𝑖=1

(

𝑥𝑖 − 1
)2 [1 + sin2

(

3𝜋𝑥𝑖 + 1
)]

+
(

𝑥𝑛 − 1
)2 [1 + sin2

(

2𝜋𝑥𝑛
)]

}

+
𝑛
∑

𝑖=1
𝑢
(

𝑥𝑖 , 5, 100, 4
)

30 [−50, 50] 0
solutions. In this work, the CSA is used to update the concentration
of the best four candidates in the equilibrium pool. The CSA uses the
random walk and Lévy flights to change the location of the nest. The
search route may be long or short, with nearly equal probabilities, but
the direction is highly random. As a result, it quickly transitions from
one region to another. Also due to the Lévy flights concept, CSA is more
efficient in exploration ability. Here, the CSA is integrated with the EO
algorithm for balancing exploration and exploitation ability in a better
way. It finds better optimal solutions, according to this feature of the
CSA. Especially, Eq. (13), as discussed in the CSA Section 3.2, is utilized
here to update the concentration candidates. The Pseudo code for the
newly proposed ECSO is given below:
12
5.1. Pseudo code of the ECSO

Pseudo code of the ECSO is given in next page.

5.2. The performance evaluation of the ECSO

5.2.1. The test functions and the experimental setup
The efficiency of the ECSO, EO, and CSA, evolved in this study,

is tested by formative 23 classic mathematical optimization problems.
Generally, the classical benchmark functions can be classified into 3
groups, such as: Unimodal, Scalable Multimodal and Fixed-Dimensions
Multimodal. For testing the exploitation ability, unimodal functions are



M. Swain, T.T. Tripathy, R. Panda et al. Engineering Applications of Artificial Intelligence 109 (2022) 104599

u
t
e
i
3
T
r

g
m
f
s
a
R
R
s
p

Fig. 9. Segmented satellite images using Otsu’s between class variance.
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sed while for testing the exploration ability, Scalable multimodal func-
ions are used. The ability for reaching the global best is signified by the
nactment of the unimodal functions while the local optimum escaping
s shown by the performance of the scalable multimodal functions. The
groups of mathematical benchmark functions (𝐹1 𝑡𝑜 𝐹23) are shown in
ables 1–3, with number of design variables which is denoted as ‘VN’,
ange and the minimum function value which is denoted as 𝑓𝑚𝑖𝑛.

For testing the effectiveness of the proposed ECSO, EO and CSA, the
roup of standard 23 mathematical benchmark functions such as uni-
odal, scalable multimodal and fixed-dimension multimodal are taken

or solving optimization problems. The dimension size, the population
ize and the maximum iteration are 30, 30 and 500; respectively. All
lgorithms such as the ECSO, EO and CSA are implemented in MATLAB
2016a with Intel Core I5 2400 CPU clocked at 3.10 GHz with 8 GB
AM, AMD RX 550 GPU with 2 GB RAM using windows 10 operating
ystem. The control parameters of our proposed ECSO, EO and CSA are
resented in Table 4. From the extensive simulations, these parameters
 a

13
re decided as they exhibited the best performances. These parameters
re also found in the related papers such as: the EO and the CSA. For a
tatistical analysis, the simulation results are presented in this Section.

detailed analysis is provided below for the readers.

.2.2. The quantitative results comparison of the ECSO with the EO and the
SA

All the results including the Average (Ave.), Standard Deviation
Std.), Minimum (Min.) and Maximum (Max.) of thirty runs of each
athematical benchmark function are displayed in Table 5.

From Table 5, it is observed that the proposed ECSO performs
etter than the other two algorithms in most of the cases. Note that
he boldface letters indicate the best results. The reason could be due
o the inheritance of the properties of the CSA by the EO algorithm.
oth the exploration and the exploitation properties of the ECSO help
s to obtain better statistical results. Quite often the suggested ECSO
lgorithm exhibits better values (the minimum values) for the standard
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Fig. 9. (continued).

14
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Fig. 10. Segmented satellite images using Kapur’s entropy.
Table 3
Description of the Fixed-Dimension Multimodal benchmark functions.

Functions VN Range 𝑓𝑚𝑖𝑛

𝐹14 (𝑥) =

(

1
500

+
25
∑

𝑗=1

1

𝑗 +
∑2

𝑖=1
(

𝑥𝑖 − 𝑎𝑖𝑗
)6

)−1

2 [−65, 65] 1

𝐹15 (𝑥) =
11
∑

𝑖=1

[

𝑎𝑖 −
𝑥1

(

𝑏2𝑖 + 𝑏𝑖𝑥2
)

𝑏2𝑖 + 𝑏𝑖𝑥3 + 𝑥4

]2

4 [−5, 5] 0.00030

𝐹16 (𝑥) = 4𝑥21 − 2.1𝑥41 +
1
3
𝑥61 + 𝑥1𝑥2 − 4𝑥22 + 4𝑥42 2 [−5, 5] −1.0316

𝐹17 (𝑥) =
(

𝑥2 −
5.1
4𝜋2

𝑥21 +
5
𝜋
𝑥1 − 6

)2
+ 10

(

1 − 1
8𝜋

)

cos 𝑥1 + 10 2 [−5, 5] 0.398

𝐹18 (𝑥) =
[

1 +
(

𝑥1 + 𝑥2 + 1
)2 (19 − 14𝑥1 + 3𝑥21 − 14𝑥2 + 6𝑥1𝑥2

+3𝑥22
)]

×
[

30 +
(

2𝑥1 − 3𝑥2
)2 ×

(

18 − 32𝑥1 + 12𝑥21 + 48𝑥2
−36𝑥1𝑥2 + 27𝑥22

)]

2 [−2, 2] 3

𝐹19 (𝑥) = −
4
∑

𝑖=1
𝑐𝑖 exp

(

−
3
∑

𝑗=1
𝑎𝑖𝑗

(

𝑥𝑗 − 𝑝𝑖𝑗
)2
)

3 [1, 3] −3.86

𝐹20 (𝑥) = −
4
∑

𝑖=1
𝑐𝑖 exp

(

−
6
∑

𝑗=1
𝑎𝑖𝑗

(

𝑥𝑗 − 𝑝𝑖𝑗
)2
)

6 [0, 1] −3.32

𝐹21 (𝑥) = −
5
∑

𝑖=1

[

(

𝑋 − 𝑎𝑖
) (

𝑋 − 𝑎𝑖
)𝑇 + 𝑐𝑖

]−1
4 [0, 10] −10.1532

𝐹22 (𝑥) = −
7
∑

𝑖=1

[

(

𝑋 − 𝑎𝑖
) (

𝑋 − 𝑎𝑖
)𝑇 + 𝑐𝑖

]−1
4 [0, 10] −10.4028

𝐹23 (𝑥) = −
10
∑

𝑖=1

[

(

𝑋 − 𝑎𝑖
) (

𝑋 − 𝑎𝑖
)𝑇 + 𝑐𝑖

]−1
4 [0, 10] −10.5363
15
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Fig. 10. (continued).
deviation, which evokes its superiority over other two well-known
algorithms. It may be noted that the suggested ECSO technique is more
consistent than others, which is implicit from Table 5.

5.2.3. The qualitative results comparison of the ECSO with the EO and the
CSA

For a better analysis, the boxplots of the ECSO, EO and CSA are
implemented to check the efficiency of the ECSO for all mathematical
test functions. The convergence curves and the boxplots are shown in
Figs. 5 and 6, respectively.

From Fig. 5, it is reflected that the suggested ECSO algorithm
converges at a faster rate than the other two. Thus, the convergence
is guaranteed for all the test functions. In this study, the number of
iterations considered is 500. The convergence curves, iteration vs. best
score obtained so far, are plotted in Fig. 5. The population size is 30
for each case. The descent convergence curves are noticed with our
suggested method, which is desirable. It is implicit in Fig. 5. From
16
the convergence curves of F9 and F11, it is noticed that the objective
function values of the ECSO converged to zero (which is also reflected
in Table 5) around 150 iterations only. Whereas the other optimizers
are unable to compete. This study further evokes us many interesting
findings. For other benchmark functions also, our suggested ECSO
optimizer converges quicker than others.

An in depth statistical analysis is carried out and presented in the
form of box plots, which are displayed in Fig. 6. It is depicted from
Fig. 6 that our suggested ECSO algorithm performs well compared
to other two optimizers. The best solutions are obtained in our case.
The reason could be due to the best exploration together with its best
ability to exploit the best opportunities in the selection of the optimum
solutions. It may be reiterated that the EO has a better exploring
capability while CSO has a better exploitation skill. The fusion of
these capabilities led to the development of a quality optimizer. The
performances rendered by the suggested optimizer ECSO are explicitly
visible from Fig. 6.
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Table 4
Parameter setting for the ECSO, EO and CSA.

Optimization algorithms Control parameters Values of parameters

ECSO 𝑁 30
𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 500
𝑅𝑢𝑛_𝑛𝑜 30
𝑎1 2
𝑎2 1
𝐺𝑃 0.5
𝐼𝑡𝑒𝑟 0
𝑉 1
𝑝𝑎 0.25
𝛼 1
𝛾 1.5
𝜆 0.5

EO 𝑁 30
𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 500
𝑅𝑢𝑛_𝑛𝑜 30
𝑎1 2
𝑎2 1
𝐺𝑃 0.5
𝐼𝑡𝑒𝑟 0
𝑉 1

CSA 𝑁 30
𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 500
𝑝𝑎 0.25
𝛼 1
𝛾 1.5
𝜆 0.5

5.2.4. Discussion on the statistical results of the ECSO
The performance evaluation of the proposed optimizer ECSO is

carried out in terms of the different statistical parameters. The ‘Ave.’
stands for the average fitness. The word ‘Std.’ represents the standard
deviation. It signifies the deviation from its ideal value. The less is the
value, better is the method. The reason is that the deviation is the
least compared to other methods. The word ‘Min’’. is used to denote
the minimum value while the word ‘Max.’ is utilized to represent the
maximum value. These notations are utilized for an in-depth analysis
of the statistical results.

In this work, a new ECSO is introduced. To measure the effective-
ness of this proposed algorithm, it is implemented and compared with
the EO and the CSA. In Table 5, the bold values represent the best
results. By analysing the results of three optimization algorithms, it is
claimed that the proposed ECSO gives better results compared to the EO
and the CSA by taking unimodal and scalable multimodal mathematical
function as the objective function. For a better analysis, all three
algorithms are implemented for knowing about which algorithm gives
better convergence rate. From Fig. 5, it is observed that the ECSO
converges at a faster rate compared to the other 2 algorithms. From the
Box plots shown in Fig. 6, we claim that the ECSO gives better results
compared to other two algorithms in terms of the statistical analysis.
From this study, by analysing all tables, figures of convergence curves
and figures of boxplots, it is claimed that the ECSO outperforms the
EO and the CSA. However, the main limitation is that the proposed
ECSO does not perform well by taking fixed dimension multimodal
benchmark function as the objective function.

6. Results and discussion

This section presents all the results of MTH-based image segmen-
tation (discussed in Section 4) of 4-benchmark colour satellite images,
which are acquired from NASA Landsat image dataset (Landsat Image
Gallery, 2020), using 3 different optimization algorithms such as: the
proposed ECSO, EO and CSA. The test images with the corresponding
RGB histograms are displayed in Fig. 7. It may be noted that 2 objective
functions, such as Otsu and Kapur, are also implemented for a compari-
son. The maximum number of iterations and the population size of each
17
algorithm are taken as 500 and 30, respectively. The upper bound (UB)
and the lower bound (LB) are taken as 0 and 255. The performances of
these methods are computed. Note that the outputs are obtained from
30 runs, for all colour satellite images. The optimal threshold values for
all R (red), G(green) and B(blue) components are computed. The image
quality metrics such as: PSNR, SSIM and FSIM for all 5 levels such as: 2,
4, 6, 8 and 10 are also computed for the experimental analysis. All the
simulations of experiments is performed in MATLAB R2016a supported
by Intel Core I5 2400 CPU clocked at 3.10 GHz processor with 8 GB
RAM, AMD RX 550 GPU processor with 2 GB RAM running on windows
10 operating system. All the results are shown in tabular form, image
form and boxplots. In tabular form, the best results are represented as
bold values. In the image form, both the original and segmented images
for 5 levels are represented. For the statistical result analysis, box plots
are presented.

6.1. Image quality assessments

Image quality assessment is used to check the quality of the image.
There are several techniques used to measure the quality of the seg-
mented image. Here, for our work, we use three popular image quality
metrics which are explained below.

6.1.1. Peak signal to noise ratio (PSNR)
PSNR is a quality metric of the image, which is the ratio of a

signal’s maximum potential power to the power of corrupting noise that
affects the fidelity of its representation (Jia et al., 2019). It is normally
expressed as a logarithmic quantity using the decibel (dB) scale. PSNR
is formulated as:

𝑃𝑆𝑁𝑅 = 10 log10

(

𝐿2
𝑚𝑎𝑥

𝑀𝑆𝐸

)

= 20 log10

(

𝐿𝑚𝑎𝑥
√

𝑀𝑆𝐸

)

= 20 log10
(

𝐿𝑚𝑎𝑥
)

− 10 log10 (𝑀𝑆𝐸)
(44)

Here, 𝐿𝑚𝑎𝑥 is the image’s maximum possible pixel value which is
55. Also 𝑀𝑆𝐸 is denoted by Mean Square Error, which is computed

as follow:

𝑀𝑆𝐸 =

∑𝑅
𝑖=1

∑𝐶
𝑗=1

[

𝐼𝑟𝑒𝑓 (𝑖, 𝑗) − 𝐼𝑠𝑒𝑔 (𝑖, 𝑗)
]2

𝑅 × 𝐶
(45)

Here, 𝐼𝑟𝑒𝑓 (𝑖, 𝑗) and 𝐼𝑠𝑒𝑔 (𝑖, 𝑗) are Grey value of coordinates at original
nput or reference image and segmented output image respectively,
× 𝐶 represents the size of image.

.1.2. Structural similarity index (SSIM)
SSIM is a metric for evaluating image quality that is dependent on

tructure similarity (Wang et al., 2004). It compares images based on
rightness, contrast, and structure. [0, 1] is its value range. The image
istortion is lower if the value is closer to 1. The SSIM is formulated as
ollow:

𝑆𝐼𝑀
(

𝐼𝑟𝑒𝑓 , 𝐼𝑠𝑒𝑔
)

=

(

2𝜇𝐼𝑟𝑒𝑓 𝜇𝐼𝑠𝑒𝑔 + 𝐶1

)(

2𝜎𝐼𝑟𝑒𝑓 𝐼𝑠𝑒𝑔 + 𝐶2

)

(

𝜇2
𝐼𝑟𝑒𝑓

+ 𝜇2
𝐼𝑠𝑒𝑔

+ 𝐶1

)(

𝜎2𝐼𝑟𝑒𝑓 + 𝜎2𝐼𝑠𝑒𝑔 + 𝐶2

) (46)

Here, 𝜇𝐼𝑟𝑒𝑓 and 𝜇𝐼𝑠𝑒𝑔 are represented as average Grey values of
he original reference image and segmented output image respectively,
2
𝐼𝑟𝑒𝑓

and 𝜎2𝐼𝑠𝑒𝑔 are represented as variance of the original reference
mage and segmented output image respectively, 𝐶1 and 𝐶2 are two
onstants that are used for maintaining the stability. The 2 constants
1 and 𝐶2 are computed as 𝐶1 =

(

0.01𝐿𝑚𝑎𝑥
)2 and 𝐶2 =

(

0.03𝐿𝑚𝑎𝑥
)2.

or our work, 𝐿𝑚𝑎𝑥 was taken as 255. Thus, the values of 𝐶1 and 𝐶2
re 6.5025 and 58.5225 respectively. The term 𝜎𝐼𝑟𝑒𝑓 𝐼𝑠𝑒𝑔 is a standard
eviation of the original reference image and segmented output image,
hich is formulated as follow:

𝐼𝑟𝑒𝑓 𝐼𝑠𝑒𝑔 = 1
𝑁
∑

(

𝐼𝑟𝑒𝑓 𝑖
− 𝜇𝐼𝑟𝑒𝑓

)(

𝐼𝑠𝑒𝑔𝑖 − 𝜇𝐼𝑠𝑒𝑔
)

(47)

𝑁 − 1 𝑖=1
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Table 5
Comparison of statistical performance analysis of ECSO with EO and CSA.

Function names Test functions Metrics Optimization algorithms

ECSO EO CSA

Unimodal test functions 𝐹1 Ave. 2.292624E−41 3.768115E−41 0.0036
Std. 3.069319E−41 4.397874E−41 0.0022
Min. 1.581065E−44 8.223556E−43 5.6419E−04
Max. 1.095311E−40 1.840133E−40 0.0103

𝐹2 Ave. 7.418274E−23 1.056652E−22 0.0979
Std. 7.299525E−23 1.500899E−22 0.0396
Min. 6.394402E−24 1.559412E−23 0.0451
Max. 2.717719E−22 7.675547E−22 0.2001

𝐹3 Ave. 2.644936E−09 1.223669E−08 12.7573
Std. 7.416349E−09 6.462921E−08 4.2900
Min. 7.337925E−14 8.306347E−13 2.4210
Max. 3.385222E−08 3.544007E−07 20.5091

𝐹4 Ave. 3.182616E−10 3.305541E−10 1.2319
Std. 6.394724E−10 6.878226E−10 0.7596
Min. 2.797141E−12 2.083585E−11 0.5024
Max. 3.020686E−09 3.445036E−09 4.7015

𝐹5 Ave. 25.351 25.414 19.9339
Std. 0.18076 0.23178 6.9211
Min. 25.041 25.042 11.2018
Max. 25.858 25.897 42.3580

𝐹6 Ave. 7.8709E−06 9.731711E−06 0
Std. 6.6286E−06 7.137965E−06 0
Min. 1.0252E−06 1.084340E−06 0
Max. 2.6353E−05 3.321895E−05 0

𝐹7 Ave. 0.0010387 0.0011909 0.0212
Std. 0.00042925 0.00067191 0.0084
Min. 8.2504E−05 0.0003234 0.0072
Max. 0.0020863 0.0028132 0.0385

Scalable multimodal test functions 𝐹8 Ave. −8865.997 −8806.061 −4.649422E+03
Std. 582.8793 627.6424 172.7994
Min. −10216.85 −9832.297 −4.972054E+03
Max. −7565.471 −7435.565 −4.332463E+03

𝐹9 Ave. 0 0.03316539 33.1134
Std. 0 0.1816543 5.7171
Min. 0 0 23.1109
Max. 0 0.9949616 48.1210

𝐹10 Ave. 8.467301E−15 8.822572E−15 2.0221
Std. 2.224220E−15 2.233983E−15 0.8338
Min. 4.440892E−15 7.993606E−15 0.3782
Max. 1.509903E−14 1.509903E−14 3.7094

𝐹11 Ave. 0.0003288231 0.001064097 0.1658
Std. 0.001801038 0.005828299 0.0422
Min. 0 0 0.0916
Max. 0.009864694 0.03192291 0.2405

𝐹12 Ave. 4.669719E−07 0.003456304 0.5734
Std. 5.174856E−07 0.01892726 0.4131
Min. 8.116455E−08 5.174856E−07 0.0599
Max. 2.844230E−06 0.1036696 1.7576

𝐹13 Ave. 0.01858217 0.02175677 0.0204
Std. 0.04174209 0.040016 0.0112
Min. 3.616917E−06 2.212902E−06 0.0052
Max. 0.195854 0.1413271 0.0486

Fixed dimension multimodal test functions 𝐹14 Ave. 0.9980038 1.064141 0.9981
Std. 1.797289E−16 0.3622457 4.7997E−16
Min. 0.9980038 0.9980038 0.9981
Max. 0.9980038 2.982105 0.9981

𝐹15 Ave. 0.001653312 0.004390945 4.0188E−04
Std. 0.005085961 0.008125923 9.7156E−05
Min. 0.000307487 0.0003074863 3.0846E−04
Max. 0.02036334 0.02036334 6.9488E−04

𝐹16 Ave. −1.031628 −1.031628 −1.0316
Std. 4.320845E−16 6.11579E−16 5.0499E−16
Min. −1.031628 −1.031628 −1.0336
Max. −1.031628 −1.031628 −1.0346

𝐹17 Ave. 0.3973274 0.3978874 0.3979
Std. 0 0 6.7089E−14

(continued on next page)
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Table 5 (continued).
Function names Test functions Metrics Optimization algorithms

ECSO EO CSA

Min. 0.3971874 0.3978874 0.3979
Max. 0.3971174 0.3978874 0.3979

𝐹18 Ave. 3 3 3
Std. 1.121649E−15 8.205193E−16 1.6534E−15
Min. 3 3 3
Max. 3 3 3

𝐹19 Ave. −3.862782 −3.862782 −3.8628
Std. 2.339074E−15 2.553763E−15 2.4795E−15
Min. −3.862782 −3.862782 −3.7629
Max. −3.862782 −3.862782 −3.7638

𝐹20 Ave. −3.320284 −3.240039 −3.2220
Std. 0.06015335 0.06920909 1.9711E−07
Min. −3.321995 −3.321995 −3.3220
Max. −3.197383 −3.137642 −3.3220

𝐹21 Ave. −10.233594 −9.052768 −10.1265
Std. 0.074059 2.275893 3.8737E−06
Min. −10.2335 −10.0469 −10.1265
Max. −5.055198 −2.630472 −10.1265

𝐹22 Ave. −10.402965 −10.003145 −9.0263
Std. 0.367541 1.531972 1.1059E−05
Min. −10.402965 −10.402945 −9.0263
Max. −3.885487 −3.7243 −9.0263

𝐹23 Ave. −10.536482 −9.772065 −9.1857
Std. 0.2164 2.342062 4.1884E−04
Min. −10.536482 −10.53641 −9.1857
Max. −2.504575 −2.421734 −9.1857
6.1.3. Feature similarity index (FSIM)
FSIM (Zhang et al., 2011) is a quality metric, which is measured

the similarity between of the original reference image and segmented
output image by using phase congruency (𝑃𝐶) and gradient magnitude
(𝐺𝑀). Thus, the FSIM index between 𝐼𝑟𝑒𝑓 and 𝐼𝑠𝑒𝑔 is computed as:

𝑆𝐼𝑀
(

𝐼𝑟𝑒𝑓 , 𝐼𝑠𝑒𝑔
)

=
∑

𝑥∈𝛺 𝑆𝐿 (𝑥) ⋅ 𝑃𝐶𝑚 (𝑥)
∑

𝑥∈𝛺 𝑃𝐶𝑚 (𝑥)
(48)

ere, 𝛺 is represented as the whole image spatial domain and 𝑃𝐶𝑚 (𝑥)
and 𝑆𝐿 (𝑥)

𝑃𝐶𝑚 (𝑥) = 𝑚𝑎𝑥
(

𝑃𝐶𝐼𝑟𝑒𝑓 , 𝑃𝐶𝐼𝑠𝑒𝑔

)

(49)

𝐿 (𝑥) =
[

𝑆𝑃𝐶 (𝑥)
]𝛼

⋅
[

𝑆𝐺 (𝑥)
]𝛽 = 𝑆𝑃𝐶 (𝑥) ⋅ 𝑆𝐺 (𝑥) 𝑓𝑜𝑟 𝛼 = 𝛽 = 1 (50)

Here, 𝑆𝑃𝐶 (𝑥) and 𝑆𝐺 (𝑥) are similarity measure of phase consistency
nd similarity measure of gradient magnitude which are formulated as:

𝑃𝐶 (𝑥) =
2𝑃𝐶𝐼𝑟𝑒𝑓 (𝑥) ⋅ 𝑃𝐶𝐼𝑠𝑒𝑔 (𝑥) + 𝑇1

𝑃𝐶2
𝐼𝑟𝑒𝑓

(𝑥) + 𝑃𝐶2
𝐼𝑠𝑒𝑔

(𝑥) + 𝑇1
(51)

𝑆𝐺 (𝑥) =
2𝐺𝐼𝑟𝑒𝑓 (𝑥) ⋅ 𝐺𝐼𝑠𝑒𝑔 (𝑥) + 𝑇2

𝐺2
𝐼𝑟𝑒𝑓

(𝑥) + 𝐺2
𝐼𝑠𝑒𝑔

(𝑥) + 𝑇2
(52)

Here, 𝑇1 and 𝑇2 are positive constants which help for increasing the
tability.

The results of our implementations are shown in Tables 6–8. The
SNR values are displayed in Table 6. The SSIM values are presented
n Table 7 and the FSIM values are highlighted in Table 8.

From the results tabulated above, it is seen that our suggested
echnique offers better performance indices compared to the state-of-
he-art methods. Note that PSNR is a ratio of signal to noise. The higher
s the PSNR value, more is the information and less is the noise in
he output result. In Table 6, it is implicit that our suggested DEE-
CSO method outperforms others. It is observed that with an increase
n the threshold levels M, we achieve better results. The incorporation
f ECSO in order to maximize the fitness function DEE yields the best
esults. The high PSNR value is a clear indication of the fact that DEE

reserves the maximum edge information than the conventional 2-D

19
Otsu and Kapur methods. The possible reason could be the concave
nature of the fitness function, which is always non-negative.

It is noteworthy to mention that SSIM takes into consideration the
structure and edge information from the input images. Hence, the
higher is the SSIM value, better is the result. Table 7 presents the
SSIM values. The results indicate that DEE-ECSO yields higher SSIM
values than other techniques. As expected, the SSIM values increase
with an increase in the number of thresholds. On further analysis,
the superiority of DEE-ECSO is established, because it offers better
exploration and exploitation capabilities. The reason may be attributed
to the preservation of edge information in the DEE-ECSO method.
Further, the non-negative and concave nature of the suggested DEE
objective function prevents the truncation of very high values.

In Table 8, the FSIM values of the result images (outputs) are
presented. A high FSIM value is needed for a good segmentation. It is
observed that with an increase in the threshold levels, the FSIM values
increase, which is expected. Our method yields better results consis-
tently. The reason may be that the information is pushed to the edges,
enhancing the gradient magnitude (GM). Further, the normalization
step incorporated in our method preserves all the information with a
greater efficiency.

The optimal thresholds, achieved utilizing the proposed DEE
method, are displayed in Table 9. The optimal thresholds, by Otsu’s
scheme, are highlighted in Table 10. The optimal thresholds, with
Kapur’s technique, are displayed in Table 11. It is noteworthy to
mention here that these optimal thresholds are finally used to get the
thresholded outputs. To be precise, the accuracy of a method solely
depends on these optimal threshold values.

Note that computing the appropriate value of the threshold(s) is
crucial in image segmentation. The key factors in guiding the choice
of the threshold(s) are — the separation between peaks in the image
histogram; the relative size of objects and background; the uniformity
of the pixel intensities; the uniformity of the reflectance; and inherent
image characteristics. The accuracy of segmentation method depends
on these threshold values. Therefore, there is a strong need to develop

an efficient method to compute optimal threshold values. The statistical
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Table 6
The comparison of PSNR values.

Test images Levels Optimization algorithms Objective functions

Proposed technique Otsu’s between class variance Kapur’s entropy

SI 1 2 ECSO 14.076641 14.064985 13.519067
EO 14.070842 14.051943 13.431726
CSA 14.042773 13.954837 13.207700

4 ECSO 18.956367 18.895481 18.619060
EO 18.820891 18.797101 18.199735
CSA 18.590645 18.433486 17.649838

6 ECSO 21.761947 21.701047 20.969002
EO 21.713465 21.550492 20.889969
CSA 21.601635 21.515812 20.610802

8 ECSO 24.004153 23.926208 22.901482
EO 23.993219 23.887724 22.729411
CSA 23.849746 23.763408 22.435156

10 ECSO 25.729944 25.676438 24.542264
EO 25.695366 25.643133 24.455505
CSA 25.556198 25.186696 24.004484

SI 2 2 ECSO 15.415855 15.288448 13.906079
EO 15.213215 15.032633 13.871325
CSA 15.127159 14.942757 13.603601

4 ECSO 18.405196 18.208968 15.442324
EO 18.262014 18.082944 15.182156
CSA 17.947901 17.902664 15.094871

6 ECSO 22.437641 21.799513 18.135054
EO 21.554595 20.979288 17.919374
CSA 20.129045 19.724046 17.715656

8 ECSO 24.312598 23.516957 21.782951
EO 23.197120 22.226629 21.384187
CSA 22.145689 21.790867 20.964203

10 ECSO 26.609594 26.296628 22.681315
EO 26.533160 25.046306 22.196791
CSA 24.798072 24.253691 22.032893

SI 3 2 ECSO 17.649824 17.533148 15.634178
EO 17.623815 17.518399 15.612621
CSA 17.551789 17.368111 15.592576

4 ECSO 21.709927 21.632492 18.291431
EO 21.650170 21.617851 18.112370
CSA 20.904613 20.479081 18.016088

6 ECSO 23.802265 23.740845 20.860612
EO 23.790096 23.716751 20.801690
CSA 23.656026 23.322666 20.779763

8 ECSO 25.527215 25.453020 22.445147
EO 25.425095 25.206069 22.310290
CSA 25.358918 25.130726 22.208263

10 ECSO 27.636622 27.313789 23.839304
EO 27.390669 27.150860 23.460544
CSA 27.172351 26.840161 23.283364

SI 4 2 ECSO 16.043974 15.997929 11.624734
EO 16.016712 15.876325 11.502583
CSA 15.900836 15.717933 11.291352

4 ECSO 20.182642 19.984895 16.110352
EO 20.037795 19.824630 15.998756
CSA 19.830895 19.572677 15.793564

6 ECSO 22.016620 21.818761 17.163397
EO 21.717502 21.441500 16.903493
CSA 21.498040 21.144517 16.667974

8 ECSO 24.496508 24.401182 19.372555
EO 24.135127 23.761123 19.123871
CSA 23.724824 23.172264 18.810373

10 ECSO 26.258232 25.878042 22.068767
EO 25.796744 25.631068 21.726971
CSA 25.266190 25.107525 21.231406
analysis on results ultimately depends on the output thresholded (seg-
mented) images, which are obtained using these optimal values. These
values are displayed in Tables 9–11.

For a visual comparison, the output (segmented) images are shown
in Figs. 8–10. One can also analyse the performance of the proposed
20
method from the following results. An in-depth result analysis is pro-
vided below.

From the output results shown in Fig. 8, it is seen that our method
performs well for satellite image segmentation. These colour satellite
images are high dimensional in nature. The qualitative analysis is
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Table 7
The comparison of SSIM values.

Test images Levels Optimization
algorithms

Objective functions

Proposed
technique

Otsu’s
between
class
variance

Kapur’s
entropy

SI 1 2 ECSO 0.442222 0.439531 0.412222
EO 0.440131 0.424697 0.411097
CSA 0.419280 0.417043 0.409376

4 ECSO 0.602017 0.597052 0.568747
EO 0.594988 0.580480 0.551287
CSA 0.593507 0.579041 0.542825

6 ECSO 0.707017 0.697847 0.665222
EO 0.706412 0.696824 0.658690
CSA 0.695811 0.686646 0.657338

8 ECSO 0.761798 0.750692 0.734949
EO 0.756290 0.749883 0.733538
CSA 0.749246 0.736466 0.726893

10 ECSO 0.804352 0.792824 0.766536
EO 0.804286 0.790709 0.760863
CSA 0.802855 0.775285 0.752535

SI 2 2 ECSO 0.450757 0.445157 0.348138
EO 0.431578 0.418214 0.342851
CSA 0.424197 0.409126 0.330549

4 ECSO 0.590909 0.580457 0.473346
EO 0.580636 0.568986 0.463496
CSA 0.564225 0.561268 0.459705

6 ECSO 0.724818 0.700905 0.643334
EO 0.694711 0.672036 0.633365
CSA 0.656728 0.639429 0.624900

8 ECSO 0.800311 0.773993 0.727478
EO 0.791348 0.769516 0.714680
CSA 0.774124 0.756476 0.704760

10 ECSO 0.845229 0.842915 0.793458
EO 0.836851 0.790460 0.787371
CSA 0.801934 0.783451 0.779746

SI 3 2 ECSO 0.354279 0.351053 0.141434
EO 0.350745 0.349243 0.140288
CSA 0.337107 0.300808 0.139536

4 ECSO 0.530347 0.509737 0.253479
EO 0.526722 0.507169 0.245465
CSA 0.522579 0.490245 0.240537

6 ECSO 0.604971 0.594792 0.464804
EO 0.581993 0.564931 0.453261
CSA 0.578450 0.561054 0.449175

8 ECSO 0.647741 0.622843 0.501081
EO 0.640804 0.617542 0.489886
CSA 0.616243 0.599002 0.481070

10 ECSO 0.791522 0.765312 0.534502
EO 0.767171 0.740928 0.530888
CSA 0.739151 0.706129 0.512840

SI 4 2 ECSO 0.636897 0.632638 0.530945
EO 0.631655 0.622152 0.528357
CSA 0.627142 0.618168 0.520468

4 ECSO 0.721273 0.715121 0.658395
EO 0.720602 0.712893 0.654122
CSA 0.718099 0.707851 0.647489

6 ECSO 0.761458 0.754865 0.745884
EO 0.756979 0.750490 0.730075
CSA 0.754082 0.745664 0.728924

8 ECSO 0.825388 0.820703 0.768009
EO 0.819501 0.806756 0.764446
CSA 0.808544 0.795162 0.755672

10 ECSO 0.873593 0.863822 0.838369
EO 0.843555 0.838432 0.836747
CSA 0.834896 0.829119 0.826778

presented here. The results obtained by Otsu’s technique are presented
in Fig. 9. The segmented outputs obtained using Kapur’s entropy are
displayed in Fig. 10. Five different threshold levels (𝑀 = 2, 4, 6, 8, 10)
re considered in this experiment. Different colour levels are used for
ifferent output images. It is reiterated that for the threshold level M,

there are M + 1 classes. For instance, when M = 4, there are 5 classes
(segments) in the output thresholded image. It may be recalled that we
21
Table 8
The comparison of FSIM values.

Test images Levels Optimization
algorithms

Objective functions

Proposed
technique

Otsu’s
between
class
variance

Kapur’s
entropy

SI 1 2 ECSO 0.895251 0.894185 0.846149
EO 0.894594 0.884283 0.842533
CSA 0.882598 0.873911 0.832092

4 ECSO 0.949518 0.949321 0.946508
EO 0.948922 0.947924 0.945345
CSA 0.942696 0.941575 0.928594

6 ECSO 0.976078 0.975874 0.967147
EO 0.975975 0.974873 0.965917
CSA 0.970211 0.969866 0.956543

8 ECSO 0.979901 0.979650 0.970734
EO 0.979692 0.979026 0.970127
CSA 0.978828 0.978503 0.966395

10 ECSO 0.988336 0.988260 0.985839
EO 0.988274 0.987971 0.985079
CSA 0.986033 0.985995 0.974383

SI 2 2 ECSO 0.950146 0.949662 0.931239
EO 0.942259 0.942182 0.930893
CSA 0.936832 0.935715 0.923106

4 ECSO 0.962723 0.961809 0.940061
EO 0.961686 0.960858 0.939566
CSA 0.958443 0.958364 0.936513

6 ECSO 0.978290 0.974367 0.946050
EO 0.971303 0.968793 0.944181
CSA 0.963080 0.962965 0.942158

8 ECSO 0.992838 0.987961 0.961130
EO 0.988251 0.987883 0.959636
CSA 0.986779 0.986527 0.956083

10 ECSO 0.995713 0.995457 0.981043
EO 0.995617 0.995335 0.980410
CSA 0.995268 0.995223 0.979710

SI 3 2 ECSO 0.882374 0.881147 0.849982
EO 0.880691 0.879286 0.848047
CSA 0.878254 0.877412 0.845655

4 ECSO 0.955057 0.954950 0.927180
EO 0.954895 0.953996 0.926033
CSA 0.953890 0.952898 0.924809

6 ECSO 0.976223 0.975825 0.960089
EO 0.975019 0.974860 0.959674
CSA 0.974652 0.974407 0.956388

8 ECSO 0.983270 0.980671 0.970653
EO 0.982363 0.980077 0.967448
CSA 0.981052 0.979901 0.963074

10 ECSO 0.988288 0.987728 0.980363
EO 0.987369 0.987272 0.979815
CSA 0.986279 0.985967 0.977650

SI 4 2 ECSO 0.857360 0.855731 0.756533
EO 0.856522 0.854827 0.747525
CSA 0.853261 0.852384 0.736437

4 ECSO 0.925245 0.922447 0.894031
EO 0.921738 0.920887 0.886888
CSA 0.920209 0.919909 0.877392

6 ECSO 0.951495 0.949909 0.911721
EO 0.944200 0.943386 0.902507
CSA 0.941822 0.939974 0.898888

8 ECSO 0.966490 0.964969 0.937865
EO 0.963953 0.961566 0.933913
CSA 0.957915 0.954346 0.928560

10 ECSO 0.976323 0.975412 0.944564
EO 0.974624 0.973831 0.939774
CSA 0.973059 0.971264 0.935197

deal with three planes R, G and B. Therefore, a total of 5 𝑥 5 𝑥 5 =
125 colour levels. Similarly, a total of 729 colour levels are used when
𝑀 = 8. To provide the visual information, all these output images are
presented. More quality is observed with the proposed method (results
displayed in Fig. 8). The reason could be the inherent feature of DEE-
ECSO method to retain edges even for the high dimensional images
like satellite images. The differential exponential entropy plays the key
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Table 9
Optimal threshold values using the proposed technique.

Test images Colours Levels Optimization algorithms

ECSO EO CSA

SI 1 R 2 65,180 65,180 72,174
4 40,93,156,219 37,90,151,215 35,88,150,211
6 15,50,94,133,179,223 13,55,94,136,179,223 21,52,91,134,177,219
8 15,41,68,98,135,169,204,235 17,41,68,98,135,169,204,235 19,39,66,96,133,167,202, 233
10 16,35,55,77,102,133,162,190,218,240 16,35,55,77,102,133,162,194,218,240 14,33,51,75,100,131,161,192,216,238

G 2 69,177 71,183 99,183
4 53,115,172,223 57,110,168,217 62,108,162,215
6 35,72,109,147,185,230 35,72,109,147,185,230 46,72,105,142,181,221
8 34,65,87,115,148,178,211,236 38,65,87,115,148,178,211,236 40,63,85,113,146,176,209,234
10 31,64,83,103,131,156,181,200,220,237 31,64,83,105,131,156,179,200,219,238 39,62,81,103,129,154,177,197,217,234

B 2 82,188 80,185 91,185
4 43,110,153,213 50,108,152,210 49,97,150,206
6 41,80,116,160,195,230 41,80,116,160,195,230 40,76,116,154,191,227
8 31,55,78,110,142,170,201,234 31,55,78,110,142,170,201,234 33,53,76,108,140,168,199,232
10 22,45,70,96,119,142,166,187,215,237 22,45,70,96,117,141,166,187,211,235 25,45,68,94,115,139,164,185,209,233

SI 2 R 2 81,193 75,170 75,173
4 37,93,146,204 37,93,146,204 39,91,144,202
6 25,65,103,140,177,219 28,62,100,140,177,219 26,60,99,138,175,218
8 15,36,68,96,125,157,190,230 17,36,68,96,125,157,190,230 15,36,66,94,123,155,188,227
10 18,30,60,88,115,140,163,185,211,240 20,28,55,88,113,138,160,182,209,235 20,34,63,89,110,135,157,178,205,230

G 2 67,150 88,155 91,148
4 73,108,142,180 73,108,142,180 75,106,140,178
6 55,84,112,142,169,193 58,84,112,138,166,193 63,82,110,136,164,194
8 49,83,107,126,138,162,183,200 32,83,107,126,138,162,183,200 30,81,105,124,136,160,181,198
10 48,75,95,105,128,140,160,183,197,210 48,73,93,110,132,148,166,185,199,210 45,70,90,108,130,147,169,180,200,236

B 2 60,120 65,119 67,118
4 48,75,104,143 50,80,106,144 57,78,104,142
6 42,69,87,101,131,158 45,70,85,100,129,156 52,68,83,99,127,154
8 44,67,82,100,118,140,163,175 43,66,81,98,117,138,160,186 49,64,79,96,115,136,158,186
10 37,52,70,86,110,139,157,175,215,230 37,50,71,89,111,141,160,171,210,230 46,57,68,82,95,119,149,170,195,230

SI 3 R 2 58,158 60,155 65,152
4 28,62,120,187 28,62,120,185 26,60,119,183
6 17,36,75,117,164,211 24,42,72,115,162,209 25,41,70,113,160,207
8 19,41,55,82,117,150,187,225 19,37,53,80,115,148,185,223 23,35,51,78,113,146,183,221
10 18,31,44,59,74,98,132,154,192,223 20,34,42,57,72,96,130,152,190,221 23,32,40,55,71,94,128,151,188,219

G 2 34,120 35,118 36,116
4 34,72,125,186 32,73,125,185 17,63,123,183
6 38,60,86,123,165,208 32,58,84,121,163,206 29,56,82,119,161,204
8 23,43,55,83,110,146,183,221 35,48,60,81,108,144,181,219 28,46,58,79,106,142,179,217
10 13,37,54,67,80,106,133,161,189,224 15,35,52,65,78,104,131,159,187,222 17,33,50,63,76,102,129,157,185,220

B 2 39,127 40,124 43,122
4 29,67,127,181 32,67,118,177 35,65,116,175
6 40,57,83,116,158,198 34,55,81,114,156,196 30,53,79,112,154,194
8 23,43,63,93,123,155,186,211 25,47,67,91,121,153,184,207 27,45,65,89,119,151,181,205
10 10,30,43,58,80,104,132,159,185,211 12,26,41,56,79,102,130,157,183,209 14,24,39,54,77,100,128,155,181,207

SI 4 R 2 69,155 74,153 78,151
4 49,103,146,185 54,100,144,182 54,98,142,180
6 45,85,121,153,181,205 49,83,119,151,179,203 49,81,117,149,177,201
8 31,63,88,113,137,166,186,205 33,61,86,111,135,164,184,203 36,59,84,109,133,162,182,201
10 25,58,77,98,124,150,167,187,196,213 32,56,75,96,122,148,165,180,194,211 35,54,73,93,120,146,163,178,192,209

G 2 92,160 101,157 105,155
4 78,121,154,185 83,119,151,182 83,117,149,179
6 65,110,134,155,174,192 76,107,131,152,173,190 77,105,129,150,170,187
8 59,92,112,126,138,153,165,187 64,90,113,140,152,173,188,215 68,88,111,137,151,171,186,213
10 46,80,105,124,137,155,168,182,199,223 52,84,103,122,135,153,166,180,197,221 57,82,100,120,133,151,164,178,194,219

B 2 90,144 96,141 98,139
4 70,113,138,162 73,110,136,159 79,108,134,157
6 60,106,127,131,158,185 71,104,125,141,156,183 75,102,123,137,154,180
8 60,95,112,126,138,153,165,187 66,93,109,124,136,151,162,183 68,92,107,122,134,149,160,181
10 58,91,107,120,132,144,153,164,186,211 60,88,105,118,130,142,150,161,184,210 65,86,103,116,128,141,148,159,182,207
role in improvising the quality. Problems in the loss of information are
avoided by using our method. The output segmented images obtained
using DEE-ECSO technique look more like the original images when
the number of thresholds are more, for instance, M = 10. In this
experiment, Otsu’s method using the proposed ECSO proved to be the
second contestant. To justify our claim in a more statistical sense, the
Box plot analysis is provided below.
22
From the box plots, it is seen that the suggested method outperforms
other techniques. The plots are given in Fig. 11. These box plots find
it easy to track the performances of a method. It is also utilized to
compare with other methods. Fig. 11 gives the box plot of the average
PSNR, SSIM and FSIM values for 2D methods. Our method seems to
be the best experimentally. The more PSNR value is seen with the
DEE-ECSO technique. Similarly, the better SSIM and FSIM values are
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Table 10
Optimal threshold values using Otsu’s between class variance method.

Test images Colours Levels Optimization algorithms

ECSO EO CSA

SI 1 R 2 67,182 67,180 74,176
4 45,95,158,221 44,92,153,217 33,90,152,213
6 14,52,96,135,181,225 9,57,96,138,181,225 19,54,93,136,179,221
8 16,43,70,100,137,171,206,237 15,43,70,100,137,171,206,237 21,41,68,98,135,169,204,235
10 18,37,57,79,104,135,164,192,220,242 19,37,57,79,104,135,164,196,220,242 16,35,53,77,102,133,163,194,218,240

G 2 71,179 95,185 107,185
4 55,117,174,225 59,112,170,219 64,110,164,217
6 37,74,111,149,187,232 37,74,111,149,187,232 48,74,107,144,183,223
8 36,67,89,117,150,180,213,238 40,67,89,117,150,180,213,238 42,65,87,115,148,178,211,236
10 33,66,85,105,133,158,183,202,222,239 33,66,85,107,133,158,181,202,221,240 41,64,83,105,131,156,179,199,219,236

B 2 77,182 80,180 83,185
4 39,112,155,215 54,110,154,212 60,95,152,208
6 45,82,118,162,197,232 45,82,118,162,197,232 45,75,118,156,193,229
8 33,57,80,112,144,172,203,236 33,57,80,112,144,172,203,236 35,55,78,110,142,170,201,234
10 24,47,72,98,121,144,168,189,217,239 24,47,72,98,119,143,168,189,213,237 33,47,70,96,117,141,166,187,211,235

SI 2 R 2 83,195 77,172 77,175
4 39,95,148,206 39,95,148,206 40,93,146,204
6 27,67,105,142,179,221 30,64,102,142,179,221 28,62,101,140,177,220
8 17,38,70,98,127,159,192,232 16,38,70,98,127,159,192,232 17,38,68,96,125,157,190,229
10 18,30,62,90,117,142,165,187,213,242 22,30,57,90,115,140,162,184,211,237 22,36,65,91,112,137,159,180,207,232

G 2 69,156 90,157 93,150
4 75,110,144,182 75,110,144,182 77,108,142,180
6 57,86,114,144,171,195 60,86,114,140,168,195 65,84,112,138,166,196
8 51,85,109,128,140,164,185,202 34,85,109,128,140,164,185,202 32,83,107,126,138,162,183,200
10 48,75,99,107,130,142,162,185,199,212 48,75,95,112,134,150,168,187,201,212 47,72,92,110,132,149,171,182,202,238

B 2 60,125 70,121 70,105
4 50,77,106,145 52,82,108,146 56,80,106,144
6 44,71,89,103,133,160 47,72,87,102,131,158 54,70,85,101,129,156
8 46,68,84,102,120,142,165,177 50,68,83,100,119,140,162,188 53,66,81,98,117,138,160,188
10 33,54,74,90,112,141,157,177,217,232 44,52,73,91,113,143,162,173,213,232 48,59,70,84,97,121,151,171,197,232

SI 3 R 2 38.160 62,157 67,155
4 30,64,122,189 28,64,122,187 28,62,121,185
6 18,38,77,119,166,213 26,44,74,117,164,211 27,40,72,115,162,209
8 25,37,53,80,115,148,185,223 21,39,55,82,117,150,187,225 25,37,53,80,115,148,185,223
10 22,34,42,57,73,96,130,153,190,221 22,36,44,59,74,98,132,154,192,223 25,34,42,57,73,96,130,153,190,221

G 2 34.106 37,120 38,118
4 36,74,127,188 34,75,127,187 14,65,125,185
6 38,62,88,125,167,210 34,60,86,123,165,208 31,58,84,121,163,206
8 30,43,60,81,108,144,181,219 37,50,62,83,110,146,183,221 30,48,60,81,108,144,181,219
10 12,35,52,65,78,104,131,159,187,222 17,37,53,67,80,106,133,161,189,224 19,35,52,65,78,104,131,159,187,222

B 2 45.130 40,110 57,125
4 31,81,130,183 40,65,117,177 40,68,120,177
6 40,60,85,118,160,200 36,57,83,116,158,198 32,45,99,114,160,196
8 23,40,67,91,121,153,183,207 32,49,69,93,123,155,186,209 29,47,67,91,121,153,183,207
10 14,26,41,56,79,102,130,157,183,209 14,28,43,58,88,104,132,156,185,211 16,26,41,59,79,102,130,157,183,209

SI 4 R 2 71,157 76,155 80,152
4 51,105,148,187 56,102,146,184 56,100,144,182
6 47,87,123,155,183,207 51,85,121,153,181,205 51,83,119,151,180,203
8 33,65,90,115,139,168,188,207 35,63,88,113,137,166,187,205 38,61,86,111,135,164,185,203
10 27,60,79,100,126,152,169,189,198,215 33,60,77,98,124,150,167,182,196,213 35,56,75,95,122,148,165,180,194,211

G 2 94,162 103,160 107,157
4 80,123,156,187 85,121,153,185 85,120,152,181
6 67,112,136,157,176,194 78,109,133,154,175,192 79,107,131,152,173,189
8 61,94,114,128,140,155,167,189 66,92,115,142,154,175,190,217 70,91,113,139,153,174,188,215
10 48,82,107,126,139,157,170,184,201,225 54,86,105,124,137,155,168,182,199,223 55,84,102,122,135,153,166,175,196,219

B 2 92,143 98,145 102,141
4 72,115,140,158 75,112,138,161 81,112,128,159
6 62,108,129,133,160,187 73,106,127,143,158,185 77,105,126,139,156,159
8 62,97,114,128,140,155,168,189 68,95,111,126,138,153,164,185 70,94,100,124,136,151,162,183
10 60,93,109,122,134,146,155,166,188,213 55,80,110,120,132,144,155,163,186,212 66,87,105,120,130,143,150,161,184,209
observed with the suggested DEE-ECSO scheme. It is observed that for
most of the cases, the proposed method is the best compared to others.
Its inherent mechanism of normalization of the local variance could
be one of the possible reasons. Further, the differential exponential
entropy provides accurate information regarding the partition of the
high density images. Furthermore, the exploring the search space and
exploiting the best solutions are also useful to get the optimal threshold
23
values. The results of the EO are also very competitive. However, the
suggested DEE-ECSO captures the high frequency information from
the images under consideration. Moreover, the in-built mechanisms of
the ECSO out beat other soft computing methods. Most importantly,
the proposed DEE-ECSO method is a powerful method in terms of
retaining most of the information, thereby increasing the quality of
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Table 11
Optimal threshold values using Kapur’s entropy.

Test images Colours Levels Optimization Algorithms

ECSO EO CSA

SI 1 R 2 82,156 82,154 80,148
4 46,117,160,227 50,117,160,221 53,115,156,212
6 43,83,95,145,190,232 43,83,94,153,190,232 40,80,90,150,182,230
8 22,57,77,117,132,183,204,235 22,57,77,117,132,183,204,235 20,55,75,115,130,180,200,230
10 22,50,70,89,115,130,155,181,214,245 24,50,70,89,115,130,155,179,214,245 24,50,70,89,115,130,155,181,216,250

G 2 113,179 113,177 111,170
4 50,109,165,210 61,110,160,205 61,110,140,200
6 24,65,90,150,191,219 24,65,90,150,191,219 21,63,88,153,182,217
8 32,53,97,119,143,178,201,220 32,53,97,119,143,178,201,220 30,50,95,117,140,175,199,217
10 25,55,76,91,117,133,158,187,222,249 26,55,76,94,120,134,158,188,220,249 26,55,76,92,119,131,159,188,205,247

B 2 72,159 72,156 70,152
4 72,113,153,215 77,110,145,210 80,105,135,201
6 39,78,93,140,187,225 43,78,93,140,187,225 41,76,91,149,170,223
8 30,69,88,125,140,177,198,225 30,72,90,127,140,181,198,225 36,70,88,125,138,179,196,220
10 21,57,76,99,118,134,156,195,212,248 23,57,76,99,127,135,156,197,212,248 23,53,71,92,125,133,154,195,210,245

SI 2 R 2 78,171 80,169 70,158
4 41,94,140,193 43,94,140,193 41,91,140,191
6 29,81,111,155,169,224 27,79,108,153,167,222 25,77,106,150,165,220
8 39,62,89,117,145,176,203,254 37,60,87,115,143,174,201,252 35,58,85,113,141,172,199,250
10 18,54,69,94,116,138,163,187,210,233 18,52,67,92,114,136,161,185,208,231 20,50,65,90,112,134,159,183,206,229

G 2 59,143 60,145 62,160
4 39,52,133,251 39,52,133,251 39,47,131,249
6 18,74,89,190,204,223 14,72,87,188,202,221 10,71,85,185,200,219
8 18,34,81,103,114,135,155,253 16,32,79,101,112,132,146,255 14,30,77,99,110,130,144,255
10 41,85,150,163,179,191,214,219,220,239 33,83,148,162,177,189,212,217,218,237 31,77,146,161,175,187,210,215,216,235

B 2 105,190 107,195 103,196
4 90,144,188,230 97,142,188,230 95,140,191,220
6 26,62,125,148,195,242 24,60,123,146,193,240 22,57,121,144,191,239
8 36,69,100,148,164,184,200,230 32,67,100,146,162,182,197,227 30,65,99,144,160,180,195,225
10 27,58,76,102,123,145,170,199,217,227 27,56,74,100,121,143,168,197,215,230 27,54,72,98,119,141,166,193,213,233

SI 3 R 2 117,204 119,202 120,200
4 51,111,162,210 53,109,160,208 55,107,157,206
6 43,79,118,152,187,224 47,73,116,150,185,222 55,79,114,148,183,219
8 34,62,87,114,145,174,203,231 36,60,85,112,143,172,201,229 38,58,83,110,141,170,199,227
10 35,65,88,109,130,154,176,198,220,243 37,63,86,107,128,152,174,196,218,241 40,61,84,105,125,149,172,193,216,239

G 2 118,221 120,219 123,217
4 63,119,167,216 67,117,165,212 69,115,163,210
6 25,65,113,147,184,223 28,71,111,145,182,221 30,71,109,143,180,219
8 25,69,96,121,149,178,204,232 24,67,94,119,147,176,202,230 23,65,92,117,145,174,200,228
10 29,43,74,96,117,137,165,189,221,235 17,41,72,94,115,135,163,187,219,233 20,39,69,92,112,132,161,185,217,231

B 2 96,170 99,167 100,165
4 54,108,159,210 56,106,157,208 58,104,155,205
6 20,88,127,162,195,227 22,92,125,160,193,225 22,89,123,157,191,223
8 26,63,90,115,145,174,205,234 27,61,88,113,143,172,203,232 28,58,86,111,141,170,201,230
10 21,50,80,107,132,155,176,200,223,242 23,58,79,105,130,153,174,197,218,240 26,56,77,103,128,151,172,195,216,237

SI 4 R 2 77,254 75,251 70,250
4 77,106,222,250 79,104,220,246 81,102,218,241
6 33,48,89,104,155,203 36,46,87,102,153,200 35,44,85,100,150,200
8 33,53,58,76,83,99,144,195 34,51,56,74,81,97,142,198 36,49,54,72,79,95,140,200
10 24,51,68,70,75,92,110,136,187,255 23,49,66,68,72,90,108,134,185,248 26,49,64,65,70,87,106,132,190,255

G 2 80,247 77,243 76,240
4 79,112,160,173 80,110,158,169 83,107,156,162
6 75,97,143,152,157,204 79,95,141,150,155,200 79,93,139,147,153,210
8 37,64,89,116,130,154,219,253 38,62,87,114,128,152,217,252 40,60,85,112,126,150,215,253
10 50,74,87,135,148,169,174,186,217,250 49,74,81,135,146,167,172,184,215,250 56,72,79,133,144,165,170,182,212,250

B 2 107,126 105,125 106,121
4 70,119,168,244 73,117,166,240 77,115,163,236
6 20,74,81,89,194,228 22,72,79,87,192,225 20,69,77,85,190,220
8 87,132,200,204,205,219,242,254 88,130,198,202,203,217,240,253 90,128,196,200,201,215,237,254
10 43,74,89,95,109,155,166,198,238,255 42,72,89,97,107,153,164,192,236,250 35,70,87,95,105,152,161,190,234,255
the segmented outputs. From the above analysis, it is seen that Otsu’s
method using the suggested ECSO is the second contestant.

7. Conclusion

In this research, an efficient methodology named DEE is suggested.
A new optimizer called ECSO is also proposed. The ECSO outperforms
24
its predecessor EO while maintaining the same level of complexity. On
well-known 23 benchmark functions, the ECSO’s qualitative and quan-
titative tests are compared to those of other MAs such as: EO and CSA.
The ECSO’s efficacy in obtaining the best or near-optimum solutions
by properly managing the exploration and exploitation capabilities is
demonstrated by the results. In AI field, the ECSO can be used to solve
the optimization problems and find the best solutions. The experiments
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Fig. 11. The Box plots in terms of PSNR, SSIM and FSIM values.
are conducted to determine the efficiency of the DEE-ECSO in mul-
tilevel thresholding, an essential activity of computer visualization, a
subfield of AI, for understanding and interpreting data in the real world.
This multilevel thresholding is created by the maximization of the
newly suggested objective function. The proposed ECSO outperformed
the EO and the CSA. Our method DEE-ECSO outperformed both Otsu’s
and Kapur’s methods. The reason is that our method inherently includes
mechanisms for retaining more edge information, enhanced exploration
of the search space, reduced computation complexity etc. The regions
of interest are found in the first row only.

The future scope of the work is discussed here. The suggested
ECSO may be expanded to handle the multi-objective problems. The
possibility of expanding the ECSO includes a scheme of crossover-
mutation, levels based on chaos, and learning based on opposition
bodes well for the upcoming research. More scope is also there to
25
enhance its capability to achieve the global best solution by incorpo-
rating the chance factor. Our proposal, i.e., the suggested threshold
selection methodology would be useful for different applications like
— brain magnetic resonance image segmentation, breast cancer ther-
mogram image segmentation, and other natural grey-scale or RGB
image segmentations by maximizing the proposed objective function.
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