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Abstract

The development of a Time series Forecasting System is a major concern for Artificial Intelligence researchers. Commonly,
existing systems only assess temporal features and analyze the behavior of the data over time, thus, resulting in uncertain
forecasting accuracy. Although many forecasting systems were proposed in the literature; they have not yet answered the
attending question. Hence, to overcome this problematic, we propose an innovative method called Taylor-based Optimized
Recursive Extended Exponential Smoothed Neural Networks Forecasting method, abbreviated as TOREESNN. Briefly ex-
plained, the proposed technique introduces three ideas to solve this issue: First, building an innovative framework for forecasting
univariate time series based on Exponential Smoothed theory. Second, designing an Elman Classifier model for uncertainty
prediction in order to correct the forecasted values. And finally hybrading the two recurrent systems in one framework to obtain
the final results. Experimental results demonstrate that the proposed method has a high accuracy both in training and testing data
in terms of Mean Squared Error (MSE) and outperforms the state-of-the-art Recurrent Neural Networks models on Mackey-
Glass, Nonlinear Auto-Regressive Moving Average time series (NARMA), Lorenz, and Henon map datasets.
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1 Introduction

Currently, data are increasingly growing. Hence, data
computation becomes a major challenge. Companies
dealing with Big Data need a sophisticated decision
assistance in order to optimize the planning of these
tasks and tools which encounter several problems to
achieve their goals. First, the heterogeneity of the data
induces the complexity of forecasting future values.
Second, the diversity of the methods involved in the
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computation (i.e., in addition to the several inherent
constraints) increases this complexity.

Forecasting is an important data analysis field that aims to
examine historical data in order to extend and predict its future
values. Thus, forecasting activities play an important role in
our daily life and involve various fields; for this reason, many
researches aim to develop tools for forecasting and decision
making. We often forecast weather ([1]), wind speed [2], stock
market [3], electricity [4, 5, 6], travel demand [7], traffic speed
[8], etc.
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Meanwhile, forecasting literature contains a wide diversity
of techniques that can be classified into two main families

[5]:

1. Qualitative methods [9] where judgmental forecasts are
principally based on experts’ opinions. Furthermore, these
techniques are especially used when sufficient informa-
tion and data are not available. Hence, when the case
study is vague and short of data, quantitative methods
cannot be used. However, in case of the appearance of a
new product or a new event, this type of forecasting
techniques seems very adequate. The most known
qualitative methods are: Consumer Survey [10],
Consumer Survey-Sample Survey Method [10], Delphi
Method [11, 12] and Past Analogies [13]. However, in
spite of their robustness, these methods display some dis-
advantages. As they are totally based on the intuitions of
experts, these techniques are not only expensive but also
not adequate for most cases especially in big data case;
i.e., human capability is not able to predict future values
from a wide range of observations. For these reasons and
others, another type of forecasting techniques appears. It
is totally based on mathematical fundamentals which are
later called quantitative methods.

2. Quantitative methods (also called statistical methods) [14]
do not relate to experts’ intuitions but they mostly rely on
quantitative historical data that can be extrapolated to
make our forecasts. This type of technique is used when
the case study is stable and historical data exist. The most
known statistical techniques are: Naive method [15],
Moving Average (MA) [16], Weighted Moving Average
(WMA) [16], Exponential Smoothing (ES) [17] and
Linear Regression Method [18]. These techniques are
commonly used when they handle products or phenome-
na that already exist and when the historical data are ob-
viously available for study.

Compared to qualitative methods, these techniques are
less expensive and faster. Yet, their effectiveness is limited
to some applications as they are still inappropriate when
observations are very different and chaotic i.e, non linear
and unorganized. This point motivated researchers to go
even further and to move toward Artificial Intelligence as
a prediction tool.

Recently, different methods have been presented to the task
of forecasting as intelligent techniques; Artificial Intelligence
(AI) based systems are conceived to take advantage of the two
traditional forecasting approaches: quantitative and qualita-
tive. In fact, Neural Networks (NN) are the most-used tech-
niques as they are nonparametric and nonlinear methods [19].
NNs are able to model and to map complex problems by
training them in order to determine parameters and explore
relationships between data [20]. Accordingly, NNs have
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been considered as a promising and useful method applied
to a variety of forecasting problems.

From an architectural point of view, there are various types
of neural networks that share the same basic concept. Each
problem needs to be molded by admitting its own neural
network architecture and network configuration since there
is no single learning model that can be suitably used for all
fields. However, in NN, we distinguish two main categories:
(i) Multi-Layer perceptron (MLP) which is the most popular
method applied in time series forecasting task, and (ii)
Recurrent NN (RNN) [21] where its context-layer serves to
store previous states within a dynamic memory. Authors in
[20] believe that the importance of this supplementary layer
lies in its ability to better underline the relationships between
past observations and future values, and therefore an enhanced
generalization is achieved.

A brief comparison of these techniques is summarized and
presented in Table 1.

Although the forecasting methods proved to be successful
and diverse, there are neither guarantees nor expectations that
the predictive models would be

optimal or perfect. In fact, the residual error, which is the
result of an unpredictable variability in the time series data,
should be as small as possible. However, this error cannot be
predicted in such optimal case. This fact is the core of this
paper, the residual error should be monitored in a time series
to enhance the exactitude of the initial pattern. The research’s
ultimate intent is the use of RNNs variant to forecast time
series data. Therefore, this variant reaches an approximate
disposition with an estimable residual error. Thus, a
corrected current predictive model can be achieved.

Yet, to build the recurrent architecture, we drew inspi-
ration from the Expo-nential Smoothed method (ES) [17].
Thereby, Recursive Extended Exponential Smoothed
Neural Networks (REESNN) represents the first part of
our proposed method conception. The primary objective
of this work is an assessment of this method as a tool of
forecasting. Furthermore, the second part of our approach
consists in optimizing the results already obtained in the
first step. The task of optimization is performed by
predicting the estimated error to be then tailored with
forecasting results by applying Taylor expansion
principle. This paper is organized as follows: In
Section 2, we start by a review in which we will discuss
recent researches using Recurrent Neural network
architectures. Then, Section 3 gives an extensive
description of the propounded approach based on Taylor
theorem to optimize forecasting future values. Then, we
will illustrate the robustness of our approach by giving an
exhaustive experimental result on four different datasets:
Mackey-Glass times series, NARMA, Lorenz and Henon-
Attractor in Section 4. Finally, Section 5 presents the con-
clusion of the paper.
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Table 1 Forecasting Techniques

Comparison Family of the technique

Description (main concept and advantages)

Qualitative methods [9-12, 13]

Quantitative methods [14, 17, 15, 16, 18]

Intelligent methods [19]

- Depend on experience of individual experts.

- Suitable for new phenomena, products, events and
data shortage.

- Not able to model complex data especially in case of big data.
- Rely on mathematical formula

- Suitable when historical data exist.

- Not able to model complex data.

- Rely on intelligent theories.

- Suitable for complex and chaotic data.

- Capability to map the relationship between data.

2 Related works

At the present time, significant feature related to RNN is the
subject of numerous forecast researches. The literature is vast
and growing and it is difficult for a researcher to cover all
works contributing to forecasting literature done until now. In
this section, we will present some works done over the last five
years that have applied RNN as a forecasting technique. Hence,
different architectures of RNN have been studied. However it
seems that the most influential models are the Elman RNN
(ERNN) [21] and Jordan RNN (JRNN) [22] as they are the most
used models. This section is divided into three parts: In the first
part, we will explain the fundamental principle of ERNN and
present some works contributing with ERNN architecture. In the
second part, we will briefly describe the architecture of Jordan
RNN and introduce a brief survey of research activities contrib-
uting to forecasting literature using Jordan RNN over the last 5
years. Lastly, we will list different works that have been
presented to the literature with other variants of RNN such as
LSTM, BLSTM, GRU, etc..

2.1 Elman recurrent neural networks

The simplest and the most known Recurrent Neural Network
is ERNN architecture [21]. ERNN is a three layered design
expanded by a context-layer which receives inputs from the
hidden units (see Fig. 1). The role of this supplementary layer
is to store previous states of the hidden neurons within a
dynamic memory.

ERNN is the most popular and widely-used technique on
Artificial Intelligence applications. Nevertheless, many
researchers use ERNN as a forecasting tool. Among them,
authors in [23] proposed a new hybrid approach based on
ERNN and Empirical Mode Decomposition EMD as a
forecasting technique. Compared to different state-of-the-art
methods such as single ERNN and ARIMA. Experiment re-
sults show that the proposed technique gives better
performance.

In [24], two different architectures of NN were applied as
predictor methods to forecast the flood water level earlier so
that precaution steps can be taken. To do so, ERNN and
NARX were compared to specify which technique gives
more accurate results. Both architectures were fed with the
same recorded water level. Based on Experiment results,
ERNN accuracy is better than NARX’s not only during the
training step but also during the testing one. Yet, the work of
[25] consists in predicting electricity consumption. The main
purpose is to allocate suitable power resources and to help
electric power companies to present reasonable sales plans.
Elman recurrent neural network is applied in this work by
using extra inputs which affect the electricity consumption
such as gross domestic product, temperature, and Spring
Festival. By comparing the results with and without
considering effect factors, it can be shown that the proposed
architecture with the extra inputs is more accurate than the
simple ERNN.

Another application of Elman recurrent neural network
contributing to the literature of forecasting was applied by
[26]. The proposed technique aimed to forecast load.
Authors used Elman architecture taking consideration of
some related factors which enhance the performance of
the model.

In the same context, researchers in [27] designed an archi-
tecture that merged two Elman NN structures to forecast wind
power. The architecture was designed as follows: The first
Elman NN part was realized to predict wind power compo-
nent. Then, a second part was designed to forecast the guid-
ance of wind direction. As a final step, the fusion of the two
parts gave accurate results about wind power.

In [28], Elman RNN was also applied to forecast the
Photovoltaic power. The gradient descent back propagation
algorithm was used during the learning phase in order to set
the parameters and build the optimized architecture. To prove
the efficiency of the system, three tests have been carried out
and evaluated through Mean Absolute Error and Root Mean
Square Error.
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Fig. 1 The architecture of Elman 2 (hi ddan layer)
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Elman RNN was also explored in reference [29] where re-
searchers proposed a new approach based on a Modified version
of ERNN Optimized through the Genetic algorithm to predict
short-term traffic. 14 forecasting techniques were compared to
the proposed approach within the experimental section, and em-
pirical results showed the outperformance of the presented work.

However, based on the Jordan recurrent neural network
architecture, many other papers contribute to the literature.
In the following sections, we will shed light on the Jordan
RNN model and its variants.

2.2 Jordan recurrent neural networks
The major difference between Jordan RNN’s architecture and

those of other RNNS is that the context-layer is designed as a
copy of the output-layer as shown in Fig. 2.

The Jordan RNN [22] models are used in diverse prediction
tasks especially in time series forecasting problems since they
display inherent competence to map input-output problems.

In [30], the proposed technique aimed to forecast Stock
Market Price. To enhance the performance of the model, an
unsupervised method was used in the first step to reduce in-
puts dimension. As a second step, JRNN was used to predict
the closing price of a given day based on the information of
the day before. Empirical results illustrated the efficiency
of the proposed technique; Evaluation was made on the
basis of two metrics: MSE and mean absolute percentage
error.

In [31], researchers proposed to combine two methods in
one architecture to predict the plant output. Their system is
composed of Balanced Truncation (BT) cascaded with Jordan
network. A comparative study was then performed to different

(hidden layer)

y(®
—>

(output layer)

Fig. 2 The architecture of Jordan —
RNN model
Real
inputs
Context -
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Model Order Reduction (MOR) and showed that the proposed
system was remarkably more accurate.

Besides the above mentioned works, reference [32] extended
the application of JRNN to inflation forecasting. Authors first
defined which variables influenced most inflation forecast, then
built the optimal JRNN model after testing several parameters.
Hence, authors manipulated over 250 JRNNs architectures,
which varied in selected input and model’s parameters. The
optimal JRNN structure was the one that led to a low error
during both the learning and the testing phases, and also used a
low number of parameters to approximate them.

More recently, researchers in [33] have implemented the
JRNN structure combined with Generalized Space Time
Autoregressive with Exogenous Variable (later called
GSTARX) to forecast Space-Time Data influenced by
Calendar Variation Effect. Experimental results showed that
hybrid models are more accurate than individual techniques.

2.3 Other variants of recurrent neural networks

Although our focus is on Elman and Jordan RNN as they
represent an important part of our methodology, it should be
mentioned that Long-Short Term Memory Network abbrevi-
ated as LSTM, as well as its derivatives also lead to good
results in prediction tasks.

However, predicting Stock market is considered as one of
the most challenging issues to resolve. In this context, authors
in [34] present to the literature an evaluation of Bi-LSTM for
stock market forecasting. They compare different variants of
LSTM to each others: Unidirectional, bidirectional, shallow
neural network and stacked LSTM. Experiment results
showed that BLSTM and SLSTM perform better than other
compared techniques.

Another work was presented to the literature using LSTM
[35], where authors applied Deep LSTM to forecast petroleum
production. The suggested architecture is optimally config-
ured through the use of the genetic algorithm. Yet, [36] sug-
gest using an LSTM methodology in order to forecast real
time data. The proposed architecture is an LSTM-based re-
gression structure extended by an additional gate to predict
real time series data.

More recently in 2021, authors in [37] proposed a novel
deep learning framework based on the hybridization of two
techniques: autoencoders (AE) and LSTM network. The pre-
sented method is designed to forecast non linear system and
time series with high accuracy. To validate their work, four
real-world datasets were applied and tested: Santa Fe dataset,
Australian energy market operator dataset, Oilfield production
dataset and Gas furnace dataset. Compared to other
forecasting methods, the suggested technique performs
better in terms of Root Mean Squared Error (RMSE) value.

LSTM is also explored in the work of Chiu et al. [38] where
authors presented a novel CNN-LSTM architecture to forecast

estate price. During the process of analyzing data, the CNN-
LSTM work has taken into consideration the spatiotemporal
data structure and extracted the most important features
influencing the estate price. Real estate data from Taiwan were
used to verify the effectiveness of the proposed model.

Lately, another variant of RNN named Gated Recurrent
Units (GRU) has increased its popularity on time series appli-
cations. Researchers in [39] empower the usefulness of these
different variants of RNN by applying them on Turkish elec-
tricity load prediction. The comparison between obtained re-
sults and those obtained by existing researches based on Auto
Regressive integrated moving average (ARIMA) and other
Artificial Neural Networks (ANN) architectures prove the ef-
ficiency of RNN as well as its derivatives.

Another work added to the literature [40] is applied to
Agriculture as it is considered as one of the highest energy
consuming sector. RNN, LSTM and GRU are used to predict
hourly short term Agriculture load. Empirical results show
that these techniques are more feasible than Moving
Average model, Auto Regressive model and ARIMA.

To conclude this section, a brief recapitulation of these
contributing papers is summarized and presented in Table 2.

Nevertheless, thanks to their specific design, Jordan RNN
is supposed to be a perfect alternative model to forecast time
series despite the hard predictability of their elements. Its
structure is supposed to have a more powerful competence
than other typical RNN architectures to train and predict the
given data [42]. In this paper, to address the aforementioned
problem, we propose a newly Recurrent NN architecture
inspired from Taylor theory as a forecasting technique.
Specifically, we have aligned our contribution by focusing
on two points: (1) Function approximation using the
Recursive Extended Exponential Smoothed method and (2)
error approximation in order to optimize the forecasted values
using the Taylor expansion [43].

3 Proposed approach

The proposed TOREESNN architecture for time series predic-
tion is illustrated in Fig. 3. The system is built with a recurrent
architecture, a classifier learning model, and a Taylor-based
mathematical system. The working methodology of
TOREESNN is divided into three main steps summarized as
follows:

* Step 1: Function approximation and forecasting
values: Building a system inspired from Jordan RNN &
ES technique, called Recursive Extended Exponential
Smoothed Neural Networks (REESNN). The introduced
method REESNN is designed in order to investigate data
behavior and forecast its future values.
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Table2  Summary of Different Contributing Papers Over Last Five Years
Reference Data Brief Description
ELMAN RNN [23] Wind Speed Hybrid model based on ERNN with EMD.
[24] Flood Water Comparison between the performance of ERNN and NARX.
Level
[25] Monthly ERNN is applied in this work using extra inputs that affect electricity consuming.
Electricity
Data
[26] Guangdong Authors employ Elman architecture taking consideration of some related factors which enhance the
Electric performance of the model.
Power Grids
[27] Wind Power The fusion of two architectures of Elman NN is applied to get accurate wind speed prediction.
[28] Photovoltaic Elman architecture is used to forecast the future power of the photovoltaic station. The system is fed by
Power four inputs: Temperature, Humidity, Wind-speed and Radiation which are all normalized. Three tests
were made to prove the efficiency of the system.
[29] Short-Term Modified Elman RNN architectureis proposed and optimized through the genetic algorithm to predict
Trafficc accurate short-term Traffic.
JORDAN [30] Stock Market The Unsupervised method is used in the first step to reduce the dimension of inputs, then based on the
RNN Price information of the previous day, JRNN is applied to predict the closing price of each day.

[31] Plant Output BT method and Jordan network are combined in one architecture to predict plant production. The
system’s response is then compared to the original signal as well as the output of different other
techniques such as the Instrument Variable estimation approach, JRNN and Yang et al. [41]. The
proposed method illustrates better results over competing methods named above.

[32] Macroeconomic 250 JRNN structures are implemented and compared. The optimal architecture is the one that gave a

Time Series low error and used a low number of parameters.
[33] M4 forecasting A Hybrid GSTARX-JRNN is presented to predict Time Data affected by Calendar Variation. Empirical
Competition results show that the combined model performs better than individual techniques.
Other variants  [35] Petroleum A deep LSTM optimally configured by the use of genetic algorithm is adopted to predict the petroleum
of RNN Production production.

[36] Real Time Data  Forecasting real time-series data using a LSTM-based regression structures extended by an extra gate.

[34] Stock Market A literature comparison and evaluation of different variants of LSTM: Unidirectional, bidirectional,
shallow neural network and stacked LSTM. Experiments prove that BLSTM and SLSTM perform
better than other variants of LSTM.

[39] Turkish A Comparison between the efficiency of GRU and others forecasting methods in the case of Turkish

Electricity electricity load prediction.
Load
[40] Hourly Short Comparison between RNN, LSTM and GRU to other forecasting techniques such as MA, AR and
Term ARIMA. Experiments prove the effectiveness of the different variants of RNN.
Agriculture
Load
[37] Four Realworld  Proposing a Deep Learning Framework that takes advantages from both AE and LSTM in order to
Datasets predict non linear system and time series datasets. Experimental results show that the presented
method is more accurate than other state-of-the art forecasting techniques.
[38] Estate Data from Authors present a novel frameworkthat leverages the advantages of both CNN and LSTM architectures.

Taiwan

This technique considers the spatiotemporal data structure and extracts the most important features
influencing the estate price before analyzing data.

* Step 2: Forecasting error estimation: A Elman RNN
Classifier is trained to approximate the uncertainty value

3.1 Function approximation and forecasting values
based on REESNN

associated with each forecasted value.

* Step 3: Taylor-based forecasting results optimization:
The two previous results are fed to a mathematical system
based on Taylor expansion, in order to output the final

optimized forecasting values.

* These aforementioned steps are more detailed in next sec-
tions. The forecasting flowchart of the proposed method-

ology is shown in Fig. 3.

@ Springer

A Jordan RNN (JRNN) is a neural network that uses the re-
ceived previous network output as a new input to be later
processed [44]. Hence, a JRNN is a simple recurrent network
so that a specific group of neurons (later called context
neurons) receives feedback signals from the previous time
step. Thereby, input layer is composed of two parts: true
input neurons and context neurons which are a duplicate of

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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Fig. 3 The flowchart of a general
TOREESNN architecture

ifier

Elman

Estimated Error

—{ fle) ]

class

Real value in
time t

1
!
1
1
1
]

-
'~$>
U 2

REESNN

7

the outputs provided from the previous time step. Hence, the
structure of the JRNN model can be illustrated as in Fig. 2.

Basically, each unit in a particular layer is connected with
all neurons in the next layer and then summed and multiplied
by the appropriate importance degree called w; which
characterizes the connection and the degree of importance
between the i and the j neuron. Hence, the nonlinear
mapping function F masters the amplitude of the resulting
output y which is given by Eq. 1.

yi=F (Zj’:lwijhj> (1)

where F is called the activation function. In general, the
transfer function accurately reflects the nonlinearity degree
of most preprocessed data by NN. We note that in theory,
the activation function can be any differentiable function but
in practice only four transfer functions are defined and can be
computed according to Eqs 2-5.

—  The linear function:

F(x)=x (2)
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Taylor Optimized
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F(x) = 3
) = G)
—  The cos-sin function:
F (x) = sin(x) or F(x) = cos(x) 4)
—  The sigmoid function:
F) = 5
¥ = I +e«

where c is the adaptive gain parameter of sigmoid function.
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Meanwhile, in JRNN structure, the activation of the j’h
hidden neuron 4, is computed by summing the activation
of context units in addition to those of true inputs. It
holds that:

() = F (S5 wy xit) + T v 3i(e1) ) (6)

where w; is the connection strength between the ™ hidden
unit /; and the ™ real input x; , and v,,; is the connection’s
weight between the j hidden unit 4; and the m"” output past
value at time #-/.

Based on the modeled architecture in Fig. 2, the JRNN
structure can be expressed by Eq. 7.

y= Zﬁ;“jhj(l) (7)

where y is the predicted output and u; are the connections
weights on output layer.

Subsequently, all connection weights in the network are
merely calculated and updated by applying the back-
propagation learning algorithm, as expressed in Eq. 8.

Aw; = —« ;‘fy (8)

where « is the learning rate and E is the associated error with
the /" neuron in layer .

Hence, our goal is to properly adjust the network’s connec-
tion weights and update them according to (9) in order to
understate the value of error.

W,‘j([ -+ 1) = W,'j(f) + AW,]‘ (9)

In the same way, all connection strengths in JRNN archi-
tecture are updated. In our study, to approximate the value of a

Fig. 4 Architecture of long-short
exponential smoothed unit
(LSES)

Y1

et1
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function, we have adopted the recursive architecture inspired
from the Exponential Smoothed (ES) method [17] which is a
statistical forecasting technique. Its main principle assumes
that each observation at time ¢ relies on the previous
observation and the variation between that forecast and the
actual value of the series at that point. The principle of the
ES can be formulated by the equation:

e+ 1) =30) + a(x()50)) (10)

where )(¢) is the previous forecasted value , x is the actual one
and « € [0, 1] is the smoothing factor.

Our experiments aim to convert the ES method into an
Extended ES designed as a Jordan Recurrent neural architec-
ture. This task is accomplished through two steps: First, the
ES method is modified and extended so that each observation
does not only depend on solely one past value as ES assumes,
but on many past values. Hence, we consider Extended ES
(EES) as a generalization case of ES. Mathematically, the
equation of EES can be formulated as:

e+ 1) = o (31 +a(x-05K)) (1)

The second step consists in conceiving the EES as a recur-
rent architecture since it adopts properly the same principle; i.e
the prediction of the future forecasted value depends on the
previous estimated output as the JRNN supposes. Moreover,
the smoothing factor is supposed to be replaced by the weight
connection. Hence, the simplest method for this purpose is to
project the EES dynamic equation into a mapping function
that can be depicted as:

P+ 1) = F[30), o R0 F0) oo 3(6H)F )|
(12)

-— = =y

Hidden layer

7 concatenation

Sigmoid activation
function
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Graphically, the Recursive Extended Exponential
Smoothed Neural Networks (REESNN) is considered as a
set of Long-Short Exponential Smoothed units (LSES) where
the input layer is a set of two types of inputs: The previous
forecasted values y at time ¢t — 1, ¢t — 2,.., t — k and, the
estimated error e outlined as the variance between the actual
real value x and the forecasted one )" attimet— 1,¢— 2,..,t— k
as illustrated in Fig. 4.

After being processed by sigmoid activation functions, the
information passes through many such LSES units as Fig. 5
depicts.

Particularly, our proposed pseudo-code method REESSN
is detailed in algorithm 1.

3.2 Forecasting error estimation
A powerful part of this approach is the prediction of error

estimation in order to improve the forecasting precision.
Forecasting error estimation is defined as

Algorithm 1 REESNN algorithm

Input: (1_
between actual value and predlcted one; k=0,1, ..,
Output: (¢ 1+ 1): gredmted results
I g(t+1) = Yo
ES method to EES depending on data behaviour
2 P(t+1) = F[3),... (tk) ; x()54(1), ..,
EES as a JRNN

k): previous forecasted value, e(t_ k) the estimated error

— k) + a(x(t — k) — y(t — k)))//Modifying and extending

x(t-k)-(t-k)] / / Conceiving the obtained

3. dataset={F[§(¢),... 5 (t-k) ; X()-5(0),..., x(t-K)-D (-k)], $ (t + 1)}

4 trainset,validationset,testset= train Test Split(dataset)

5. do
6: REESNN = train(trainset)

7: predValue= REESNN.predict(validationset)
8: MSE= Mean Squared Error(predValue, targetValue)
9. if (MSE < Stopping-Criterion) then

10: ¥ (t + 1)=REESNN.predict(testset)

11: return y (¢ + 1)

12: end if

13: while (MSE ==

Stopping_Criterion OR NBR ITER ==

MAX ITER)

the prediction of the difference between the actual value x and
the predicted one y .

However, the uncertainty associated with forecasting is one
of the most powerful factors influencing the resulting values.
This point inspires us to examine in advance the task of fore-
casting by predicting not only the future values but also the
uncertainty associated with each one. In our study, Elman
RNN Classifier (ERNNC) [21] model is used to model and
approximate the error estimation associated to each forecasted
value. This choice is justified by two points: First, when ex-
amining the error distribution, we notice that the behavior of
the resulting errors is chaotic and oscillating around close
values which makes the task of prediction hard to model.
This point motivates us to solve the problem as a classification
task, i.e a set of error classes is defined and associated to each
residual value to be then trained. Second, compared to other
existing functions in classification forecasting problems,
Elman has one of the best learning rates.

The suggested model is a three layered NN in addition to a
hidden context layer and a classification function as shown in
Fig. 6.

Firstly, to train the Elman RNN as a Classifier method, it is
necessary to preprocess the data and transform it on the ade-
quate form. Hence, the transformation of the training Dataset
S.. for the Elman RNN Classifier is introduced as follows:

S = {(Yt7C(e))}e[O7 1] X {_17071} (13)

where Y, is an input vector and C(e) is a classification function
of the estimated error e defined by Eqgs (14) and (15).

Vo= [p(e-r),3027), .. $e-ar)| (14)
-le< —¢
C(e) = { 0—e<e<e (15)
+1e>¢

where 7 is the time-delay and € is an appropriate threshold that
divides estimated errors into three scales: positive values,
negative values and values near to zero. We note that € is
chosen, graphically, from the estimated error histogram as
Fig. 7 depicts.
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Fig. 5 Architecture of Recursive Extended Exponential Smoothed
Neural Networks (REESNN)

After the histogram of the estimated error has been
established, the Elman RNN Classifier is trained using
S, to predict the error class associated to each sample in
the vector X,. Then, to estimate the forecasting error, IF-
THEN rules are adopted.

@ Springer

IF C(e) = 1 THEN f(e) = +w
IF C(e) = 0 THEN f(e) =
IF C(e) = —1 THEN f(e)

(16)

0
=-w

where f (e) is the estimated forecasting error and w is
an experimental value measured during the learning
phase where different values near to € were tested; the
one which gives minimal error is adopted for the rest of
the algorithm. During the optimization phase, different
values of w were tested; the value giving the best result
was memorized to be then applied during the final step.

3.3 Taylor-based forecasting results optimization

After predicting the estimated error, a step of optimization
results was done.

The optimized forecasted future value y,,, is calculated
according to an approximation function expressed be-
tween the first forecasted value J, resulting from the first
part of our architecture denoted as REESNN and the es-
timated forecasted error f{e) resulting from the second part
denoted as Elman Classifier (see Fig. 3). In fact, a Taylor
series approximation represents a number as a polynomial
that has a very similar value to the number in a neighbor-
hood around a specified value. Hence, the key idea in our
method is to optimize the forecasted results relying on the
Taylor expansion [43].

Motivation: The Taylor expansion The main principle of the
Taylor expansion [43] aims to approximate a function that is
many times differentiable in the neighborhood of a point x. Its
equation is expressed as:

(X*XO)2 2
o S (xo0) + -

F(x) = £ (x0) + =7 (o) +

n
+%f”(xo) + (x—x0)"d(x—x0) (17)
where d(x - xg) is a function that gets closer and closer to 0 as
(x - xp) tends to 0.

From the above definition, this formula is similar to the
optimization formulation, i.e, the key idea behind
optimization is to approximate a number by representing it
by its nearest accurate neighborhood. Hence, we formalize a
new problem that translates the Taylor expansion formula into
a combination of optimization task.

In fact, to resolve y,.; and y, by Eq. 17 a step of integration
of the error estimation function f{e) is needed before time ¢ +
1. This integration expression shows that the proposed
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Fig. 6 Elman Recurrent Neural
Network Classifier architecture
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optimization model can perform the dynamic backward
optimization to better exploit the historical knowledge in the
studied time series.
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Inspired from Taylor principle, and provided the € is small
enough, the previous equation denotes that this combinational
optimization problem can be approximately formulated as:

- . (t+ 1)t
Yir1 =W JFT)’ (1) +0(z)

(18)
where y,,, denotes the optimized forecasted value and y,
represents the predicted value before optimization. It is
worth mentioning that our study will be restricted to the
first stage of Taylor principle. We hypothesize that y’; is
equal to the error approximation f (e) as given in the
following equation:

YVir1™M

yi=/f(e) TR

(19)

The step-by-step instructions that describe the
TOREESNN algorithm is presented as follows (see
algorithm 2).
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Algorithm 2 TOREESNN algorithm

Input: $(1_ k): previous forecasted value, e(r_ k): the estimated error
between actual value and predicted one; £ =0,1, .., n
Output: y‘(r + 1): optimized predicted results
1: Divide data into k-folds
2. for each ki € k-folds do

3: do

4 REESNN = train(trainset:)

5: predV aluei= REESNN.predict(validationseti)

6: MSE= Mean _Squared Error(predValuei, y(t + 1))
7. if (MSE < Stopping-Criterion) then

8: 7 (t + 1)=REESNN.predict(testset))

o: return p(z +1)

10: end if

11: for t=0 to n do

12: e(t+1)=p(t + 1)- targetValue(t + 1)

13 end for

14: Histogram(e)

15: Select +¢ and -¢ // Choosing the values that divide estimated
errors into three scales: positive values, negative values and values near to
zero.

16: Se={(Y, Cle))} € [0,1] X {—=1,0,1}

17: ElmanClassifier=train(Sc)

18: PredError= ElmanClassifier.predict(testseti)

19: Rp=[+€ max(e)]

20: Rn=[min(e) -¢]

21 while TRUE do

2 +w= random(Rp)

2 _ o= random(Rn)

%4 for t=0 to n do

25: if C(e(t+1))==1 then f(e)=+w

2 else if C(e(t+1))==0 then f(e)=0

27 else if C(e(t+1))==-1 then f(e)=-

2%: end if

2: end for

30: Y+ D=y @)+t(e)

3L: MSE= Mean Squared_Error(j (t + 1),targetValue)

3 if (MSE < Stopping Criterion) then

33; storeValues(+w,- w,+¢,- ¢, RESSNNmodel,
ElmanClassifierModel)

34: return (¢ +1)

35: end if

36: end while

37: Evaluate Model Performance on fold ki

38: while (MSE == Stopping Criterion OR NBR ITER == MAX ITER)

3. end for

40: Calculate average performance over K folds

4 Results and discussion operating system, an Intel Core i7-5500 CPU at
2.40GHz, 8 GB of memory, and graphics card of Intel R
4.1 Basic setting HD 5500 with 4 GB RAM. Furthermore, our model’s

performance is estimated after a 5-fold cross validation.
All experiments in this study were carried out in Matlab ~ The values of all metrics reported in the study are the
using an HP computer running Windows 10 pro64-bit  average of the results obtained at each fold. The values
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of all metrics reported in the study are the average of the
results obtained at each fold.

To validate the efficiency of our proposed method, we
selected four types of acclaimed Time Series: Mackey-Glass,
the Nonlinear Auto-Regressive Moving Average, Lorenz
Attractor and Henon Attractor. Each type of data is
segmented into three data sets. The first one represents the
training data. The second part represents the validation data.
It is applied to train the estimated error (training the estimated
error is the second part of our architecture). Finally, 1500 new
samples are used as testing data in order to improve the
performance of our proposed scheme with new cases.

In our quest to prevent over-fitting and to build a robust
model, we utilized K-Fold-Cross-Validation method. We
chose to partition our data into five folds in order to train
and validate it thoroughly. This would generate the optimal
learning model. Hence, the final metric is then the average
score obtained from all tested folds. We note that the main
principle of Cross-Validation is to randomly divide the data
into training and testing data. However, in the case of Time
Series Data, the process of dividing should be on a rolling
basis, i.e, for each fold, respectively, we selected the training
data, then the testing part. The learning model is built, fore-
casting values are generated and evaluation metric is calculat-
ed at the end.

Figure 8 illustrates the process of Time Series-based K-fold
Cross validation. The orange color represents the training data,
the green color represents the validation data where the process
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of learning estimated error is made and finally pink color
symbolizes the testing data.

Finally, to facilitate the learning process, all the data used in
our experiments were subject to normalization process; it is
then displayed in [0, 1].

4.2 Analysis of experimental results

In order to evaluate the performance of the proposed ap-
proach, four well-known benchmarks were studied in this

Table 3 Comparison of Different Forecasting RNN Model to Our
Proposed Method (MG Benchmark 7= 17)

Methods MSE test
Canonical Echo State Network (ESN) [46] 4.03¢ - 02
LSTM [47] 8.04¢ - 03
Elman [20] 3.00e— 03
Elman & Elman Classifier 2.30e— 03
ESN-LARS [46] 7.80e - 04
ESN-FSR [46] inf”
REESNN 2.29¢-04
TOREESNN 2.20e-04

* According to authors, the results are unstable and the error is very high.

In order to highlight our results (given by both REESNN and
TOREESNN methods), we noted the corresponding values in bold.
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Table 4 Comparison of Different Forecasting RNN Model to Our
Proposed Method (MG Benchmark 7= 30)

Methods MSE test
Canonical ESN [46] 8.12¢— 03
ESN-RR [46] 8.25¢— 03
ESN-LARS [46] 3.20e— 02
ESN-FSR [46] 7.72¢— 03
ESN-LASSO [46] 4.31e— 03
ESN-EN [46] 4.31e— 03
REESNN 3.74e-04
TOREESNN 3.48¢-04

In order to highlight our results (given by both REESNN and
TOREESNN methods), we noted the corresponding values in bold.

paper. For each benchmark, we measured the accuracy of our
model by first calculating an evaluation metric, then,
comparing it to other state-of-the-art works. In our study,
Mean Squared Error (MSE) is considered as an evaluation
score. The formula of MSE is given in 20.

MSE Z;vzl (y t_j}\t> 20

TN 20)
where N , y, 7, indicate respectively the length of data, the
target value and the output system.

4.2.1 Comparison of prediction results

Mackey-glass time series The performance of the proposed
methodology is demonstrated via the well-known
benchmark time series called the Mackey-Glass time series
(MG) [45]. Mathematically, the MG formula is established
by a simple dynamic equation that can be noted as:
dx(t) ax(t—t)

dt 1+ x¢(t-1) bx(r) (21)

where a, b and ¢ are constants, and 7 represents the time delay.

In this paper, the used parameters a, b and ¢ are set to 0.2, 0.1
and 10 respectively, whereas the most used 7 in the literature are
17 and 30. The aim of this paper is to forecast the actual value x(7)
based on some specific historical past values. We note that a step
of normalization was done to optimize the training phase.

In order to prove the efficiency of our proposed architec-
ture, different forecasting RNN models were compared and
testing results are outlined in Tables 3 and 4.

According to Tables 3 and 4, it is revealed that the proposed
(TOREESNN) performs better than other RNN methods.
Moreover, it can be noticed that optimizing forecasting task by
predicting estimated errors influences greatly the testing results.

As it is the case with supervised learning methods, we aim
to make the system output signal closer to the target one. We
plotted these two signals after performing the proposed ap-
proach. Figures 9 and 10 illustrate the superposition between

Prediction of Mackey-Glass time series tau=17 after Error Optimization

1 T

x(t)

Target

————— Output System

1000 1500
t

Fig. 9 Mackey-Glass Network output after the error estimation optimization tau = 17
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Prediction of Mackey-Glass time series tau=30 after Error Optimization
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Fig. 10 Mackey-Glass Network output after the error estimation optimization tau = 30

our results and the corresponding desired outputs. The super-
position between the two curves reflects that the network re-
sponse is close to target, which is mathematically justified in
Tables 3 and 4.

The nonlinear auto-regressive moving average time series
The Nonlinear Auto-Regressive Moving Average later called
NARMA [48] is a renowned benchmark which is character-
ized by its chaotic behavior. Furthermore, the non-correlation
between its values makes the task of learning more difficult to
achieve. Moreover, the dynamic equation of NARMA is
mathematically dependent on many parameters which makes
it hard to model. In light of these facts, NARMA is considered
among the most complex studied benchmarks; this point mo-
tivates us to further improve the efficiency of our method by
testing NARMA patterns. Mathematically, the NARMA for-
mula is expressed as:

y(t+1) = ey(t) + e (T (1) + esx(t=k=1)x(t) + ca
(22)

where x(¢) represents the input, k characterizes the order of the
time series and the parameters c; are set to 0.3, 0.05, 1.5 and
0.1 respectively.

The calculated errors between the output values and the
desired one are visualized in Fig. 11. As the error signal is
displayed around +0.02, it clearly reflects that the network

response is mimicking the required one. In the same way as
in the foregoing benchmark, a MSE based comparison study
with other existent forecasting methods is applied for
NARMA series prediction with order &k = 10.

As illustrated by the preceding test, the output system and
the target values are plotted in the same figure (see Fig. 12).
The proportionality between the two curves further justifies
the obtained results.

Table 5 presents the comparison of testing results given by
the already existent approaches in the literature for NARMA
Benchmark forecasting.

Lorenz attractor Lorenz can be defined as a system of three
nonlinear differential equations characterizing a fluid motion
between a hot and a cool surface.(23-25) [49].

dx

i . 2
= a(y—x) (23)
—Z,); = —y—X7IX (24)
dz

_— = 2
7 xy—bz (25)

where o = 10,7 = 28 and b = 8/3.
As in the previous time series, our task is to forecast x(7)
according to a set of its own historical past values.
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Fig. 11 Evolution of Error signal between NARMA testing values and the desired targets

In the same way as the MG test, the resulting tests are
displayed in the same figure with the target values to be later
compared. The superposition of the two curves is depicted in
Fig. 13. It is noticed that the network outputs mimic the output
line of the target values.

As revealed by the previous benchmarks, a MSE-based
comparison with some existent literature RNN methods is
applied for Lorenz attractor.

Table 6 recapitulates the testing results and proves that our
proposed method represents a strong competitive forecaster in
terms of accuracy.

Henon attractor The Henon map is a discrete-time dynamic
attractor. It is considered among the most common stud-
ied dynamical systems. It is typified by its chaotic behav-
ior defined concretely by the following equations in 26
and 27 [49].

x(t+ 1) = y(t)—ax2(t) + 1 (26)
y(t+1) = bx(t) (27)

where a = 1.4 and b = 0.3. The dataset was normalized in the
interval [0, 1] to get more accurate results during the
implementation.

Figure 14 presents a depiction of the error signal calculated
between desired values and system outputs. According to the

@ Springer

figure, the signal of calculated errors is displayed around 0.04
which extremely proves that the network response is follow-
ing the desired one.

Table 7 presents the comparison of testing results given by
the already existent approaches in the literature for Henon
attractor forecasting. According to Table 7, we deduce that
TOREESNN outperforms the other works in terms of
accuracy.

Based on results presented in Tables 3, 4, 5, 6 and 7,
TOREESNN achieved the lowest MSE value in all tested time
series data.

We deduce in Table 8 the obtained results given by
REESNN and TOREESNN with all tested data in term of
MSE (presented on the top), the Standard Deviation value
denoted as STD (presented at the bottom), in addition to the
improvement value.

Based on Table 8, we notice the out-performance of
TOREESNN in all tests. This fact further justifies the impor-
tance of the proposed process of error estimation-based
optimization.

4.2.2 Hyperparameter selection

A system cannot solve any forecasting task unless a learning
process is applied. Fundamentally, learning is the mechanism
of adjusting a specific set of network’s parameters, allowing
for obtaining the optimal accuracy. However, for every
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NARMA network output after error estimation optimization
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Fig. 12 NARMA Network output after the error estimation optimization

forecasting task, a set of specifications should be selected.
There is no approach that can define the optimal network
from the first test. Hence, building an optimal learning
system requires testing a set of parameters’ combination in
order to choose the one that gives the best accuracy. Since
our architecture is a hybrid system, we need to set the
parameters of each part. First, we start by defining the
different parameters of REESNN: The first step lies in

Table 5 MSE Based Comparison Between Our Proposed Approach
and Other Literature Methods NARMA Benchmark)

Methods MSE test
Canonical ESN [46] 1.71e— 04
ESN-FSR [46] 7.29¢— 03
ESN-LARS [46] 3.79¢— 03
ESN-RR [46] 3.03e— 03
ESN-LASSO [46] 2.89¢— 03
REESNN 5.88e-04
TOREESNN 1.43e-04

In order to highlight our results (given by both REESNN and
TOREESNN methods), we noted the corresponding values in bold.

1000 1500

defining the output and input layer. In this work, as we
intend to predict the next future value, we have defined only
one unit in the output layer. Whereas the number of inputs
differs from one dataset to another, depending on the behavior
of the data over time. In time series, the number of inputs
refers to the chosen time delay.

After defining inputs and outputs, we initialize the ran-
dom values of weights’ connections in the interval [-0.01,
0.01]. Then, weights will be updated during the learning
process. Another important parameter that influences the
process of learning is known as the learning rate and
denoted as «. « forms generally a small positive value
set in the range between 0 and 1. In our work, we select
different values of o between 0.001 and 0.1, but we store
only the ones that give the lowest error. The number of
hidden units is fixed after performing different tests (from
5 to 100 units). Another parameter that plays an important
role in a neural architecture is the activation function. In
fact, we need to define two activation functions: the first
one is within the hidden layer. It defines how the model
learns the data. Whereas the second within the output
layer defines the type of prediction. Since we are
working on chaotic TS, our system needs a function that
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Lorenz Network outputs after error estimation optimization
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Fig. 13 Lorenz Network output after the error estimation optimization

can deal with the data nonlinearity. Moreover, the
sigmoid function is the most appropriate one that can
respond to the task. However, as our system has
provided relevant features during the train, a simple
output transfer function can generate good results,
therefore the linear function is defined within the output
layer.

After building the REESNN architecture, the same process
is applied to the second part of our system, namely, the Elman
Classifier. Finally, the combination of different parameters

Table6 MSE Based Comparison Between our Proposed Approach and
Other Literature Methods (LORENZ Benchmark)

Methods MSE test
Canonical ESN [46] 7.23e— 04
LSTM [47] 6.45¢— 04
PSO-ESN [46] 4.04e— 06
SVR 2.80e— 01
REESNN 2.06e-06
TOREESNN 2.03e-06

In order to highlight our results (given by both REESNN and
TOREESNN methods), we noted the corresponding values in bold.

@ Springer

that gave the most accurate results is stored and displayed in
Table 9.

where Ny, ag, Fr, and Fp, denote respectively the number
of hidden units, the learning rate, the activation function in
hidden layer and the activation function in output layer in
REESNN architecture; and Ng, af, Fg;, and Fp, indicate
respectively the number of hidden neurons, the learning rate,
the transfer function in hidden layer and the transfer function
in output layer in Elman Classifier architecture, whereas ET
represents the execution time that takes each run for each
architecture and dataset (the unit used is in second).

4.2.3 Friedman test

As mentioned above, TOREESNN method performance
is judged basically through the use of particular experi-
ments. In this part of the paper, the proposed algorithm
will be compared to different state-of-the-art methods
using the Friedman test. In order to compute the
Friedman values of the prevalent algorithms reviewed
for the five datasets, the MSE indicator in Tables 3, 4,
5, 6 and 7 is conducted as an example. Hence, we pro-
vide a ranking of the technique in terms of performance
accuracy, i.e, the lower rank denotes the lowest MSE and
therefore better performance. However, we have selected
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Error Signal Evolution Between Henon-Attractor Testing Values and Desired Targets
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Fig. 14 Evolution of Error signal between Henon-Attractor testing values and the desired targets

only the five common algorithms tested for the dataset
namely in Tables 3, 4, 5, 6 and 7. It is worth mentioning
that the symbol - is used when the corresponding value
is not stated in the literature study. The Friedman values
of the five algorithms on the five datasets differentiate on
the basis of the results of Table 10. Notably,
TOREESNN is ranked first, REESNN comes second.
While Canonical ESN ranks third and both LSTM and
ESN-LARS come fourth. Once more, statistically speak-
ing, this inference elucidates the great advantage our
proposed model has over the other comparison
algorithms.

Table7 MSE Based Comparison Between our Proposed Approach and
Other Literature Methods (HENON Benchmark)

Methods MSE test
Canonical ESN [46] 3.40e— 03
SGD-ESN [46] 3.67e— 02
RLDDE [46] 4.70e— 03
LSTM [47] 2.04e— 01
REESNN 8.46e-04
TOREESNN 7.48¢-04

In order to highlight our results (given by both REESNN and
TOREESNN methods), we noted the corresponding values in bold.

4.3 Discussion

In this part, we will discuss the main findings and limitations
of our approach.

—  Firstly, the discussed approach has the potential to tackle
a number of time series data including MG, NARMA,
Lorenz and Henon Attractor.

—  Secondly, TOREESNN is capable of modeling temporal
pattern, therefore it surpasses the state-of-the-art forecast-
ing techniques.

— For all tested datasets, TOREESNN led to the best
outcomes in terms of performance measures. Based
on Table 8, we notice the decrease of MSE values
for the suggested method for all series in comparison
with the model without optimization. For this pur-
pose, we discuss that TOREESNN advantages from
the knowledge obtained by the refinement step, i.e.,
the step of forecasting error estimation which permits
to rectify the initial forecasting values generated by
REESNN.

All along the various illustrations and tables, we endeav-
ored to provide a sequential overview of TOREESNN.
Moreover, the tests carried out with the five datasets have
resulted in considerable performances and various terms.
However, there are some limitations of the application of
our approach:
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Table 8 Comparison of the

proposed model before and after MG 17 MG 30 NARMA Lorenz Henon
error estimation optimization
(top: MSE, bottom: STD) REESNN 2.29¢-04 3.74e-04 5.88e-04 2.06e-06 8.46e-04
+2.46e— 04 +1.17e— 04 +8.74e— 05 +1.07e— 04 +7.17e— 05
TOREESNN 2.20e-04 3.48e-04 1.43e-04 2.03e-06 7.48e-04
+2.35¢— 04 +9.86e— 05 +2.84e— 04 +7.66e— 05 +4.04e— 05
Improvement 0.09e-04 0.26e-04 4.45¢-04 0.03e-06 0.98e-04

In order to highlight our results (given by both REESNN and TOREESNN methods), we noted the corresponding

values in bold.

Table 9 The parameters setting

of TOREESNN in all Np  og FRh FRo Ng o FEh FEo ET (sec)
experiments
MG 17 5 0.001 Sigmoid ~ Linear 4 0.01 Sigmoid ~ Tanh 1.59
MG 30 5 0.001 Sigmoid ~ Linear 4 0.01 Sigmoid ~ Tanh  2.19
NARMA 5 0.1 Sigmoid Linear 4 0.01 Sigmoid Tanh 1.78
LORENZ 4 0.01 Sigmoid Linear 4 0.01 Sigmoid Tanh 1.79
Henon-Attractor 4 0.1 Sigmoid ~ Linear 4 0.01 Sigmoid  Tanh 1.98
Table 10 Friedman Test
Method LSTM ESN- Canonical ESN REESNN TOREESNN
DataSet LARS
MG 17 4 3 5 2 1
MG 30 - 4 3 2 1
NARMA - 4 2 3 1
LORENZ 3 - 4 2 1
Henon-Attractor - 3 2 1

—  While the empirical outcomes ascertain the theoretical
study carried out in the previous sections, the outlined
Fig. 15 presents some suspicious observations, i.e., de-
spite the accuracy of our approach in learning the data
behavior, it is still not proficient to sort out the anomalies
found within a time series. These questionable observa-
tions are considered unpredictable noise. Therefore, we
are developing a way to address it, so that our system will
be able to recognize and generalize temporal patterns in-
cluding their abnormalities.

—  Moreover, the typology of our method is only evaluated
to solve univariate time series data. Nevertheless,
providing an analogous evaluation for multivariate time
series prediction problems is worth elaborating.

5 Conclusion

In literature, the Forecasting task was approached with numer-
ous Artificial Neural Network methods inter alia Recurrent

@ Springer

Neural Networks architectures. In this study, we utilized an
innovative JRNN architecture (named TOREESNN) inspired
from the ES method extended by error approximation to
predict and optimize one of the most outstanding time series
namely Mackey-Glass time series, Henon Attractor, Lorenz
and NARMA. We set a comparison between our method and
other RNN architectures in terms of MSE and it is obvious that
our approach presents a promising technique to deal with cha-
otic time series.

While current forecasting systems are working on
bettering their accuracy by building a robust architecture,
this paper approves the assumption that optimizing the
task of forecasting is achieved by predicting the error
associated to each forecast value. Precisely, the optimiza-
tion step offers the possibility to make full use of histor-
ical knowledge in past data as it is ideally suitable for
memorizing not only past forecasted values but also the
error made during the validation phase. Hence, if forecast-
ing systems aim to generalize the temporal patterns within
a time series, then the goal of our approach is to degrade
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Fig. 15 The unpredictability of Mackey-Glass time series after error optimization

the error associated to each forecast by estimating it then
correcting the first predictions.

As for our future work, TOREESNN will be enhanced by
extending the optimization system to contain many stages
within the given approach. This broadening will boost its ca-
pability to detect the anomalies found in time Series.
Researchers are also able to try to merge other machine learn-
ing methods in order to better refine the learning model. Last
but not least, an application in which TOREESNN is intro-
duced in real world is still under elaboration.
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