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Abstract
Nowadays, a great deal of attention is paid to metaheuristic algorithms to reach the approximate solution in an accept-

able computational time. As one of the recent-developed successful metaheuristics, Social Engineering Optimizer (SEO)

algorithm is according to the inspiration of the rules of social engineering to solve approximate optimization problems. In

this research, a Modified Social Engineering Optimizer algorithm (MSEO) by using an adjustment operator is proposed in

which there are some assessment criteria for defender and attacker to determine and calculate the weight simultaneously for

the first time. This enhancement comprises adding adjustment operators to improve the performance of SEO in terms of

search accuracy and running time. Most notably, this operator is utilized to make a better new generation and improve the

interaction between the search phases. The adjustment operator strategy is also applied to a novel division based on the best

person. As an extensive comparison, the suggested algorithm is tested on fourteen standard benchmark functions and

compared with ten well-established and recent optimization algorithms as well as the main version of the SEO algorithm.

This algorithm is also tested for sensitivities on the parameters. In this regard, a set of engineering applications were

provided to prove and validate the MSEO algorithm for the first time. The experimental outcomes show that the suggested

algorithm produces very accurate results which are better than the SEO and other compared algorithms. Most notably, the

MSEO provides a very competitive output and a high convergence rate.

Keywords Metaheuristic algorithms � Modified social engineering optimizer � Benchmark functions � Engineering
applications

1 Introduction

The needs and benefits of optimization techniques based on

metaheuristics have motivated many scholars and scientists

in the last few decades to apply these algorithms to solve

NP-hard and complicated optimization problems (Abed-

Alguni et al. 2021; Abed-Alguni and Alkhateeb 2017;

Alawad and Abed-Alguni 2021a; Abed-Alguni and Alawad

2021). Today, mathematical optimization techniques have

played an important role in the industrial and non-industrial

sectors (Alawad and Abed-Alguni 2021b). Optimization

methods and algorithms are divided into two categories:

exact algorithms and approximate algorithms (Wang et al.

2018). Approximate algorithms fall into two general cate-

gories: heuristic and metaheuristic approaches (Sacramento

et al. 2019). Also, metaheuristic approaches are divided

into two groups: single-solution instead of population-

based algorithms (Goodarzian et al. 2021a). An

& Fariba Goodarzian

Fariba.Goodarzian@mirlabs.org;

Faribagoodarzian7070@gmail.com

Peiman Ghasemi

Peiman.Ghasemi@gutech.edu.om

Vikas Kumar

Vikas.Kumar@uwe.ac.uk

Ajith Abraham

ajith.abraham@ieee.org

1 Machine Intelligence Research Labs (MIR Labs), Scientific

Network for Innovation and Research Excellence, 11, 3rd

Street NW, P.O. Box 2259, Auburn, WA 98071, USA

2 Department of Logistics, Tourism and Service Management,

German University of Technology in Oman (GUtech),

Muscat, Oman

3 Bristol Business School, University of the West of England,

Bristol BS16 1QY, UK

4 Center for Artificial Intelligence, Innopolis University,

Innopolis, Russia

123

Soft Computing
https://doi.org/10.1007/s00500-022-06837-y(0123456789().,-volV)(0123456789().,-volV)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



acceptable computational time with the ability to find the

global solution is one of the key reasons for researchers in

this field to explore new modifications and hybridizations

of recent metaheuristics to better solve many optimization

problems in different fields of engineering (Rakshit et al.

2014; Okulewicz and Mańdziuk 2019).

The term ‘‘metaheuristic’’ was first introduced by Glo-

ver (Glover 1989) when the Tabu Search (TS) method was

introduced as a novel method. Modern heuristic methods

include the family of Evolutionary algorithms, swarm

intelligence, Ant Colony Optimization (ACO) algorithm,

Variable Neighborhood Search (VNS) and Greedy Search

(GS) algorithms (Fathollahi-Fard et al. 2019). Briefly, we

can say that the metaheuristic algorithms are advanced and

general search strategies providing steps and benchmarks

that are very effective in fleeing local optimal traps (Zhang

et al. 2020).

Generally, to find optimal solutions and to solve opti-

mization problems, metaheuristic algorithms have been

used. Then, the metaheuristic algorithms could be catego-

rized into four groups: local search versus global search-

based, Single solution versus population-based, and Swarm

intelligence-based, versus Nature-inspired-based.

In order to find optimal solutions, several metaheuristic

ideas were presented to enhance local search heuristics

such as Simulated Annealing (SA), TS, VNS, GS, and

SEO. These algorithms could both be categorized as global

search or local search-based metaheuristics. Other global

search algorithms that are not local search-based are pop-

ulation-based algorithms such as ACO, Particle Swarm

Optimization (PSO), Imperialist Competitive Algorithm

(ICA), Harmony Search (HS), an evolutionary algorithm

based metaheuristics.

In terms of a single solution and population-based

searches, single solution algorithms concentrate on

improving and modifying a single candidate solution. SA,

VNS and SEO offer a single solution. Population-based

algorithms improve and maintain multiple candidate solu-

tions that utilize population traits to conduct the search.

Population-based algorithms involve Genetic Algorithm

(GA) and PSO.

The third group of algorithms is Swarm intelligence

based on self-organized agents and collective behavior of

the decentralized population in a swarm. ACO, Artificial

Bee Colony (ABC), Artificial Natural Network (ANN), and

PSO are instances of this group.

An active field of research is nature-inspired meta-

heuristic algorithm design. Recently, evolutionary compu-

tation-based metaheuristics are inspired by natural systems.

Nature treats as a source of mechanisms, principles, and

concepts for artificial computing systems designed to cope

with complex computational problems such as PSO, ICA,

ABC, Firefly Algorithm (FA), and ACO algorithm.

These classifications can help us to have a better focus

on the properties of metaheuristics which are very useful to

develop a new one. In addition to these, the concepts of the

main algorithms mentioned above are characterized as

follows. For example, the GA is a metaheuristic inspired by

the process of natural choice, which depends on the larger

group of evolutionary algorithms. In general, it is a repe-

tition-based algorithm, most of which are chosen as ran-

dom processes that are composed of parts of the fitness

function, mutation, crossover, and selection (Tam et al.

2019; Yadegari et al. 2019). Mitchell et al. (1992) intro-

duced GA following the concept of Darwin’s theory of

evolution. GA is one of the random search algorithms,

which is derived from nature (Pech et al. 2019). Note that

the crossover and mutation are two search engines of GA to

focus on exploration and exploitation phases.

Then, the PSO algorithm was originally introduced by

Kennedy and Eberhart (1995). The PSO algorithm is a

collective search algorithm, which is according to the

social behavior of bird’s categories (Hajipour et al. 2020).

By updating the agents based on the local optimum and

global one makes the PSO algorithm perform both diver-

sification and intensification phases properly (Fakhrzad and

Goodarzian 2019). Generally, a trade-off between these

two search phases plays a key factor in many earlier

metaheuristics (Pech et al. 2019; Kennedy and Eberhart

1995; Hajipour et al. 2020; Fakhrzad and Goodarzian 2019;

Balaji et al. 2019).

Ant Colony Optimization (ACO) algorithm is inspired

by the swarm behavior of ants. The ACO algorithm

introduced by Stützle and Dorigo (1999) which is built on

the intelligent behavior of ants to find the shortest path

from the nest to a food source, has recently attracted the

attention of scientists (Stützle and Dorigo 1999; Luan et al.

2019).

The ABC algorithm is an optimization strategy that

simulates the behavior of a bee colony and was first

introduced by Karaboga (2007) to optimize the real

parameter. ABC algorithm is an optimization algorithm

according to the collective intelligence and clever behavior

of bee populations. Such an algorithm is very effective in

solving real-world problems (Aslan 2019).

The Biogeography-Based Optimization (BBO) algo-

rithm was originally introduced by Simon (Simon 2008).

The BBO is a population-based algorithm inspired by the

phenomenon of animal migration and birds between the

islands. In reality, environmental geography is the study of

the geographical distribution of environmental species

(Bottani et al. 2020). Basically, in biogeography, two

determinants are the value of the Habitat Suitability Index

(HSI) and the Suitability Index Variables (SIV) (Goudarzi

et al. 2019).

F. Goodarzian et al.
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The ICA is another computational approach that is uti-

lized to solve optimization problems of various types,

which was introduced by Nazari-Shirkouhi et al. (2010).

This algorithm is according to the modeling of the social-

political process of the colonial phenomenon. The high

popularity of this algorithm, along with its high efficiency,

is more of an innovative and new aspect and attractive to

optimization experts (Ramı́rez et al. 2019; Lei et al. 2018).

The FA is another nature-inspired metaheuristic algo-

rithm introduced by Yang (2010) with the use of inspira-

tion of the flashing behavior of fireflies. The basis of this

algorithm is the behavior of fireflies in streaming light from

itself. Most fireflies can capture partnerships for mating by

lighting, warning other fireflies and trapping smaller insects

for hunting. The intensity rate of light available for other

light source fireflies depends on the distance from the

source, the intensity of the light source and the absorption

power of light, so the fireflies are generally visible to a

limited distance (Shang et al. 2020).

Over the last decade, many such metaheuristic opti-

mization algorithms are based on the animals’ inspiration

or artificial human roles have been designed to solve

optimization problems more efficiently (Shadravan et al.

2019; Castellani et al. 2019). There are also many modi-

fications of BEE algorithms, e.g., BEEs show a great deal

of attention during the last decade (Kamaruddin and Latif

2019). The BEEs algorithm was provided by Ghan-

barzadeh et al. (Pham et al. 2005) which is a population-

based search algorithm. This algorithm performs a local

search type with a global search and can be utilized for

both combinatorial optimization and continuous optimiza-

tion. The only condition for using the BBEs is that some

measurements of the distance among solutions have been

defined. The effectiveness and specific capabilities of the

BEEs have been proven in a number of studies.

As one of the earliest metaheuristics inspired by music,

the Harmony Search (HS) algorithm developed by Geem

et al. (2001) is a successful metaheuristic algorithm for

routing in wireless sensor networks and in order to increase

the life span of these types of networks (Yi et al. 2019). HS

algorithm is one of the easiest and newest metaheuristic

algorithms that have been inspired by the simultaneous

playback process of the orchestra music stream in the

optimal search process in optimization problems. In other

words, there is a similarity between finding an optimal

solution to the complex problem and the process of per-

forming music (Dhiman and Kaur 2019).

Abualigah (2019) presented an algorithm for solving the

Text document (TD) clustering problem. The k-mean

clustering method is used to evaluate the performance of

the obtained subsets. Finally, 4 krill herd algorithms are

proposed to solve the TC problem. For the evaluation

process, seven benchmarks are used. Abualigah et al.

(2021a) presented a new optimizer inspired by the behavior

of Aquila Optimizer (AO). To validate the proposed

algorithm, a set of different numerical problems (ten

functions from the CEC2019 benchmark, 29 functions

from the CEC2017 benchmark and 23 classical benchmark

functions) were used. Abualigah et al. (2021b) presented a

novel metaheuristic algorithm called Arithmetic Opti-

mization Algorithm (AOA). The performance of the pro-

posed algorithm is evaluated on 29 benchmark functions.

The results of the proposed algorithm sufficiently prove its

superiority in the ability to avert trapping of the local

optima.

Recently, Fathollahi-Fard et al. (2018) developed the

Social Engineering Optimization (SEO) algorithm which is

inspired by the rules of social engineering, an emerging

phenomenon in today’s real world. They also reviewed the

metaheuristics from 1975 till 2017 and found that there are

more than a hundred well-known metaheuristics in the

literature. However, there is no similar algorithm like SEO

only employing two solutions to search and has fast pro-

cedures to find the global solution. The application and

development of SEO have been explored recently by a few

studies. However, research on SEO is still scarce (Good-

arzian et al. 2021b; Elarbi et al. 2018; Meng et al. 2016; Li

et al. 2015). Given the popularity and high efficiency of the

SEO motivated our attempt to develop another efficient

version of this algorithm that is efficient and more intelli-

gent than the original one. The SEO algorithm uses only

the values of the objective function to perform the opti-

mization process and does not require additional informa-

tion such as the function derivative. Due to the simplicity

of the search process of SEO, it works very quickly and

efficiently. The SEO algorithm is also very flexible and

works with all kinds of objective functions and constraints

in the search space (Goodarzian et al. 2021c). The signif-

icant advantage of the SEO algorithm is a new simple and

efficient single-solution metaheuristic. One of the other

important advantages of the SEO algorithm is the Social

Engineering (SE) phenomenon and its techniques. In

comparison with other single-based metaheuristics, the

SEO algorithm starts with two initial random solutions that

include attackers and defenders. The optimal solution is the

attacker. In the process of SE, the attacker requests to

defeat the defender using SE attacks’ skills. These char-

acteristics cause SEO simple to implement, very proper,

and more robust for single-solution-based computation.

One of the variations of the Social Engineering Opti-

mization algorithm is called MSEO_1. In the original

version of SEO, the attacker aims to assess the traits of the

defender randomly to select an efficient one, but in

MSEO_1 a roulette wheel strategy is considered to select

an appropriate trait from the defender. Therefore, the

chance of the first trait is more than other traits. Another

A new modified social engineering optimizer algorithm for engineering applications
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variation of the SEO algorithm is called MSEO_2, which

focuses on proposing a new spot for the defender inspired

by a recent real technique called reverse social engineering.

In this variation, instead of directly contacting the defen-

der, the attacker tries to make the defender believe that they

are a trustworthy individual. Another variation of the SEO

algorithm is called MSEO_3. The contribution of this

variation is to have a dynamic parameter for the number of

attacks and the number of attacks in each iteration is not

fixed (Fathollahi-Fard et al. 2019).

The significant contribution of this study includes,

firstly, a Modified SEO (MSEO) metaheuristic algorithm

with a novel adjustment operator to enhance its efficiency

into running time and search validity. This feature makes

MSEO superior to the SEO algorithm. Another advantage

of the MSEO is that algorithm nature works in high iter-

ations based on the logic of convergence, which preserves

the best solution. Additionally four engineering applica-

tions are stated for the first time including (i) location-

allocation problem for earthquake evacuation planning, (ii)

pharmaceutical supply chain network design, (iii) truck

scheduling problem in a cross-docking system, and (iv)

production planning under uncertain seasonal demand.

In this paper, a new conceptual framework for social

engineering to develop a MSEO algorithm is described.

Besides, the main goal is the development of adjusting

operators based on the defender and attacker assessment

criteria, to speed up convergence, hence making the

method more reliable for a wide range of practical appli-

cations while preserving the traits of the original SEO. This

new procedure can determine and calculate the weight of

each of them. The enhancement comprises adding adjust-

ment operators to improve its performance in terms of

search precision and running time and thus this operator is

utilized to make a new generation. The adjustment operator

strategy is also applied to a novel division based on the best

person and other random people steps. Also, the enhance-

ment comprises of the defender and the attacker assessment

criteria showing the quality of the solution for a population

for the defender as well as the attacker. Based on these

suppositions, the MSEO is established and tested on four-

teen standard benchmark functions and compared with

other aforementioned metaheuristic methods. As an

extensive comparison, the experimental results indicate

that MSEO is more efficient than original SEO, GA, FA,

HS, PSO, ACO, ABC, BEEs, ICA, BBO algorithms. To

validate the MSEO, four engineering applications are

provided and p values of the Wilcoxon test are used in this

research.

The rest of this research is examined as follows: Sect. 2

describes the social engineering optimizer in general.

Section 3 describes a modified version of this meta-

heuristic. Section 4 proposes the computational analyses

and comparison among different criteria and other algo-

rithms. The engineering applications for the MSEO algo-

rithm is examined completely in Sect. 5. Finally, Sect. 6

concludes our work and describes some future research

issues.

2 SEO algorithm

Despite the fact that in recent years, a large number of

metaheuristic algorithms have been provided, scholars

nevertheless utilize traditional algorithms to solve prob-

lems. In addition, over the past two decades, most of the

metaheuristic methods are population-based and involve a

large number of steps and parameters that make them

difficult to understand and perceive. This paper, therefore,

proposes an intelligent algorithm like many of the most

recent metaheuristic methods, and yet very simple, which

only includes four steps and three parameters for adjust-

ment. The SEO was provided by Fathollahi-Fard et al.

(2018) inspired by the rules of social engineering as an

Fig. 1 The flowchart of SEO

F. Goodarzian et al.
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emerging phenomenon in today’s real world. Thus, this

method starts with two random solutions namely the

attacker and the defender. In addition, search phases are

according to the rules of social engineering in which the

attacker uses certain techniques to obtain the desired aims.

More details about SEO can be seen in Fathollahi-Fard

et al. (2018). The flowchart and pseudo-code of the SEO

are indicated in Figs. 1 and 2. Then, the process of the SEO

is explained as follows:

Step 1: Initialize the attacker and the defender.

Step 2: Training and retraining.

Step 3: Spot an attack.

Step 4: Respond to attack.

Step 5: Select a new as a defender.

Step 6: Stop condition.

3 MSEO approach

Since this metaheuristic is recently developed, there are

only a few studies to propose new modifications and

hybridizations of this algorithm (Fathollahi-Fard et al.

2018; Goodarzian et al. 2021b, c, d, e; Elarbi et al. 2018;

Meng et al. 2016; Li et al. 2015). The employed producers

in this study differ from similar papers in the literature. In

this section, some reformation to the SEO algorithm

including (i) the number of attackers and defenders, (ii)

defender and attacker evaluation criteria, and (iii) adjust-

ment Operator is provided completely in the next subsec-

tions. The process of the MSEO algorithm is stated in the

following subsections.

3.1 The number of attackers and defenders

In this algorithm, there are two different search factors that

include the attacker and the defender. The number of

attackers and defenders as the population is considered in

this search space. The number of attackers is randomly

selected from 65 to 90% of the total population. The

number of attackers is obtained from Eq. (1):

Na ¼ floor 0:9� rand � 0:25ð Þ � N½ � ð1Þ

where rand is a random number between [0, 1]. Mean-

while, floor 0ð Þ mapping a real number is an integer. The

number of defenders Ndð Þ as complementary between Nð Þ
and Nað Þ is calculated as Eq. (2):

Nd ¼ N � Na ð2Þ

Moreover, the total population of Mð Þ is formed by

elements of N and is divided into two subgroups G and Q.

Therefore, G and Q sizes are controlled by a predetermined

constant q ratio. The group of G is a set of attackers

G ¼ G1;G2; :::;GNa
f g. Meanwhile, the group of Q includes

defenders Q ¼ Q1;Q2; :::;QNd
f g. Where in, M ¼ M1;f

M2; :::;MNg. So that, M ¼ m1 ¼ G1; M2 ¼ G2; :::;MNa
¼

GNa
;MNaþ1 ¼ Q1;MNaþ2 ¼ Q2; :::;MN ¼ QNd

.

3.2 Defender and attacker evaluation criteria

In this way, each defender and the attacker have one weight

Wa and Wd, which indicates the quality of the solution to

the defender d and the attacker a of the population Mð Þ.
Furthermore, Eqs. (3) and (4) have been used to calculate

the weight of each attacker and defender.

Wa ¼
K Mað Þ � worstm
bestm � worstm

ð3Þ

Wd ¼
K Mdð Þ � worstm
bestm � worstm

ð4Þ

where K Mað Þ and K Mdð Þ capability is obtained by evalu-

ating the attacker’s position and defender and according to

the objective function K 0ð Þ. Values worstm and bestm are

defined as Eqs. (5) and (6):

bestm ¼ min
i2 1;2;:::;Mð Þ

K Mið Þð Þ ð5Þ

worstm ¼ max
i2 1;2;:::;Mð Þ

K Mið Þð Þ ð6Þ

3.3 Adjustment operator

This improved algorithm is introduced with an adjustment

operator to enhance its efficiency in terms of search pre-

cision and running time. This operator is used to make a

Fig. 2 The pseudo-code of SEO

A new modified social engineering optimizer algorithm for engineering applications
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novel generation. The size of this part is equal to the size of

G and Q. This operator creates a new division according to

the best person and other random people from G and Q.

Also, we assume that Ytþ1
o;j the value of the element j is the

number of individuals o, then Ytþ1
o;j generated based on

Eq. (7):

Ytþ1
o;j ¼

Yt
best;j rand� q

Yt
r3;j rand[ q

(
ð7Þ

where r is a random number obtained from Eq. (8), rand is

a random number of uniform distribution and d is a fixed

value equal to 1.2 . Also, t is the number of iterations.

r ¼ rand � d ð8Þ

In Eq. (8), parts of the newly created person are updated

according to Eq. (9), if the number of other random num-

bers created is greater than the adjustment rate. The

adjustment rate is shown by the BAR and the set is equal to

the fixed partition. In Eq. (10) dy, a local search is repre-

sented by the training and retraining of the defender and the

attacker in each other in this algorithm. l an element that

controls the penetration of dy in the updating process.

Ytþ1
o;j ¼ Ytþ1

o;j þ l dLy � 0:5
� �

ð9Þ

dy ¼ RT Yt
o

� �
ð10Þ

3.4 Computational method of ISEO

The computational method for the proposed algorithm is as

follows:

Step 1: Given M as the number of members of the m-

dimensional set, the number of defenders Md and the

number of attackersMa in the total population is defined as:

Na ¼ floor 0:9� rand � 0:25ð Þ � N½ � ð11Þ
Nd ¼ N � Na ð12Þ

where rand a random number is between [0,1]. Meanwhile,

floor 0ð Þ mapping a real number is an integer.

Step 2: Initialization is randomly for the defender

Eq. (13), the attacker Eq. (14), and for the set of member

Eq. (15). In Fig. 3, an initialized pseudo-code is presented.

Q ¼ Q1;Q2; :::;QNd
f g ð13Þ

G ¼ G1;G2; :::;GNaf g ð14Þ

M ¼ m1 ¼ G1; M2 ¼ G2; :::;MNa
¼ GNa

; MNaþ1

¼ Q1;MNaþ2 ¼ Q2; :::;MN ¼ QNd
ð15Þ

Step 3: At this stage, we intend to demonstrate the

defender’s attacker’s training and retraining. In this way,

the attacker chooses the most influential trait. For this

purpose, a percent of the characteristics are selected ran-

domly and repeated directly in the same characteristic in

the defender. The number of traits for training is indicated

in Eq. (16).

NTrain ¼ round a; nVarf g ð16Þ

where a percent is selected traits and nVar nVar nVar is the
total number of traits per person. Therefore, NTrain NTrain

NTrain is the number of characteristics that are randomly

experimented with the defender.

Step 4: Calculate the weight of each defender and

attacker from the population of N, which is expressed in the

pseudo-code in Fig. 4.

Step 5: In order to carry out an attack, this algorithm

proposes four various techniques, including obtaining,

phishing, diversion theft, and pretext.

Step 6: This improved algorithm is introduced with an

adjustment operator to enhance its efficiency in terms of

search precision and running time. In the following, we

will express its pseudo-code in Fig. 5.

Fig. 3 The pseudo-code of initialization

Fig. 4 The pseudo-code of calculating the weight of each attacker and

defender

F. Goodarzian et al.
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Fig. 5 The pseudo-code of adjustment operator

Fig. 6 The flowchart of proposed MSEO Fig. 7 The pseudo-code of proposed MSEO

A new modified social engineering optimizer algorithm for engineering applications
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Step 7: In this step, the attacker finally defeats the

defender and the new defender is randomly replaced.

Step 8: If the stop criteria are met, the process ends,

otherwise we will go back to step 3.

The flowchart and pseudo-code of the MSEO algorithm

are indicated in Figs. 6 and 7.

4 Analysis and experimental outcomes

In this section, the experimental results of the efficiency of

the MSEO have been compared with other metaheuristic

methods containing SEO, GA, FA, HS, PSO, ACO, ABC,

BEE, ICA, and BBO on 15 benchmark functions.

Table 1 The parameters of the

proposed algorithms
Algorithm Parameter Value

GA Crossover probability 0.85

Mutation probability 0.02

Selection mechanism Roulette wheel

FA Light absorption coefficient 1

Mutation coefficient 0.2

Mutation coefficient damping ratio 0.99

HS Harmony memory size 20

Number of new harmonies 20

Harmony memory consideration rate 0.5

Pitch Adjustment Rate 0.1

PSO Acceleration constants [1.5, 2.5]

Inertia weights [0.55, 0.85]

Personal learning coefficient 2

Global learning coefficient 2

ACO Intensification factor (selection pressure) 0.5

Deviation-distance ratio 1

ABC The number of colony size NP 50

The number of food sources NP/2

Maximum search time 100

BEEs Neighborhood radius damp rate 0.99

Number of scout bees 30

Recruited bees scale 3

ICA Number of empires/imperialists 10

Selection pressure 1

Assimilation coefficient 2

Revolution probability 0.1

Revolution rate 0.05

Colonies mean cost coefficient 0.1

SEO Rate of collecting data 0.2

Rate of connecting attacker 0.08

Number of connections 50

BBO Habitat modification probability 1

Immigration probability [0, 1]

Step size 1

Maximum immigration 1

Migration rates 1

Mutation probability 0.06

MSEO Rate of collecting data 0.2

Rate of connecting attacker 0.08

Number of connections 50

Weight of defender 45

Weight of attacker 65

F. Goodarzian et al.
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The proposed algorithms parameters in all the experi-

ments are shown in Table 1. The population size and the

maximum number of iterations were set to 50 and 25,

respectively. Also, all algorithms were run 25 times to

achieve statistically significant results. Accordingly, the

values of the algorithm’s parameters are generated based

on random data that are reported in Table 1. To compare

based on running time, all the tests are performed on a

Laptop with 2.50 GHz and 6.00 GB of RAM. In addition,

MATLAB R2020b v9.9 software is used for the imple-

mentation of the proposed metaheuristic algorithms.

We used 15 classical benchmark functions to assess the

efficiency of the MSEO in this experiment. The benchmark

functions could be categorized into three categories

including unimodal, multimodal, and n-dimension multi-

modal. Tables 2, 3, and 4 provide the benchmark functions

of unimodal, multimodal, and fixed-dimension multimodal,

which involve the mathematical equation, range of opti-

mization variables, and the optimal values. To check the

performance and efficiency of the proposed metaheuristic

algorithms, the benchmark functions with different diffi-

culty levels are used.

The results of the proposed metaheuristic are reported in

Tables 5, 6, and 7, in which each table indicates the

average of the best solution obtained of each of the pro-

posed metaheuristic algorithms over 25 independent runs.

It is clear that the MSEO has the best efficiency and is also

efficient than other methods in most of the test functions.

The comparative performance of the proposed algorithm

on the unimodal function is shown in Table 5. MSEO was

performed on all three test functions. Also, as there is no

local solution, the unimodal functions are appropriate for

testing the convergence. These results indicate that MSEO

enhances the convergence rate of SEO. In addition, this

convergence outperforms other methods. Figure 5 shows

the behavior of the proposed methods on the unimodal

functions based on the convergence for better comparison.

Hence, the convergence of MSEO is significantly faster

than other proposed methods.

Regarding the multimodal function, this trait causes

them to benchmark the efficiency of algorithms to avoid

Table 2 Description of unimodal benchmark functions

No Name Function Dim Range fmin

F1 Griewank
f xð Þ ¼ f x1; :::; xnð Þ ¼ 1þ

Pn
i¼1

x2i
4000

�
Qn
i¼1

cos xiffi
i

p
� �

25 [-600, 600] 0

F2 Sphere
f xð Þ ¼ f x1; :::; xnð Þ ¼

Pn
i¼1

x2i
25 [-100, 100] 0

F3 SumSquares
f xð Þ ¼ f x1; :::; xnð Þ ¼

Pn
i¼1

ix2i
25 [-10, 10] 0

F4 Schwefel22:2
f xð Þ ¼ f x1; :::; xnð Þ ¼

Pn
i¼1

xij j þ
Qn
i¼1

xij j 25 [-100, 100] 0

F5 RotatedDiscusFunction F xð Þ ¼ f M x� oð Þð Þ þ F� 25 [-100, 100] 0

Table 3 Description of multimodal benchmark functions

No. Name Function Dim Range fmin

F6 Rastrigin
f x; yð Þ ¼ 10nþ

Pn
i¼1

x2i � 10 cos 2pxið Þ
� � 25 [-5.12, 5.12] 0

F7 Shubert3
f xð Þ ¼ f x1; :::; xnð Þ ¼

Pn
i¼1

P5
j¼1

j sin jþ 1ð Þxi þ jð Þ
25 [-10, 10] - 29.673

F8 Xin-She Yang N. 4
f xð Þ ¼ f x1; :::; xnð Þ ¼

Pn
i¼1

sin2 xið Þ � e�
Pn

i¼1
x2i

� �
e�
Pn

i¼1
sin2

ffiffiffiffiffi
xij j

p 25 [-10, 10] 0

F9 Quartic
f xð Þ ¼ f x1; :::; xnð Þ ¼

Pn
i¼1

ix4
i
þ random 0; 1½ Þ 25 [-1.28, 1.28] 0

F10 Periodic
f xð Þ ¼ f x1; :::; xnð Þ ¼ 1þ

Pn
i¼1

sin2 xið Þ � 0:1e�
Pn

i¼1
x2i

25 [-10, 10] 0

F11 Qing
f xð Þ ¼ f x1; :::; xnð Þ ¼

Pn
i¼1

x2 � ið Þ2 25 [-500, 500] 0
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local optima. Tables 6 and 7 indicate that the MSEO

algorithm is more reliable than the other algorithms on the

multimodal test functions. This indicates that the fast

convergence of the MSEO algorithm according to the other

proposed mechanisms in this paper does not lead to local

solutions. Additionally, the result of the MSEO is better

than the SEO and it is better than other methods in the

majority of case studies. From Tables 5, 6, and 7, it is clear

that MSEO is most effective at the obtained objective

function in benchmarks (F1-F15). This proves that the local

optima avoidance of the SEO algorithm has been improved

by the suggested technique in this paper. Hence, Figs. 8, 9

and 10 indicate the convergence curves of the fifteen test

functions, which prove the convergence of MSEO is

competitive in the majority of case studies.

Additionally, convergence graphs of the algorithms

including GA, FA, HS, PSO, ICA, ACO, ABC, BEEs,

BBO, SEO, and MSEO are indicated in Figs. 8, 9 and 10 in

which the process of optimization of the proposed algo-

rithms is indicated. The values of the objective function are

Table 4 Description of n-dimension multimodal benchmark functions

No Name Function Dim Range fmin

F12 Rosenbrock
f xð Þ ¼ f x1; :::; xnð Þ ¼

Pn
i¼1

b xiþ1 � x2i
� �2þ a� xið Þ2

h i
25 [-5, 10] 0

F13 Salomom
f xð Þ ¼ f x1; :::; xnð Þ ¼ 1� cos 2p

ffiffiffiffiffiffiffiffiffiffiffiPD
i¼1

x2i

s !
þ 0:1

ffiffiffiffiffiffiffiffiffiffiffiPD
i¼1

x2i

s
25 [-100, 100] 0

F14 AlpineN:2
f xð Þ ¼ f x1; :::; xnð Þ ¼

Qn
i¼1

ffiffiffiffi
xi

p
sin xið Þ 25 [0, 10] 2.808

F15 Ackley
f xð Þ ¼ f x1; :::; xnð Þ ¼ �a: exp �b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

x2i

s !
� exp 1

n

Pn
i¼1

cos cxið Þ
� �

þ aþ exp 1ð Þ
25 [-32, 32] 0

Table 5 Mean normalized

outcomes of unimodal

benchmark functions (F1–F5)

F GA FA HS PSO ACO ABC BEEs ICA SEO BBO MSEO

F1 3.91 5.58 2.45 4.67 5.47 5.78 3.42 3.25 1.26 4.21 1.12

F2 2.23 6.36 1.56 5.78 6.04 7.25 5.39 4.56 7.34 4.99 1.00

F3 10.24 50.46 7.68 19.34 15.45 14.35 7.56 25.01 8.93 9.02 1.00

F4 4.56 17.56 7.91 12.4 5.67 7.89 16.77 2.56 1.35 6.23 1.23

F5 3.28 2.76 2.45 4.02 4.21 3.87 3.12 5.21 1.45 5.39 1.19

Table 6 Mean normalized

outcomes of multimodal

benchmark functions (F6–F11)

F GA FA HS PSO ACO ABC BEEs ICA SEO BBO MSEO

F6 8.45 34.67 4.56 2.45 45.16 3.56 56.34 14.03 122.4 69.21 1.34

F7 18.45 3.05 3.47 11.23 13.23 23.04 5.62 46.12 6.13 5.67 1.00

F8 1.00 15.36 16.32 29.31 32.02 16.34 67.24 4.56 13.67 14.78 1.00

F9 19.23 18.7 56.43 5.05 5.67 76.03 3.12 11.03 4.19 23.01 1.00

F10 29.34 13.59 10.78 28.12 31.02 13.09 36.02 8.23 6.23 56.41 1.04

F11 9.23 10.56 5.78 34.7 2.56 34.6 7.89 13.45 2.67 41.8 1.00

Table 7 Mean normalized

outcomes of n-dimension

multimodal benchmark

functions (F12–F15)

F GA FA HS PSO ACO ABC BEEs ICA SEO BBO MSEO

F12 12.01 63.25 27.23 17.26 29.03 45.13 48.23 43.02 8.34 15.67 1.00

F13 7.24 42.81 12.03 4.02 3.71 7.57 30.31 6.34 2.45 3.12 1.00

F14 16.8 24.1 10.5 6.77 14.6 8.91 48.12 6.78 3.21 9.21 1.12

F15 21.7 56.8 27.1 3.45 5.76 23.5 56.25 3.61 2.54 14.67 1.67
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indicated in Figs. 8, 9 and 10 that shows the best objective

function optimum achieved from Monte Carlo simulations

that are the real objective function value, not normalized.

Figure 8a (F1) indicates the results achieved for the

eleven algorithms when the F1 Griewank function is

applied. From Fig. 8a (F1), we can conclude that the

MSEO during the process of optimization is better than the

original SEO. Hence, MSEO showed almost the same fast

convergence rate, as well as it outperformed in all gener-

ations. MSEO and SEO are the best than the other algo-

rithms during the total process of searching.

Figure 8b (F2) indicates the optimization results for the

F2 Sphere function. Besides, MSEO emerges as best

among all the other algorithms during all processes of

optimization.

Figure 8c (F3) illustrates the optimization results for the

F3 Sum Squares function. Obviously, MSEO and SEO

have the same convergence rate during the total opti-

mization process except in the first iteration of 25 iterations

in this unimodal function. Eventually, GA, ABC, and FA

find the global minimum, respectively.

Figure 8d (F4) displays the optimization outcomes for

the F4 Sum Squares function. Noticeably, MSEO and SEO

a

b

c

Fig. 8 Comparison of the convergence of the various algorithms

based on unimodal functions (F1–F5)

d

q

Fig. 8 continued
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have the same convergence rate during the total opti-

mization process in this unimodal function. Generally, the

MSEO algorithm is more robust than other metaheuristic

algorithms at the 25 iterations.

Figure 8q (F5) demonstrates the optimization results for

the ‘F5 Rotated Discus Function’ function. Hence, it is

clear that MSEO and SEO have the same convergence rate

during the total optimization process in this unimodal

function. All in all, the MSEO algorithm performs better

Fig. 9 Comparison of the convergence of the various algorithms

based on multimodal functions (F6–F11)
Fig. 9 continued
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than other proposed algorithms at the 25 iterations. Addi-

tionally, BBO has the worst efficiency compared to other

presented algorithms.

Figure 9e (F6) indicates the optimization results for the

F6 Schwefel22:2 function. This figure indicates that there is

a little variance between the performance of FA, HS, PSO,

ICA, and BBO for this benchmarking function. As a con-

clusion of this figure, MSEO is better than basic FA during

the optimization process in this multimodal benchmarking

function at the 25 iterations.

Figure 9f (F7) indicates the performance obtained for

the F7 Shubert3 function. For this multimodal function,

MSEO is the best than the original SEO and the other

proposed algorithms. Here, SEO and MSEO illustrate that

the convergence rate of these algorithms is lower than other

algorithms during all iteration processes. The convergence

rate of algorithms is lower than other algorithms. But, the

speed of convergence of ICA, FA, PSO, ACO, and HS is

almost the same during all optimization process.

Figure 9g (F8) indicates the optimization results

obtained for the eleven algorithms in the F8 Xin-She Yang

N. 4 function. Clearly, the convergence rate of all algo-

rithms has been decreasing in all iterations processes, and

the MSEO algorithm has a better convergence rate

Fig. 10 Comparison of the convergence of the various algorithms

based on n-dimension multimodal functions (F12-F15)

Fig. 10 continued

Fig. 11 The mean normalized results of F1–F5 benchmark functions
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performance than other algorithms. At last, HS and ACO

convergence rate is almost the same value.

Figure 9h (F9) indicates the optimization results for the

F9 Quadratic function . Obviously, MSEO has the fastest

convergence rate for finding the global minimum. BBO

ACO, HS, FA, and ICA are not close in the maximum

number of iterations at this function, which the process is

as follows: first, the convergence rate is strongly

descending at the first iterations, and second, the conver-

gence rate is slowly declining at the last iterations. Even-

tually, MSEO was significantly the best of all other

proposed algorithms during all processes.

Figure 9i (F10) shows the optimization results for the

F10 Periodic function. This figure shows that MSEO is

slightly superior to original SEO during the optimization

process in the multimodal benchmarking function. Also,

the convergence rate of the MSEO algorithm is better than

other algorithms. On the other hand, the convergence rate

of the ICA, ABC, and PSO algorithms is almost close and

the same. It is clear that MSEO outperforms better than the

other algorithms during the process of iterations.

Figure 9j (F11) demonstrates the optimization results

for the F11 Qing function. This figure shows that MSEO is

superior to the main SEO during the optimization process

in the multimodal benchmarking function. Furthermore,

the convergence rate of the MSEO algorithm is more

powerful than other algorithms. On the other hand, the

convergence rate of the BBO, ACO, HS, and FA algo-

rithms is almost close and the same. It is manifested that

MSEO outperforms better than the other algorithms during

the process of iterations. As a result, MSEO is more reli-

able than other proposed algorithms to find optimal

solutions.

Figure 10k (F12) indicates the optimization results for

the F12 Rosenbrock function. From this Figure, we could

see that MSEO is slightly superior to the original SEO

during the optimization process in this n-dimension mul-

timodal benchmarking function. Clearly, MSEO and SEO

outperform all the other proposed algorithms in this

benchmarking function. In addition, the convergence rate

of GA, FA, BEEs, ICA, SEO, ABC, PSO, and MSEO

algorithms is almost the same during all iterations. But, the

convergence rate of HS, ACO, and BBO algorithms is

sharply declining during the initial iterations and the con-

vergence rate is fixed during the last iterations. Eventually,

the MSEO algorithm is better than the other algorithms in

terms of convergence rate during the optimization process

in this benchmark function.

Figure 10l (F13) indicates the optimization results for

the F13 Salomon function. In this Figure, MSEO is the

slightest superior to the SEO during the optimization pro-

cess in this n-dimension multimodal benchmarking func-

tion. The convergence rate of all algorithms is almost the

same except for the ICA. Eventually, the MSEO finds the

global minimum during all iterations.

Figure 10m (F14) illustrates the optimization outcomes

for the F14 AlpineN:2 function. In this Figure, the MSEO

algorithm is more robust and the best compared to the other

presented algorithms. Also, the ACO is very weak as

opposed to the other suggested algorithms, while the con-

vergence of the ABC, PSO, HS, FA and SEO algorithms is

very close.

Figure 10n (F15) indicates the optimization results for

the F15 Ackley function. The behavior of algorithms is the

same except for in this Figure. However, the MSEO

algorithm shows that it is more efficient during 25

iterations.

As such, Figs. 11, 12 and 13 display the mean normal-

ized results of the proposed algorithms. From Figs. 11, 12

and 13, it is clear that the MSEO algorithm is better than

the other proposed algorithms at finding objective function

minimum on the ten test benchmark functions. Besides,

SEO is the second most effective, performing best on the

Fig. 12 The mean normalized results of F6–F11 benchmark functions

Fig. 13 The mean normalized results of F12–F15 benchmark

functions
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other ten of the ten benchmarks when multiple runs are

made.

In this regard, first of all, the metaheuristic algorithms

have been tuned in this comparison. Hence, the methods

have been run for 25 iterations and the best (B), the worst

(W), the average (M), and also the standard deviation (SD)

are mentioned and shown in Table 8. Therefore, the

dimension (D = 25) for each benchmarked function is

considered. This comparison is according to the equal

number of fitness evaluations. All comparative algorithms

have been run for a maximum of 25 iterations (i.e. GA, FA,

HS, ABC, PSO, ICA, ACO, BBO, BEEs, SEO, and

MSEO). From Table 8, it is clear that the improved version

of SEO has better ranks than the other methods. In all of

the test problems, MSEO algorithm indicates the best

value. Eventually, the MSEO is the best in the total ranking

by 1.2 on average of rank as indicated in Table 8.

Moreover, to highlight the performance of the algo-

rithms, statistical analyses have been done. The means

plots and Least Significant Difference (LSD) for all

methods for benchmark functions (F1–F15), has been

provided as seen in Fig. 14. All statistical results prove that

our MSEO not only performs better than the original ver-

sion but is also stronger and more robust than the other

algorithms. Additionally, the Standard Deviation (SD) for

the proposed algorithms for benchmark functions (F1–F15)

is provided in Fig. 15 which shows that MSEO algorithm

has a better performance in all benchmark functions except

for the F7 algorithm. Our findings show that the MSEO is

more capable of solving the problem, takes less running

time, and has better convergence than other algorithms.

4.1 The parameter sensitivity test for MSEO

In this section, sensitivity analyses have been performed on

the parameters of the MSEO to investigate the behavior of

the presented 15 benchmark function models. The MSEO

algorithm is recognized as the most robust and the most

efficient metaheuristic in this study. A set of changes

including the rate of collecting data, rate of the connecting

attacker, number of connections, the weight of defender,

and weight of attacker for proposed 15 benchmark function

models are analyzed. The analysis is divided into five

instances, namely, I1–I5 as shown in Table 9. Furthermore,

all outcomes mean for 25 iterations are indicated in

Table 10 and Fig. 16.

According to Table 10 and Fig. 16, it can be concluded

that the benchmark functions (F1–F15) of the MSEO

algorithm increase by increasing the amount of these

parameters.
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Fig. 14 The Means plot and LSD intervals for the proposed methods in equal number of fitness evaluations for benchmark functions (F1–F15)
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5 Engineering applications

In this section, four engineering application instances are

presented to prove the proper performance of the proposed

algorithm. The first case is taken from Ghasemi et al.

(2019) who presented a mathematical model according to

the location and allocation problems of the shelters for

earthquake evacuation planning. The second case is taken

from Goodarzian et al. (2020) who designed a new phar-

maceutical supply chain network under uncertainty. The

next case is from Fathollahi-Fard et al. (2019) who for-

mulated a scheduling problem of trucks in a cross-docking

system. Finally, the last example is taken from Goli et al.

(2019) who considered a production planning problem

under uncertainty. Before introducing the cases, the

assessment metrics are as follows:

5.1 Assessment metrics

– Mean ideal distance (MID) (Goodarzian et al. 2021d;

Goodarzian et al. 2021e): the goal of the MID is the

distance between the Pareto optimal solutions. This

metric is formulated based on Eq. (17).

MID ¼

Pn
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1i�f best

1

fmax
1;total

�fmin
1;total

� �2

þ f2i�f best
2

fmax
2;total

�fmin
2;total

� �2
s

n
ð17Þ

where f ji indicates the value of jth objective for the ith

solution in Pareto frontier and f minj;total and f maxj;total illustrate

the minimum and maximum amounts of the ith objec-

tive between solutions in the Pareto frontier. In addi-

tion, n represents the number of Pareto solutions. Low

values of this metric indicate high performance and

quality.

– Spacing metric (SM) (Goodarzian et al. 2020): the SM

demonstrates the uniformity of the spread of the non-

dominated set of solutions. The SM metric is computed

according to Eq. (18).

SM ¼
Pn�1

i¼1 di � d
		 		

n� 1ð Þd
ð18Þ
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Fig. 14 continued
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where d indicates the average Euclidean distance and di
is the Euclidean distance between two adjacent Pareto

solutions. Lower values of SM indicate higher effi-

ciency. Hence, when SM is close to zero, the distance

among all the adjacent solutions will be equal.

– Spread of non-dominance solution (SNS) (Goodarzian

et al. 2020): the higher value of these metrics brings the

better performance. This metric is formulated by the

following equation:

Fig. 15 The SD for the proposed methods in an equal number of fitness evaluations for benchmark functions (F1–F15)

F. Goodarzian et al.
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SNS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNPS
i¼1 ðMID�

Pqobj
j¼1 f

j
i Þ

2

NPS� 1

s
ð19Þ

It should be noted that NPS is the number of Pareto

solutions for the algorithm. f ji is the ith solution and jth

objective function and the qobj is the number of the

objective function.

Fig. 15 continued

Table 9 The sensitivity analysis on the parameters of MSEO

Parameters I1 I2 I3 I4 I5

Rate of collecting data 0.2 0.3 0.4 0.5 0.6

Rate of connecting attacker 0.08 0.15 0.2 0.25 0.3

Number of connections 50 60 70 80 90

Weight of defender 45 55 65 75 85

Weight of attacker 65 75 85 95 100

Table 10 The results of the

benchmark functions of the

MSEO algorithm

Instances F1 F2 F3 F4 F5 F6 F7 F8

I1 0.006592 0.485005 0.424471 0.0237323 1.34214 1.245005 - 87.5408 0.0007304

I2 0.01244 0.96771 0.56032 0.0765662 2.45617 2.54412 - 68.76 0.005662

I3 0.34512 1.56321 0.96543 0.234065 2.98071 4.63211 - 54.12 0.078943

I4 1.56091 2.34098 1.45076 0.791203 3.40912 6.67912 - 47.54 0.560912

I5 2.7812 4.45712 3.78923 2.543219 7.29817 9.40981 - 31.15 1.542301

Instances F9 F10 F11 F12 F13 F14 F15

I1 3.38158 1.015763 16.32458 253.012 0.074728 0.345472 2.32086

I2 5.67731 2.34401 18.5778 344.2331 0.23042 0.788091 3.577021

I3 7.04512 4.21309 23.1209 344.2331 1.43891 1.054109 5.345501

I4 9.45326 6.45098 25.54309 408.45671 3.43891 4.64312 7.892341

I5 12.87023 8.78923 37.5678 510.5431 7.76541 8.89212 11.678031
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Fig. 16 The behavior outcomes of the MSEO algorithm in benchmark functions (F1–F15)
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Fig. 16 continued
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– The relative percentage deviation (RPD) (Goodarzian

et al. 2020, 2021b; e): the RPD is shown as follows:

RPD ¼ Algsol �Minsolj j
Minsol

ð20Þ

where Algsol represents the value of objective in indi-

vidual trials and also Minsol shows the best solution

among all trials.

– Number of partial solutions (NPS) (Goodarzian et al.

2021b): NPS shows the number of solutions in Pareto

front for each algorithm and the bigger NPS is more

appropriate.

5.2 Case 1: location-allocation problem
for earthquake evacuation planning

Ghasemi et al. (2019) proposed a multi-objective, multi-

echelon, multi-commodity, and multi-period model for

earthquake evacuation planning. Their main goals have

been to minimize the cost of location and allocation of

facilities to distribution centers and to minimize the

shortage of relief commodities. Their proposed model is

solved by utilizing modified multiple-objective particle

swarm optimization (MMOPSO) and Non-Dominated

Sorting Genetic Algorithm-II (NSGA-II) algorithms. The

case study was considered in region 1 of Tehran/Iran.

Then, to assess the efficiency of their suggested model, two

assessment metrics, MID (Mean Ideal Distance) and SM

(Spacing metric) have been used.

Table 11 illustrates the outcomes comparing the NSGA-

II and MMOPSO methods with the proposed MSEO

algorithm. As can be seen, the results of MID and SM

metrics are reported for 10 Pareto points. The average MID

metric for NSGA-II, MMOPSO, and MSEO algorithms are

4.012, 3.921, and 3.901, respectively, which shows the

superiority of the MSEO over the other two algorithms.

Also, the average SM metric for NSGA-II, MMOPSO, and

MSEO algorithms are 0.345, 0.338, and 0.336, respec-

tively, which shows more efficiency of the MSEO method

than the other two methods. Therefore, the computational

(CPU) time of the MSEO with an average of 15.1 s is

better than the other two algorithms.

5.3 Case 2: pharmaceutical supply chain network
design

Goodarzian et al. (2020) designed a multi-objective, multi-

period, and multi-product mathematical model for the

pharmaceutical supply chain network. A production–dis-

tribution-purchasing-ordering-inventory holding-alloca-

tion-routing is considered under uncertainty. Their main

aim has been to minimize supply chain costs, minimize

pharmaceutical delivery time, and maximize route relia-

bility. To solve their proposed model, multi-objective

social engineering optimization (MOSEO), multi-objective

simulated annealing (MOSA), multi-objective Keshtel

algorithm (MOKA), and multi-objective firefly algorithm

(MOFFA) algorithms have been utilized. MID (Mean Ideal

Distance) and (SNS) spread of non-dominance solution

metrics were used to prove the performance of the meta-

heuristic algorithms.

Moreover, a comparison of the efficiency assessment

metrics of the proposed methods is shown in Table 12. The

considered problem for 10 Pareto points is solved. The first

five was related to small-scale problems and the second

five were relevant to large-scale problems. As it is known,

the CPU time to solve the model with the MSEO algorithm

for all cases was less than other algorithms. Likewise, the

MSEO is better than other methods in all cases in terms of

MID and SNS metrics. Therefore, it can be said that, in

general, the MSEO algorithm has performed better than

MOSEO, MOSA, MOKA, and MOFFA algorithms.

Table 11 Metrics obtained for

each algorithm (Case1)
No. NSGA-II MMOPSO MSEO

MID SM Time (s) MID SM Time (s) MID SM Time (s)

1 2.259 0.192 3 2.257 0.188 3 2.255 0.187 3

2 2.392 0.198 5 2.349 0.192 5 2.345 0.190 5

3 2.672 0.225 7 2.610 0.219 6 2.606 0.217 6

4 2.989 0.238 15 2.933 0.232 9 2.929 0.231 8

5 3.426 0.250 19 3.386 0.245 12 3.382 0.245 11

6 4.933 0.420 25 4.875 0.416 16 4.825 0.415 14

7 4.995 0.450 31 4.903 0.443 21 4.891 0.440 18

8 5.326 0.467 40 5.100 0.450 25 5.080 0.447 23

9 5.521 0.486 66 5.289 0.479 32 5.246 0.475 28

10 5.615 0.528 79 5.511 0.518 38 5.459 0.515 35

Ave 4.012 0.345 29 3.921 0.338 16.7 3.901 0.336 15.1
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5.4 Case 3: Truck scheduling problem in a cross-
docking system

Fathollahi-Fard et al. (2019) formulated a truck scheduling

problem in a cross-docking system. Their proposed model

was to determine the scheduling of the truck sequence in

the receipt and delivery of commodities. They presented

four different versions of the SEO algorithm to solve their

proposed model. Each version of SEO includes a change in

weights on the SEO features using changes in search

strategies. Accordingly, firstly, the MSEO-1 algorithm is

presented and changes are made in the training and

retraining phase. Thereafter, MSEO-2 algorithm is con-

sidered as a new spot for the defender. Then, the MSEO-3

algorithm is proposed as a dynamic parameter for the

number of attacks. The proposed algorithms are then

combined to generate a new algorithm. For example, the

hybridization of MSEO-1 and MSEO-2 algorithms leads to

the MSEO-12 algorithm. The hybridization of MSEO-1

and MSEO-3 algorithms leads to the MSEO-13 algorithm.

Finally, the hybridization of MSEO-1, MSEO-2, and

MSEO-2 algorithms leads to the MSEO-123 algorithm.

Table 13 demonstrates a comparison of the assessment

metrics of the proposed algorithms. The lower the Relative

Percentage Deviation (RPD) metric, the better the algo-

rithm. The Gap metric is also calculated based on the

equation Gap ¼ ðZal � ZbestÞ=Zbest. As can be seen, their

model has been solved by 10 problems with different sizes

as well as the results of RPD, Gap, and CPU time criteria

have been reported. The CPU time of the MSEO algorithm

has been better for all cases than other suggested algo-

rithms. For instance, the first CPU time for the MSEO

approach was 1608.5 s and for the MSEO-13, MSEO-12,

MSEO-123, and SEO-2 approaches were 1693.2, 1616.6,

1643.0 and 1670.9 s, respectively. In this regard, GAP and

RPD values in MSEO show better performance than other

algorithms and the outcomes show the superiority of this

method over other algorithms.

5.5 Case 4: Production planning under uncertain
seasonal demand

Goli et al. (2019) suggested a multi-objective and multi-

period model of integrated production planning consider-

ing seasonal demand. The purpose of their model was to

decrease the costs of outsourcing production, maintenance,

and shortages along with maximizing customer satisfac-

tion. The NSGA-II and multi-objective invasive weed

optimization algorithm (MOIWO) was used to solve their

proposed model. In order to increase the effectiveness of

their suggested algorithms, their parameters were estimated

by the Taguchi approach. Mean Ideal Distance (MID),
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Number of Partial Solution (NPS), and Rate of Achieve-

ment to two objectives Simultaneously (RAS) metrics were

also used to assess the efficiency and performance of their

proposed algorithms.

Table 14 displays the outcomes comparing the NSGA-II

and MOIWO with the developed MSEO algorithm for 10

Pareto points resulting from model solving. The average

MID metric for NSGA-II, MOIWO, and MSEO algorithms

are 125,247.5, 123,750.8, and 120,495.10, respectively.

The average NPS metric for NSGA-II, MOIWO, and

MSEO algorithms are 97.4, 22.00, and 111.30, respec-

tively. Finally, the average RAS metric for NSGA-II,

MOIWO, and MSEO algorithms are 0.20, 0.16, and 0.13,

respectively. It is clear that the MSEO shows more quality

than the other two algorithms in terms of MID, NPS, and

RAS assessment metrics.

5.6 Statistical test

The Wilcoxon signed-rank test is a nonparametric statisti-

cal test that is employed to assess the similarity of two

samples related to the ranking scale. This test indicates

whether the achieved modification by MSEO is statistically

significant or not. This test is conducted based on com-

paring the outcomes of the MSEO algorithm and other

algorithms at a significance level of 5%. Table 15 illus-

trates the calculated p values by this test. Values of p val-

ues less than 0.05 show that the zero hypothesis is rejected.

This means that at the 5% level there is a significant dif-

ference between the MSEO algorithm and other algo-

rithms. As can be seen, the calculated p values were below

0.05. Therefore, the calculated values statistically confirm

the achieved modification by MSEO. Then, it can be said

that the results of solving the MSEO approach have

Table 13 Metrics obtained for each algorithm (Case 3)

No. MSEO-13 MSEO-12 MSEO-123 SEO-2 MSEO

RPD GAP Time (s) RPD GAP Time (s) RPD GAP Time (s) RPD GAP Time (s) RPD GAP Time

(s)

1 0.061 0.08751 1693.2 0.047 0.03833 1616.6 0.034 0.055287 1643.0 0.072 0.07321 1670.9 0.029 0.03819 1608.5

2 0.055 0.02746 1620.3 0.053 0.07123 1689.3 0.030 0.051233 1657.7 0.078 0.09485 1726.5 0.024 0.02713 1614.4

3 0.059 0.06413 1459.9 0.045 0.03728 1423.1 0.033 0.052827 1444.4 0.068 0.02303 1403.6 0.027 0.02224 1394.7

4 0.057 0.02645 1795.2 0.039 0.02631 1795.0 0.029 0.023178 1789.5 0.081 0.09152 1909.0 0.025 0.02309 1775.5

5 0.055 0.02794 1623.1 0.042 0.03865 1640.0 0.037 0.024892 1618.3 0.086 0.06293 1678.3 0.030 0.02598 1610.6

6 0.060 0.03199 1595.4 0.040 0.03139 1594.5 0.035 0.031237 1594.2 0.084 0.03348 1597.7 0.032 0.03125 1590.0

7 0.072 0.05662 1621.9 0.048 0.05093 1613.1 0.040 0.051507 1614.0 0.075 0.06206 1630.2 0.036 0.05011 1607.1

8 0.071 0.05623 1610.7 0.050 0.05065 1602.2 0.048 0.024155 1561.8 0.068 0.10109 1679.1 0.045 0.02245 1521.4

9 0.076 0.08758 1602.0 0.059 0.07964 1590.3 0.043 0.023209 1507.1 0.078 0.10190 1623.1 0.039 0.02197 1506.9

10 0.080 0.10709 1607.5 0.064 0.11814 1623.5 0.038 0.032734 1499.5 0.082 0.10145 1599.3 0.035 0.03063 1385.3

Table 14 Metrics obtained for

each algorithm (Case 4)
No. NSGA-II MOIWO MSEO

MID NPS RAS MID NPS RAS MID NPS RAS

1 2128.40 99.00 0.45 2392.87 29.00 0.50 2115.67 107.00 0.39

2 9901.84 97.00 0.34 10,025.83 7.00 0.23 9983.64 114.00 0.21

3 14,960.24 97.00 0.18 17,064.71 12.00 0.20 13,584.15 110.00 0.16

4 26,614.19 100.00 0.22 29,887.93 11.00 0.02 26,178.54 126.00 0.02

5 43,885.55 95.00 0.27 43,253.99 19.00 0.12 43,189.12 103.00 0.12

6 65,925.99 98.00 0.03 65,007.11 13.00 0.10 64,989.14 109.00 0.04

7 170,150.20 98.00 0.16 172,745.85 35.00 0.15 170,089.55 105.00 0.12

8 252,032.80 99.00 0.11 256,509.70 27.00 0.11 251,975.90 115.00 0.11

9 284,951.50 95.00 0.21 273,177.90 30.00 0.09 271,256.50 113.00 0.08

10 381,924.15 96.00 0.08 367,442.31 37.00 0.08 351,588.65 111.00 0.08

Ave 125,247.5 97.4 0.20 123,750.8 22.00 0.16 120,495.10 111.30 0.13
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superior and more robust than other proposed algorithms in

this paper.

6 Conclusion, limitation, and future works

This paper developed a modified metaheuristic method

called MSEO for a set of benchmarked optimization

problems by using a new adjust operator based on a novel

defender and attacker assessment criteria. This idea deter-

mined the weight of each defender and attacker. The main

goal was to better balance the search accuracy, running

time, convergence speed as well as to develop a new

generation of the algorithm. In addition to the development

of a novel adjust operator, MSEO was compared with a set

of famous and recent algorithms including GA, FA, HS,

PSO, ACO, ABC, BEEs, ICA, SEO, and BBO algorithms

based on 14 benchmark functions covering the character-

istics of unimodal, multimodal, and n-dimension multi-

modal. To prove the efficiency and performance of MSEO,

a series of analyses were conducted. Four engineering

application instances were presented to prove the proper

performance of the proposed algorithm. The first case was

according to the location and allocation problems of the

shelters for earthquake evacuation planning. In this case,

the computational (CPU) time of the MSEO with an

average of 15.1 s performs better than the other two

algorithms (NSGA-II and MMOPSO). The second case

designed a new pharmaceutical supply chain network

under uncertainty. In this case, the MSEO algorithm has

performed better than MOSEO, MOSA, MOKA, and

MOFFA algorithms. Next a scheduling problem of trucks

in a cross-docking system was formulated. In this case,

GAP and RPD values in MSEO showed better performance

than other algorithms and the outcomes showed the supe-

riority of this method over other algorithms. Finally, the

last example considered a production planning problem

under uncertainty. In this case, the MSEO showed more

quality than the NSGA-II and MOIWO in terms of MID,

NPS, and RAS assessment metrics. The outcomes were

discussed and analyzed in terms of mean normalized

results, convergence rate, and standard deviation. The

experimental results illustrate that this approach is a fea-

sible and effective way of resolving global numerical

optimization problems. Most notably, it was observed that

the MSEO algorithm performed better than all versions of

proposed algorithms in the majority of case studies.

The main bounds and limitations of the SEO algorithm

are summarized as follows: the SEO algorithm is not able

to calculate the global optimum and the local optimum.

The SEO algorithm also requires access to a computer

system equipped with features such as high RAM and

CPU. For future works, the proposed MSEO algorithm canTa
bl
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be applied to solve other optimization problems, such as

the optimization of the pharmaceutical supply chain net-

work, vehicle routing, and scheduling problems. Addi-

tionally, hybridization of proposed algorithms with other

evolutionary mechanisms such as crossover and mutation

operators are possible. Considering the robust measures to

propose a robust version of the proposed algorithm is

another suggestion for future study.
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