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Abstract
Home health care (HHC) logistics have become a hot research topic in recent years due to the importance of HHC services
for the care of ageing population. The logistics of HHC services as a routing and scheduling problem can be defined as the
HHC problem (HHCP) academically including a set of service centers and a large number of patients distributed in a specific
geographic environment to provide various HHC services. The main challenge is to provide a valid plan for the caregivers,
who include nurses, therapists, and doctors, with regard to different difficulties, such as the time windows of availability
for patients, scheduling of the caregivers, working time balancing, the time and cost of the services, routing of the
caregivers, and route balancing for their routes. This study establishes a biobjective optimization model that minimizes (i)
the total service time and (ii) the total costs of HHC services to meet the aforementioned limitations for the first time. To
the best of the authors’ knowledge, this research is the first of its kind to optimize the time and cost of HHC services by
considering the route balancing. Since the model of the developed HHCP is complex and classified as NP-hard, efficient
metaheuristic algorithms are applied to solve the problem. Another innovation is the development of a new self-adaptive
metaheuristic as an improvement to the social engineering optimizer (SEO), so-called ISEO. An extensive analysis is done to
show the high performance of ISEO in comparison with itself and two well-known metaheuristics, i.e. FireFly algorithm and
Artificial Bee Colony algorithm. Finally, the results confirm the applicability of new suppositions of the model and further
development and investigation of the ISEO more broadly.

Keywords: home health care (HHC); HHC services; HHC problem; service time; route balancing; metaheuristic algorithms

1. Introduction

Home health care (HHC) is a set of logistics activities for visit-
ing, curing, and supporting the old and elderly patients at their
home (Decerle, Grunder, El Hassani, & Barakat, 2019). The HHC
services provide a wide range of health services as the infor-
mal care with regard to the convenience of the patients and

are usually more economical and efficient than the formal ser-
vices provided at a hospital. Furthermore, the HHC services are
highly recommended for patients with chronic illnesses, who re-
quire an on-time service from a health system (Fathollahi-Fard,
Hajiaghaei-Keshteli, & Mirjalili, 2020a). In this regard, various
sorts of the care are carried out depending on the need of the pa-
tients. The caregivers to provide the HHC services are composed
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of nurses, doctors, and therapists, who provide the full range
of care required, such as personal cleaning, injections, bandage,
and much more (Moussavi, Mahdjoub, & Grunder, 2019). There-
fore, the HHC services have been grown in response to the needs
of the patients at the community level (Abdellatif et al., 2019).
One of the reasons for this rapid growth is the demonstration
of the HHC efficacy and performance when faced with different
patient needs, which have been proven to increase the efficiency
of the HHC services (Bahadori-Chinibelagh, Fathollahi-Fard, &
Hajiaghaei-Keshteli, 2019; Shi, Boudouh, & Grunder, 2019).

The logistics operations of these services, such as visiting
patients by a set of caregivers, drug delivery, medical equip-
ment, and especially the scheduling and routing of the care-
givers, motivate an optimization problem so-called the home
health care problem (HHCP). The HHCP is classically an exten-
sion to the vehicle routing problem with time windows (VRPTW;
Shi, Boudouh, & Grunder, 2017; Shi, Boudouh, Grunder, & Wang,
2018). This development aims to make the scheduling and rout-
ing decisions for the caregivers to create a valid plan that is
complex due to different difficulties such as the time windows
of availability for patients, scheduling of the caregivers, work-
ing time balancing, the time and cost of the services, rout-
ing of the caregivers, and route balancing for their routes. This
study proposes a biobjective optimization model that minimizes
(i) the total service time and (ii) the total costs of HHC ser-
vices simultaneously with regard to the aforementioned limi-
tations for the first time. Due to the complexity of the model
in large-scaled networks, a new improvement to the social en-
gineering optimizer (SEO; Fathollahi-Fard, Hajiaghaei-Keshteli,
& Tavakkoli-Moghaddam, 2018a) is developed and compared
with its general idea and with two well-known metaheuris-
tics, i.e. FireFly algorithm (FFA) and Artificial Bee Colony (ABC)
algorithm.

Therefore, the main highlights of this paper are as follows:

� A biobjective HHC routing and scheduling problem with time
windows is introduced to minimize the total cost and the ser-
vice time.

� Simultaneous consideration of the route balancing, service
time, and working time balancing is contributed to the liter-
ature for the first time.

� A new improvement to the SEO, called improved SEO (ISEO),
is developed.

This paper unfolds as follows: Section 2 presents the litera-
ture review in a comprehensive survey with an identification of
literature gaps. Section 3 introduces the proposed HHCP and its
model. Section 4 explains our development on the SOE with its
mathematics and implementation on our HHCP. Next, Section
5 contains a numerical example, the results of the metaheuris-
tic algorithms, the trade-off among the total time of operations
and the total cost of the HHC services, a comparison according
to the Pareto optimal analyses, and sensitivity analyses of the
offered model, along with the practical insights. Finally, Section
6 provides the conclusions and future research avenues.

2. Literature Review

Here, the literature of HHCP is reviewed as follows: To the best
of our knowledge, the study of Begur, Miller, and Weaver (1997)
is the earliest study. They suggested a decision support system
(DSS) as a tool that would allow the managers of HHC services
to manage their caregivers efficiently and effectively and then
utilized the suggested DDS for the scheduling and routing de-

cisions of 10 000 HHC organizations across the United States.
Hence, the University of Alabama’s Productivity Center and the
Visiting Nurses Association extended a spatial DSS (SDSS) to in-
vestigate their problem in a joint project. Later, Cheng and Rich
(1998) formulated for the first time a mixed-integer linear pro-
gramming (MILP) model for the scheduling and routing decisions
in an HHCP. As an extension to the VRP, each patient must be
visited by a single “feasible” caregiver like a vehicle in the VRP.
Since their problem was NP-hard, a parallel tour-building heuris-
tic was extended for finding an optimal solution.

In another important paper, Bertels and Fahle (2006) ex-
tended a hybrid setup for a mixed scenario-based HHCP with
various heuristics. Additionally, an MILP was established to min-
imize the transportation costs and to maximize the satisfac-
tion of patients and caregivers. A combination of constraint pro-
gramming, linear programming, and metaheuristic algorithms
for the HHCP was utilized. Akjiratikarl, Yenradee, and Drake
(2007) designed a particle swarm optimization (PSO) algorithm
based on the collaborative scheduling algorithm to solve a
scheduling of HHCP. They validated this model using a real data
set in the UK. Their objective was the minimization of the to-
tal distance traveled by all caregivers while satisfying the ca-
pacity of the vehicle and the time window constraints. In ad-
dition, Trautsamwieser, Gronalt, and Hirsch (2011) introduced a
variable neighborhood search (VNS)-based heuristic for the daily
planning of HHC services; their objective was to minimize the
sum of driving times, waiting times, and the dissatisfaction lev-
els of patients and caregivers. They used three numerical exam-
ples with real-life data from Austria. Later, another important
study was done by Mascolo and Gouin (2013), who formulated a
generic simulation model to evaluate the efficiency of steriliza-
tion services in the HHCP. Their model can be utilized for testing
changes in the organization of a given sterilization service to en-
hance its efficiency. Hence, a case study is provided to validate
the model. Torres-Ramos, Alfonso-Lizarazo, Reyes-Rubiano, and
Quintero-Araújo (2014) built a mathematical model for the HHCP
with multiple treatments and time windows. According to the
cost and quality implications, an MILP model was provided for
the planning of the periodic schedule of medical caregivers and
the route planning for patient visits with workload and attention
capacity constraints.

Due to the high complexity of HHCPs, recent studies
have mainly focused on the high-performance heuristics and
metaheuristics. For example, Hiermann, Prandtstetter, Rendl,
Puchinger, and Raidl (2015) suggested several metaheuristic
algorithms, including VNS, memetic algorithm (MA), scatter
search (SS), and simulated annealing (SA) algorithm, in order
to solve a multimodal scheduling of HHCP. Their model aims
to assign caregivers to the patients and to determine efficient
multimodal tours considering the satisfaction of both patients
and caregivers. Braekers, Hartl, Parragh, and Tricoire (2016) ex-
tended a new biobjective model for the HHCP to minimize the
operating cost and to maximize the service level for a multi-
depot network. The concepts of the hard time windows, client
preferences on visit times and caregivers, and travel costs de-
pending on the types of transportation systems are considered.
To solve the model and to find the optimal solutions, the au-
thors utilized a metaheuristic algorithm based on a multidirec-
tional local search. Shi et al. (2017) proposed a fuzzy chance con-
straint programming for an HHCP with time windows and fuzzy
demand. Besides, a new hybrid genetic algorithm with stochas-
tic simulation was introduced. Sinthamrongruk, Dahal, Satiya,
Vudhironarit, and Yodmongkol (2017) offered two sorts of adap-
tive local search-based genetic algorithms to solve an HHCP with
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the goal of total cost minimization. The immigrant scheme was
combined with GAs to enhance their efficiency.

Recently, Decerle, Grunder, El Hassani, and Barakat (2018) for-
mulated an MILP model for the HHCP with hard and soft time
windows and synchronization constraints. Additionally, an MA
was developed with the supposition of two new crossover oper-
ators based on the multiobjective optimization concept. A real
case study in France was also considered to have a large-scaled
instance. A Lagrangian relaxation-based algorithm was devel-
oped by Fathollahi-Fard, Hajiaghaei-Keshteli, and Tavakkoli-
Moghaddam (2018b) to address a single depot and single objec-
tive HHCP with time windows and route balancing. Nasir and
Dang (2018) extended another MILP to model an HHCP with the
joint of patient and caregiver considering the dynamic arrival
and departure of patients. Besides, two heuristic approaches
based on the VNS were compared with the exact solution. Liu,
Yang, Su, and Xu (2018) designed a new biobjective approach
for an HHCP. An MILP model was formulated with the aims of
maximizing the patients’ satisfaction and minimizing the total
cost. Due to the high complexity of large-scaled samples, three
heuristic methods for generating Pareto-based solutions were
considered. With regard to the concept of network design for the
HHCP, Khodaparasti, Bruni, Beraldi, Maleki, and Jahedi (2018) of-
fered a multiperiod, location, and allocation model under un-
certainty. The model was applied to a real case study for the
nursing home planning network in Shiraz city, Iran. Martinez,
Espinouse, and Di Mascolo (2018) developed an HHCP with fixed
services, and utilized the graph theory to address them. Fur-
thermore, a branch-price-cut algorithm was presented to solve
the model to minimize the number of caregivers needed to pro-
vide all the services. The concept of green HHCP was first con-
tributed by Fathollahi-Fard, Hajiaghaei-Keshteli, and Tavakkoli-
Moghaddam (2018c), who propose a single depot and biobjec-
tive HHCP with time windows and route balancing. They devel-
oped four heuristics as well as a hybrid algorithm of SA and salp
swarm algorithm (SSA) to find an interaction between the to-
tal cost and green emissions of the logistics activities in view of
Pareto-based metrics.

More recently, Haddadene, Roufaida, Labadie, and Prodhon
(2019) suggested a multiobjective approach to the optimization
of the HHCP, minimizing the caregivers’ travel costs and maxi-
mizing the patients’ preferences. Szander, Ros-McDonnell, and
de la Fuente (2019) formulated an MILP model related to the
routing and delivery of HHC services, in which there is the
possibility of utilizing electric bicycles instead of the combina-
tion of walking and public transport. The objective functions
were to minimize transportation costs and maximize the flex-
ibility of the services. Mousavi et al. (2019) proposed a meta-
heuristic approach based on decomposition to model an inte-
grated worker assignment and VRPTW. In this regard, human re-
source planning for an HHCP was designed. To solve the model,
the Gurobi MILP solver was proposed. Fathollahi-Fard, Govin-
dan, Hajiaghaei-Keshteli, and Ahmadi (2019a) developed a mul-
tiperiod location-allocation-routing model for the green HHCP.
New modifications of SA were tackled to address their biobjec-
tive model. Decerle et al. (2019) introduced a new hybrid of MA
and ant colony optimization (ACO) algorithm to solve the HHCP
with time windows, synchronizations, and working time balanc-
ing of the caregivers. They considered three objective functions
to minimize the total working time of the caregivers, to maxi-
mize the service quality, and to minimize the maximal working
time difference between auxiliary of the caregivers. Grenouil-
leau, Legrain, Lahrichi, and Rousseau (2019) presented a set of
partitioning heuristic approaches for the HHCP with minimiz-
ing the travel time and maximizing the continuity of care. More-

over, several new VNS operators to find the optimal solutions
were presented. Bahadori-Chinibelagh et al. (2019) proposed two
heuristics for a multidepot HHCP with time windows and travel
balancing.

Fathollahi-Fard et al. (2020a) designed three new heuristic
methods, a hybrid metaheuristic algorithm based on VNS and
SA, and a lower bound according to the Lagrangian relaxation
theory, to solve a single depot and period HHCP. Manavizadeh,
Farrokhi-Asl, and Beiraghdar (2020) developed a mathematical
model for multiple services of HHCP. The SA based on the real
condition of the caregivers and vehicles to find the optimal solu-
tions was extended. Last but not least, Fathollahi-Fard, Ahmadi,
Goodarzian, and Cheikhrouhou (2020b) developed a biobjec-
tive multiperiod HHCP with patient satisfaction. The Jimenez’s
method based on the triangular fuzzy numbers was first used
to model the HHCP. An adaptive memory SEO was employed to
solve the large-scaled instances.

To identify the literature gaps, the papers are classified in
view of five main criteria, as follows. The number of depot(s),
period(s), the type of objectives including the cost, the service
time, satisfaction, and green emissions, as well as the type of
the constraints, including time windows, working time balanc-
ing of the caregivers, route balancing, and synchronizations in
addition to the solution algorithm, are utilized. In this regard,
this classification of the HHCP studies is given in Table 1.

As can be concluded from Table 1, we make the following
observations:

� The majority of the studies (around 80%) involve a single de-
pot and period HHCP, with the minimization of the total cost.

� The main constraint in most papers is the time windows.
� Only five studies contributed to the route balancing

(Fathollahi-Fard, Hajiaghaei-Keshteli, & Tavakkoli-
Moghaddam, 2018b, 2018c; Bahadori-Chinibelagh et al.,
2019; Fathollahi-Fard et al., 2019a, 2020a). However, none
of them has considered the travel cost and service time
simultaneously.

� Only two papers are simultaneously multidepot, multiperiod,
and multiobjective HHCPs (Fathollahi-Fard et al., 2019a,
2020b). In addition to these contributions, this study consid-
ered the service time for the first time.

� The simultaneous consideration of the route balancing and
working time balancing of the caregivers is studied in the
present paper for the first time.

� Due to the high complexity of HHCPs, heuristics and meta-
heuristics are popular in the literature. However, there is no
study to apply ABC, FFA, and SEO as well as a new improve-
ment to the SEO simultaneously.

Generally speaking, this study proposes a biobjective HHCP
with simultaneous consideration of service time, working time,
and route balancing for the first time. In addition to this nov-
elty, this study develops a new improvement to the SEO, which
is novel in comparison with other developments on this meta-
heuristic (Fathollahi-Fard, Ranjbar-Bourani, Cheikhrouhou, &
Hajiaghaei-Keshteli, 2019b; Fathollahi-Fard et al., 2020b).

3. Proposed HHCP

The section provides a detailed and exhaustive view about
the link between the concept of HHC services with time win-
dows, route balancing, and a biobjective optimization model.
The statement of the proposed HHCP is first illustrated and
consequently, assumptions, notations, and the mathematical
model are exposed to the HHCP comprehensively.
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Figure 1: The framework of HHCP with one service center, two caregivers, and eight patients.

3.1 Problem statement

The framework of the proposed HHCP is given in Fig. 1. In this
paper, different HHC services with respect to three types of care-
givers, namely doctors (DO), nurses (NU), and therapists (TH), in
different time windows for the planning horizon H, are assumed.
Indeed, the model is defined as a directed graph G = (N, A),
where N stands for the set of nodes, including the sets of pa-
tients i and j and service center sc, and shows the set of directed
arcs A = {(i, j)i, j ∈ N, i �= j} , that is, joining pairs of nodes.
Then, we consider a city or a geographical zone by P patients dis-
tributed all over the city with the distance of Di j in the suggested
HHCP. Each service center (sc ε SC ) is served by the type of care-
givers (p εP ) required. In this model, two sorts of service centers
(sc) called the hospital and the laboratory are considered to pro-
vide special services to patients. Besides, each patient i has a de-
mand for visits based on the sort of caregivers and service cen-
ters that these visits are performed based on the patient and the
types of caregivers according to the specific time window on the
days. In this regard, based on the service time on each day, a time
limitation exists (∇ id and ∇ id). Each patient also has a starting
time (ψd

i
) and an ending time (ψ̄d

i ) to be visited by the caregiver.
Also, a caregiver starts from their service centers to visit the pa-
tients and returns back to the same service center; so, they have
a maximum working time per day (MW) to do the working time
balancing. Additionally, travel times vary based on the type of
caregivers. For instance, doctors utilize private transport that is
faster than the public transport by which nurses and therapists
are mobilized, with the transportation cost (TCi j ). It takes αi j the
time to travel from patient i to patient j. Also, there is a speci-
fied service time for patient i by caregivers (STid). To perform the
route balancing, a maximum allowable distance (MS) is consid-
ered for each route and if the vehicle does not meet this con-
straint, a penalty value for the overall allowable distance is as-
sumed (PEN). In this model, four types of services, namely domi-
cile, blood anticoagulation, chronic care, and palliative care, are
considered to be special services provided to the patients. Then,
according to this HHCP, the HHC companies are able to serve pa-
tients with the lowest costs in a specific time window.

3.2 Assumptions

The following assumptions for the offered HHCP are made:

� A set of nodes involving of service centers (i.e. hospital and
laboratory) and patients’ homes is considered.

� The model is multidepot (i.e. a set of hospitals and laborato-
ries) and multiperiod (i.e. a set of days).

� The model contributes to optimizing the total service time
and the cost.

� Each route starts from the hospital and ends at the labora-
tory.

� Each patient is visited only once.
� The types of caregivers and services are identified based on

the type of illness of patients.
� Each vehicle visits each node only once per route.
� There is no direct link between service centers.
� The maximum working time for each patient is prede-

fined/estimated by the caregiver, to do the working time bal-
ancing.

� A time window exists for the available vehicles and patients
at a specified time.

� For each vehicle’s route, a maximum desired distance is al-
lowable. Otherwise, it gets a penalty value for the overall dis-
tance.

3.3 Notations

The notations of HHCP including a set of indices, parameters,
and decision variables are as follows:

Indices:
i, j Indices of patients, i, j ∈ N
p Index of caregivers, p ∈ {1, 2, . . . , P }
sc Index of service centers, sc ∈ {1, 2, . . . , SC}
d Index of days, d ∈ {1, 2, . . . , D}
v Index of vehicles, v ∈ {1, 2, . . . , V}
Parameters:
ψd

i
Starting time of the time window for patient i
on the day d

ψ
d
i Ending time of the time window for patient i

on the day d
∇ id The earliest allowed service time for the

patient i on the day d
∇ id The latest allowed service time for the patient

i on the day d
TC Transportation cost per unit of distance
STid The estimated service time for the patient i on

the day d
αi j Traveling time from patient i to patient j
Di j The distance from patient i to patient j
β

p,sc
i Required working time for patient i by

caregiver p working at the service center sc
κsc

DO,d 1, if the doctors DO in the service center sc are
available on the day d. Otherwise, 0.

κsc
NU,d 1, if the nurses NU in the service center sc are

available on the day d. Otherwise, 0.
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κsc
T H,d 1, if the therapists T H in the service center sc

are available on the day d. Otherwise, 0.
H Si,d,DO,NH,T H 1, if the patient i on the day d needs one of

HHC services by doctors DO, nurses NU , and
therapists T H . Otherwise, 0.

δDO
isc The number of required visits to the patient i

from doctors DO for service centers sc
γ NU

isc The number of required visits to the patient i
from nurses NU for service centers sc

λT H
isc The number of required visits to the patient i

from therapists T H for service centers sc
MT Maximum time length of each tour
MW Maximum working time in each day for the

caregiver
MS Maximum allowable distance of each vehicle
P E N Penalty value for the overall distance from the

maximum allowable distance of each vehicle
M A big number
H Planning horizon
Decision variable:
ϑ

pd
i j,sc 1, if the caregiver member p working at

service center sc visits patient i and then
patient j on the day d; otherwise, 0.

Zi,sc 1, if patient i is assigned to the service center
sc; otherwise, 0.

σ
pd

i Arrival time of caregiver p at patient i ’s home
on the day d

πi jvd 1 if vehicle v goes directly from patient i to
patient j on the day d; otherwise, 0.

Bivd The time of beginning service for patient i by
vehicle v on the day d.

Ovd The overall distance from allowable distance
for vehicle v on the day d

3.4 Formulation

Based on the aforementioned problem definition and notations,
a biobjective MILP is proposed:

Z1 = min

⎛
⎝∑

i∈N

∑
j∈N

∑
p∈P

∑
d∈D

∑
sc∈{DO,NU,T H}∈SC

×ϑ
pd
i j,sc

(
αi j +

(
β

psc
j × (κsc

T H,d + κsc
NU,d + κsc

DO,d)
)))

(1)

Z2 = min

⎛
⎝∑

i∈N

∑
j∈N

∑
v∈V

∑
d∈D

(TC × Di j × πi jvd)

+
∑
v∈V

∑
d∈D

P E N × Ovd

)
(2)

s.t. ∑
j∈N

∑
sc∈SC

ϑ
pd
i j,sc × β

psc
i ≤ MW ∀i ∈ N, ∀p ∈ P , ∀d ∈ D (3)

∑
j∈N

ϑ
pd
i j,sc −

∑
j∈N

ϑ
pd
ji,sc = 0 ∀i ∈ N, ∀p ∈ P , ∀d ∈ D, sc ∈ SC (4)

∑
sc∈N

Zi,sc = 1 ∀i ∈ N (5)

∑
j∈N

ϑ
pd
i j,sc = Zi,sc ∀i ∈ N, ∀p ∈ P , ∀d ∈ D, sc ∈ SC (6)

∑
i∈N

ϑ
pd
i j,sc = H Sj,d,DO,NH,T H × Z j,sc(κsc

T H,d + κsc
NU,d + κsc

DO,d),

∀p ∈ P , ∀d ∈ D, sc ∈ SC (7)

∑
j∈N

ϑ
pd
j j,sc = 0 ∀p ∈ P , ∀d ∈ D, sc ∈ SC (8)

∑
p∈P

∑
sc∈SC

∑
j∈N

ϑ
pd
i j,sc = 1 ∀i ∈ N, ∀d ∈ D (9)

∑
i∈N

ϑ
pd
ii,sc = 0 ∀i ∈ N, ∀p ∈ P , ∀d ∈ D, sc ∈ SC (10)

∑
j∈N

∑
d∈D

∑
p∈DO

ϑ
pd
i j,scκ

sc
DO,d ≥ δDO

isc ∀i ∈ N, ∀sc ∈ SC (11)

∑
j∈N

∑
d∈D

∑
p∈NU

ϑ
pd
i j,scκ

sc
NU,d ≥ γ NU

isc ∀i ∈ N, ∀sc ∈ SC (12)

∑
j∈N

∑
d∈D

∑
p∈T H

ϑ
pd
i j,scκ

sc
T H,d ≥ λT H

isc ∀i ∈ N, ∀sc ∈ SC (13)

Ovd ≥
⎛
⎝∑

i∈N

∑
j∈N

πi jvd × Di j

⎞
⎠ − MS ∀v ∈ V, ∀d ∈ D (14)

ψd
i

≤ σ
pd

i ≤ ψ
d
i ∀i ∈ N, ∀p ∈ P , ∀d ∈ D (15)

σ
pd

i +
∑

sc∈SC

β
psc
i + αi j ≤ σ

pd
j + M

(
1 − ϑ

pd
i j,sc

)
∀i,

j ∈ N, i �= j, ∀p ∈ P , ∀d ∈ D, ∀sc ∈ SC (16)

∑
i∈N

∑
j∈N

πi jvd =
∑
i∈N

∑
j∈N

ϑ
pd
i j,sc ∀p ∈ P , ∀d ∈ D,∀sc ∈ SC,

∀v ∈ V (17)

∑
v∈V

πi jvd =
∑
sc∈N

∑
p∈P

ϑ
pd
i j,sc ∀i ∈ N, ∀ j ∈ N, ∀d ∈ D (18)

∑
v∈V

πi jvd = 1 ∀i ∈ N, ∀ j ∈ N, ∀d ∈ D (19)

Bivd + αi j + STid ≤ B jvd + M (1 − πi jvd) ∀i ∈ N, ∀ j ∈ N,

∀p ∈ P , ∀v ∈ V, ∀d ∈ D (20)

∇ id ≤ Bivd ≤ ∇ id ∀i ∈ N, ∀v ∈ V, ∀d ∈ D (21)

∑
i∈N

∑
j∈N

πi jvd (αi j + STid) ≤ MT ∀p ∈ P , ∀v ∈ V, ∀d ∈ D (22)

πi jvd, ϑ
pd
i j,sc, Zi,sc ∈ {0, 1} , ∀i ∈ N, j ∈ N, ∀p ∈ P ,

∀d ∈ D,∀v ∈ V, ∀sc ∈ SC (23)

Ovd, σ
pd

i , Bivd ≥ 0 ∀i ∈ N, j ∈ N, ∀p ∈ P , ∀d ∈ D, ∀v ∈ V (24)

The first objective function manifests the minimization of
the total time of HHC services based on the travelling and work-
ing times, as given in equation (1). The second objective function
displays the minimization of the total cost. As given in equation
(2), the first part is the transportation cost per unit of distance
for visiting the patients. The last part is the penalty value for the
overall distance from the maximum allowable distance for each
vehicle.

With regard to the working time limitation, the term∑
j∈N ϑ

pd
i j, sc(

∑
sc∈SC β

psc
i ) shows the time required for patient i by

caregiver p at the service centers, which should be less than
or equal to cure working per day MW for each caregiver, as
given in equation (3). Equation (4) confirms that each caregiver
visits each patient only once. As the model is a multidepot
HHCP, equation (5) ensures that each patient is supported by one
service center. Equation (6) satisfies that the caregiver is able to
support the patient i assigned to service center sc, if the care-
giver is the member of this service center. Each patient demands
a caregiver on each day, which may be a doctor, nurse, or a ther-
apist, as given in equation (7). Equations (8) and (10) confirm
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that there is no way from a patient to itself. Equation (9) ensures
that the demand of each patient on each day should be met. In
addition, to satisfy different types of HHC services for patients,
the right-hand sides of equations (11)–(13) indicate the number
of required visits by patient i from different types of caregivers
in each service center, which should be equal or bigger than
the corresponding number of visits. Equation (14) computes the
overall distance from an ideal one for each vehicle to visit the
patients. Equation (15) satisfies the on-time services, where the
arrival time of caregiver p at patient i ’s home on the day d, i.e.
σ

pd
i , should be within the given time window [ψd

i
, ψ

d
i ]. Equation

(16) satisfies the time window per each patient each day accord-
ing to the caregiver’s arrival time and leave time for each patient.
To be more precise, if caregiver p goes from patient i ’s home to
patient j’s home, i.e. ϑ

pd
i j, sc = 1, then the sum of (i) required treat-

ment time σ
pd

i for patient i , (ii) arrival time at patient i ’s home,
i.e.

∑
sc∈SC β

psc
i , and (iii) αi j is the travel time from patient i to pa-

tient j, which must be less than or equal to the arrival time at
patient j’s home. Mathematically, σ

pd
i + ∑

sc∈SC β
psc
i + αi j ≤ σ

pd
j .

Otherwise ( ϑ
pd
i j, sc = 0), the constraint turns to a redundant con-

straint σ
pd

i + ∑
sc∈SC β

psc
i + αi j ≤ σ

pd
j + M. Since M is a sufficiently

large positive number, the constraint does not let get values
for these variables. Equation (17) confirms that each caregiver
should be assigned to one vehicle on each day. Equation (18) en-
sures that the route of the vehicles is exactly the same as the
route of the caregivers. Equation (19) shows that each patient
should be visited by only one vehicle on each day. Equations (20)
and (21) show the time limitations for each vehicle to do the pa-
tients’ services. Equation (22) limits the working time of vehicles
on each day to be not more than a desired value. Equation (23)
guarantees the feasible values for the binary variables and equa-
tion (24) shows the feasibility of continuous variables.

In conclusion, as far as we know, no study has applied the
introduced model yet. The proposed model optimizes the time
and cost of HHC services simultaneously in addition to different
real-world suppositions for HHC companies, such as the route
balancing, working time balancing, and time windows for avail-
ability of patients and caregivers in addition to different types of
caregivers like doctors, nurses, and therapists. This model, as an
extension to the classical VRPTW, is obviously NP-hard. There-
fore, different metaheuristics in addition to the exact solver are
applied to solve it.

4. Solution Method

This study uses an exact method for multiobjective optimization
called ε-constraint method (Haimes, Ladson, & Wismer, 1971).
Since we have no novelty in this algorithm, the description of
this method is provided in the appendix A1. This algorithm like
our metaheuristics is structured by the concept of multiobjec-
tive optimization (Goodarzian & Hosseini-nasab, 2019). The def-
inition of the multiobjective evaluation is given in the appendix
A2. With regard to this assessment, some metrics must be used.
Here, the number of Pareto solutions (NPS), mean ideal distance
(MID), spread of non-dominance solution (SNS), and maximum
spread (MS) are four well-known metrics in this field (Fathollahi-
Fard et al., 2018c, 2019a; Sahebjamnia, Goodarzian, & Hajiaghaei-
Keshteli, 2020).

In this section, we first illustrate the solution representa-
tion to show the encoding plan for the metaheuristics. It goes
without saying that this paper employs three nature-inspired
and swarm intelligence-based metaheuristic algorithms, i.e.
SEO (Fathollahi-Fard et al., 2018a), FFA (Yang, 2010), and ABC

(Karaboga, 2005) algorithms that are known to be powerful
tools for solving optimization problems. An important feature
of these algorithms, which distinguishes them from similar op-
timization algorithms, is their excellent performance in find-
ing efficient solutions for multiobjective optimization problems
(Zhao, Liu, Zhou, Guo, & Qi, 2018; Guo, Zhou, Liu, & Qi, 2019).
Such an important feature makes the employed algorithms as
the ideal choice for solving our suggested HHCP. Therefore,
we provided the multiobjective version of SEO (MOSEO), FFA
(MOFFA), and ABC (MOABC) accordingly. It should be noted that
the details of these algorithms are provided in the appendix A3,
A4, and A5 for the MOSEO (Fathollahi-Fard et al., 2019b, 2020b;
Goodarzian et al., 2020b), MOFFA (Dekhici, Redjem, Belkadi, & El
Mhamedi, 2019), and MOABC (Gergin, Tunçbilek, & Esnaf, 2019)
algorithms, respectively. Finally, the proposed self-adaptive SEO
as one of the main novelties of this study is illustrated at the end
of this section.

4.1 Solution representation

To solve an optimization model by metaheuristics, we need an
encoding scheme to handle the constraints of the model and
to compute the objectives. As all applied metaheuristics in this
study have continuous mechanisms, a two-stage method called
Random-Key (RK) is used (Snyder & Daskin, 2006). The RK trans-
forms an infeasible solution into a feasible one (Deivika et al.,
2014; Guo, Zhou, Liu, & Qi, 2020).

Here, a numerical example for one day to show the solution
representation is defined. First, consider that there are 10 pa-
tients and we want to assign them to 3 service centers. For each
patient, the metaheuristic generates a random number between
0 and 3. If this number is between 0 and 1, the patient would be
assigned to the first service center. If the value is between 1 and
2, the second service center is considered, and if the value is be-
tween 2 and 3, then the third service center is considered. This
example is provided and shown in Fig. 2. As an instance, the
second, fourth, fifth, and sixth patients are allocated to the first
service center.

On this day (this period), there are four caregivers who are
available to do the HHC services. We have two different cars and
want to assign a vehicle to each caregiver. The first caregiver is a
doctor, the second and third caregivers are nurses, and the last
caregiver is a therapist. As given in Fig. 3, with regard to the two
types of vehicles, the metaheuristic generates the random num-
bers between 0 and 2. The caregiver who gets a value between 1
and 2 would be assigned to the second vehicle. The rest would
be assigned to the first vehicle. As shown in Fig. 3, except for the
fourth caregiver, all caregivers use the second vehicle.

Finally, we want to generate the routes of each caregiver.
Once again, similar to the procedure in Fig. 2, for each patient,
this time, random numbers using the probability distribution
function U (0, 1) are generated. Now, based on the classifica-
tions of patients in Fig. 2, the sequence of patients in Fig. 4 is
considered.

Let us assume that among four patients allocated to the first
service center, where their sequence is 3, 10, 2, and 1, respec-
tively, the second and fourth patients need a doctor and the fifth
and sixth patients require a nurse. In this regard, the route of the
first caregiver is started from the second patient to the fourth
patient. The second caregiver’s route is started from the sixth
patient to the fifth patient. Other routes for the third and fourth
caregivers are generated in a similar way. After that, the objec-
tives will be calculated based on this solution representation.
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Figure 2: The patients’ assignment to the service centers.

Figure 3: Allocation of vehicles to the caregivers.

Figure 4: Routing decisions to assign the caregivers to the patients.

4.2 Improved self-adaptive SEO

Due to the novel contributions of the SEO in the area of meta-
heuristic studies, there are plenty of recent research papers that
contributed to the further development and application of SEO
(Fathollahi-Fard et al., 2019b, 2020b; Baliarsingh, Ding, Vipsita, &
Bakshi, 2019; Zhang et al., 2019; Goodarzian et al., 2020a). This
study proposes a self-adaptive metaheuristic as a novel im-
provement to this algorithm called ISEO, to address the draw-
backs of this recently proposed SEO. Based on the literature and
the recent advances in relation to this algorithm, it suffers from
premature convergence, which makes it less suitable for solv-
ing real-world problems. To tackle these issues, we suggested
an ISEO with a new adjustment operator to improve its perfor-
mance in terms of Pareto-based solutions, search accuracy, con-
vergence speed, and computational time, wherein the position
updating of SEO is modified to reconsider the previous solutions
in addition to the best solution obtained thus far. Another main
difference between our proposed approach and the original SEO
is that the developed ISEO is a population-based algorithm while
the original SEO is a single-point algorithm.

Most notably, the ISEO shows benefits from high Pareto op-
timal solutions, low computational time, and fast convergence
speed that helps this algorithm to outperform SEO. In fact, the
main reason for the use of the ISEO for our practical HHCP is to
have features such as high convergence speed and lower compu-
tational time. Hence, an adjusting operator is added to the SEO
algorithm. The aim of the new operator is to achieve a better bal-
ance between the exploration and exploitation phases. It goes
without saying that the proposed ISEO is a population-based al-
gorithm that is useful to provide a balance between the inten-
sification and diversification phases. Since the original SEO was
a single-point algorithm, it is difficult to manage these phases.
Therefore, as one of the main novelties of this paper, following
describes the process of ISEO algorithm.

4.2.1 The number of attackers and defenders
As mentioned earlier, there are two different search factors that
include the attacker and the defender. In this new improvement,
we transform this single-point metaheuristic into a population-
based one. The number of attackers and defenders constitute

the population considered in this search space. The number
of attackers is randomly selected from 65% to 90% of the to-
tal population. In this regard, a self-adaptive strategy is utilized
to propose ISEO. To this end, the number of attackers obtained
from equation (25) is

Na = f loor [(0.9 − rand × 0.25) × N] , (25)

where rand is a random number between 0 and 1. Meanwhile,
f loor(0) shows a real number as an integer. The number of de-
fenders (Nd) as complementary between (N) and (Na) is calcu-
lated as per equation (26):

Nd = N − Na. (26)

Therefore, the total population of (M) is formed by elements
of N and is divided into two subgroups G and Q. Therefore, G and
Q sizes are controlled by a predetermined constant ρ ratio. The
group of G is a set of attackers G = {G1, G2, . . . , G Na } . Mean-
while, the group of Q includes defenders Q = {Q1, Q2, . . . , QNd } ,
wherein M = {M1, M2, . . . , MN} . So, then we have

M = m1 = G1 , M2 = G2 , . . . , MNa = G Na , MNa+1 = Q1,

MNa+2 = Q2 , . . . , MN = QNd .

4.2.2 Defender and attacker evaluation criteria
In this way, each defender and attacker has one weight Wa and
Wd, respectively. This indicates the quality of the solution for
the defender d and the attacker a of the population (M). There-
fore, equations (27) and (28) are used to calculate the weight of
each attacker and defender:

Wa = K (Ma) − worstm
bestm − worstm

(27)

Wd = K (Md) − worstm
bestm − worstm

(28)

where K (Ma) and K (Md) are capabilities, which are obtained by
evaluating the attacker’s and defender’s positions, respectively,
and in accordance with the objective function K (0). The values
of worstm and bestm are defined in line with equations (29) and
(30):

bes tm = min
i∈(1,2,...,M)

(K (Mi )) (29)

wors tm = max
i∈(1,2,...,M)

(K (Mi )) . (30)

4.2.3 Adjustment operator
This improved algorithm is developed by an adjustment oper-
ator to enhance its efficiency in terms of search accuracy and
running time. This operator is used to make a novel generation
of this population-based algorithm. The size of this part is equal
to the size of G and Q. This operator creates a novel division ac-
cording to the best person and other random people from G and
Q. Also, we assume that Yt+1

o, j , the value of the element j, is the
number of individuals o; then, Yt+1

o, j is generated based on equa-
tion (31):

Yt+1
o, j =

{
Yt

best, j rand ≤ ρ

Yt
r3, j rand > ρ,

(31)
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Figure 5: The pseudocode for initialization.

where r is a random number achieved from equation (32), where
rand is a random number with a uniform distribution and δ is a
fixed value (equals to 1.2). Also, t is the number of iterations.

r = rand × δ (32)

In equation (32), parts of the newly created person are up-
dated according to equation (33). If the number of other random
numbers created is greater than the adjustment rate, the adjust-
ment rate is equal to the fixed partition. In equation (34), dy is a
local search and represents the training and retraining of the de-
fender and the attacker in this algorithm. μ is an element that
controls the penetration of dy in the updating process.

Yt+1
o, j = Yt+1

o, j + μ (dL y − 0.5) (33)

dy = RT (Yt
o ) (34)

4.2.4 Main loop
The computations of the solicited algorithm as its main loop are
as follows:

Step 1: Given M as the number of members of the m-dimensional
set, the number of defenders Md, and the number of attackers
Ma in the total population, we have

Na = f loor [(0.9 − rand × 0.25) × N] (35)

Nd = N − Na, (36)

where rand is a random number between [0, 1].
Meanwhile, f loor(0) shows a real number.

Step 2: Initialization is random for the defender (equation 37),
the attacker (equation 38), and for the set of members (equa-
tion 39). An initialized pseudocode is presented in Fig. 5.

Q = {
Q1, Q2, . . . , QNd

}
(37)

G = {
G1, G2, . . . , G Na

}
(38)

M = m1 = G1 , M2 = G2 , . . . , MNa = G Na , MNa+1 = Q1,

MNa+2 = Q2 , . . . , MN = QNd (39)

Step 3: At this stage, we intend to demonstrate the defenders’
and the attackers’ training and retraining. In this way, the at-
tacker chooses the most influential trait. For this purpose, α%
of the traits are selected randomly and repeated directly in
the same trait in the defender. The number of traits for train-
ing is indicated in equation (40):

NTrain = round {∝ .nVar} , (40)

Figure 6: The pseudocode for calculating the weight of each attacker and de-
fender.

Figure 7: The pseudocode for the adjustment operator.

where α% represents the chosen characteristics and nVar is
the total number of traits in the person. Therefore, NTrain is
the number of traits that are randomly tested in a defender.

Step 4: Calculate the weight of each defender and attacker from
the population N, which is expressed in the pseudocode in
Fig. 6.

Step 5: In order to carry out an attack, this algorithm proposes
four various techniques, including obtaining, phishing, diver-
sion theft, and pretext. For details regarding their mathemat-
ics, readers are referred to Fathollahi-Fard et al. (2018a).

Step 6: This improved algorithm is developed with an adjust-
ment operator to enhance its efficiency in terms of search
accuracy and running time. In the following, we will express
its pseudocode in Fig. 7.

Step 7: In this step, the attacker finally defeats the defender and
the defender is randomly replaced by a new one.

Step 8: If the stop criteria are met, the process ends; otherwise,
we will go back to step 3.

In conclusion, our proposed ISEO is summarized in a
flowchart and a pseudocode as shown in Figs 8 and 9, respec-
tively.

5. Experiments and Results

Here, the experiment results to evaluate the efficiency and per-
formance of the ISEO algorithm are compared with the out-
comes of other metaheuristic algorithms including the orig-
inal MOSEO, MOFFA, and MOABC. In addition, all algorithms
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Figure 8: The flowchart of the proposed ISEO.

were run 25 times to obtain statistically significant outcomes.
In this section, we first set the algorithms and simulated test
studies. Then, the validation of both the model and the al-
gorithms is explained. An executive analysis and comparison
among the algorithms are performed. Finally, some sensitiv-
ities and practical solutions of the model are presented. No-
tably, all the tests were implemented on the computer at 2.50
GHz, 6.00 GB of RAM. Besides, the MATLAB R2020b software was
used for the implementation of the metaheuristic algorithms,
as well as the GAMS 24. 1. 3 was utilized for the ε-constraint
method.

5.1 Data setting

Data setting in this paper includes two main parts: data gener-
ation for the proposed model and the tuning of the algorithms’
parameters.

5.1.1 Simulated test studies
Due to the novelty of our proposed model, no benchmark data
are available for our model. Therefore, an approach is needed
to design the test problems. Then, 20 test problems were de-
signed and introduced: five problems at the small size (SP1 to
SP5), medium size (MP6 to MP10), large size (LP11 to LP15), and
extra-large size (EP16 to EP20) as the very large-scaled instances.
Table 2 shows the size of the problems. It should be noted that
the simulated test studies are varied from 2 days to 2 weeks. Be-
sides, the distribution of parameters is presented in Table 3. In
this regard, the range of parameters is taken from recent sim-
ulated test studies, as given in the literature (Fathollahi-Fard et
al., 2018b, 2018c, 2019a, 2020a, 2020b; Bahadori-Chinibelagh et
al., 2019; Fakhrzad & Goodarzian, 2019).

5.1.2 Tuning of algorithms’ parameters
First, to have an unbiased comparison, the parameters of the
presented algorithms must be tuned (Devika, Jafarian, & Nour-
bakhsh, 2014; Li, Sang, Pan, Duan, & Gao, 2017; Nguyen & Vo
2019). To this end, this study uses the Taguchi method (Kackar,
1985) to design the experiments of the algorithms’ tuning. To
have a fair comparison, in all algorithms, the population size and
the maximum number of iterations were set to 25 and 50, respec-
tively (Fathollahi-Fard, Hajiaghaei-Keshteli, Tian, & Li, 2020c;
Goodarzian, Hosseini-Nasab, & Fakhrzad, 2020c). For the SEO,
as a single solution technique, the maximum number of iter-
ations is 600. Other parameters have been tuned by the Taguchi
method.

Since the proposed HHCP is a biobjective optimization model,
a metric to evaluate the objective functions is created, so-called
MCOV (Fathollahi-Fard et al., 2019a). This metric is a fraction of
MID metric to study the convergence and MS to measure the di-
versity of the algorithms’ solutions. In this regard, MCOV is for-
mulated as follows:

MCOV = MI D
MS

, (41)

where a lower value of MCOV brings a better capability of the
metaheuristic (Hou, Wu, Zhou, & Li, 2015; Guo et al., 2019). Then,
for each metaheuristic, the candidate levels for the parame-
ters are studied with regard to previous works (Fathollahi-Fard
et al., 2020b; Goodarzian, Shishebori, Nasseri, & Dadvar, 2020a;
Goodarzian, Hosseini-Nasab, Muñuzuri, & Fakhrzad, 2020b) and
our tests on the performance of the algorithms. The candidate
values of the algorithms’ parameters are given in Table 4.

The main advantage of the Taguchi design experiment
method is to reduce the number of total experiments. For ex-
ample, for FFA, if we use a full factorial method, the total ex-
periments are 3 × 3 × 3 = 27. However, Taguchi with the use of
orthogonal arrays reduces the tests. For FFA, Taguchi suggests
L9 that uses 9 selected tests among 27 possible ones. Similarly,
this orthogonal array is also used for other algorithms as they
have a similar number of parameters and levels. For each test,
the value of MCOV is calculated and for each level, the average
value of MCOV is computed. Finally, the best values of these pa-
rameters are given in Table 5.

5.2 Validation of the algorithms and model

To validate the proposed model, the results are presented, anal-
ysed, and compared. In addition, the validation of metaheuris-
tics is checked by the exact solver. Here, the outputs of the
metaheuristics are the average of each objective among all the

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/8/1/452/6056325 by guest on 19 D

ecem
ber 2021



462 Self-adaptive social engineering optimizar for home healthcare logistics

Figure 9: The pseudocode of the proposed ISEO.
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Table 2: The size of the test problems.

Levels Size problem
Number of

doctors
Number of
therapists

Number of
nurses

Number of
vehicles

Number of
service
centers

Number of
patients

Number of
days

Small SP1 2 2 2 2 3 10 2
SP2 3 4 3 2 3 25 2
SP3 4 5 6 3 3 40 4
SP4 6 7 8 3 4 65 4
SP5 8 7 8 3 4 80 4

Medium MP6 8 8 9 3 4 90 7
MP7 9 9 9 4 4 105 7
MP8 9 9 9 5 5 125 7
MP9 10 10 10 5 5 150 7

MP10 11 11 10 5 6 165 7
Large LP11 12 12 12 6 6 180 10

LP12 14 14 15 6 7 200 10
LP13 16 16 16 7 8 220 10
LP14 18 18 20 8 8 240 10
LP15 20 20 22 8 10 260 10

Extra-large EP16 60 40 40 20 20 460 14
EP17 120 80 100 80 30 860 14
EP18 180 120 160 140 40 1260 14
EP19 240 160 220 200 50 1660 14
EP20 300 200 280 260 60 1860 14

Table 3: The generated parameters to solve the model.

Parameters The range of parameters Parameters The range of parameters

φ
iv

rand{10, 15, . . . , 150} κsc
T H,d, κsc

NU,d, κsc
DO,d rand{0, 1}

φ̄iv rand{100, 15, . . . , 1500} δDO
i,sc rand{5, 10, . . . , 80}

ψd
i

rand{600, 700, . . . , 1500} γ NU
i,sc rand{5, 10, . . . , 80}

ψ
d
i rand{800, 900, . . . , 2000} λT H

i,sc rand{5, 10, . . . , 80}
∇ i rand{40, 50, . . . , 100} H Si,d,DO,NH,T H rand{0, 1}
∇ i rand{40, 50, . . . , 100} (xi , yi ),(xj , yj ) 1000 × (U (0, 1),U (0, 1))

TC 5 Di j

√
(xi − xj )

2 + (yi − yj )
2

STid rand{50, 10, . . . , 250} MW, MT rand{20 000, 40 000, . . . , 80 000}
αi j rand{40, 50, . . . , 100} M 1000 000
β

psc
i rand{40, 50, . . . , 100} P E N 100

Table 4: The candidate levels for the algorithms’ parameters.

Algorithm Parameter Level 1 Level 2 Level 3

FFA Light absorption coefficient (LAC) 1 1.2 1.5
Mutation coefficient (MC) 0.3 0.5 0.7
Mutation coefficient damping ratio (MCDR) 0.8 0.9 0.99

ABC The NP size (NP) 40 60 80
The food sources (FS) 15 20 30
Maximum search of each bee (MSB) 100 120 140

SEO and ISEO Rate of collecting data (RCD) 0.1 0.2 0.3
Rate of connecting attacker (RCA) 0.05 0.08 0.15
Number of connections (NC) 30 40 50

non-dominated solutions generated by each metaheuristic.
Based on this criterion, the algorithms are compared with each
other. Finally, the best metaheuristic algorithm is chosen.

The results and details of the presented metaheuristic algo-
rithms are presented in Tables 6 and 7. As the model is a biob-

jective model, the first objective function (Z1) includes the total
time of services. The second objective function (Z2) is the to-
tal costs of the HHC services and its penalty value for the route
balancing. The computational time (CPU) of the presented meta-
heuristic algorithms is shown by ‘T’ in tables.
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Table 5: The tuned algorithms’ parameters.

Algorithm Parameter Best level

FFA LAC 1.2
MC 0.3
MCDR 0.99

ABC NP 60
FS 30
MSB 120

SEO and ISEO RCD 0.2
RCA 0.08
NC 50

ISEO indicates the best results on all of the 20 test functions.
These outputs show that ISEO improves the convergence rate
of SEO. Additionally, ISEO convergence outperforms other algo-
rithms. Figures 10–12 show the behavior of the stated algorithms
according to the convergence, which allows us to better compare

them due to the different size problems. Also, Figs 13 and 14 in-
dicate the behavior and CPU time of the ε-constraint approach
for different size problems. Note that due to the high complex-
ity of the HHCP, there is no solution for the medium, large, and
extra-large-scaled problems based on the exact solver. By means
of a comparison with the solutions of the exact solver and meta-
heuristics, the validation of the results is approved. Most im-
portantly, the convergence of ISEO is more significantly durable
than that of the other offered algorithms.

5.3 Executive analyses and comparison of algorithms

To be able to perform a comparison among metaheuristics based
on Pareto solutions, four multiobjective assessment metrics, as
noted earlier, are studied here; these are NPS, MID, SNS, and
MS. For information regarding their mathematics, one can re-
fer to the previous papers (Devika et al., 2014; Fathollahi-Fard et
al., 2018c, 2019a; Fakhrzad, Goodarzian, & Golmohammadi, 2019;
Fakhrzad & Goodarzian, 2020; Sahebjamnia et al., 2020).

Table 6: The results and CPU times of the suggested algorithms.

Levels Objective function FFA T ABC T SEO T ISEO T

SP1 Z1 322.5 0.121 367.3 0.176 298.3 0.037 245.1 0.028
Z2 243.3 267.5 199.6 167.2

SP2 Z1 367.7 0.433 403.5 0.566 315.2 0.042 287.2 0.037
Z2 295.5 322.5 210.4 188.3

SP3 Z1 401.5 0.664 467.4 0.978 357.4 0.354 310.5 0.275
Z2 321.1 378.4 267.3 201.4

SP4 Z1 477.2 6.566 510.4 8.455 377.1 3.414 325.6 2.17
Z2 355.1 412.5 288.1 225.6

SP5 Z1 511.3 10.23 567.3 17.02 423.7 6.01 378.4 3.57
Z2 366.5 456.6 312.8 256.8

MP6 Z1 588.1 23.67 599.6 31.26 576.2 15.31 510.3 5.51
Z2 466.2 489.4 401.5 345.7

MP7 Z1 645.2 29.45 678.7 38.56 632.2 25.23 567.5 23.81
Z2 499.3 510.2 432.1 398.3

MP8 Z1 633.1 78.68 723.2 45.34 677.9 69.1 602.4 33.98
Z2 511.1 544.3 455.1 412.7

MP9 Z1 755.3 123.1 788.5 156.2 733.45 98.7 656.2 66.3
Z2 544.1 591.1 478.1 446.8

MP10 Z1 801.3 192.3 822.1 213.2 788.2 187.4 689.3 171.4
Z2 599.3 601.2 501.23 488.3

LP11 Z1 834.2 289.1 877.2 322.4 812.34 245.6 701.3 195.1
Z2 612.2 654.1 543.12 501.5

LP12 Z1 901.3 356.7 945.6 398.5 856.24 332.6 823.1 223.5
Z2 655.1 734.5 589.12 578.2

LP13 Z1 923.1 456.3 1051 415.4 899.28 410.4 877.3 267.4
Z2 788.4 803.5 612.27 610.3

LP14 Z1 1023 578.3 1145 603.4 934.56 533.1 912.4 289.1
Z2 823.4 876.5 678.66 645.3

LP15 Z1 1133 656.3 1566 688.5 988.23 627.3 947.2 312.4
Z2 899.3 904.5 734.33 699.7

EP16 Z1 1344.2 899 1899 907 1123 690.1 995 456
Z2 923.5 1125 876.2 768

EP17 Z1 1678.3 987.1 2344 1036 1344 720.3 1190 566.5
Z2 1023.4 1677 956.4 870.7

EP18 Z1 2388.2 1203 2899.7 1566 1567 768 1344 699.3
Z2 1788.7 1894 1087 910.2

EP19 Z1 2523 1455 3455.4 1789 1987 896 1567 788
Z2 2344 2788 1203 988

EP20 Z1 3833 1867 3908 1905 2344 1035 1789 987.1
Z2 3056.6 3244 1899 1054
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Table 7: The results and CPU times of the ε-constraint approach.

Levels ε-constraint T

SP1 122.467 0.021
SP2 137.499 0.032
SP3 178.421 0.154
SP4 188.322 0.864
SP5 201.566 2.045
MP6 245.122 3.024
MP7 - -
MP8 - -
MP9 - -
MP10 - -
LP11 - -
LP12 - -
LP13 - -
LP14 - -
LP15 - -
EP16 - -
EP17 - -
EP18 - -
EP19 - -
EP20 - -
ε = 0.2

According to the stated four evaluation metrics of Pareto op-
timum analyses, metaheuristic algorithms are compared with
each other as given in Table 8. To improve the performance of
utilized metaheuristic algorithms, the prior solutions are gener-
ated. According to the four metaheuristics involving FFA, ABC,
SEO, and ISEO algorithms, their primary solutions are gener-
ated with an equal share. Eventually, to promote the reliabil-
ity of metaheuristic algorithms, the average results for 25 run
times are considered during this section. As given in Table 8, it

is clear the ISEO metaheuristics are quicker than other meta-
heuristic algorithms. Thus, the CPU time of ISEO is less than the
CPU time of other suggested metaheuristics in different sizes.
Therefore, ISEO has a minimum average of computational time
(122.655 seconds). The ABC has the maximum rate of this item
(195.9976 seconds).

As mentioned earlier, the efficiency of the presented algo-
rithms is examined by the evaluation metrics, including NPS,
MID, MS, and SNS as the comparison metrics for the achieved
non-dominated solutions under every experiment problem.
Then, the outcomes are indicated in Table 8.

Figure 15 indicates two examples of non-dominated solu-
tions of the suggested metaheuristic algorithms, in two exper-
iment problems, e.g. SP2 and LP13. Based on these figures, it
can be noticed that ABC records the worst efficiency, while the
ISEO overcomes all the algorithms. Generally, the solutions of
ISEO and SEO significantly dominate the solutions of ABC and
FFA.

To determine the best metaheuristic algorithms, this pa-
per conducts several statistical comparisons between the meta-
heuristic algorithms according to the Pareto-based analyses
taken by a measurement metric. The outcomes presented in
Table 8 are transformed into a general metric, i.e. the rela-
tive deviation index (RDI), for which the formula is as follows
(Fakhrzad, Talebzadeh, & Goodarzian, 2018; Goodarzian et al.,
2020b):

RDI =
∣∣Algsol − Bestsol

∣∣
Maxsol − Minsol

× 100, (42)

where Algsol is the objective function value achieved by a given
measurement metric of the algorithm, and Maxsol and Minsol are,
respectively, the maximum and minimum values among all val-
ues of the algorithms. Also, Bestsol is the best solution. In other
words, it is one of the Maxsol and Minsol based on the nature of
the metrics. It is clear that a lower value of RDI indicates a higher

(a) (b)

(c) (d)

Figure 10: The results of the first objective function.
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(a) (b)

(c) (d)

Figure 11: The result of the second objective function.

(a) (b)

(c) (d)

Figure 12: The result of CPU time.

quality of algorithms. As a result, the means plot for the intro-
duced modified algorithms; the outputs run by the Minitab soft-
ware are indicated in Fig. 16.

Referring to Fig. 16a, according to the NPS, first, it proves
that ISEO metaheuristics are more successful than other meta-

heuristics, having obtained the best CPU time. The introduced
ISEO algorithm is the most efficient among all the algorithms.
Briefly, the ISEO designates the best efficiency in the NPS met-
ric. Figure 16b shows that the ISEO algorithm is forcibly better
than other algorithms. The ABC proves weak efficiency, while
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Figure 13: The result of the ε-constraint approach.

Figure 14: The result of CPU time.

ISEO is greatly better than the other algorithms in the MID
metric.

This point of view for an MS metric is true. Although ABC
displays the worst behavior in this item (Fig. 16c), contrary to
the three described metrics, the outputs of the SNS metric are
different. In this instance, ISEO is strongly more reliable than
the other metaheuristic algorithms. The proposed ISEO is more
efficient than the other metaheuristics, as well as it indicates
the most competent efficiency between all metaheuristics for
SNS metric (Fig. 16d).

5.4 Sensitivity analyses and managerial insights

To show the applicability of our HHCP and practical insights,
some sensitivities on the key parameters are performed as fol-
lows:

Hereabouts, we perform sensitivity analyses on the model
to appraise the effectiveness of the model. In the comparison
section, the ISEO algorithm was the most powerful and effec-
tual. Hence, this algorithm is selected for sensitivity analysis.
The objective functions including the total cost of the logistics
activities of HHC services abbreviated as TTC and the total time
of the HHC services, abbreviated as TT O, are shown. A small-
size experimental problem, e.g. SP2, is shown. To investigate the
model, only two main parameters, i.e. transportation cost TC
and the number of sorts of caregivers p (doctors DO, nurses NU ,
and therapists T H), are examined in this section. The reason of
this selection among the parameters is the high impact of these
parameters in the objective functions. It clearly indicates that
the transportation cost plays a key role in the total cost and the
various availability of caregivers are very useful to reduce the
time of HHC services. To this end, five experiments for each pa-

rameter are designed and changes related to the objective func-
tions are investigated.

A sensitivity analysis is performed on this parameter and the
relevant outcomes are exhibited in Table 9. Furthermore, the
trade-off amid objective functions including the total time of
service and transportation cost is displayed as given Fig. 17. The
outcomes expose an astonishing similarity within the objective
functions. Overall, with the increase in transportation costs, not
only does the total time of operations increase, but it also en-
hances the transportation cost objective function.

In general, the most meaningful contribution of the pre-
sented multiobjective model is to consider various skills of the
caregivers to support a full range of HHC services. In this regard,
a sensitivity analysis has been carried out with an increasing va-
riety of caregivers to appraise its impression on objective func-
tions. Table 10 shows the outcomes of the sensitivity analysis
related to the sorts of caregivers and Fig. 18 exhibits the behav-
ior of the objective functions.

The results show the similarity between the objective func-
tions. Accordingly, the total time of operations and also the
transportation costs have increased with a variety of caregivers.
Overall, choosing the best strategy for deploying the most suit-
able caregiver can be very powerful in responding to concerns
about time of operation and transportation costs.

According to the HHCP, the service center could decide the
operation time (service and transportation) policy that best suits
them. Results show that the HHCP is robust across the network
size (i.e. the number of caregivers, patients, and vehicles in the
network of HHCP) and also, that the model can be utilized for
developing policies for service centers and hospitals. So if ser-
vice centers and hospitals are experiencing high patient varia-
tion, it is strongly recommended to employ the ISEO algorithm.
Further, when the transportation cost is significantly higher or
lower than that in the case of the setting considered in this study,
it is proper to utilize the ISEO algorithm.

Most notably, the demand for visits by each patient, with con-
straints based on the kind of caregiver (doctors, nurses, or ther-
apists) utilized to design ideal routes from the service center to
various patients’ homes, is notable as they control other deci-
sions made in the caregiving centers (hospitals and service cen-
ters). Most importantly, the main novelty of our model is the si-
multaneous consideration of route balancing, service time, and
working time balancing.

Other managerial insights can be inferred from the dynamic
sensitivity of the algorithms, presented in Figs 15 and 16, to con-
firm the efficiency and performance of the developed ISEO when
compared to the other applied algorithms. Furthermore, the ap-
plicability of our HHCP is demonstrated by the results obtained,
such as the sensitivities of the model (see Figs 17 and 18). There-
fore, the outcomes of this study are useful for HHC companies to
find a trade-off between the time of the services and their cost,
with the consideration of time windows, route balancing, and
working time balancing constraints.

6. Conclusion and Future Works

The present paper studied a new biobjective optimization model
for a practical HHCP with simultaneous consideration of time
windows, route balancing, and working time balancing con-
straints. The objectives are the total service time and the cost
of HHC services – both of which are to be minimized simultane-
ously. Since the proposed HHCP is much more complex than the
classical version of VRPTW, four metaheuristic algorithms were
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Table 8: The computational outputs of NPSs, MIDs, MSs, and SNSs for the offered algorithms.

Experiment
problem NPS MID

FFA ABC SEO ISEO FFA ABC SEO ISEO

SP1 6 8 5 4 1.322 5.225 1.278 1.761
SP2 8 9 7 5 1.566 5. 441 2.183 1.233
SP3 10 11 8 6 2.321 6.876 2.298 1.678
SP4 12 13 10 8 3.403 8.245 4.256 2.427
SP5 14 14 12 9 4.577 9.276 5.534 2.321
MP6 13 14 12 9 6. 232 8.344 6.921 3.214
MP7 13 10 10 10 8.782 9.312 4.130 3.877
MP8 14 11 13 8 2.455 7.342 4.123 3.432
MP9 13 12 10 8 3.024 9.034 3.858 1.271
MP10 14 12 9 9 8.254 6.438 5.739 1.237
LP11 14 10 10 9 8.665 8.788 5.345 2.237
LP12 14 9 10 9 9.823 4.126 6.345 3.344
LP13 13 12 10 8 8.589 9.705 7.254 4.442
LP14 12 14 12 7 4.367 6.252 3.372 2.761
LP15 11 15 11 10 7.313 7.341 6.512 1.532
EP16 13 17 13 11 9.453 9.456 5.771 2.344
EP17 15 19 15 12 11.234 10.567 4.566 2.788
EP18 16 22 14 14 13.567 8.678 8.987 3.788
EP19 16 25 14 15 16.677 7.345 9.123 4.789
EP20 18 21 17 16 17.654 11.567 11.233 6.789

MS SNS
FFA ABC SEO ISEO FFA ABC SEO ISEO

SP1 55 445 74 511 38 727 33 662 86 336 95 812.7 78 163.5 64 267
SP2 63 712 85 328 54 191 48 927 90 143 104 512 837 621 68 421
SP3 62 337 94 518 64 632 49 181 92 324.6 138 215 85 225.6 72 235
SP4 77 323 103 322 67 352 51 378 982 456 162 454 86 729.5 75 123
SP5 85 617 116 201 78 929 53 437 102 749 179 455 88 153.4 81 701
MP6 96 439 128 329 85 654 56 821 1927 563 194 948 93 447 84 544
MP7 105 451 138 023 94 538 68 348 214 252 237 881 101 967.2 86 572
MP8 128 454 148 421 102 156 71 469 243 132 287 157 122 025.3 87 534
MP9 137 342 164 556 114 871 83 941 268 429 314 637 142 505.8 94 631
MP10 147 134 172 326 128 092 94 567 271 332 352 781 177 071 99 129
LP11 156 211 193 443 134 254 96 607 316 251 398 512 185 136 102 338
LP12 167 231 233 655 148 982 102 343 344 527 415 792 223 961 134 291
LP13 173 471 263 018 150 512 115 252 362 781 434 287 241 882 163 471
LP14 183 323 283 328 162 783 123 554 391 241 453 692 251 141 214 276
LP15 193 238 2943 831 174 902 135 871 412 301 519 337 283 266 267 340
EP16 234 566 3046 770 189 657 140 857 436 781 526 790 295 751 279 810
EP17 278 986 3240 571 197 760 156 863 467 811 548 769 307 684 287 691
EP18 312 506 3487 013 201 451 167 892 490 430 569 801 318 792 298 714
EP19 389 087 3678 011 223 098 178 946 527 591 580 921 326 789 307 601
EP20 412 839 3891 122 267 791 180 462 548 791 620 165 347 651 318 262

(a) (b)

Figure 15: Pareto frontier of the metaheuristics.
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(a) (b)

(c) (d)

Figure 16: Interval plots for the evaluation metrics in RDI.

Table 9: The outcomes of the sensitivity analysis related to the trans-
portation cost.

The number of cases TC TTC TT O

C1 4 188.3 287.2
C2 10 256.7 385.1
C3 16 593.21 672.5
C4 18 628.76 788.1
C5 20 756.28 822.18

Figure 17: The behavior of the objective functions on the sensitivity analysis of
the transportation cost.

applied and among them, the proposed ISEO algorithm proved
to have the highest performance in efficiency.

Four classifications of simulated test studies were consid-
ered to show that the exact solvers are not able to solve this

Table 10: The results of the sensitivity analysis related to the sorts of
caregivers.

The number of cases p (#DO#NU#T H) TTC TT O

C1 #3#4#3 188.3 287.2
C2 #4#5#4 256.12 413.32
C3 #5#6#6 362.27 651.56
C4 #6#7#8 567.54 721.41
C5 #7#9#9 640.76 865.32

Figure 18: The behavior of the objective functions on the sensitivity analysis of
the sorts of caregivers.

model optimality in real-scaled instances. Henceforth, by inte-
grating large-scaled and extra-large-scaled data into the HHCP,
the model solution can receive the fluctuations. Accordingly,
it is also exhibited that the association of large-scaled and
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extra-large-scaled data into the HHCP enlarges the computa-
tional time (CPU) and the model cannot be solved optimally in
the present paper.

An exact solver by using the framework of the ε-constraint
approach was provided for small-sized samples. Another contri-
bution of this paper was an ISEO algorithm for large-sized and
extra-large-sized samples that provided a solution very near to
optimum. Four metaheuristic algorithms, namely FFA, ABC, SEO,
and ISEO algorithms, were offered to have a comparative study.
With regard to the multiobjective analysis of these algorithms,
four assessment metrics, namely NPS, SNS, MID, and MS, were
suggested to analyse the metaheuristic algorithms. The results
prove that ISEO improves the convergence rate of SEO. In ad-
dition, this convergence outperforms other algorithms. Then,
the convergence of ISEO is significantly faster than that of the
other algorithms in this paper. This algorithm tends to outweigh
other algorithms of optimization in our HHCP context. The re-
sults were discussed and analysed in terms of Pareto optimal
solutions, convergence speed, and computational time. In ad-
dition, some sensitivity analyses were performed to show the
behaviors of the total cost and operational times in different
cases. As per the results, findings, discussions, and analysis of
this paper, we conclude that the performance of SEO is signifi-
cantly improved. This novel idea is effective not only for Pareto
optimal solutions and our HHCP, but also for other variants of
VRPTWs.

Future research may consider the following aspects: The syn-
chronized visits can be added to our model. In addition, the envi-
ronmental regulations for the HHC companies can be considered
by adding the green emissions into our HHCP to achieve sustain-
ability for HHC companies. Furthermore, considering machine-
learning techniques can improve the search operators of our
metaheuristics, without a doubt, the developed ISEO algorithm
also needs further analyses based on benchmark tests and war-
rants additional attempts to combine it with other recent meta-
heuristics.
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Appendix
A1. ε-Constraint Method

The ε-constraint method is one of the known methods dealing
with multi-objective optimization problems. Since the proposed
HHCP is a bi-objective MILP model, the ε-constraint method is
employed. The algorithm transfers all objective functions, ex-
cept for one of them ( f1(x)) at each stage as the constraints
( fi (x) ≥ ei ), in addition to the main constraints (g(x) ≥ 0), and
solves them. By updating the bounds of each objective (ei )
and the main objective, the Pareto solutions are generated.
Haimes et al. (1971) introduced this algorithm as summarized in

Equation (A.1):

min f1 (x)
s.t.
g (x) ≥ 0
fi (x) ≥ ei ; i = 2, . . . , m
x ∈ S.

(A.1)

Generally, the steps of the ε-constraint method are:

� One of the objective functions is selected as the main objec-
tive function;

� After solving the single objective form of the model, the val-
ues of other objectives are reported. After that, with regards
to other objective functions, the optimal values of them are
reached and are reported;

� Based on the optimal value of each objective and other values
when this objective was not the main one, the bounds to limit
the objectives when running Equation (A.1) are ε, e2, . . . , em;

� Based on allowable bounds of each objective, we run Equa-
tion (A.1) multiple times to generate a group of Pareto solu-
tions.

� We select the non-dominated solutions among all Pareto so-
lutions generated by the above steps.

The concepts of Pareto solutions and how to identify the non-
dominated solutions are defined in the following subsection.

A2. Multi-Objective Optimization Evaluation

As discussed earlier, the offered HHCP has two objectives based
on two different items, i.e. the time and the cost. The goal is
to find a trade-off between the two objectives. This interaction
among the solutions is observed by the Pareto optimal solu-
tions. These solutions can be divided into different fronts. The
best front which has the high-quality solutions, is the non-
dominated solutions (Goodarzian and Hosseini-nasab, 2019).

To describe the non-dominated solutions, consider two solu-
tions for our model: Solutions A and B. Let ZA

1 , ZA
2 , and ZB

1 , ZB
2

be the corresponding optimal objective values for the first and
second objective functions of Solutions A and B, respectively.

Figure A.1: The pseudo-code of the proposed MOSEO algorithm.
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Figure A.2: The pseudo-code of the MOFFA.

Therefore, Solution A dominates Solution B when (
ZA

1

ZA
2

) ≤ (
ZB

1

ZB
2

)

and (
ZA

1

ZA
2

) �= (
ZB

1

ZB
2

) (Nguyen et al., 2019; Devika et al., 2014).

The evaluation of a multi-objective optimization model is dif-
ficult as there is no global solution. There is a group of non-
dominated solutions as the outputs of each algorithm. There-
fore, some assessment metrics have been defined to analyze the
quality of the algorithms. The Number of Pareto Solutions (NPS),
Mean Ideal Distance (MID), Spread of Non-Dominance Solution
(SNS), and Maximum Spread (MS) are four well-known metrics
in this field, with a substantial number of studies in the liter-
ature that have used them (Fathollahi-Fard et al., 2018c; 2019a;
Sahebjamnia et al., 2020).

A3. SEO

The Social Engineering Optimizer (SEO) algorithm was intro-
duced by Fathollahi-Fard et al. (2018a), which was inspired by
the rules of social engineering as an emerging phenomenon in
today’s real-world context of data security. With regards to the
randomization of the SEO, this algorithm begins with two ran-
dom solutions, called attacker and defender. As a single-point
metaheuristic, the search phases of the SEO are formulated by
the social engineering techniques.

In this metaheuristic, each answer expresses a person and its
characteristics, including the abilities in mathematics, sports,
business, music and so on; it expresses the variables of the
problem. This algorithm focuses on the simulation of the
learner’s training and retraining from the attacker to the de-
fender (Fathollahi-Fard et al., 2019b). In this regard, some ran-
dom tests are defined for each attribute in which the attacker
tests as an attribute in the defender and the amount of learning
is calculated and the new defender which has the highest re-
training rate is a replacement for the current defender if exists.
Further, attacks from the defender are carried out according to
the techniques that are available to the attacker (Zhang et al.,
2019). With regards to these actions, the defender moves toward
the attacker to find a response to the attack of the attacker. After
a new evaluation of the fitness of the defender, an exchange may
be acted if this defender is better than this attacker (Goodarzian

et al., 2020a). Finally, a new defender is used to reboot the algo-
rithm. In this algorithm, like other metaheuristic algorithms, the
phases of the search are considered. Also, the training and re-
training of the defender and the attacker improves the exploitive
behavior of the algorithm. In addition, the attacker’s attacks on
the defender and the responses focus on the exploration phase.
Last but not least, the choice of the new defender will repre-
sent the phase of diversity to improve the explorative behavior
(Baliarsingh et al., 2019).

Since the proposed model has more than one objective, we
consider a multi-objective extension to the SEO (Fathollahi-Fard
et al., 2020b). In this regard, in each iteration, only one solu-
tion is selected with regards to the attacker, which is one of the
best non-dominated solutions and has the lowest MID. After the
last iteration, all attackers are evaluated once again to form the
non-dominated solutions. In conclusion, Figure A.1 shows the
pseudo-code of the MOSEO algorithm.

A4. FFA

The FireFly Algorithm (FFA) is a metaheuristic firstly presented
by Yang (2010) as a multi-agent algorithm. The basis of this al-
gorithm lies in the flashing behavior of the fireflies in emitting
light from themselves. Most fireflies can use the emitted light for
communication, to attract partners for mating, warn other fire-
flies of potential predators, and trap smaller insects that they
hunt. The intensity of light available to other fireflies depends
on the distance from the source, the intensity of the light source,
and the absorption power of the light, so the firefly is generally
visible from a limited distance. For more and complete informa-
tion about the FFA, the interested reader is referred to Dekhici
et al. (2019). Generally, these characteristics can be summarized
as follows:

� All fireflies are unisexual. In other words, each firefly is able to
attract other fireflies without a consideration of its sexuality.

� A less bright firefly moves toward a brighter firefly. Otherwise,
it moves randomly.

� The brightness or intensity of light of the fireflies is com-
puted by the landscape of the objective function that is being
optimized.
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Figure A.3: The pseudo-code of the MOABC algorithm.

According to these three idealized rules, the original version
of FFA is defined. Since our HHCP is a multi-objective optimiza-
tion problem, we need to apply the multi-objective version of
FFA abbreviated as MOFFA. The main difference between this
algorithm and the FFA is the non-dominated sorting concept, as
illustrated in F2 before starting the next iteration. Therefore, the
MOFFA can be summarized as a pseudo-code, as shown in Figure
A.2.

A5. ABC

The Artificial Bee Colony algorithm (ABC) is an optimization the-
ory introduced by Karaboga (2005) and developed in view of the
intelligent foraging behavior of honey bee swarms. This algo-
rithm is a technique that simulates the search behavior of honey
bees for food. The algorithm performs a local search that com-

bines with random searches and can be used for an optimized
composition or functional optimization.

In the ABC algorithm, a food source is defined as a state of
the search space (a solution to the optimization problem), and
the number of food sources initially is equal to the number of
available bees in the hive (Gergin et al., 2019). The quality of
food sources is determined by the value of the objective function
in that position (proportionality value). Based on this concept,
the ABC is built. Note that as our model has two objectives, the
Multi-Objective ABC (MOABC) is considered to solve our problem
based on the presented encoding scheme. The main difference
is represented by the concept of multi-objective assessment of
solutions. After each iteration, the Pareto solutions should be
updated. Based on the evaluation of the non-dominated so-
lutions, Figure A.3 indicates the pseudo-code of the MOABC
algorithm.
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