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ABSTRACT Web Information Processing (W.I.P.) has enormously impacted modern society since a huge
percentage of the population relies on the internet to acquire information. Social Media platforms provide
a channel for disseminating information and a breeding ground for spreading misinformation, creating
confusion and fear among the population. One of the techniques for the detection of misinformation
is machine learning-based models. However, due to the availability of multiple social media platforms,
developing and training AI-based models has become a tedious job. Despite multiple efforts to develop
machine learning-based methods for identifying misinformation, more work must be done on developing an
explainable generalized detector capable of robust detection and generating explanations beyond black-box
outcomes. Knowing the reasoning behind the outcomes is essential to make the detector trustworthy. Hence
employing explainable A.I. techniques is of utmost importance. In this work, the integration of two machine
learning approaches, namely domain adaptation and explainable A.I., is proposed to address these two
issues of generalized detection and explainability. Firstly the Domain Adversarial Neural Network (DANN)
develops a generalized misinformation detector across multiple social media platforms. DANN generates
the classification results for test domains with relevant but unseen data. The DANN-based, traditional
black-box model cannot justify and explain its outcome, i.e., the labels for the target domain. Hence a Local
InterpretableModel-Agnostic Explanations (LIME) explainable A.I. model is applied to explain the outcome
of the DANN model. To demonstrate these two approaches and their integration for effective explainable
generalized detection, COVID-19 misinformation is considered a case study. We experimented with two
datasets and compared results with and without DANN implementation. It is observed that using DANN
significantly improves the F1 score of classification and increases the accuracy by 3% and A.U.C. by 9%.
The results show that the proposed framework performs well in the case of domain shift and can learn
domain-invariant features while explaining the target labels with LIME implementation. This can enable
trustworthy information processing and extraction to combat misinformation effectively.

INDEX TERMS Covid 19, DANN, lime, misinformation detection, social media, text processing, web
information processing, XAI.
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I. INTRODUCTION
Information and data are primarily stored on various social
networks and internet platforms, and web information pro-
cessing offers opportunities to modify and extract the data
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[1]. Web Information Processing (W.I.P.) manipulates data
available from various internet/web sources to produce useful
information. One of the specific aspects of web informa-
tion processing includes extracting and using the information
available on social media, including the internet and social
networking websites. A considerable percentage of the pop-
ulation relies on the internet to acquire information. Social
Networking platforms are growing daily, with 4.2 billion
users in January 2021 and a 13.2% increase in 2020 alone.
The rate doubled compared to 2019-2020, only 7.2% [2]. Due
to this spike, the enormous amount of misinformation com-
municated on social media platforms poses an unprecedented
challenge causing significant harm and deleterious to many
people worldwide. Misinformation can be any inadvertent
premise not backed by facts or scientific data and leads
to misconceptions. This is highly important in the case of
healthcare-related misinformation, which can lead to fatal
consequences. Furthermore, the circulation of misinforma-
tion during a health crisis induces trepidation among the
population. For example, detail about COVID-19 from these
social media posts and news sources can include opinionated
‘‘natural remedies,’’ the origin of COVID-19, or about the
vaccines and their side effects cascade hesitancy in getting
vaccinated even if vaccines are available.

The type of language and ideas on a specific topic por-
trayed by the users from one social media platform to
another significantly differs, starting from vocabulary, gram-
mar, etc. [3]. This also differs from news data sources.
Annotating data from multiple information pools can take
time and effort. This is a major reason many researchers
focus on one specific data source when classifying misin-
formation/fake news. In the case of a pandemic, dependency
on a particular source drastically affects the robustness of
a classification model to be applied on other social net-
works when spreading misinformation across all platforms
is gradually increasing and equally important. The motiva-
tion of the work is drawn from the wide use and spread of
social media platforms, which are a huge source of influence
for spreading misinformation as the information hails from
multiple sources, in other words, multimodal homogeneous
data sources providing rich contextual information. Detection
of misinformation is crucial to human mental and social
well-being to reduce the confusion and ambiguity arising
from misinformation spread. Despite the use of different A.I.
and machine learning-based techniques for the detection of
misinformation, there is a huge need to have a generalized
detector for misinformation detection across multiple social
media platforms and have an explainer for explaining the
justifications for the predictions to ensure trust and adoption
of the system for combating misinformation effectively in the
healthcare domain.

Creating an adaptive model over diverse media plat-
forms can be done effectively by learning information from
one domain and utilizing it to learn in another domain.
Domain Adaptation [4] deals with such generalization
beyond training distribution and comes under the purview of

out-of-distribution generalization [5]. This is accomplished
using Domain Adversaries to learn domain invariant feature
representations. DANN applies the gradient reversal layer to
make the feature distribution of source and target domains
similar. Data distribution differs among social media plat-
forms due to user behavior; data from different platforms
constitute different domains. Here, the domain doesn’t refer
to a particular industry vertical but to different social media
data sources. For example, comments posted on Instagram
represent a domain, while news articles published on various
platforms represent different domains. The dataset of com-
ments from the different social platforms and news sources
are considered as different domains because the interacting
group of audience with the platform differ in thought pro-
cesses and user behavioral patterns. In this work, we have
considered data across multiple social media platforms such
as YouTube, Instagram, news, and Reddit for covid 19 mis-
information detection. Data distribution differs across social
media platforms due to user behavior, as data from different
platforms constitute different domains. Creating an adaptive
model over diverse media platforms can be done effectively
by learning information from one domain and utilizing it to
learn in another domain. So this is a cross-domain adaptation,
where the features of the domains are the same, but the
underlying distribution is different. In this case, the domain
shift is based on two domains having the same input feature
space (χs = χ ), but the shift is because of different data
distributions, i.e., P(Xs) ̸= P(X t). Domain dimensions are
also the same. Where a domain is defined as the same input
features but coming from a different distribution. So the
overall work focuses on curating data from multiple sources
of social media platforms and adaptation to different domains
due to data distribution differences and building a generalized
detector with the DAANmodel, i.e., Domain adversarial neu-
ral network, and explaining the predictions class/target labels
of the DANN model with Explainable AI-based techniques.

However, it is important to note that the DANN-based
approach is a traditional black-box model, and the outcome,
i.e., the reasons for the generated target labels, are unknown.
Despite multiple efforts to develop machine learning-based
methods for identifying misinformation, little work has
focused on providing explanations beyond a black-box deci-
sion [6]. Explores must be provided for the target labels to
develop a trustworthy generalized detector for social media
misinformation. Hence in this work, we employ a DANN and
implement it to detect misinformation in coronavirus-related
posts across these diverse domains, followed by a Local Inter-
pretable Model-Agnostic Explanations (LIME) [7] frame-
work to generate the reasoning behind the outcomes. So the
objectives of the study are

1. Can we train a classifier on one source domain and use it
to test a similar but unseen target domain using machine
learning?

2. Can we develop an explainable model integrated with
the generic detector to explain the target domain labels?
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For coming to Section II will discuss the related work on
detecting misinformation using artificial intelligence and
machine learning, domain adaptation, and explainable artifi-
cial intelligence for web information processing. The datasets
used for the study, namelyMisovac, and CoAid, are described
in section III. The methods, such as preprocessing, data aug-
mentation, and DANN on the CoAID and MiSoVac data sets,
are described in section IV. Section V describes the system
design and architecture, especially for DANN and LIME. The
results and experiments section VI describes the performed
experiments, corresponding results, and evaluation metrics,
followed by the result discussion section. The article ends
with the conclusion section and a discussion on the future
scope of the study.

II. RELATED WORK
This work reviews the literature concerning three aspects—
A.I. and machine learning-based misinformation detection,
domain adaptation, and explainability through the subsequent
subsections. The W.I.P. consists of information extraction
and making it available for internet users. The internet has
become a tool for generating and free flow of information
worldwide in today’s world. Information generates ideas and
drives decisions. However, the internet generates false infor-
mation since no regulatory body moderates the content, espe-
cially on social media and W.I.P., impacting society [8]. Air
and sound pollution has been a major concern for the last few
decades; however, now is the time to worry about information
pollution. Information pollution’s direct reasons and impacts
are difficult to identify and explain and evenmore challenging
to quantify. In [9], the information disorder phenomenon
is examined comprehensively. In many instances, there is
no malicious intent to generate and spread misinformation;
however, in other cases, it might be just very selfish, e.g.,
increasing the sale of a certain drug or purely being business-
oriented, to spread wrong information to create panic about
certain drugs or treatments. Understanding the ethical and
moral status of the people involved is interesting. When peo-
ple cannot tell what is credible and what is not and act on that
information, poor decisions can impact our lives and financial
well-being [10]. We must recognize that communication and
information sharing plays a significant role in representing
shared beliefs. Since social platforms are designed to express
through likes, comments, and shares, all the efforts towards
fact-checking and debunking false information are ineffective
since the emotional aspect of sharing information is impossi-
ble to control. The mining of misinformation in social media
spreads uncontrollably and tremendously fast and, in recent
times, has been responsible for causing harm to the social
fabric of our world [11]. Misinformation can be disinforma-
tion, rumors spam, fake news, etc. The world economic forum
considers the rampant spread of misinformation online one of
the ten global risks [12].

Regarding misinformation, ‘‘an era of fake news’’ is occur-
ring rapidly, where misinformation is transmitted speed-
ily, intentionally, or unintentionally. Various formats of

non-textual media, such as bit-mapped pictures, are being
used, contributing to the diffusion of misinformation and dis-
information. Misinformation affects communities in various
ways, for instance, racist hostility and exclusion. Therefore,
preventing such emerging behaviors is an important area of
research and study. Pizzagate, the Anti-vaccine movement,
Russian scientists discovered a cure for homosexuality, etc.,
are some of the popular fake news items of 2017 [13],
[14], suggesting that curbing social bots may be an effective
strategy for mitigating the spread of online misinformation.
It is also important to understand that although much misin-
formation is focused on the political domain, medical mis-
information has threatened countries worldwide. Research
has demonstrated how inaccurate advice from a person who
has no medical knowledge is proliferated through hoaxes,
tweets [15], online Q&A forums, Pinterest [16], Yahoo, and
Google [17]. The context of medical information encom-
passes the broader aspects of trustworthiness, reliability,
dependability, integrity, and reputation of the medical practi-
tioner and the A.I. developer in the high-risk health and safety
domain. Due to the explosion and wide acceptance of social
media reporting, the issue of non-credible news has become
extremely relevant. In the context of medical information, this
problem is even more serious because it directly relates to the
health and well-being of people. Medical misinformation is
an obvious concern as the information can be shared without
rigorous review. The first step toward handling the spread of
misinformation is to detect it automatically.Machine learning
and artificial intelligence methods are employed for this task,
especially for automatic misinformation detection on social
media platforms.

A. DETECTION OF MISINFORMATION USING ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING
Earlier efforts on misinformation detection go back to the
start of the internet revolution Kinchla, and Atkinson [18]
have studied the effect of false information on psychophysical
judgments. Their experimental results show that false infor-
mation reduces the probability of a correct response. Various
applications, including credibility assessment of microblogs
[19], have been reported recently. The credibility assess-
ment algorithms are automated, human-based, and hybrid
approaches. Automated approaches include various machine
learning approaches. Human-based can be the voting, cogni-
tive, and manual verification approaches. Hybrid approaches
combine these. Shao et al. [19] have developed Hoaxy,
an open platform for dealing with misinformation. The huge
scale of information (data), dynamic nature, and homophily
are primary challenges in detecting misinformation. To this
end, various researchers have studied and developed methods
to see false information. With the flood of information from
social websites, it is impossible to check, analyze and vet
the potential deception. Various methods have been reported,
from simple classifiers to state-of-the-art attention networks
[20], [21], [22], [23], [24]. A recent EEG-based emotion
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recognition study using a hybrid CNN and LSTM classifi-
cation approach was conducted in [25]. A line of research
models social media problems as an optimization problem
for sentiment analysis on social networks [26]. A text-based
deep learning model for hate speech detection for covid 19 is
developed in [27]. However, these approaches are explicitly
reported for a single social media platform and informa-
tion classification. No method can be used across various
platforms. This work considers a state-of-the-art domain
adaption paradigm for developing a misinformation detector
trained on one source domain and adapted to multiple similar
domains considering the domain difference with explainable
predictions.

B. DOMAIN ADAPTATION
Domain adaptation is classified as a transductive learning
procedure [28] under transfer learning [29]. It is applied in
problems where the task stays the same across domains;
however, data may not be available in the target domain.
Initially, domain adaptation setups considered this problem
a supervised or semi-supervised approach with substantial
sources and scant data in the target domain [30], [31] pro-
posed solutions to the domain shift problem using such
setups. However, with the difficulties in annotated data,
unsupervised domain adaptation techniques emerged that
alleviated the domain shift problem. Domain adaptation tech-
niques are classified into data-centric, model-centric, and
hybrid methods [32]. Data-centric approaches include meth-
ods like pseudo labelling [33], [34], [35] and Data Selection
[36], [37].The model-centric approach focuses on modifica-
tions in the architecture that may include the use of pivot-
based methods for feature augmentation [29], [38], [39] that
have now been developed to learn from neural networks
[40], [41] via attention [42], [43]. Feature generalization
techniques are capable of learning common hidden fea-
tures between domains, and such approaches include stacked
de noising auto-encoders [44] and marginalized stacked de
noising auto-encoders [45], [46], and Dual representation
based auto-encoder [47]. Reference [48] proposed consid-
ering features from either source or target using domain
separation networks; however, they lacked domain-specific
features in the classifier as they were only used in the decoder.
Reference [49] Proposed a gradient reversal technique to
maximize domain confusion andminimize task error. DANN-
based approaches have widely been applied to applications
like sentiment classification [49], [50], [51], language iden-
tification [52], duplicate question detection [53], etc. [54]
applied domain adversarial training leveraging the knowledge
distillation [55] with an extra loss during adaptation. Hybrid
approaches like [51], [56], [57], [58] combine data-centric
and model-centric approaches. Unlike DANN, a loss-centric
approach, feature-centric and data-centric techniques are
used in text classification but do not use context-dependency
and linguistic information and are multi-shot training proce-
dures [31]. Also, there has been very little research tackling

domain differences across social media platforms. In this
work, we employ DANN to develop a generic misinforma-
tion classifier across multiple platforms. We consider one
or more social media platform(s) as the source domain
and other multiple platforms as target domains and apply
DANN to demonstrate our approach. The most relevant case
study of COVID-19 misinformation is considered for the
demonstration. However, due to the black-box nature of the
DANN, it isn’t easy to generate explanations for the target
labels. Hence to that end, the explainable A.I. is essentially
employed.

C. EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR WEB
INFORMATION PROCESSING
Machine learning models have recently achieved tremendous
progress in performance and accuracy. Still, the complex
non-intuitive hidden layer processing makes them an opaque
black box with a lack of insights on how and why a model
generated a certain decision/outcome [59]. This black-box
nature results in little or no understanding of the model’s
internal logic, adversely affecting these models’ trust, usabil-
ity, and adoption in real-world applications [60]. Model
interpretability or explainability is of paramount importance
when it comes to debugging the model for flaws, ensuring
trust, transparency, accountability, and ethics in the model’s
outcomes, and complying with the governance such as EU-
GDPR, which allows the end-user to seek the right to explain
automated algorithmic decisions. XAI improves model per-
formance by performing internal audits and bias detection
[61]. The natural language processing (NLP) text models typ-
ically deployed for detecting misinformation on large-scale
social media platforms demand accurate introspection and
justification of the model’s underlying predictions to ensure
trust, transparency, and fair decision-making from different
stakeholders [62]. A prime concern is to generate human-
understandable comprehensive model explanations to inter-
pret the model predictions and underlying mechanics [63].
State-of-the-art machine learning models are complex black
boxes facing accuracy interpretability trade-offs raising con-
cerns about models’ reliable and reasonable behavior in
the real world [64]. Reliability on mere performance and
accuracy metrics needs to be improved. Interpretability is
a prime metric for establishing trust in the inner workings
and logic for accuratemodel predictions and decision-making
[65]. Model interpretability can be achieved intrinsically by
designing faithful and consistent explanations of the model or
post hoc, i.e., explaining the predictions after model building
without compromising the accuracy interpretability trade-off.

The model’s scope is local to a specific instance or globally
applicable to the entire model [66]. Model explainability
techniques are broadly classified into intrinsic InDesign and
post hoc explainability techniques that are irrespective of the
underlying model and are derived from post-model devel-
opment without impacting the accuracy and design of the
model [67]. The most widely used techniques for post hoc
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TABLE 1. Key comparison metrics with existing techniques.

explainability in the literature are LIME (Local Interpretable
Model Agnostic Explanations) and SHAP (Shapely Additive
Explanations), Deep Shap, Deep Lift, and Cxplain). Explain-
ability techniques are crucial in overcoming the black-box
nature of classifiers for unimodal and multimodal deep neu-
ral nets for vision and language processing [68].LIME is a
model-agnostic explainability technique applied to any clas-
sifier. The model is learned by perturbing the input data
samples and understanding how the predictions change based
on the input changes. LIME modifies a single data instance
by tweaking the individual feature values and observing the
effect on the model outcome. This provides insights into why
a specific prediction was made or which feature contributed
to the prediction. Feature relevance depicts the importance of
individual features on the model predictions and the influence
of different features over the model outcomes.

To interpret which model captures linguistic knowledge
and semantic details and why a certain prediction is made,
explanations can be derived for the predictions focusing on
perturbed inputs [69]. This approximates the underlying clas-
sifier model with a second model learned by perturbing the
original instance. This enables one to identify input compo-
nents with the most significant influence or impact on predic-
tions. This approach is model agnostic, and it is easier to learn
explanations on a locally weighted dataset than approximate
a model globally. Local Interpretable Model-Agnostic Expla-
nations (LIME) [70] generate locally faithful explanations
and learn an interpretable model locally around the specific
prediction. LIME provides interpretable data representations
for non-expert users representing the presence and absence
of faithful and consistent words to the local model without
impacting model performance. Table 1 lists the comparison
metrics with existing work based on the survey.

In summary, the novelty and contribution of this work are:

1. Development of a classifier that can effectively be used
across multiple social media platforms for misinformation
classification with limited training data. Development of
economic approach regarding time, processing, and effi-
ciency avoids training models on individual platforms.

2. Implementation of the DANN-based architecture that out-
performs the state-of-the-art results on the CoAID dataset.

3. The development of a novel misinformation dataset (MiS-
oVac) related to COVID-19 vaccination from social media
platforms.

4. An explainable, trustworthy adoption paradigm addresses
domain adaptation and explainability in integrating multi-
ple social media platforms.

III. DATASET DESCRIPTION
Misinformation is spread in many forms, including newspa-
pers, television, and the internet. However, most misinfor-
mation is spread across social media domains like Twitter,
Instagram, Facebook, YouTube, Reddit, and Whats App. For
this research, we focused on developing a generic misinfor-
mation detection with a specific topic of COVID-19; curation
of the MiSoVac dataset, which includes data from multi-
ple social media platforms related to vaccines with CoAID
dataset (openly available) to demonstrate the DANN-based
explainable approach for classification. The use case in this
work is for covid 19misinformation detection across multiple
social media platforms. Since the CoAid dataset is the largest
dataset for covid 19 misinformation available in the public
domain, it is considered the source domain to learn the fea-
tures from source to target. The MiSoVac dataset is created
by curating data from multiple sources and is referred to as a
target domain for domain adaptation.

A. CoAID
COVID-19 healthcare misinformation Dataset (CoAID) [71]
includes 4251 news articles, 296000 related user engage-
ments, and 926 social platform posts fact-checked by verified
fact-checking sites. The data set is collected from articles
published in December 2019 to September 1, 2020. Topics
like COVID-19, coronavirus, pneumonia, flu, lockdown, stay
home, quarantine, and ventilator were covered for the data set.

B. MiSoVac
This dataset was explicitly developed to focus on the case
study of COVID-19 vaccine-related misinformation. There-
fore, we collected the COVID-19 vaccine-related misinfor-
mation data (MiSoVac) from social media sites like Twitter,
Instagram, YouTube, and Reddit from November 2020 to
February 2021. We used the Selenium library in python to
create a customweb scraper for Twitter, Instagram, YouTube,
and Reddit, which can scrape comments/textual content
based on account I.D., Hashtags, and date time. For scraping
comments on posts related to Covid-19 vaccine engagement,
we fetched all posts with Covid-19 vaccine engagement
maintaining a list. Next, we iterate over each link to fetch the
comments using selenium and export the fetched comments
into a CSV file for further analysis and processing. Samples
of the MiSoVac dataset are enlisted in Table 2. The ‘None’
class of theMiSoVac dataset is not used for Training or testing
as it is insignificant. Only the Misinformation classes ‘True’
and ‘False’ were used for training and testing purposes;
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TABLE 2. Samples from the MiSoVac dataset.

hence, the explainable A.I. model is built to justify the target
labels of the predictions for two classes, i.e., true and false.
And Table 3 shows the data distribution of the MiSoVac
dataset.

IV. METHODS
A. PREPROCESSING
The information on social media is usually easygoing and
casual, leading to a decrease in the ability of a languagemodel

TABLE 3. MiSoVac data distribution of various social media platforms.

to comprehend the corpus; consequently, performing broad
preprocessing on the information became necessary [72].
Fig 1 depicts the diagrammatic flow for preprocessing. The
underlying pipeline expanded contractions and truncations
into their standard form. Basic pronouns, conjunctions, arti-
cles, and relational words in English vocabulary usually add
no logical importance to a sentence and are disregarded by
search engines; hence were eliminated from the corpus. The
expulsion of URLs, hashtags, mentions, and punctuations
was completed as a part of preprocessing. The emoji’s were
supplanted with the content indicating its importance.

B. DATA AUGMENTATION
The data and target labels in theMiSoVac dataset were imbal-
anced, causing the model to be incapable of generalizing on
both classes. Due to this, augmentation had to be performed to
balance the data and increase the data diversity. Table 4 shows
an example of a sentence augmented from the MiSoVac data
set. The following operations were performed using [73]:

1. Augmenting words by feeding neighboring words to the
BERT language model leverages contextual word embed-
ding.

2. Translation of text into other languages and then translat-
ing back to English sentences. The following languages
were used in this approach: French, Japanese, German,
and Urdu.

The details of the model components, such as embedding,
layers, and the DANN model, are listed below.

1) GloVe
Global Vectors or GloVe [74] is an unsupervised learn-
ing algorithm for acquiring word vector portrayals. This is
accomplished by projecting words into a significant space
where the distance between words is identified with semantic
similarity. Training is performed on a collected worldwide
word-word co-occurrencematrix from a corpus, with features
portraying fascinating linear substructures of the word vector
space.

2) LSTM
LSTMs or Long Short-Term Memory [75] networks are
derived from the Recurrent Neural Networks (R.N.N.s) that
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FIGURE 1. Preprocessing pipeline and an example.

TABLE 4. Example of data augmentation.

can process data sequences. While R.N.N.s can learn the
context, due to backpropagation, there is an issue of vanishing
or exploding gradients, which LSTM can overcome. LSTM
unit comprises multiple gates. These gates regulate the flow
of information and allow some relevant information to pass
through the sequence. So this way, the model remembers
the information it has learned in the beginning. Therefore,
128 units of LSTMs were used in the architecture.

3) DANN
Domain Adversarial Neural Network (DANN) is a repre-
sentation learning approach where the training and testing
data sets are similar but belong to different distributions. The
main inspiration behind the working of DANN is that for
effective domain transfer to be achieved, predictions must
be made based on overlapping features. Due to this, the
network cannot discriminate between the training (source)
and testing (target) domains [49]. Consequently, it does not
require a labeled target domain dataset when using DANN
but requires a labeled source domain data set. The DANN
architecture consists of mainly three parts – feature extractor,
label predictor, and domain classifier. The feature extractor
consists of a deep neural network for performing feature-
based learning. The label predictor and the feature extractor
form a standard feed-forward neural architecture responsible
for classifying the class label of the training data sample.
Lastly, the domain classifier is accountable for achieving the
unsupervised nature of DANN, in which it is connected to
the feature extractor through the Gradient Reversal Layer
(G.R.L.). G.R.L. has no parameters to be updated and acts as
an identity transform during the forward propagation. Back-
propagation multiplies the gradient obtained from the next
layer by −1 and passes it to the previous layer, as mentioned
in Eqn. 1. This layer ensures that the feature distributions
over the source and target domains are similar as possible to

obtain the domain invariant features. During training, those
parameters of feature mapping are sought, which maximizes
the loss of the domain classifier by making the source and
target distributions as similar as possible and simultaneously
minimizing the loss of the label predictor. DANN focuses
on learning features that combine discriminative ness and
domain invariance by optimizing the underlying features
jointly.

θf = θf − µ

(
dLy
dθy

+ (−1)(λ)
dLd
dθd

)
(1)

In Eqn 1,⊖f is the gradient of the feature extraction layer,µ is
the learning rate, λ is a hyper parameter for gradient reversal,
Ly is label predictor loss, Ld is domain predictor loss, ⊖y is
the parameters of label predictor, and 2d is the parameters
of domain predictor. This equation represents the update of
feature parameters during backpropagation using G.R.L.

V. SYSTEM DESIGN AND ARCHITECTURAL DETAILS
The data collected from different sources was passed through
a preprocessing pipeline and augmented to make it model-
ready. The parameters for themodel are set to default settings.
Text vectorization was carried out max_features = 20000,
i.e., the maximum vocab size, max_len = 200, i.e., sequence
length to pad the outputs to embedding_ dims = 200 This
data was then vectorized using Glove embedding with Adam
optimizer and binary cross entropy loss before feeding it to
a feature extractor. The Feature Extractor (F.E.) block con-
sisted of sequential Conv1d and Max Pool layers, followed
by an LSTM and Dense layer. Finally, the procured vectors
from the feature extractor block were parallelly passed into
Label Predictor and Domain Classifier (D.C.) blocks. The
Label Predictor (LP) was used to classify either of the labels,
‘‘True’’ or ‘‘False,’’ using a Dense and a sigmoid layer. The
domain classifier also consisted of a Dense and a sigmoid
layer that predicted the input data’s domain (source/target).
During backpropagation, the gradient of the D.C. block
would pass through a gradient reversal layer, as explained
in section IV-A. Fig.2 depicts the flow diagram and steps in
the proposed DANN-based approach. Fig 3. gives a visual
representation of the model architecture explained here.

A. EXPLAINABLE POST HOC MODEL USING LIME
The different explainability methods for text classification
in NLP include gradient-based saliency, integrated gradients
IG., layer wise relevance propagation LRP. and perturbation
methods, feature importance-based techniques such as Shap,
and attention-based heat maps showing model attention on
specificwords at a particular instance. For themisinformation
detection application, we have used the Local Interpretable
Model agnostic Explanation method to have a peek inside the
black box DANN model to derive the target label prediction
explainability of the DANN model as LIME is a post hoc
model agnostic and can be applied to any classifier without
change in model intrinsic and provide instance level local
explanations on different multiple source modalities such as
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FIGURE 2. Flow diagram of the proposed DANN-based model.

FIGURE 3. Model architecture for DANN.

image, text, and tabular data. Lime trains a linear model
to approximate the local decision boundary of a particular
instance. The technique can be applied to any classifier with
text image and structured data providing a high degree of
flexibility compared to the other methods giving it a signifi-
cant weightage over others. The explanations are post hoc and
are derived by locally approximating the underlying black
box model by a linear interpretable model such as a random
forest [76]. This generates sparse explanations that are short
and human-understandable. LIME is trained on small pertur-
bations of original instances as local approximations around
the predictions by sampling and obtaining a surrogate dataset
for the input instance whose decision is to be explained. The
weighting of features is based on how close they are to the
original instance, and the top significant features influenc-
ing the predictions are extracted. A random forest surrogate
model with 500 trees is used for LIME implementation.

B. MODEL EVALUATION AND COMPARISON PROCEDURE
A comprehensive testing methodology was implemented to
test the effectiveness of the Domain adaptation approach. The
first method, where the source dataset trainingwas done using
a FE+LP model and target data, was used as a testing com-
ponent only. This would be referred to as ‘‘Without DANN’’
in the paper. Method 2 (With DANN) consisted of using
DANN (FE+(L.P., DC)) on the source and target data. Com-
paring ‘‘Without DANN’ and ‘‘With DANN’’ approaches
would help us demonstrate the approach’s effectiveness over
normal unsupervised techniques. News data comprised of
the source domain and target domain would be the social
media platforms like Twitter, Reddit, Instagram, etc. Metrics

FIGURE 4. An integrated framework consisting of DANN and LIME for
Explainable Misinformation Detection.

like Accuracy, Precision, Recall, and F1 score are used for
the evaluation. The Area Under the Curve of the Receiver
Operating Characteristic (AUC) is also used to understand
how well the model ranks correct and incorrect pairs. AUC
tells us mathematically how the true positives rate grows at
various false-positive rates.

VI. RESULT AND DISCUSSION
Table 5 shows the different metrics of both the approaches,
i.e., Without DANN and With DANN, on the CoAID [71]
dataset. To report this result, we have trained the model
using ‘‘without DANN’’ and ‘‘withDANN.’’Without DANN,
the model includes only the Feature Extractor and Label
Predictor. Upon training both models, we then analyze the
metrics on how the trained models perform compared to each
other. It is observed that the DANN model performs better
on the target domain (Twitter) when compared to the model
trained on the source (News) and tested directly on the target
(Twitter).

Table 5. The results obtained by [68] are compared to
those obtained using the DANN architecture mentioned in
section IV. Precision, Recall, and F1 are some comparison
parameters [71]. DANN improves the Precision by 6% and
the F1 score by 40% on target data. Here, DANN outperforms
the previous approaches; hence, DANN can effectively learn
features from one social media domain to another.

The Training, validation, and test set are made such that
each set includes an equal number of samples from each
social media platform. While training the model, the metrics
(accuracy, loss) are calculated on the entire set rather than
looking specifically at each social platform. After achieving
the best model, the testing is done to calculate the metrics
(Accuracy, A.U.C.) separately for each social platform (Twit-
ter, Instagram, Reddit, Youtube). Refer to table 6 for more
details. Our approach in table 6 was to better the previous
iteration of models, which were trained on data combined
on two domains (CoAID: News and Twitter). The option
for training the model using the DANN approach is invalid
because there is no target domain after merging the two
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TABLE 5. Result of CoAID dataset using our method.

TABLE 6. Result on CoAID dataset using other methods without DANN.

TABLE 7. Result of MISOVAC dataset with and without Dann.

domain’s data. Hence, we used without DANN approach
(FE+LP) for reporting metrics versus the previous state of
art methods on this dataset.

Further, we present the results obtained on the MiSoVac
data set in table 7. Accuracy/A.U.C. with DANN surpasses
most social media platforms. In the MiSoVac dataset, the cor-
pus for Twitter was balanced and substantial, so we observed
a significant deviation for both the metrics in DANN and
Without DANN. Using DANN, the accuracy of Twitter data
increases by 22%, while A.U.C. increases by 15% com-
pared to the normal approach Without DANN. While the
data for misinformation on other platforms was limited, only
a slight change was observed for the DANN approaches.
Only Instagram shows a decrease in accuracy by 10%; how-
ever, the A.U.C. increases by 14% when DANN is applied,
so the DANN model can distinguish the classes better even if
the accuracy is low. An increase of 3% accuracy and 9% in
the A.U.C. scores are observed. We observe that DANN can
learn the domain invariant features and is good at generalizing
data from various social media platforms.

Table 8 compares the H.A.N. [ Yang, 2016] architecture
on the MiSoVac dataset alongside the ‘‘Without DANN’’
architecture. The ‘‘Without DANN’’ method performs bet-
ter than the H.A.N. [77] architecture. Among the previous
approaches, dEFEND [78] utilized a combination of tweets

TABLE 8. Comparison of hann with our method without Dann on the
misovac database.

and their replies, so implementing it on the MiSoVac dataset
was impossible.

Below is Fig.5 are plots that compare the accuracy and
AUC of DANN and Without DANN implementation on the
four target domains considered: Reddit, Instagram, Twitter,
and YouTube.

Generalization of social media is done by combining mul-
tiple datasets into the source and target domains. The sam-
ples from the News and Instagram datasets are included
in the source domain, and the target domain has samples
from Twitter, Reddit, and YouTube datasets. Domain adap-
tive training using the DANN architecture mentioned in the
previous section is carried out. These results are summarized
in Table 9. When training the DANN model, the source
accuracies (for combined news and Instagram) were 0.8, and
the combined AUCwas 0.9233. So, while training the DANN
model, the model learned to understand complex features
from data of various social media domains that increase the
source results. As shown in Table 9, we see an improvement
in accuracy and AUC for YouTube data for target results.
There is a slight increase in the AUC of Twitter data while
the accuracy is reduced. For Reddit, as the number of test
samples were relatively less, we see little improvement in the
results. The same was observed in the results mentioned in
Table 8.
The adopted approach is economical as it generalizes to

multiple data sources. It saves the time required to build
and train individual models and detectors and the cost of
annotating vast amounts of data. The overall time taken across
the project pipeline is reduced as the step for annotating
the newly scraped dataset is reduced. Moreover, individ-
ual training models are time-consuming when dealing with
separate domains, which can be avoided using this domain
adaptation approach. The model trained without the DANN
approach trains only on the corpus data of that specific
domain. Using the DANN approach, the target data samples
are introduced while training; hence the DANN architecture
learns the domain invariant features trying to adapt to both
the source and target domain. Proving that annotation for the
target domain data is not required as the model achieves high
accuracy based on the labeled source data.

Explainable Model:
Explainability leads to disentanglement in the domain-

specific features and improved generalization to the target
domain without hindering performance on the source domain
bridging the domain gap [79]. Domain shifts were in the
data distribution of the source, and the target domain is

23642 VOLUME 11, 2023



G. Joshi et al.: Explainable Misinformation Detection Across Multiple Social Media Platforms

TABLE 9. Testing Results for the combined and individual target domain.

FIGURE 5. Accuracy and A.U.C. plot for various Social media platforms.

FIGURE 6. Example – 1 LIME explanations for prediction probabilities for
both classes (0 and 1) based on the score assigned to each word in the
sentence text and its corresponding highlight color.

FIGURE 7. Example – 2 LIME explanations for prediction probabilities for
both classes (0 and 1) based on the score assigned to each word in the
sentence text and its corresponding highlight color. Only the class 0 word
(coronavirus) is from the feature space.

different and can be addressed with XAI. Domain adaptation
results in learning more discriminative features in the text
classification results with the change in evidence in contrast
to without domain adaptation, improving generalization on
unseen domain learning domain invariant representation.

The LIME visualizations are intuitive and under-
standable. The results obtained are interpretable for
humans. Local explanation reflects the local fidelity, i.e.,
the classifier’s behavior for a particular data instance.

FIGURE 8. Example – 3 LIME explanations for prediction probabilities for
both classes (0 and 1) based on the score assigned to each word in the
sentence text and its corresponding highlight color. Only the class 0 word
(coronavirus) is from the feature space.

Figures 6- 8 demonstrate the output of the LIME for three
class instances for the dataset.

The blue represents class 0, and the orange represents
class 1. The text is highlighted with the probability of each
word being in either class. The bar chart on the left shows
float point numbers on the horizontal bars representing the
relative importance of these features (green for class 1 and
red for class 0). LIME maintains the explanatory ability of
significant features regardless of the chosen classifier running
independently of the model used. The text explainer finds
the top words which primarily drive the model to make the
classification decision providing intuitive model behavior.
This maps with the original class label providing individual
feature relevance and high feature contribution in the final
prediction by highlighting the text. For Fig 6, the text has
features with a higher probability (∼70%) of being in class 1.
In Fig. 7, a higher feature weight is given to the term vaccine
with 92% class probability. In Fig. 8, the highest importance
is assigned to the term coronavirus with the probability of
95% of class 0. LIME provides excellent results for text
classifiers, but random sampling for data instances can be
unstable in certain scenarios. It typically acts as an explana-
tion tool for expert and non-expert users with diverse explain-
ability requirements boosting trust for real-world adoption
and deployment. The explanations are model-agnostic. The
model can distinguish between actual and false sentences for
misinformation detection.

VII. CONCLUSION AND FUTURE SCOPE
In this paper, we demonstrated the explainable misinfor-
mation detection for social media platforms by employ-
ing the DANN and explainable AI LIME-based approach
for explaining the target label predictions of the black box
DAAN model making it more locally interpretable, trust-
worthy, and adaptable in real-world applications. Persistent
propagation of misinformation in the healthcare domain leads
to a direct and significant impact on human social well-
being; hence, adopting explainable A.I. in establishing human
trust is paramount in healthcare. DANN is employed for
misinformation detection across multiple social media plat-
forms. We consider the most relevant case study in cur-
rent times, COVID-19 misinformation, to implement and
test our approach. We use two specific data sets, CoAID,
which is available openly and contains samples from news
and Twitter sources. In addition, we developed a novel
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dataset named MiSoVac focusing on COVID-19 vaccine-
related misinformation from various social media platforms.
We described our data collection procedure, annotation, pre-
processing techniques, and the architecture implemented to
develop a generic classifier using DANN. Our methodol-
ogy demonstrates promising results and outperforms other
CoAID dataset’s target domain approaches. An increase of
∼40% was attained in the F1 score compared to the best
model mentioned in the preexisting work [50]. We illustrate
the effectiveness of DANN architecture on the MiSoVac
dataset and observe that DANN surpasses results obtained
by the Without DANN approach by ∼3% in accuracy and
∼9% in AUC on average across all target domains. Domain
adaptation and explainability for various social platforms still
need to be explored extensively. This is the first of many
steps towards developing techniques capable of generalizing
on multiple data of a similar domain. Our approach could
prove more economical regarding time and processing and
generate significantly effective results without training the
models for individual platforms powered with the joint pre-
diction and explanation approach for establishing trust and
adoption. We also hope the MiSoVac dataset is helpful to fel-
low researchers to help tackle the COVID-19 misinformation
spread. The approach followed in this work is not limited
to misinformation detection it can be further explored and
extended for more varied tasks in natural language classifi-
cation were the incoming data amalgamates from multiple
domains, such as sentiment analysis, intent detection, and
language modeling and detection.
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