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Abstract —- This paper addresses multi-objective optimization and the Truss
Optimization Problem employing a novel meta-heuristic that is based on the
real-world water cycle behaviour in rivers, rainfalls, streams, etc. This meta-
heuristic is called Multi-Objective Water Cycle Algorithm (MOWCA) which
is receiving great attention from researchers due to the good performance
in handling optimization problems in different fields. Additionally, the hy-
perbolic spiral movement is integrated into the basic MOWCA to guide the
agents throughout the search space. Consequently, under this hyperbolic spiral
movement, the exploitation ability of the proposed MOSWCA is promoted. To
assess the robustness and coherence of the MOSWCA, the performance of the
proposed MOSWCA is analysed on some multi-objective optimisation bench-
mark functions; and three truss structure optimization problems. The results
obtained by the MOSWCA of all test problems were compared with various
multi-objective meta-heuristic algorithms reported in the literature. From the
empirical results, it is evident that the suggested approach reaches an ex-
cellent performance when solving multi-objective optimization and the Truss
Optimization Problems.
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1 Introduction

Most of the real-world problems in engineering and other research fields are
dynamic optimization problems, which are modeled by a set of nonlinear equa-
tions. To simulate real-world engineering problems, several objectives need to
be investigated simultaneously for obtaining the optimum design. In recent
decades, solving real-world engineering problems via multi-objective optimiza-
tion algorithms has become an attractive research area for many researchers
and scientists [1] [2] [3] [4].

Multi-objective optimization deals with finding solutions for problems with
more than single objective [5] [6]. Those several objectives which are to be
optimized simultaneously. The main challenge in multi-objective optimization
is the proper addressing of multiple objectives, which often have conflicting
nature. Generally, a multi-objective optimization problem can be stated as:

min / max: F (x) = {f1(x), f2(x), . . . , fm(x)}
subject to: gi(x) ≤ 0, i = 1, 2, . . . , k

hi(x) = 0, i = 1, 2, . . . , p
LB ≤ xi ≤ UB, i = 1, 2, . . . , n

(1)

where F is an m-dimensional objective vector; x is an n-dimensional deci-
sion vector; g and h represent the inequality and equality constraints respec-
tively; and [LB, UB] are the boundaries of the ith variable.

In multi-objective optimization problems, since the objectives are usu-
ally conflicting, there does not exist one global solution which optimizes all
the objectives simultaneously. Alternately, there exists a set of tradeoff solu-
tions which is defined as Pareto optimal solutions or non-dominated solutions,
Pareto dominance, and Pareto front [7] [8] [9] [10] [11] . Whereby, the main goal
of the multi-objective optimization is to find as many of non-dominated solu-
tions as possible.Recently, a significant number of multi-objective optimizers
have been developed in the literature trying to solve multi-objective optimiza-
tion problems such as : Nondominated Sorting Genetic Algorithm [12], Non-
dominated Sorting Genetic Algorithm version 2 (NSGA-II ) [13], MultiOb-
jective Particle Swarm Optimization (MOPSO) [14],Pareto archive evolution
strategy (PAES) [15], Multi-objective Harmony Search (MOHS) [16], Multi-
Objective Evolutionary Algorithm based on Decomposition (MOEA/D) [17]
and Multi-objective water cycle algorithm (MOWCA) [18].

Presently, engineering structural optimization has attracted substantial at-
tention [19] [20] [21].Truss design optimization is one of the main problems in
the field of structural engineering [22]. Truss design structures are carried out
in such a way that their topology, sizes and shape are optimized simulta-
neously [23] [24]. Truss optimization is a multi-objective optimization prob-
lem; for which, the main objective function is to minimize the weight of the
structure (mass), subject to some constraints on stresses, frequencies and dis-
placements. Meanwhile, several types of research have considered structural
strength. For which, structural compliance can be used to measure structural
reliability and strength [25] [26] [27].
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In this paper, a multi-objective spiral water cycle algorithm (MOSWCA)
is proposed. For which a hyperbolic spiral movement is integrated into the ba-
sic MOWCA to guide the agents throughout the search space. Consequently,
under this hyperbolic spiral movement, the exploitation ability of the pro-
posed MOSWCA is promoted. To assess the robustness and coherence of
the MOSWCA, the performance of the proposed MOSWCA is investigated
on some multi-objective optimisation benchmark functions; and three truss
structure optimization problems. The results obtained by the MOSWCA of
all test problems were compared with various multi-objective meta-heuristic
algorithms reported in the literature. The rest of the paper is organized as
follows: In section 2, a brief description of the multi-objective water cycle
algorithm (MOWCA) is presented. In section 3, the proposed MOSWCA is
elaborated. In section 4, the efficiency of the proposed MOSWCA algorithm
investigated two well known multi-objective optimisation benchmark. Three
Truss optimization test problems are provided and the comparative study of
MOSWCA against various state-of-the-art optimization algorithms are pre-
sented in section 5 and 6, respectively. Finally, in section 7 the main findings
of this study are discussed.

2 Water Cycle Algorithm

WCA is a meta-heuristic algorithm which is derived by the observation of
the water cycle process in nature and proposed by Eskandar et al [28]. WCA
simulates the flow of streams and rivers, rainfall, confluence, and evaporation.

For which, an initial population of variables is randomly generated by the
rainfall process. Then, the initial population is divided in terms of having the
least cost into three grades; sea (best solution), river (near to the current best)
and stream.

Totalpopulation =



Sea
River 1

...
Stream Nsr+1

...
Stream Npop


(2)

where N and Npop are the number of design variables (problem dimension)
and the total number of the population respectively.

Nsr = NumberOfRivers+ 1 (3)

Nstreams = Npop −Nsr (4)

Nsr represents the total number of sea and rivers; and Nstreams indicates
the number of streams which indirectly or directly flow to sea and rivers.



4 Heba F. Eid et al.

The cost of a raindrop is attain by the evaluation of the cost function

costi = f
(
xi1, x

i
2, . . . , x

i
Nrs

)
i = 1, 2, 3, . . . , Npop (5)

In order to simulate the flow of the streams to the rivers, and the streams
and the rivers to the sea in nature, WCA uses the following position updating
equation:

Xi+1
Stream = Xi

Stream + rand × C ×
(
Xi

River −Xi
Stream

)
(6)

Xi+1
Stream = Xi

Stream + rand×C ×
(
Xi

Sea −Xi
Stream

)
(7)

Xi+1
River = Xi

River + rand×C ×
(
Xi

Sea −Xi
Rirer

)
(8)

where rand is a uniformly distributed random number within the range of
[0, 1] and C is a constant value between 1 and 2.

One of the most important characteristics of the meta-heuristic algorithms
is randomization. In WCA, to increase randomization, the raining and evapo-
ration process are considered.

Raining and evaporation take place when the distance between a river or
any stream and the sea is less than parameter dmax

∣∣Xi
Sea −Xi

River

∣∣ < dmax i = 1, 2, 3, . . . , Nsr − 1 (9)

A large value for dmax reduces the search and leads to focus more on explo-
ration, while for exploitation a small dmax value motivate the search intensity
near the sea. Therefore, to make a proper trade-off between exploitation and
exploration in the WCA, the value of dmax adaptively decreases linearly using
the following equation:

di+1
max = dimax −

dimax

max iteration
(10)

After fulfilling the evaporation condition, the raining procedure is per-
formed. In the raining procedure, the new solutions ( scattered streams) are
generate by the formula:

Xnew
Stream = LB + rand × (UB − LB) (11)

where UB and LB are the upper and lower bounds of the given problem,
respectively.
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3 Proposed Multi-Objective Spiral WCA (MOSWCA)

For handling multi-objective optimization problems, the WCA is equipped
with multi-objective operators; such as archiving the mechanism based on
non-dominated sorting and crowing distance operator [29]. Developing an ef-
ficient archive is a vital step for MOSWOA. Hence, it affects the convergence
capability of MOSWOA and maintains a good spread of non-dominated so-
lutions. Therefore, over the course of iterations, the crowding-distance for all
non-dominated solutions are calculated; and archive of non-dominated solu-
tions with higher crowding-distance values are preserved. Afterwards, the pre-
served values which considered to be good representatives of the entire Pareto
front sets are designated as the sea and rivers. The archive is updated at each
iteration, and any dominated solutions are eliminated from the archive. More-
over, the number of non-dominated solutions may be overloaded; therefore,
the crowding distance operator is applied again to eliminate the overload non-
dominated solutions having the lowest crowding distance values among the
Pareto archive members.

One of the main operators of the MOSWCA is the position updating pro-
cess. The proposed MOSWCA aims to employ a hyperbolic spiral to simulate
the flow of the streams to the rivers, and the streams and the rivers to the
sea. The hyperbolic spiral interpreted as polar coordinates by: r = a/θ, θ 6= 0,
where, r is the radius and θ is the azimuthal angle in a polar coordinate sys-
tem, while, a is a real number constant. Figure 1 illustrates the hyperbolic
spiral, whereby, as θ increases, the spiral winds around the origin moves closer
to it. Subsequently, the hyperbolic spiral updating procedure of the proposed
MOSWCA allows the streams and rivers to update their position anywhere
around the sea; which, increases the exploitation ability of the MOSWCA. The
hyperbolic spiral updating position of the proposed MOSWCA is given by the
following equations:

Xi+1
Stream = Xi

Stream + |Xi
River −Xi

Stream | ·
cos(2πl)

1
(12)

Xi+1
Stream = Xi

Stream + |Xi
Sea −Xi

Stream| ·
cos(2πl)

1
(13)

Xi+1
River = Xi

River + |Xi
Sea −Xi

Rirer| ·
cos(2πl)

1
(14)

The parameter l is a random uniform number in the range [ -1, 1], where,
the values of parameter l are reduced over the course of iterations.

l = (a− 1)× rand +1 (15)

a = −1−
(

t

max iteration

)
(16)
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Fig. 1 The hyperbolic spiral

The pseudo code of the proposed MOSWCA algorithm is presented in Al-
gorithm 1

4 Empirical Evaluation

With the aim of investigating the performance and capabilities of the proposed
MOSWCA algorithms; Matlab R2015b was used for implementation purposes.
All of the experiments were carried out on Intel(R), Core i7- 4910MQ CPU
2.90GHz and 16GB RAM.

4.1 MOSWCA statistical analysis

In order to assess the performance of the proposed MOSWCA, variety multi-
objective test problems from the Zitzler-Deb-Thiele (ZDT) [30] and Deb,
Thiele, Laumanns and Zitzler (DTLZ) [29] benchmark are solved within vari-
ous runs.

ZDT benchmark considers problems with bi-objective, which is the most
common usage of Pareto optimization, especially in real engineering applica-
tions. Its main focus is on the convergence of the obtained solutions towards
the Pareto front. Whereby, the characteristics of ZDT problems are : “ZDT1
is convex, ZDT3 is nonconvex and disconnected, ZDT4 is convex and multi-
modal, and ZDT6 is nonconvex and non-uniform distribution”.

While the DTLZ benchmark is scalable for any number of objectives. Scal-
ability is a desirable property which makes DTLZ test functions suitable for
testing the optimization capability of the proposed MOSWCA. For all DTLZ
problems, the Pareto front is located in the first orthant of the objective space
and its shape is either a curve, a sphere, or a simplex. For this work, two cases
are considered for DTLZ problems, bi-objective and tri-objective functions.
While, the characteristics of DTLZ problems are : “DTLZ1 is convex, DTLZ4
is nonconvex, and DTLZ7 is disconnected”.
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Algorithm 1 Pseudocode of MOSWCA Algorithm
Input:
Population total number Npop

total number of sea and rivers Nsr

Number of optimization iterations Max Iter, archive size M and dmax

Output:
MOSWCA Pareto front

1: Initialize the MOSWCA population positions randomly.
2: for i=1:Npop do
3: Create streams Xstream

4: Calculate multi-objective costs f(Xstream)
5: end for
6: Find the non-dominated solutions among the feasible solutions and initialized the Pareto

archive A with them
7: Calculate the crowding-distance for each member ∈ A
8: sort A members
9: Sea ← A(firstmember)Rivers← A(Nsr - 1 members)

10:11: Stream ← A(Npop - Nsr members)
12: while t ≤Max Iter do
13: for i=1:Npop do
14: Update the position of Xstream using eq. 12 and 13
15: Calculate generated stream multi-objective costs f(Xstream)
16: if f(Xstream) < f(Xriver) then
17: River.position= new stream.position
18: if f(Xstream) < f(Xsea) then
19: Sea.position= new stream.position
20: end if
21: end if
22: end for
23: for i=1:Nsr − 1 do
24: Update the position of Xriver using eq. 14
25: Calculate generated river multi-objective cost f(Xriver)
26: if f(Xriver) < f(Xsea) then
27: Sea.position= River.position
28: end if
29: end for
30: for i=1:Nsr − 1 do
31: if |River − Sea| < dmax or rand < 0.1 then
32: Generate new Xstream using eq. 11
33: end if
34: end for
35: Decrease dmax using eq. 10
36: Find the new non-dominated solutions among the feasible solutions
37: Update A with respect to the obtained non-dominated solutions
38: if A > M then
39: Calculate the crowding-distance value for A members
40: Maintain A with M lowest crowding-distance value
41: else
42: Calculate the crowding-distance value for A members and select new Sea and

Rivers
43: end if
44: t=t+1
45: end while
46: return Xsea
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For comparing the MOWCA and MOSWCA algorithms two performance
criteria are considered: Generational Distance (GD) [31] and Inverted Gener-
ational Distance (IGD) [32] [33]. GD is a quantifying measure of convergence
between the optimal Pareto front and obtained Pareto front. The mathemat-
ical representation of the GD performance metric is as follows:

GD =

√∑n
i=1 d

2
i

n
(17)

Where, n is the number of obtained Pareto front and di indicates the
Euclidean distance between the ith obtained optimal Pareto front and the
nearest true optimal Pareto front in the reference set.

IGD measures the approximate distance from the Pareto front to the so-
lution set in the objective space. IGD don’t miss any part of the true Pareto
set on comparison, the mathematical formula of IGD is given by:

IGD =

√∑n′

i=1 (d′i)
2

n′
(18)

Where, n′ is the number of true optimal Pareto solutions and d′ represented
the Euclidean distance between the ith true optimal Pareto solution and the
nearest obtained optimal Pareto solution in the reference set.

The internal parameters of the MOWCA and MOSWCA are chosen as:
population size (Npop) was 50 and the total number of iterations (max it)
was 100, Nsr = 4 and dmax = 1.0E-16 on all of the simulations, while the
size of Pareto archive (number of nondominated solutions) is set to be equal
to Npop. To make an unbiased comparison, the results are obtained over 30
independent runs on each test function; with entirely random initial conditions.
Table 1 shows the statistical optimization results of MOWCA against proposed
MOSWCA based on GD measures including the best solution (Min), average
solution (Av.), worst solution (Max), and standard deviation (std).

From the results in Table 1, the proposed MOSWCA outperformed the
MOWCA algorithm by having the smallest value of GD in term of ”min, max
and av.” results for the test functions. Moreover, the proposed MOSWCA
was able to find the Pareto optimal with less std. than MOWCA for all test
functions, which indicates the robustness of MOSWCA.

To further verify the proposed MOSWCA, more comparisons have been
carried out using NSGA-II, [13], MOEA/D [17], Multi-Objective Multi-Verse
Optimizer (MOMVO) [34], MultiObjective Particle Swarm Optimization (MOPSO)
[14] and Multi-objective Whale Optimization Algorithm (MOWOA) [35]. The
obtained optimization GD and IGD results are given in table 2 and table3,
respectively. The best attained statistical results (average and standard devi-
ation) are highlighted in bold. Looking at Table 2, the proposed MOSWCA
surpassed the other compared algorithm for seven test functions in term of
GD measure. While, compared to the MOMVO algorithm, MOSWCA ob-
tained the second best results for test functions ZDT1 and DTLZ 2. Moreover,
from the results reported in table3; the MOSWCA is clearly superior to all
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compared optimizers on all multi-objective problems in term of IGD measure;
except for DTLZ 4 problem; where it shows the second best after MOMVO.
Consequently, the results shown in table 2 and 3 validate that the proposed
MOSWCA is an effective algorithm for solving challenging multi-objective
problems.

Table 1 GD Statistical results of MOWCA and MOSWCA algorithm

Problem MOWCA MOSWCA

Av. Min Max Std Av. Min Max Std

M=2

ZDT1 4.13e-3 2.68e-3 5.69e-3 7.91e-4 3.3928e-3 1.1277e-3 3.9476e-3 3.9746e-4

ZDT3 1.30e-3 7.39e-4 1.81e-3 3.43e-4 1.0027e-3 1.4297e-4 1.1303e-3 2.8496e-4

ZDT4 2.19e-3 1.12e-3 5.23e-3 1.32e-4 1.8923e-3 1.0123e-3 4.621e-3 1.317e-5

ZDT6 1.03e-2 3.23e-4 0.018 1.01e-2 1.0136e-4 7.1478e-5 2.3941e-3 8.9343e-3

DTLZ 2 1.78e-4 1.65e-4 1.87e-4 6.70e-6 1.6558e-4 1.0251e-4 1.8917e-4 7.0951e-7

DTLZ 4 2.06e-4 1.76e-4 2.57e-4 2.56e-5 1.6378e-4 1.1558e-4 4.0566e-4 1.6708e-6

DTLZ 7 2.65e-5 1.27e-5 4.99e-5 1.62e-5 2.4445e-5 1.2705e-5 5.8618e-5 1.7838e-9

M=3

DTLZ 2 1.93e-3 1.39e-3 2.25e-3 2.87e-4 7.2617e-4 4.0393e-4 6.4955e-3 2.3188e-4

DTLZ 4 1.79e-3 4.69e-4 3.66e-3 9.57e-4 1.205e-3 1.0594e-3 3.6524e-3 1.3323e-4

DTLZ 7 2.65e-3 3.31e-4 1.81e-2 5.47e-3 1.3801e-3 4.7418e-4 1.8618e-2 4.2705e-4

Table 2 GD Comparison results obtained for MOSWCA and different multi-objective op-
timization algorithms

Problem MOSWCA NSGA-II MOEA/D MOMVO MOPSO

Av. std Av. Std Av. Std Av. Std Av. Std

M=2

ZDT1 3.3928e-3 3.9746e-4 0.503569 0.052127 0.00413 0.00008 1.73e-3 0.00005 0.756200 0.145703

ZDT3 1.0027e-3 2.8496e-4 0.502427 0.047587 0.005129 0.00011 5.076e-3 0.00009 0.794325 0.070546

ZDT4 1.8923e-3 1.317e-5 0.485384 0.052186 0.003971 0.00009 2.463e-3 0.00006 1.081437 0.195925

ZDT6 1.0136e-4 8.9343e-3 2.151897 2.285011 0.003322 0.00024 6.52e-4 0.00002 3.707637 0.849501

DTLZ 2 1.6558e-4 7.0951e-7 0.006888 0.000576 0.00035 2.8e-11 2.6 e-4 4.8e-13 8.7 e-3 0.0037

DTLZ 4 1.6378e-4 1.6708e-6 0.0435 2.53e-04 0.0258 6.66e-4 0.0019 4.32e-5 0.0053 0.0042

DTLZ 7 2.4445e-5 1.7838e-9 0.008157 0.000749 N/A N/A 7.98 e-3 5.34e-8 N/A N/A

M=3

DTLZ 2 7.2617e-4 2.3188e-4 0.056743 0.006245 0.00096 8.7e-11 5.6 e-4 4.6e-12 N/A N/A

DTLZ 4 1.205e-3 1.3323e-4 0.029916 0.027569 0.0457 1.06e-3 1.85e-2 2.14e-4 N/A N/A

DTLZ 7 1.3801e-3 4.2705e-4 0.059228 0.021574 N/A N/A 1.8e-03 8.17e-5 N/A N/A
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Table 3 IGD Comparison results obtained for MOSWCA and different multi-objective
optimization algorithms

Problem MOSWCA NSGA-II MOEA/D MOWOA MOMVO

Av. std Av. Std Av. Std Av. Std Av. Std

M=2

ZDT1 4.871e-4 8.6233e-4 4.8419e-3 1.73e-4 3.9754e-3 1.34e-5 5.2523e-3 3.58e-4 5.04e-4 6.0e-5

ZDT3 1.1329e-3 1.3194e-5 0.15447 9.07e-2 0.22553 8.04e-2 5.9617e-3 2.62e-4 9.057e-3 6.0e-5

ZDT4 5.3125e-4 7.317e-3 0.23946 0.185 0.48762 0.226 4.6998e-3 2.06e-4 4.13e-4 4.0e-5

ZDT6 3.7691e-5 0.0080768 9.4342e-2 5.07e-2 8.4125e-2 4.60e-2 4.3985e-3 3.32e-4 4.05e-4 4.0e-5

DTLZ 2 4.0977e-5 0.00028952 1.8e-04 6.7e-11 1.7e-04 1.3e-15 N/A N/A 1.5e-4 2.2e-16

DTLZ 4 1.1373e-4 0.0020657 0.02000 1.41e-4 0.03373 1.57e-4 N/A N/A 1.8e-4 2.50e-05

M=3

DTLZ 2 2.0771e-4 0.0015103 6.8912e-2 2.87e-3 5.4861e-2 1.68e-4 7.4635e-2 3.73e-3 7.5e-4 3.4e-12

DTLZ 4 3.7107e-4 0.0011265 1.1785e-1 1.34e-1 4.7370e-1 3.41e-1 7.0870e-2 2.33e-3 1.9e-4 3.77e-06

DTLZ 7 1.031e-3 1.0572e-4 1.0219e-1 4.94e-2 1.7481e-1 1.21e-1 8.2654e-2 5.57e-3 1.1e-3 1.8e-4

5 Truss optimization test problems

The performance of the proposed MOSWCA is examined by the various bench-
mark of truss structure problems. Three truss structure problems were used,
the problems are named according to the numbers of ground elements of the
trusses as 10-bar, 25-bar and 200-bar problems. The 10-bar and 25-bar, being
of a small scale to discuss the accuracy of the obtained optimal solutions; while
the 200-bar, a larger structure, is used to demonstrate the proposed algorithm
efficiency.

The bi-objective problem for trusses optimization is design as follow:

min: {f1(x), f2(x)}
subject to |σmax| ≤ σallow

umax ≤ uallow
(19)

Where f1(x) is structural mass function of the truss, f2(x) is structural
compliance function, σmax and σ allow are the maximum stress and allow-
able stress respectively. While umax and u allow are the maximum nodal and
allowable nodal displacement of the truss structure due to applied forces re-
spectively.

5.1 Two-dimensions 10 bar Truss problem

The 2-D 10-bar truss structure is shown in Figure 2. The mechanical properties
of the 10-bar is given by: “the modulus of elasticity E = 68.95GPa, the density
material ρ = 2, 768kg/m3 and the allowable stresses σ = 172MPa. While the
lower and upper bounds for all cross-sectional areas are 0.65 and 225.75 cm2
respectively”.
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Fig. 2 2-D 10-bar Truss structure

5.2 Three-dimensions 25 bar Truss problem

The 3-D 25-bar truss structure is illustrated in Figure 3. The structure material
properties are: “E = 68.95GPa and ρ = 2.768kg/m3. Meanwhile, the Cross-
sectional areas of members are to be adopted among the range from 6.5e5m2

to 2.26e2m2 and the allowable stress σ = 275.8MPa”.

5.3 Two-dimensions 200 bar Truss problem

The 2-D 200-bar truss structure is shown in Figure 4. The 200-bar truss con-
tains 77 nodes. The 200-bar material parameters are as follow: “material den-
sity and modulus of elasticity are ρ = 7, 833kg/m3 and E = 206.9GPa, re-
spectively. The lower bound of cross-sectional areas is 0.645cm2 and the upper
bound is 132.73cm2. While stress limitations of 68.95 MPa are adopted for the
truss structure members.

6 Results and Discussion

In this section, 30 independent runs of the 10-bar, 25-bar and 200-bar truss
bi-objective optimization problems were performed. MOSWCA algorithm pa-
rameters values for solving the truss optimization problems were kept the
same as follows: Npop=50, Nsr=4 , dmax = 1e-16, the maximum number of
iterations= 100 and archive size = Npop.

The performance assessment of the results obtained by the proposed MOSWCA
are carried out by using the hypervolume indicator (HV). The HV is able
to measures both front advancement and extension simultaneously; whereas
the higher value of HV indicates the better Pareto front. Moreover, the non-
dominated fronts obtained from the proposed MOSWCA are compared to
various established and recent optimizers including non dominated sorting ge-
netic algorithm II (NSGA-II) [13], Multi-Objective Evolutionary Algorithm
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Fig. 3 3-D 25-bar Truss structure

based on Decomposition (MOEA/D) [17], Multi-Objective Dragonfly Algo-
rithm (MODA) [36] and MOWCA. The initial parameters of NSGA-II, MOEA/D
and MODA are identical to the values reported in their original papers cited
above.

The comparative HV results, mean and standard deviation, are reported
in Table 4. Based on table 4, for the 10-bar truss problem, the proposed
MOSWCA provides the highest mean hypervolume, which indicates that MOSWCA
obtains a Pareto front with better front extension. The second best algorithm
is NSGA-II, while the worst is MOWCA. Moreover, MOSWCA obtained the
less standard deviation value; which indicates the algorithm consistency. Like-
wise, for 25-bar truss problem, the proposed MOSWCA gives the best mean
value, while the second-best still is NSGA-II and the worst is MOWCA. In
addition, proposed MOSWCA is the most consistent algorithm based on its
standard deviation value. For the 200-bar truss problem, the best algorithm
is the proposed MOSWCA and the second best is MOWCA according to the
mean HV, whereas the worst is MODA. Nevertheless, MOEA/D obtains the
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Fig. 4 2-D 200-bar Truss structure

best standard deviation value, while MOSWCA obtains the third best. The
Pareto fronts comparison of the best runs provided by the five optimizers for
10-bar, 25-bar and 200-bar truss problems are shown in Fig 5-7. From the
figures, it is clear that the proposed MOSWCA dominates other algorithms.

7 Conclusion

This article has employed a recent meta-heuristic called Multi-Objective Wa-
ter Cycle Algorithm (MOWCA) for addressing multi-objective optimization
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Table 4 Hypervolume Statistical results of the truss optimization problems

Algorithm 10-bar 25-bar 200-bar

NSGA-II mean 5.1556e8 2.6201e8 1.1545e10

Std 1.9359e7 3.3619e7 1.4968e8

MOEA/D mean 3.5143e8 2.0815e8 5.8565e9

Std 2.2596e7 2.9949e6 5.4340e7

MODA mean 3.5202e8 2.2629e8 3.5795e9

Std 1.0239e7 5.1117e6 1.0423e8

MOWCA mean 2.3588e8 1.7289e8 1.1978e10

Std 3.3475e7 2.4759e7 3.0614e8

MOSWCA mean 5.4766e8 3.3225e8 2.0706e10

Std 2.8862e6 7.6102e5 1.2700e8

Fig. 5 10-bar space truss Pareto front

and the Truss Optimization Problem. This meta-heuristic simulates the real-
world behaviour of the water cycle process in rivers, rainfalls, streams, etc.
Besides, the hyperbolic spiral movement is integrated into the basic MOWCA
to guide the agents throughout the search space. Consequently, under this hy-
perbolic spiral movement, the exploitation ability of the proposed MOSWCA
is promoted. To assess the robustness and coherence of the MOSWCA, the
performance of the proposed MOSWCA has been analysed on some multi-
objective optimization benchmark functions; and three truss structure opti-
mization problems. The results obtained by the MOSWCA of all test problems
were compared with alternative multi-objective meta-heuristic algorithms re-
ported in the literature. From the results and comparison it is evident that
the suggested approach reaches an excellent performance when solving multi-
objective optimization and the Truss Optimization Problem. As future work,
an enhanced version of the MOWCA can be applied and studied to multi-
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Fig. 6 25-bar space truss Pareto front

Fig. 7 200-bar space truss Pareto front

objective optimization and the Truss Optimization Problem by combining
MOWCA with an additional optimization method.
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