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A B S T R A C T

The estimation of cement compressive strength is of great significance in the quality inspections, technological
designs, and engineering applications for cement. Compared to destructive methods, the nondestructive
estimation approaches save the cost in the manpower and material. However, the existing nondestructive
methods have the large error because the used influence factors are difficult to control and the used two-
dimensional microstructure images can not reflect the specific spatial structure of the entire cement. In
this paper, a novel model is proposed to estimate the cement compressive strength using three-dimensional
microstructure images and deep belief network. To reduce the computation consumption induced by three-
dimensional images with abundant information, this method extracts image features that reflect the cement
hydration state to estimate cement compressive strength. Deep belief network is applied to build the estimation
model. Its unique training pattern and flexibility of parameters improve the ability to learn nonlinear
relationships between microstructure images and cement compressive strength. Furthermore, the training
processes are accelerated on the graphics processing units. The experimental results prove that the proposed
method estimates cement compressive strength nondestructively and improves the efficiency.

1. Introduction

Cement is widely used in numerous fields including construction
and hydraulic engineering, and its quality greatly impacts the safety
of production and life. Strength is one main criterion to measure the
cement quality (Wang et al., 2016a) and cement compressive strength
(CCS) is the most important factor (de Siqueira Tango, 1998). Thus,
estimating CCS is conducive to guide the application of cement in the
production and the life. Moreover, its nondestructive estimation helps
to save manpower and material.

Estimating cement compressive strength is multivariable and non-
linear. The CCS is affected by many factors, including water-to-cement
ratio (w/c), age (Baykasoğlu et al., 2004), clinker composition (Tsivilis
and Parissakis, 1995), chemical composition (Zhang and Napier-Munn,
1995), and fly ash fineness (Chindaprasirt et al., 2005). Many scholars
have investigated cement compressive strength using those factors and
several kinds of methods (Gao, 1997; Sebastiá et al., 2003). However,
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since measuring macroscopic materials exists error and environmental
variables are volatile, these measurements cannot accurately reflect
hydration state of cement. Therefore, the estimation results have a large
errors. Although two-dimensional (2-D) microstructure images were
used afterward (Li et al., 2016, 2017), the results were still unsatis-
factory because 2-D images can not reflect the specific spatial structure
of entire cement sample. Neural networks outperform other intelligent
methods in estimating CCS. However, the ability of the shallow neural
network to represent complex functions is limited for its architec-
tures (Bengio et al., 2007), which prevent the error from being further
reduced. Deep neural networks have better approximation ability than
shallow ones with the same number of parameters (Bianchini and
Scarselli, 2014; Seide et al., 2011). Its multiple hidden layer structure
has better feature learning and approximation ability, which benefits
prediction and classification (Hinton and Salakhutdinov, 2006).
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Considering the fact that three-dimensional (3-D) microstructure
images reflect hydration state accurately and contain the spatial struc-
ture of the different phase, this study uses 3-D microstructure image
to estimate the CCS. Despite the abundant information, it increases
the computational consumption. In order to solve this problem, the
image features that reflect the cement hydration state are extracted. In
addition, deep belief network (DBN) (Kuremoto et al., 2014) demon-
strates outstanding performance in various problem and has the ability
to discover the mysterious between microstructural images and CCS.
It is responsible for modeling. However, its training processes are high
time-consumption. The graphics processing units (GPUs) (Larhlimi and
Mestari, 2018) environment is introduced to accelerate these processes.

This study proposes a novel method for estimating CCS using 3-D
microstructure images and DBN. The contributions of this paper are
elaborated in two aspects.

• It is the first time to estimate the cement compressive strength by using
three-dimensional microstructure image.

• It is the first time to estimate the cement compressive strength by using
deep belief network, and it is parallelized on the GPUs.

The structure of this paper is as follows: Section 2 introduces the
related works on the estimation of CCS, deep neural networks, and
compute unified device architecture (CUDA) programming. Section 3
elaborates the motivation of this research. Section 4 introduces the
steps of the method in detail. Section 5 presents the experiments and
the comparison of the results. Finally, Section 6 concludes full paper.

2. Related works

2.1. The estimation of cement compressive strength

Estimating cement compressive strength is a multivariable and non-
linear (Zhang et al., 2018) problem. Existing studies applied various
nonlinear methods to estimate CCS according to the hydration ratio
of the materials and other influencing factors. Tsivilis and Parissakis
(1995) applied regression analysis to build a model for predicting
compressive strength of Portland cement after 2, 7 and 28 days, show-
ing the importance of chemical-mineralogical and fineness factors.
de Siqueira Tango (1998) presented a strength-time function to predict
CCS of a late age, proving that this function can predict strengths
satisfactorily only needing to know the type of cement. Gao (1997)
analyzed the fuzzy logic method and applied it to predict CCS on
the various samples. Akkurt et al. (2004) also applied fuzzy logic to
predict the 28-day compressive strength of cement mortar. In addition,
artificial neural network (ANN) (Yeh, 1998; Sebastiá et al., 2003), gene
expression programming (Baykasoğlu et al., 2004; Guo et al., 2016),
multi-layer feed-forward neural networks (Ni and Wang, 2000), and
multi-expression programming (Zhang et al., 2012) are also applied to
predict CCS according many influence factors. Particularly, the neural
network structure like a brain network (Wang and Orchard, 2018) and
has strong fault tolerance (Han et al., 2017), achieving good results.
However, it has a shock phenomenon. Optimizing its weights by Back-
propagation (BP) (Ni and Wang, 2000), genetic algorithm (Sangdani
et al., 2018), and other optimization methods (Wang et al., 2016b; Chen
et al., 2016) makes it shows superior performance. In addition, other
types of neural networks have also been proposed (Huang et al., 2017).

Actually, the prediction results using influence factors have large
error. Moreover, the difficulty exists in measuring the hydration ratio of
the materials and micro components. Therefore, many scholars studied
the strength via cement images. Li (2004) used backscattering and X-
ray images to predict CCS. However, it is only a rough estimation
of the extracted phase and cannot completely reflect the hydration
state of the material. Therefore, this method has a prediction error.
Doğan et al. (2015) obtained digital images of the surface of concrete
cube specimens by the digital camera. After image processing, gray-
level histogram is extracted to estimate CCS. The acquisition of gray

images that reflect the hydration state is limited by the influence of
illumination. Moreover, those gray images fail to completely reflect
the structure of the sample, which result in estimation errors. Li et al.
(2016) estimated the CCS using two-dimensional cement images and
neural networks. This method extracts features from the gray-level his-
togram (GLH) and gray level co-occurrence matrix (GLCM) of cement
images and proves that using the cement microstructure images to
estimate the CCS is feasible. Later, convolutional neural networks were
also applied to estimate the strength using two-dimensional images.
Compared with using traditional neural network, this work reduced
the estimation error (Li et al., 2017). However, the 2-D microstructure
image is difficult to reflect the specific spatial structure of the entire
cement sample.

2.2. Deep neural networks

Neural networks enable approximating any nonlinear functions,
becoming the most available algorithms in the field of machine learn-
ing (Bao et al., 2019) and have developed to multilayer network
architectures (Zhang et al., 2019b). Compared with shallow architec-
tures, deep architectures enable mitigating oscillation (Bohner et al.,
2018; Chatzarakis and Li, 2018) and show superior performance in
the feature extraction and modeling (Chen et al., 2018; Tao et al.,
2018) with a large number of parameters. Particularly, DBN (Hinton,
2009) was proposed in recent years and was widely applied to various
tasks (Luo et al., 2016). Ren and Wu (2014) learned the feature of
electroencephalographic data by convolutional deep belief networks
and applied it to many datasets from brain-computer interfaces com-
petitions, discovering this method have better performance. Xie et al.
(2014) extracted high-level features automatically from High Speed
Train (HST) vibration signals using DBN and the experimental results
show that it helps to diagnose the different faults of HST. Mohamed
et al. (2011) discovered deep belief network enable extracting the mul-
tiple layers of features that capture the higher-order statistical structure
of the data. They applied it to build a model that had already been used
successfully for phone recognition, realizing good performance. Yin
and Zhao (2016) proposed an automated diagnosis network of vehicle
on-board equipments for high-speed train via deep belief network.
The results show that the developed DBN outperforms both k-nearest
neighbor and ANN-BP, improving the accuracy to 90∼95%. Son et al.
(2018) proposed an artifact elimination model for pulse waveform
signals based on DBN, unearthing DBN exhibited higher sensitivity
than SAI in identifying artifacts. This model enhanced the quality of
signal analysis and had applied to the artifact removal in monitoring
arterial blood pressure. A large number of studies (Li et al., 2019;
Jang et al., 2017) have shown that DBN presents better performance.
However, to obtain efficient neural networks and achieve the high
performance, its training creates a high consumption in both time and
calculation (Peddabachigari et al., 2007).

2.3. Compute unified device architecture

Compute unified device architecture (Xavier et al., 2010) runs on
a graphics processing unit and it enables saving the calculated time.
The CUDA considers GPU as a computing device that manages and
distributes parallel data (Wang et al., 2014b). CPU is regarded as
a processing device for serial operations. The CUDA programming
combines the serial CPU side with the parallel GPU side to improve
training efficiency. Recently, general purpose GPU is applied not only
in graphics processing but also in intensive computing tasks.

Wang et al. (2018) proposed a parallel nearest neighbor partitioning
neural network classifier based on compute unified device architecture.
It allocates blocks and threads reasonably to evaluate neural networks
and to perform parallel subtasks. The experimental results manifest
that the proposed method can achieve shortening of training time on
several datasets, especially the speedup ratio on the MAGIC data set
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is up to 164.29 times. van der Laan et al. (2011) accelerated Discrete
Wavelet Transform using CUDA, which significantly reduces the mem-
ory usage and time consumption. Rovenskaya and Croce (2015) solved
the Boltzmann equation on GPUs. Its processing speed increased by 50
times. Beyeler et al. (2015) presented a GPU-accelerated cortical neural
network model for visually guided robot navigation. Gong et al. (2017)
proposed a novel immune convolutional neural network algorithm and
accelerated it on the NVIDIA GPU. Compared with the traditional
convolutional neural network, this method is excellent in recognition
rate, performance stability, and computing speed. Khomenko et al.
(2016) used sequence bucketing and multi-GPU data parallelization to
accelerate recurrent neural network training and the processing time is
shortened.

3. Motivation

Cement compressive strength not only is related to the hydration
ratio of the materials but is affected by the environment. Therefore,
a certain error exists between the estimated and actual value. The
accurate estimation of CCS will enable nondestructive estimation of
strength and save a lot of manpower and material. At present, many
scholars have conducted considerable research on the CCS according to
the influencing factors and employing various methods. However, the
factors that affect CCS are not completely controllable and cement hy-
dration products are difficult to measure, which make large estimation
error in the results. Although two-dimensional images were applied to
predict CCS afterward, it cannot reflect the specific spatial structure of
the entire cement sample, resulting in unsatisfactory prediction results.

Three-dimensional microstructure images reflect hydration state
accurately and contain the spatial structure of the different phase,
which motivate us to use 3-D microstructure images to estimate the
CCS. Despite the abundant information, it increases the resource con-
sumption. In order to improve efficiency, image features that reflect
the state of the cement are extracted. Furthermore, having the excel-
lent performance, deep learning is applied to build a CCS estimation
model. Although convolutional neural networks are expert in image
recognition, its convolution operation has a poor ability to recognize
fuzzy boundaries. Therefore, it is not suitable for identifying cement
images that contain many substances which are difficult to distinguish
boundaries. DBN enables to extract high-level features contained in
the sample. Moreover, its flexibility of parameters and unique training
pattern improve the ability to learn nonlinear relationships between
cement images and CCS. Thus this paper adopts DBN. In order to
overcome high time consumption, its training processes are accelerated
on the compute unified device architecture.

4. Methodology

The main flow chart of the proposed method is shown in Fig. 1.
Firstly, features are extracted from the 3-D microstructure images and
the corresponding strength are recorded. The features extracted from
the gray-level histogram and gray level co-occurrence matrixes are the
statistics features, which reflect the phase state and texture information
in cement hydration. Secondly, the DBN are adopted to analyze the
input features, and to learn the relations between features and strength.
Its training process includes high-level features extraction in restricted
Boltzmann machine (RBM) and weight adjustment. However, its train-
ing process suffers from high time consumption. In order to improve
efficiency, it is accelerated on CUDA platform.

4.1. Feature extraction

The 3-D microstructure images of cement which are obtained by
Micro-CT (Wang et al., 2014a) display a more accurate gray-value
than that obtained by CT (Chen et al., 2017). The linear attenuation
coefficient of different substances corresponds to the different gray-
values in images. Therefore, its different gray-values represent different

substances during the hydration. In addition, since the microstructure
and physical properties have a dynamic relationship (Wang et al., 2015;
Zhang et al., 2019a), 3-D microstructure images are able to reflect the
properties of cement and is suitable for CCS estimation.

The histogram enables describing the images, but it only reflects the
number of micro-substances, i.e., it is difficult to represent the spatial
structure of micro-substances. Therefore, the general distribution of
micro-substances during cement hydration is described by the GLH of
3-D cement microstructure images, and the spatial relationship that
the 3-D cement microstructure images reflect is represented by the
GLCM. Since they can reflect the cement hydration state, the GLH and
GLCM are obtained from the 3-D microstructure gray images, and the
extracted features are described in Fig. 2. The selection of features and
its process will be described in detail below.

4.1.1. Gray-level histogram
The GLH describes the global distribution of gray-values in 3-D

microstructure images, i.e., the GLH indicates the proportion of dif-
ferent gray-values in the entire 3-D microstructure image (Shi et al.,
2007). The height of the gray value directly reflects the amount of
material because each gray-value corresponds to a substance or its
combination, i.e., the GLH can describe the distribution of materials in
the microstructure. Furthermore, the GLH can be considered a discrete
function expressed as Eq. (1) (Murat et al., 2012).

𝐻(𝑔) =
𝑛𝑔
𝑁

, 𝑔 = 0,… , 𝐿 − 1 (1)

where 𝑔 is the gray-level in the 3-D microstructure images, and 𝐿 is
the total number of the gray-levels, 𝑛𝑔 is the quantity of the gray-level
𝑔, and 𝑁 is the total number of image pixels. Moreover, 𝑁 is also the
sum of the 𝑛𝑔 , i.e. they satisfy the relationship 𝑁 =

∑𝐿−1
𝑔=0 𝑛𝑔 . The GLH

is usually described by several features. These features are introduced
as follows.

Mean (𝜇) expresses the mean value of the gray-level in the 3-D
microstructure images. The mean also reflects the average content of
the hydrated products, the unhydrated particles, air voids, and the
pores in the cement hydration. It is expressed by Eq. (2)

𝜇 =
𝐿−1
∑

𝑔=0
𝑔 ×𝐻(𝑔) (2)

Variance (𝜎2) represents the discrete degree of the gray-level in the
3-D microstructure images. Furthermore, it reflects the content relation-
ship between the hydrated products, air voids, the unhydrated particles,
and the pores in the cement hydration. It is inversely proportional to
the content of the hydration products and is expressed by Eq. (3)

𝜎2 =
𝐿−1
∑

𝑔=0
(𝑔 − 𝜇)2 ×𝐻(𝑔) (3)

where 𝜎 is the standard deviation of the GLH.
Skewness (𝜇𝑠) evaluates the asymmetry degree of the gray-level in

distribution and is expressed by Eq. (4). The content of hydrated prod-
ucts is inversely proportional to it, while the content of the unhydrated
particles, and pores are directly proportional to it.

𝜇𝑠 =
1
𝜎3

𝐿−1
∑

𝑔=0
(𝑔 − 𝜇)3 ×𝐻(𝑔) (4)

Kurtosis (𝜇𝑘) evaluates the distribution condition which focuses on
the near of the mean gray-level. Moreover, it verifies whether the
hydration state is complete and is directly proportional to the degree
of hydration. It is expressed by Eq. (5).

𝜇𝑘 = 1
𝜎4

𝐿−1
∑

𝑔=0
(𝑔 − 𝜇)4 ×𝐻(𝑔) − 3 (5)
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Fig. 1. Main flow chart of the estimating CCS using 3-D microstructure images features and DBN based on GPUs.

Fig. 2. Main process of feature extraction and the extracted features.

Energy (𝜇𝑛) shows the homogeneous degree of the gray-level distri-
bution. When the hydrated products are more uniform, the energy is
higher. It is expressed by Eq. (6).

𝜇𝑛 =
𝐿−1
∑

𝑔=0
𝐻(𝑔)2 (6)

Entropy (𝜇𝑖) describes the uniformity of the gray-level distribu-
tion and is inversely proportional to the distribution of the hydrated
products, air voids, unhydrated particles, and pores. It is expressed by
Eq. (7).

𝜇𝑖 =
𝐿−1
∑

𝑔=0
𝐻(𝑔) log2[𝐻(𝑔)] (7)
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4.1.2. Gray level co-occurrence matrix
The texture characteristics of 3-D cement microstructure images

reflect the characteristics of the particle distribution and internal struc-
ture of the cement. Therefore, the texture features of 3-D images can
describe the inherent regular pattern of the microstructure. The texture
of the images is represented by the gray-level distribution. In 1973,
Haralick et al. (1973) proposed the concept of GLCM. It reflects the
gray value and the gray-level distribution of the 3-D microstructure
images (Hu et al., 2011) and also describes the spatial distribution and
spatial correlation of the gray-level (Wang and Kong, 2011). Moreover,
the GLCM of the 3-D microstructure images can reflects the integrated
information about the direction, interval, and variation range.

The GLCM is defined through the joint probability density of two
pixels (He et al., 2013) and presents the statistics of the probability
from two pixels with the gray values of 𝑖 and 𝑗 simultaneously, which
denote the straight-line distance 𝑑 and the angle of 𝜃, respectively. The
GLCM is expressed as Eq. (8) (Malegori et al., 2016).

𝑝(𝑖, 𝑗, 𝑑, 𝜃) = #{[(𝑥𝑖, 𝑦𝑖), (𝑥𝑗 , 𝑦𝑗 )]|𝑓 (𝑥𝑖, 𝑦𝑖) = 𝑖, 𝑓 (𝑥𝑗 , 𝑦𝑗 ) = 𝑗, 𝑑, 𝜃} (8)

where 𝑖 and 𝑗 are the gray values of two pixels, 𝑑 is the distance, and
𝜃 is the angle. # represents the elements number of the set. 𝑥 is the
abscissa, 𝑦 is the ordinate of the pixel (𝑥, 𝑦), and 𝑓 (𝑥, 𝑦) is the gray value
of the pixel.

The second-degree statistics features is extracted from the GLCM
to avoid a massive calculation. The GLCM has 14 different features in
total, and those considered features in this study are as follows Malegori
et al. (2016).

Entropy (ENT) reflects the non-uniform degree or complexity of the
texture in 3-D images. A large value expresses a large complexity of the
texture and a large complexity of the spatial structure of the hydrated
products and the unhydrated particles. It is expressed by Eq. (9).

𝐸𝑁𝑇 = −
𝐿−1
∑

𝑖=0

𝐿−1
∑

𝑗=0
𝑃 (𝑖, 𝑗) log𝑃 (𝑖, 𝑗) (9)

where 𝑃 (𝑖, 𝑗) is the elements of the GLCM, and the variables 𝑖 and 𝑗 are
independent of each other.

Correlation (COR) expresses the consistency and correlation of the
local gray level in the 3-D microstructure images. A large value in-
dicates that the distribution of concentration from the same hydrated
products in the hydration is higher. It is expressed by Eq. (10).

𝐶𝑂𝑅 =
𝐿−1
∑

𝑖=0

𝐿−1
∑

𝑗=0

𝑖𝑗𝑃 (𝑖, 𝑗) − 𝜇𝑥𝜇𝑦
𝜎𝑥𝜎𝑦

(10)

where 𝜇𝑥 is the average gray-level and 𝜇𝑦 is the mean smoothness. 𝜎2𝑥
and 𝜎2𝑦 is the variance of gray-level and smoothness, respectively.

Inverse different moment (IDM) measures the mutative degree of
local texture. Its value is directly proportional to the uniformity of the
local texture in 3-D images. In other words, the IDM indicates whether
the local spatial structure of all kinds of hydrates is uniform at the
hydration state. It is expressed by Eq. (11).

𝐼𝐷𝑀 =
𝐿−1
∑

𝑖=0

𝐿−1
∑

𝑗=0

𝑃 (𝑖, 𝑗)
1 + (𝑖 − 𝑗)2

(11)

Energy (ENG) describes the degree of uniformity of the gray-level
distribution and the thickness of the texture. A large value shows that
the structure of the substance distribution is uniform and the hydration
products are regular. It is expressed by Eq. (12).

𝐸𝑁𝐺 =
𝐿−1
∑

𝑖=0

𝐿−1
∑

𝑗=0
{𝑃 (𝑖, 𝑗)}2 (12)

Fig. 3. The structure of RBM, which including 𝑛 visible neurons and 𝑚 hidden neurons.
Moreover, the RBM is full connection between visible and hidden neurons.

4.1.3. Extraction process
The process of extracting features from cement images are as fol-

lows:

(1) Calculating the gray-level histogram of 3D image and extracting
the selected features according to Section 4.1.1;

(2) Calculating GLCM at different direction in each distance and
extracting its features, including mean and standard deviation of
ENT, COR, IDM, and ENG at different directions.

The features of data consist of the features obtained from the
gray-level histogram and the gray level co-occurrence matrixes.

4.2. Estimation of cement compressive strength

After feature extraction, the DBN-based model is trained on cement
data, which contains features and CCS. Model’s input is the extracted
feature and its output is the estimated CCS. In training, it has two
main processes that ensure high performance. The first one is extracting
abstract features using multi-layer RBMs and the second one is tuning
weights through the BP algorithm. Moreover, the training objective
function (Zhou et al., 2016) is mean square error and the ultimate goal
is minimizing its value.

Multi-layer RBM (Hinton and Sejnowski, 1986) in DBN extract
abstract features and its structure is shown in Fig. 3. The RBM consists
of some visible and hidden neurons. The connections are undirected
and only exist between visible and hidden layer (Sarikaya et al., 2014).
The training algorithm used in RBM is contrastive divergence (CD) al-
gorithm (Sheri et al., 2015) and the more abstract features are extracted
from input data after RBM training. Through multi-layer training, the
features of data are more effective. Since the time consumption of this
process is high, it is accelerated on the GPU, and the acceleration is
described in detail in the next subsection.

After the pre-training process of the DBN, the higher-level features
of the data are extracted. Meantime, the connecting weights between
the networks are initialized, which is different from those chaotic and
stochastic patterns in traditional neural network (Shang et al., 2019).
In order to obtain better prediction results, the entire network also
needs ‘‘fine tuning’’ via BP algorithms to adjust weights. However,
the training process is time-consuming because of a large number of
samples and long training time of the depth neural network (Chen and
Liu, 2018). In order to reduce training time, it is accelerated on the
GPU.

4.3. GPU acceleration

The CUDA is helpful to solve the time-consuming problem in deep
structure and learning process. Its main advantage is that it treats GPU
as a parallel machine with a single instruction and multiple threads
(SIMT). The structure of the GPU is shown in Fig. 4. Each GPU has
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Fig. 4. The structure of GPU. One GPU consists of several SMs, and each SM consists
of several SPs.

several streaming multiprocessor (SM) (Rios et al., 2018), and each
SM has many streaming processors (SP) (Lopes and Ribeiro, 2014).
The data are transmitted to the global memory of GPU from the CPU.
Moreover, the shared memory in the GPU enhances the efficiency of
data transmission. Within the allowable number of threads, the big
number of parallel threads correspond to high efficiency.

During the training process of DBN, a large number of correlations
exist between the former and later data. For simple operations, when
all the steps are parallelized, its time will increase and efficiency will
decrease. Therefore, numerous steps can only be implemented in series.
The CPU terminal controls the entire serial processes of the RBM and
BP algorithm, while the GPU terminal controls the parallel implemen-
tation of the subprocess (Wang et al., 2010). The data transmissions
between the GPU and CPU are time-consuming. In order to improve
the computational efficiency, the weights and biases of the DBN, the
image features, and strength values are transmitted to the GPU before
the calculation. Fig. 5 depicts parallel implementation of two processes.
Images features input the RBMs to obtain the weights and abstract
features of cement microstructure. After fine-tuning by BP algorithm,
the new output is connected to the output layer to estimate the CCS.

The training process of each RBM consists of three steps, namely,
the mapping of the visible layer to hidden layer, the mapping of the
hidden layer to visible layer, and the mapping of the visible layer
to hidden layer. The CPU controls three steps of the CD algorithm
in the serial computing, while the GPU controls every subprocess in
parallel computing. In order to achieve the maximization of parallelism,
algorithm must to make each SM and SP fully used according to the
architecture of the GPU. One step of the CD algorithm calculates the
abstract features of the hidden layer. Firstly, the weights and biases
of RBM are stored in the global memory. Moreover, the features of
one batch are included in the array 𝑣1 and also transmitted to the
global memory. Secondly, one thread calculates one feature mapping
ℎ1, 𝑣2 and ℎ2. The number of thread is 𝑛𝑡ℎ𝑟𝑒𝑎𝑑 . Each thread separately
calculates the value of neurons in each layer. Each block is divided into
two dimensions 𝑥 and 𝑦. The neurons of each layer is 𝑥 dimension.
According to the maximum number of threads in one block, the 𝑦
dimension is decided. The number of thread in 𝑥 dimension is 𝑥𝑡ℎ𝑟𝑒𝑎𝑑 .
The number of the block are distributed according to the samples in
parallel. Finally, the weights and biases are updated under the results
of the previous steps.

Through the CD algorithm of several RBMs, the weights and the
abstract features of cement microstructure are obtained. Next, the
weights and biases of the DBN are fine-tuned with BP algorithm to
reduce the error. The BP algorithm includes forward and backward
propagation. The batch of samples in parallel are also used to adjust
the weights in DBN for achieving a more accurate estimation. Firstly,

Table 1
Chemical compositions and physical properties of cement.

Type Cement A Cement B Cement C

𝐶𝑎𝑂 (%) 63.89 63.74 64.74
𝑆𝑖𝑂2 (%) 22.58 20.93 20.72
𝐹𝑒2𝑂3 (%) 3.03 3.77 3.74
𝐴𝑙2𝑂3 (%) 4.67 4.45 4.66
𝐴𝑔𝑂 (%) 2.46 2.51 3.34
𝑆𝑂3 (%) 1.75 1.56 1.38
𝐾2𝑂 (%) 1.2 0.93 0.54
𝑁𝑎2𝑂 (%) 0.17 0.23 0.19
𝑓𝐶𝑎𝑂 (%) 0.64 1.01 1.25
𝐶3𝑆 (%) 45.12 56.5 60.34
𝐶2𝑆 (%) 30.79 17.47 13.97
𝐶3𝐴 (%) 7.52 5.42 6.03
𝐶4𝐴𝐹 (%) 9.21 11.46 11.37
𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 (cm2∕g) 4088 3475 4397
𝑆𝑖𝑒𝑣𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑜𝑛 74 𝜇 (%) 3.56 6.44 3.63

the parallel strategy of forwarding propagation is the same as the CD
algorithm. The second part is calculating the gradient of the weights
and biases in parallel according to the gradient descent method. The
last part is updating the weights and biases.

5. Experiments and results

In order to ensure that the selected cement samples are represented
sufficiently, three types of cement are adopted and labeled as A, B, and
C according their chemical compositions and physical. Table 1 shows
the specific information about three types of cement. The cement A has
high dicalcium silicate (C2S), which contributes to the enhancement of
strength at the later age. However, its hydration rate is low at the early
ages. The cement C has high tricalcium silicate (C3S), which accelerates
the hydration. The cement B is the ordinary one, and its hydration rate
is between the other two types of cement.

In order to obtain the image data, the cement powder is fully mixed
with water at first. And then, the paste is injected into molds by the in-
jector, and the needle’s diameter is 1.6 mm to ensure that the w/c does
not be changed. The cement paste is cured in a specific environment
(20 ◦C and 95% humidity) for 24 h. After removing the mold, cement
cylinder (the diameter is 4 mm) can be obtained. SkyScan 1172 High-
Resolution desktop Micro-CT System scans cement cylinder at the 2nd,
3rd, 4th, 5th, 6th, 7th, 14th, 21st, and 28th days (Wang et al., 2014a).
After a series of image processing, including 3-D reconstruction, artifact
removal, and 3-D registration, the obtained cross-section image is
reconstructed into three-dimensional microstructure images. The 3-D
microstructure images on the 2nd day of each type of cement are shown
in Fig. 6. In addition, since 3-D microstructure images with size of
70 × 70 × 70 can cover all phases of cement, the images with this
size are selected as one cement sample. Each type of cement has 9000
samples and the total data set contains 27,000 samples. The specific
values of strength are obtained utilizing the compressive strength tester.

The selected features are extracted from GLH and GLCM of 3-D
images. When calculating the GLCM, the distance is set to 1, 2, 3, 4,
5, and the number of direction is set to 13. In this work, 46 features
are obtained from the 3-D microstructure images, in which 6 features
(Mean, Variance, Skewness, Kurtosis, Energy and Entropy) are derived
from the GLH describing the distribution of materials, and 40 features
that reflect cement textures are obtained from the GLCM in 5 distances.
At each distance, the GLCM has 8 features, which are the Mean(𝜇) and
Standard Deviation(𝜎) of four features (ENT, COR, IDM and ENG) about
GLCM at 13 directions. All extracted features of 3-D microstructure
images are shown in Table 2. The 1st to 6th rows are the features from
the GLH. In addition, the other features from the GLCM are divided into
5 groups by different distances, each of which represents the 𝜇 and 𝜎
of ENG, ENT, IDM and COR at a certain distance, respectively.

In this paper, three types of cement samples are trained and tested.
For each type of cement sample, 8500 samples are trained and 500
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Fig. 5. The training processes of CD algorithm and BP algorithm in the parallel. Multi-layer RBMs obtain the high-level features of the cement image. Fine-tuning via BP algorithm
adjusts the parameters of the neural network to estimate CCS.

Fig. 6. Three samples of A, B, and C.

samples are tested. In addition, the mean absolute error (MAE) and the
absolute error (AE) are the evaluation standard of estimation effect. A
small value indicates that the estimation effect is good. Furthermore,
the result value is the average of multiple experiments.

Through the trial and error, the DBN consists of three RBMs and one
output layer. The number of neurons of hidden layers are 30, 14, and
10. The batch size of each type of cement samples is 10. ALL data set
is the three samples and the batch size is 500. The generation of the BP
algorithm is set 10000 in all experiments.

Fig. 7 illustrates cement particles in two-dimensional and three-
dimensional views, and three-dimensional spatial distribution. In terms
of appearance, a distinct difference can be observed between 2-D
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Table 2
The features extracted from 3-D cement image.

Features Description

Mean The Mean of the gray-level histogram
Variance The Variance of the gray-level histogram
Skewness The Skewness of the gray-level histogram
Kurtosis The Kurtosis of the gray-level histogram
Energy The Energy of the gray-level histogram
Entropy The Entropy of the gray-level histogram
𝜇𝐸𝑁𝑇1 The Mean(𝜇) of ENT about GLCM in 13 directions when its distance is 1
𝜇𝐶𝑂𝑅1

The Mean(𝜇) of COR about GLCM in 13 directions when its distance is 1
𝜇𝐼𝐷𝑀1

The Mean(𝜇) of IDM about GLCM in 13 directions when its distance is 1
𝜇𝐸𝑁𝐺1

The Mean(𝜇) of ENG about GLCM in 13 directions when its distance is 1
𝜎𝐸𝑁𝑇1 The Standard Deviation(𝜎) of ENT about GLCM in 13 directions when its distance is 1
𝜎𝐶𝑂𝑅1

The Standard Deviation(𝜎) of COR about GLCM in 13 directions when its distance is 1
𝜎𝐼𝐷𝑀1

The Standard Deviation(𝜎) of IDM about GLCM in 13 directions when its distance is 1
𝜎𝐸𝑁𝐺1

The Standard Deviation(𝜎) of ENG about GLCM in 13 directions when its distance is 1
𝜇𝐸𝑁𝑇2 The Mean(𝜇) of ENT about GLCM in 13 directions when its distance is 2
𝜇𝐶𝑂𝑅2

The Mean(𝜇) of COR about GLCM in 13 directions when its distance is 2
𝜇𝐼𝐷𝑀2

The Mean(𝜇) of IDM about GLCM in 13 directions when its distance is 2
𝜇𝐸𝑁𝐺2

The Mean(𝜇) of ENG about GLCM in 13 directions when its distance is 2
𝜎𝐸𝑁𝑇2 The Standard Deviation(𝜎) of ENT about GLCM in 13 directions when its distance is 2
𝜎𝐶𝑂𝑅2

The Standard Deviation(𝜎) of COR about GLCM in 13 directions when its distance is 2
𝜎𝐼𝐷𝑀2

The Standard Deviation(𝜎) of IDM about GLCM in 13 directions when its distance is 2
𝜎𝐸𝑁𝐺2

The Standard Deviation(𝜎) of ENG about GLCM in 13 directions when its distance is 2
𝜇𝐸𝑁𝑇3 The Mean(𝜇) of ENT about GLCM in 13 directions when its distance is 3
𝜇𝐶𝑂𝑅3

The Mean(𝜇) of COR about GLCM in 13 directions when its distance is 3
𝜇𝐼𝐷𝑀3

The Mean(𝜇) of IDM about GLCM in 13 directions when its distance is 3
𝜇𝐸𝑁𝐺3

The Mean(𝜇) of ENG about GLCM in 13 directions when its distance is 3
𝜎𝐸𝑁𝑇3 The Standard Deviation(𝜎) of ENT about GLCM in 13 directions when its distance is 3
𝜎𝐶𝑂𝑅3

The Standard Deviation(𝜎) of COR about GLCM in 13 directions when its distance is 3
𝜎𝐼𝐷𝑀3

The Standard Deviation(𝜎) of IDM about GLCM in 13 directions when its distance is 3
𝜎𝐸𝑁𝐺3

The Standard Deviation(𝜎) of ENG about GLCM in 13 directions when its distance is 3
𝜇𝐸𝑁𝑇4 The Mean(𝜇) of ENT about GLCM in 13 directions when its distance is 4
𝜇𝐶𝑂𝑅4

The Mean(𝜇) of COR about GLCM in 13 directions when its distance is 4
𝜇𝐼𝐷𝑀4

The Mean(𝜇) of IDM about GLCM in 13 directions when its distance is 4
𝜇𝐸𝑁𝐺4

The Mean(𝜇) of ENG about GLCM in 13 directions when its distance is 4
𝜎𝐸𝑁𝑇4 The Standard Deviation(𝜎) of ENT about GLCM in 13 directions when its distance is 4
𝜎𝐶𝑂𝑅4

The Standard Deviation(𝜎) of COR about GLCM in 13 directions when its distance is 4
𝜎𝐼𝐷𝑀4

The Standard Deviation(𝜎) of IDM about GLCM in 13 directions when its distance is 4
𝜎𝐸𝑁𝐺4

The Standard Deviation(𝜎) of ENG about GLCM in 13 directions when its distance is 4
𝜇𝐸𝑁𝑇5 The Mean(𝜇) of ENT about GLCM in 13 directions when its distance is 5
𝜇𝐶𝑂𝑅5

The Mean(𝜇) of COR about GLCM in 13 directions when its distance is 5
𝜇𝐼𝐷𝑀5

The Mean(𝜇) of IDM about GLCM in 13 directions when its distance is 5
𝜇𝐸𝑁𝐺5

The Mean(𝜇) of ENG about GLCM in 13 directions when its distance is 5
𝜎𝐸𝑁𝑇5 The Standard Deviation(𝜎) of ENT about GLCM in 13 directions when its distance is 5
𝜎𝐶𝑂𝑅5

The Standard Deviation(𝜎) of COR about GLCM in 13 directions when its distance is 5
𝜎𝐼𝐷𝑀5

The Standard Deviation(𝜎) of IDM about GLCM in 13 directions when its distance is 5
𝜎𝐸𝑁𝐺5

The Standard Deviation(𝜎) of ENG about GLCM in 13 directions when its distance is 5

Fig. 7. The appearance of 2-D, and 3-D particle, and spatial distribution.

and 3-D particles. By contrast, 3-D particle has more structural in-
formation, which is extremely irregular and complex regardless of
spatial structure or spatial distribution. In reality, when the structure
is very regular, it is feasible to analyze two-dimensional data for
simplifying the calculation. However, when the structure is irregular,
the results of 2-D analysis can be quite different from those in three-
dimensional case (De Marchis and Napoli, 2012). For cement, the
strength is greatly affected by its structures (Wang et al., 2014a), and
its structural changes in hydration are also in a three-dimensional
way. Therefore, instead of two-dimensional images, it is appropriate
to estimate CCS using three-dimensional image.

Since the three-dimensional microstructure images can realistically
reflect microstructure and hydration of the cement, this work creatively
proposes estimating cement compressive strength using 3-D microstruc-
ture images. To test its validity in strength prediction, it is compared
with the 2-D image that used in the previous work (Li et al., 2016).
In this experiment, both data contain 675 training samples and 135
test samples. Fig. 8 compares the mean absolute error of different
methods using the 3-D image and using the 2-D image, respectively.
The results illustrate that the prediction error using three-dimensional
images is smaller than that using the two-dimensional images on the
same methods. For all methods, the MAE is reduced by at least 8.49%.
Particularly, both the neural network and the multilayer perceptron
are reduced by 18.61%. These phenomena indicate that the three-
dimensional microstructure images are more beneficial to estimate the
performance of the cement than two-dimensional images.

Table 3 compares the MAE based on deep belief network and
other methods on ALL data set, including support vector machine,
decision table, linear regression, k-nearest neighbor (Yu et al., 2015),
random forest, multilayer perceptron, etc. Moreover, all methods in this
experiment show their best performance.

Compared with other methods, the estimation ability of the DBN
demonstrates favorable performance for cement strength estimation.
Among the other methods, the multilayer perception has a better
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Fig. 8. The comparison of MAE using different methods based on 3-D image and 2-D image.

Table 3
The results of ALL data set in different methods.

Method MAE Method MAE

Support vector machine 3.885957 Decision table 3.884368
Decision stump 3.866422 REP tree 3.84060
Linear regression 3.530127 K-nearest neighbor 3.417005
M5P 3.368629 Random forest 3.27416
Neural networks 3.160597 Multilayer perceptron 2.953329

Deep belief network 2.809159

estimation accuracy, because this method also has multilayers features
mapping. This result shows that the nonlinear estimation is better than
the linear estimation. Moreover, it also indicates that the relationship
between CCS and the images features is nonlinear. The existence of
isotropy and homogeneity in cement microstructural image increases
the number of local optimum in constructing model. However, the DBN
is able to extract and select prominent features from the input data,
thus prevent it from being trapped into local optimum (Chen et al.,
2015; Uddin et al., 2017). In addition, the fine-tuning of DBN enables
minimize error between predictive output and objectives to get optimal
value (Fasel and Berry, 2010; Gao et al., 2014). Therefore DBN has
better performance than other methods.

In order to prove the estimation effect of this method, the method
is compared with two previous researches based on two-dimensional
cement image (Li et al., 2017, 2016). Fig. 9(a) presents the predicted
results of three researches. It can be found that the results based
on two-dimensional image have improved. The predicted effect using
convolutional neural network outshines that using a simple neural
network. Reassuringly, the experimental result of this work surpasses
two previous works, reducing the predicted MAE to 2.8091, which fully
demonstrates the effectiveness of this method.

The estimation effect on different data sets is also studied. Fig. 9(b)
shows the MAE of different data sets and Table 4 presents the partial
results of the AE. As shown in Fig. 9(b), the cement sample A has the
best estimation accuracy, while the cement sample B has the worst
estimation accuracy. The reason is that the image of sample B has the
brightness and the gray-level heterogeneity. The MAE of the three types
of the cement sample shows that this method is feasible. Moreover,
the results in Table 4 indicate that the data set has a little impact on
the estimation accuracy when the generation of the BP algorithm is
the same. From the partial results, it can be seen that the AE of most
samples are less than 5, and about 40 percent of the samples are within
1, which prove this method has the ability to accurately estimate the
strength of the cement.

Since the training process of the deep belief network is time-
consuming, its training process is paralleled on the CUDA. In order
to verify the parallel effect, this process is run on the CPU and GPU
in same machine, respectively. In the experiments, three types of the
cement samples are used and the number of each sample is different.

Table 4
The results of three samples in DBN.

Sample Number Estimated value (MPa) Actual value (MPa) Absolute error

1 14.063556 14.025 0.038556
2 6.714929 6.15 0.564929
3 14.701393 20.86 6.158607

A 4 16.341401 12.8 3.541401
5 17.539627 14.025 3.514627
6 16.182942 20.86 4.677058
7 8.043422 7.6133 0.430122

1 18.416169 23.92 5.503831
2 20.592615 23.92 3.327385
3 18.759017 23.92 5.160983

B 4 10.591213 10.42 0.171213
5 13.952112 13.81 0.142112
6 11.78258 10.42 1.36258
7 21.636857 20.86 0.776857

1 10.058224 8.3483 1.709924
2 15.813328 23.925 8.111672
3 18.408759 21.0833 2.674541

C 4 5.753655 4.9583 0.795355
5 22.325068 23.925 1.599932
6 5.796866 4.9583 0.838566
7 20.30195 14.975 5.32695

1 8.189257 8.3483 0.159043
2 18.896861 23.925 5.028139
3 13.233157 12.9867 0.246457

ALL 4 21.470584 23.925 2.454416
5 20.730474 13.9867 6.743774
6 21.60052 23.925 2.32448
7 21.623956 21.0833 0.540656

The batch size is set to 500 and the BP algorithm is 100 generations.
Moreover, the acceleration effect of CUDA is expressed by the speedup
ratio.

In order to explore the paralleling effect on the GPU and the
influence of sample size on it, large and small samples are used to train
and test in this experiment. Moreover, the acceleration effects on two
training processes are also studied separately. The time consumption of
the RBM and BP algorithm are shown in Fig. 10 and the speedup ratio
is compared in Table 5. The results show that this method achieves a 10
times speedup ratio for two processes with same estimation accuracy.
Moreover, the speedup ratio in the BP algorithm of large samples is
smaller than that of small samples. This reason is that the data trans-
missions exist between the CPU and GPU when the large samples are
trained. These phenomena indicate that this method greatly improves
the training efficiency and prove the fact that CUDA programming is
necessary when data set is large-scale.

Although the problem of high time consumption can be solved by
CUDA environment in parallel, the computation complexity is not really
reduced because the calculations in training have not been reduced.
Furthermore, its calculation speed depends on the platform, which

9



J. Guo, M. Li, L. Wang et al. Engineering Applications of Artificial Intelligence 88 (2020) 103378

Fig. 9. The MAE of the different research and different data. (a) The comparison of previous research using cement image. (b) The MAE of different data set in DBN.

Fig. 10. Time consumption in DBN.

Table 5
Time consumption and speedup ratio in DBN.

Sample number Method CPU time (s) GPU time (s) Speedup ratio

8 500 RBM 13 1.149 11.31
BP 36 2.636 13.66

25 000 RBM 40 3.480 11.49
BP 106 10.692 9.91

is a limitation, but is common for all algorithms based on CUDA
environment.

6. Conclusion

This paper proposes an efficient method for estimating cement
compressive strength, which estimates the cement compressive strength
using three-dimensional microstructure image and deep belief network.
In this method, the features representing the phase state and texture
information are extracted from the three-dimensional cement images to
train estimation model. DBN is adopted to learn and discover patterns
between cement images and CCS. Furthermore, the learning processes
are parallelized on GPUs to reduce time consumption. Compared with
other methods, DBN has multiple layers to learn features and further
reduces errors via fine-tuning, thus achieves higher estimation effect.
Moreover, its computational time has been greatly reduced for par-
allelization. Those results imply that the proposed method not only
estimates strength nondestructively but also improves the efficiency.

The proposed method reduces the estimation error, but its effect
depends on the quality and quantity of the data, as well as net-
work structure and parameters. In addition, it achieves acceleration on
CUDA, while the acceleration effect is affected by the platform, which

is also the drawback of most acceleration algorithms based on CUDA.
Finally, the estimated effect can be further improved since this method
adopts the extracted features to estimate CCS, which partially lost the
information in the image.

Since extracting features will lose part of the information, the
second-degree statistics must be extracted to represent the image fea-
tures of 3-D microstructure images. Therefore, future work tends to
estimate CCS directly based on the 3-D microstructure images and other
state-of-the-art methods to avoid information loss in the image feature
extraction and to ensure estimation accuracy.
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