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Abstract

Water cycle algorithm (WCA) is a recent meta-heuristic algorithm presented to solve various optimization problems. WCA
has received critical intrigued from researchers in different fields. Nevertheless, the search equation provided in WCA is
not of adequate explorative behavior. In this study a reconfigured version of the WCA is proposed, the proposed algorithm
is named as RWCA. So as to improve the exploration procedure, a new position update strategy is proposed by integrating
cauchy operator and a greedy selection procedure. Furthermore, in order to promote the exploration-exploitation balance of
the RWCA algorithm, a nonlinear controlling parameter is proposed. The performance of RWCA is exhibited on 19 uncon-
strained benchmark functions. Statistical analysis proves that, RWCA significantly improves the performance of basic WCA
by providing better solution quality, faster convergence and stronger robustness. Moreover, RWCA has been used to solve
five constrained numerical and three engineering application problems. Based on the experiments and comparative findings,
RWCA illustrates the adequacy and effectiveness to solve various constrained problems; as well as its capability of providing

promising and competitive results solving real-world challenging engineering problems.

Keywords Water cycle algorithm - Constrained optimization - Constrained engineering problem

1 Introduction

Global Optimization methods play a vital role in many real-
world applications such as operational research, information
science, economics management, data reduction and engi-
neering design [17, 18, 31, 36, 66, 67].

In real world most optimization (design) problems are
highly nonlinear and containing many variables under differ-
ent complex constraints. Classical optimization algorithms
require enormous computational efforts, which tend to fail
as the problem search space increases. This motivates for
employing meta-heuristics algorithms which show reliable,
robust performance and higher computational efficiency in
avoiding local minima [8, 9, 19, 23, 57, 77]. Due to these
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advantages, meta-heuristics methods have been successfully
applied to solve a difference of constrained optimization
problems. The most prominent meta-heuristics algorithms
proposed in literature are particle swarms [16], ants [15],
bees [58], fishes [47] and bats [75].

A general constrained problem is an optimization prob-
lem for which an objective function f(x) is to be minimize or
maximize subject to nonlinear or linear equality constraints
G,(x) = 0, inequality constraints G;(x) > 0 and the design
variables x = (xl,xz, ,xn); I; < x; < u;; where ; and u, are
the lower bound and the upper bound of x; respectively.

Wang et al. presented an adaptive trade-off model (ATM)
for solving different constrained problems. The ATM model
obtains a trade-off scheme between objective function and
constraint violations during the different phases of a search
process [72].

Tuba and Bacanin developed an enhanced seeker optimi-
zation algorithm (SOA) hybridized with firefly algorithm
(FA) for solving constrained optimization problems. In this
model, the FA was used to enhance the model exploitation
capabilities, and hybridized with SOA to control exploita-
tion-exploration balance [69].

@ Springer


http://orcid.org/0000-0001-5810-7423
http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-021-00688-6&domain=pdf

Evolutionary Intelligence

Mirjalili et al. presented a new meta-heuristic named
Grey Wolf Optimizer (GWO) motivated by the leadership
and social behavior of grey wolves. GWO is benchmarked
on 29 different test functions and substantiated its sufficient
explorative capability as compared to other well-known
meta-heuristic algorithms. In addition, GWO algorithm was
considered to solve 3 classical engineering design problems;
welded beam, tension-compression spring and pressure ves-
sel [54].

Wen et al. developed a constrained optimization algo-
rithm which combines the improved grey wolf optimization
(IGWO) with the modified augmented Lagrangian (MAL)
multiplier, the presented algorithm named MAL-IGWO. For
which, the MAL method converts a constrained problem into
an unconstrained one and the IGWO is applied to find the
global optimum the unconstrained problem [43].

Authors in [59] presented a nature-inspired optimization
algorithm, called polar bear optimization algorithm (PBO);
which mimics the way polar bear hunt to survive in harsh
arctic conditions. The PBO simulated a global and local
search with an efficient model of the dynamic mechanism of
births and deaths of individuals in the population. The PBO
algorithm was subjected to 13 test functions and for 4 real
design engineering problems. The experimental research and
comparisons have shown high potential of the PBO for vari-
ous applications.

Cuevas et al. proposed an approach which combines the
explorative characteristics of the invasive weed optimiza-
tion algorithm (IWO), the dispersion capacities of a mixed
Gaussian—Cauchy distribution, and the probabilistic models
of the estimation distribution algorithms (EDAs) to create
its own search method. The proposed approach, have been
used to solve five engineering problems [11].

Polap and Wozniak proposed a mathematical model based
on red fox habits. The model was developed for optimization
purposes and named red fox optimization algorithm (RFO).
RFO algorithm, simulated a global search model that mim-
icked how red foxes look for prey over land, as well as a
local search model that mimicked how red foxes disguise
prey while hunting. The RFO algorithm was tested on 22
benchmark test functions and 7 classic engineering optimi-
zation problems. Experimental and comparative results to
other meta-heuristic algorithms have shown that the RFO
algorithm can precisely find the optima solution of the test
functions [60].

Hayyolalam and Kazem propose a meta-heuristic algo-
rithm inspired by the unique mating behavior of black
widow spiders (BWO); which is inspired by the special
mating and reproducing the new generation behavior of
black widow spiders. The BWO algorithm was investigated
over 51 benchmark functions and also 3 real engineering
design problems in order to illustrate its performance effi-
ciency. The experimental comparison of BWO with other
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well-known optimization algorithm shows the BWO high
performance in finding the real global optima with fast con-
vergence and a high level of accuracy [27].

Water Cycle Algorithm (WCA) is a meta-heuristic
population-based algorithm which mimics the water
cycle in the nature; how streams and rivers flow downhill
towards the sea; to perform optimization. It was proposed
by Eskandar et al. for solving constrained optimization
problems and engineering design problems [20].

WCA has been progressively applied to various research
areas in the literature due to its efficiency of solving com-
plex optimization problems. For instance, solving multi-
objective optimization problems [63], detecting optimum
reactive power dispatch problems [37], antenna array pat-
tern synthesis [26], sizing optimization of space trusses
[64], tune the gains of PID controller [55], distribution
network reconfiguration [56] and spam e-mail detection
[2].

Nevertheless, population-based algorithms can provide
promising solution for the optimization problems, as the
extension of the search space dimension, they faces up to
some challenging issues. One of the main issue is that, they
often get trapped in local optima (LO) when solving com-
plex multi-modal problems [3, 35]. Furthermore, the con-
vergence speed of the population based algorithm can be
typically slow. For population-based algorithms; explora-
tion represents the diversification of the search space, while
exploitation considers the intensification of the best solution.
Consequently, in order to obtain good performance on com-
plex optimization problems, they should be well balanced
[1, 13,25, 29].

In this paper, a reconfigured water cycle algorithm
(RWCA) is proposed. For which two effective strategies
composed of Cauchy distributions (CD) and nonlinear con-
trol parameter are synchronously embedded into the basic
WCA to guide the agents throughout the search space. The
lingering tails of the CD maintain a higher probability of
making long jumps, which helps in preventing the trapping
in local optimums and premature convergence [76]. The
sea in the RWCA is allowed to update its position using
cauchy distributed random number. Consequently under this
distribution, the exploration ability of the proposed RWCA
is promoted. Moreover, to adjust the balance between the
exploitation and exploration capabilities of the RWCA; a
nonlinear control strategy is proposed.

In order to assess the coherence and robustness of the
RWCA, the performance of the proposed RWCA is investi-
gated on 19 unconstrained benchmark functions. As well as,
5 constrained numerical and 3 engineering design problems
are solved using the proposed RWCA. The results obtained
by the RWCA of all test problems were compared with vari-
ous meta-heuristic algorithms reported in the literature.

The major contributions of this paper are as follows:
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1. A reconfigured framework for the WCA algorithm is
proposed (RWCA), which combining the advantages of
the WCA, Cauchy distribution position update strategy
and nonlinear control parameter.

2. Several tests are conducted over unconstrained unimodal
and multimodal benchmark functions that are adopted
for assessing the effectiveness of the proposed RWCA
algorithm.

3. Developing a constrained handling RWCA algorithm,
which is able to escape from local optima problem and
promote the harmony between exploration and exploita-
tion.

4. The constrained handling RWCA algorithm is adapted
for solving various constrained numerical and real world
engineering problems.The experimental results ensure
that the constrained handling RWCA algorithm is effi-
cient enough in solving complex constrained real world
optimization problems.

The rest of the paper is organized as follows: In Sect. 2, a
brief description of Water cycle algorithm (WCA) and Cauchy
distributions is presented. In Sect. 3, the proposed RWCA is
elaborated. In Sect. 4, the efficiency of the proposed RWCA
algorithm investigated on unconstrained functions, constrained
numerical and 3 well-known engineering design problems,
in addition the comparative study of RWCA against various
state-of-the-art optimization algorithms are presented. Finally,
in Sect. 5 the main findings of this study are discussed.

2 Preliminary descriptions concepts

The proposed RWCA algorithm integrates the optimization
characteristics of the WCA algorithm and the dispersion
capacities of CD to creates its own search strategy. In the fol-
lowing section, the brief description of the WCA algorithm
and the CD are presented.

2.1 Water cycle algorithm

WCA is a meta-heuristic algorithm which is derived by the
observation of the water cycle process in nature and proposed
by Eskandar et al. [20]. WCA simulates the flow of streams
and rivers, rainfall, confluence, and evaporation.

For which, an initial population of variables is randomly
generated by the rainfall process. Then, the initial population
is divided in terms of having the least cost into three grades;
sea (best solution), river (near to the current best) and stream.

Sea
River |

Total population = Stream (1)

| Stream Nogp
where N and N, are the number of design variables
(problem dimension) and the total number of population
respectively.

N, = Number Of Rivers + 1 2)

N N oo —N

streams — £V pop sr (3)
N, represents the total number of sea and rivers; and N ,.ms
indicates the number of streams which indirectly or directly
flow to sea and rivers.

The cost of a raindrop is attain by the evaluation of the cost
function

costi=f<x’l,x‘2,...,x;\,rs> i=1,2,3,...,Npop 4)
In order to simulate the flow of the streams to the rivers, and

the streams and the rivers to the sea in nature, WCA uses the
following position updating equation:

ir1 i . .

XlStream _XlSlream + rand X C'x (XlRiver - XlStream ) (5)
i1 i . .

XlStream _XlSlrea.m +rand X CX (XlSea - XlStream ) (6)
i1 i , .

XlRiver _XlRiver +rand X C X (XlSea - XlRirer ) (7)

where rand is a uniformly distributed random number within
the range of [0, 1] and C is a constant value between 1 and 2.

One of the most important characteristics of the meta-heu-
ristic algorithms is randomization. In WCA, to increase rand-
omization, the raining and evaporation process are considered.

Raining and evaporation take place when the distance
between a river or any stream and the sea is less than param-

eter d

-

River

Xi

Sea

<d

hax 1=1,2,3,... N, — 1 (8)
A large value for d,,, reduces the search and leads to focus
more on exploration, while for exploitation a small d,,,,
value motivate the search intensity near the sea. Therefore,
to make a proper trade-off between exploitation and explo-
ration in the WCA, the value of d,,,, adaptively decreases
linearly using the following equation:
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i

di+1 - di _ dmax (9)
max max max iteration

After fulfilling the evaporation condition, the raining proce-

dure is performed. In the raining procedure, the new solu-

tions ( scattered streams) are generate by the formula:

X new

Stream

= LB+ rand X (UB — LB) (10

where UB and LB are the upper and lower bounds of the
given problem, respectively.

2.2 Cauchy distribution

Cauchy distribution (CD) is a continuous probability dis-
tribution, with parameters s and ¢; where , s is a scaling
parameter and 7 is a real positive number named as the loca-
tion parameter.

The probability density function of the standard Cauchy
distribution is given as follows

1
s;r(1+((x—t)/s)2) an

fx) =

For the standard cauchy distribution ¢ = 0 ands = 1; and the
cumulative distribution function is given by:

Fx) = 1 arctan(x) + 0.5 (12)
7
Therefore if
1
y = —arctan(x) + 0.5 (13)
b

A cauchy random variable in the range [0, 1) can be gener-
ated by inverting Eq. 13

x = tan(z(y — 0.5)) (14)

3 Reconfigured water cycle algorithm
(RWCA)

3.1 Non-linear control parameter strategy

From the original literature of WCA, parameter C is a pre-
determined constant (set to 2) that affects the balance among
the exploitative and explorative tendencies. For which, a C
value greater than “one” enables the streams to move toward
the rivers and sea from disparate directions.

In the proposed RWCA a nonlinear decreasing control
parameter strategy is introduce. Whereby, the value of C is
decreased nonlinearly over the course of iteration by using
the following equation:
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C=1+cos (L> (15)

max

For which, t is the current iteration and ¢, is the total num-
ber of iteration. The reasons for proposing such nonlinear
increasing strategy is that, at the beginning of the iterations
the population has a higher diversity, thus a larger value
of C encourages global exploration. On the contrary, the
streams are captivate to the global optima (sea) at the lat-
ter iterations, thus a smaller value of C encourages local
exploitation.

3.2 Modified position update strategy

One of the main operators of the WCA is position updating
process. In the updating process, the population individu-
als (rivers and streams) are attracted towards the sea as the
guide solution for other solutions. Therefore, the algorithm
may converge prematurely without sufficient search space
exploration, which leads to local optima stagnation issues.

To reduce the potential of premature convergence and
local optima stagnation of the proposed RWCA, cauchy
operator strategy was used to the search agents positions
update process.Since the expectation of CD is not defined
(has no mean), so the variance of a CD does not exist (the
variance is infinite). Accordingly, cauchy operator produce
a long jump, which helps in escaping from trapping in local
optima.

In the proposed RWCA, the Cauchy operator is used to
generate a new agent relative to the current best agent when
the i-th agent x(t + 1) position is updated. From Eq. 14 since
y has a uniform distribution in the range (0,1]. Thus, we
obtain the following equation:

x = tan(z(rand — 0.5)) (16)

Under a cauchy perturbation, Eq. 16, a new best individual
(sea) is produced considering the following equation:

X@+1)=X,,0+X,,,@®) - Cauchy(dim) 17)

where (.) is the entry-wise multiplications and dim is the
number of design variables.

However, according to the position update Eq. 17 the
probability that the new best agent is a good agent is the
same as the probability that the agent is a bad one. Thus,
in order to guarantee the excellence of the best agent (sea),
RWCA uses a selection criterion to determine which solu-
tion has a better fitness value (minimum cost function). The
criterion for selection is described as follows:

x+! = XZ_H f(X?—l) <f(Xsea[+1)
sea X;ral , otherwise

(18)
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According to Eq. 18, the agent with fitter value in each itera-
tion is chosen as the sea for the next iterations and the other
one is discarded.

3.3 Constraints handling strategy

When solving constrain problems a main challenge is how
the algorithm handles constraints relating to the given prob-
lem. The proposed RWCA attempted to find design vari-
ables solutions that lie within the LB and UB bounds, while
handling constraints (inequality, equality, linear and non-
linear) based on the concept of feasibility-based criterion
[12]. At each iteration the solutions; sea and Cauchy-sea; are
compared using the following: (1) The feasible solution is
preferred to the infeasible solution; (2) If both solutions are
feasible, the one with better function cost is selected; (3) If
both solutions are infeasible, the solution with the smaller
constraint violation degree is preferred. Using the above cri-
terion, the proposed RWCA search is oriented to the feasible
region with the better global minimum cost.

Aiming to enhance the exploration near the optimum

solution in the feasible region for constrained problems,
RWCA adapted the following equation to motivate the gen-
eration of new streams.
X = Xea + A/ Xrandn(1, dim) (19)
where p is a coefficient representing the domain of search-
ing near the best solution (sea). Large value for y increases
the potentiality to exit from feasible domain, while smaller
value leads the algorithm to search in smaller domain around
the sea. In order to determine proper values for y, a trial
and error experiments has been conducted. According to
the experiments, the most suitable values of u to solve con-
strained optimization problems has recognized as 0.4. The
procedure for the proposed RWCA is shown in Fig. 1.

3.4 Proposed reconfigured water cycle algorithm

According to the above description, the exploration and
exploitation modification in the RWCA are hybridized and
the search process is being performed until the max number
of iterations is reaches or when the best solution is found.
The pseudo code of the proposed RWCA algorithm is pre-
sented in Algorithm 1.

l Setinitial parameters Npo, Ny and dpgx |

Initialize the RWCA population using Eq.
12and3

Calculate the objective cost of each
stream using Eq 4

| Calculate the value of C using Eq. 15 |

Stream travel toward river and sea using
Eq.5,6and C

[ River travel toward sea using Eq. 7 and C |

s stream objective cost lower
than river objective cost

Is river objective cost lower
than sea objective cost

Yes

| R river ition with sea ition |

v

Calculate cauchy sea position using Eq. 17|

S cauchy sea objective cost lowei
than sea objective cost

Replace cauchy sea position with sea
position
[

Is evaporation condition satisfied

Is termination condition satisfied

Fig. 1 Flowchart of the proposed RWCA
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4 Experimental results and analysis

Algorithm 1 Pseudocode of RWCA Algorithm

Input:
Population total number Npop
total number of sea and rivers Ng,

Number of optimization iterations Maz_Iter and dmaas

Output:
Optimal RWCA position Xgeq

1: #Initialize the RWCA population positions randomly.
2: for i=1:Np,;, do
3: Create streams Xgs¢ream
4. Calculate objective cost f(Xstream)
5: end for
6: sort Xgtream from frese to fuworst
7: Sea « thefirststream
8: Rivers «Ng,. - 1
9: Stream «Nyop - Ny
10: while t < Max_Iter do
11: Calculate the value of C using eq. 15
12: for i=1:Np,p, do
13: Update the position of Xgtreqm using eq. 5, 6 and C
14: Calculate generated stream objective cost f(Xstream)
15: if f(Xstream) < f(Xriver) then
16: River.position= new stream.position
17: if f(XsM‘eawl) < f(Xsea) then
18: Update the position of Xs¢ream using eq. 17
19: if f(Xc.stream) < f(Xsea) then
20: Sea.position= cauchy Stream.position
21: else
22: Sea.position= new stream.position
23: end if
24: end if
25: end if
26: if f(Xriver) < f(Xsca) then
27: Update the position of X,.;,e, using eq. 17
28: if f(Xc.river) < f(Xsea) then
29: Sea.position= cauchy River.position
30: else
31: Sea.position= River.position
32: end if
33: end if

34: end for
35: for i=1:Ns,- — 1 do

36: Update the position of X,.;,e, using eq. 7 and C
37: Calculate generated river objective cost f(X,iver)
38 if [(Xriver) < f(Xaca) then

39: Sea.position= River.position

40: end if

41: end for
42: for i=1:N,, — 1 do

43: if |River — Sea| < dpazorrand < 0.1 then
44: Generate new Xgtreqm using eq. 10
45: end if

46: end for

47: # for solving unconstrained problems
48: for i=1: no. of streams do

49: if |Stream — Sea| < dmar then

50: Generate new Xgtreqm using eq. 19
51: end if

52: end for

53: Decrease dpqz using eq. 9

54: t=t+1

55: end while
56: return Xgeq

With the aim of investigating the capabilities of the pro-
posed RWCA algorithms; Matlab R2015b was used for
implementation purposes. All of the experiments were car-
ried out on Intel(R), Core i7- 4910MQ CPU @ 2.90 GHz
and 16 GB RAM.
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4.1 Unconstrained optimization problems
statistical analysis

By virtue of stochastic characteristic of the meta-heuris-
tic algorithms, the performance of a specific algorithm
may vary on a certain test problem within different runs.
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In consequence, in order to assess the performance of the
RWCA, several test problems solved within various runs to
conduct an accurate conclusion. In this paper, the proposed
RWCA is evaluated on 19 well-regarded benchmark func-
tions extracted from the CEC2015 competition [39].

According to their characteristics, the benchmark func-
tions are divided into two distinct groups : unimodal (f1—f7)
and multimodal functions (f8—f19). Whereby, The bench-
mark objective functions could be characterized as continu-
ous, discontinuous, scalable, non-scalable, differentiable,
non-differentiable, separable and non-separable. Moreover,
the test functions have different dimensionality, through
which the search space increases exponentially as the func-
tion dimension increases. This dimensionality produces a
critical barrier for optimization algorithms solving highly
nonlinear problems [74].

The unimodal functions have a single global optimum
and no local optima. Thus, these functions are considered
to evaluate the exploitative tendencies of meta-heuristic
algorithms. Conversely, multimodal and fixed-dimension
multimodal functions (f14—f19) are helpful to estimate the
exploration ability and local optima escaping of the meta-
heuristic algorithms. These functions have a unique global
optima as well as several number of local optima.

The internal parameters of the WCA and RWCA are cho-
sen as: population size (Npop) was 30 and the total number
of iterations (max_it) was 500, Nsr = 4 and dmax = 1.0E~16
on all of the simulations. To make an unbiased comparison,
the results are obtained over 30 independent runs on each
test function; with entirely random initial conditions.

For comparing the WCA and RWCA algorithms four dis-
tinct performance criteria are considered: the minimum solu-
tion (best), the average best solution (mean), the maximum
solution (worst) and the standard deviation (St.dev). The
best, mean and worst indicators assess the solution accuracy,
while the St.dev evaluates the robustness of the obtained
solution.

The experimental results of the unimodal test func-
tions are reported in Table 1. From the results in Table 1,

RWCA outperformed the standard WCA algorithm in term
of best, mean and worst results for f1-f5 functions, and
provided better results for 7. Both RWCA and WCA could
constantly obtain the global optima for f6. Moreover, the
RWCA was able to find the global optima with less St.dev
than WCA for all unimodel functions, these small values
shows the RWCA robustness in finding global optima.

Table 2 recorded the statistical results of RWCA and
WCA in solving the multimodal and fixed-modal func-
tions. From Table 2, the RWCA obtain better best, Mean
and worst results for f8. For f12—f17 both RWCA and
WCA were able to obtain the global optimum. Further-
more, RWCA provide better mean, worst and St.dev for
f10, f18, f19 functions and a stable global optima in term
of best, mean and worst for /9 and f11.

A graphical demonstration of the convergence of the
RWCA and WCA on some of the unimodal and multi-
modal functions is shown in Fig 2. Figure 2 shows that
RWCA obtains the global optima faster than WCA without
trapping in local optima. This is due to applying a nonlin-
ear convergence parameter and Cauchy distribution, which
helps the RWCA to effectively explore the solution space
and find the global optima as fast as conceivable.

The RWCA was compared with six state-of-the-art
met-heuristic algorithms: Whale Optimization Algorithm
(WOA) [52], Particle Swarm Optimization (PSO) [16],
Dragonfly Algorithm (DA) [50], Gravitational Search
Algorithm (GSA) [61], Moth-Flame Optimization (MFO)
[49], and Differential Evolution (DE) [68]; as reported in
Table 3. From Table 3, the proposed RWCA algorithm sig-
nificantly outperformed the other compared algorithm for
six test functions f1-f3, 10, f12 and f13 in term of mean
and St.dev measure. Moreover, the RWCA could consist-
ently obtain the theoretical global optima (0) for 9 and
f11 similar to WOA and DE algorithms respectively. For
functions f14—-f16 RWCA could find the global optimum
similar to all other algorithms, however with a best St.dev
for function f16. Compared to the DE algorithm, RWCA
finds the second best results for function £18.

Table 1 Statistical results of WCA and RWCA algorithm on Unimodal functions

Function WCA RWCA

Best Mean Worst St.dev Best Mean Worst St.dev
Ml 7.6015e-39 1.9486e-36 2.8938e-35 5.2767e-36 3.2352e-97 5.9567e-62 1.787e-60 3.2626e-61
2 1.3334e-19 5.1713e-18 2.2823e-17 5.3268e-18 6.3674e-54 5.9814e-39 1.7913e-37 3.2702e-38
3 5.8724e-38 2.0684e-35 1.0404e-34 2.5528e-35 1.2026e-83 4.5493e-57 1.3643e-55 2.4908e-56
f4 1.3096e-19 2.2317e-18 1.0032e-17 2.5978e-18 2.1755e-42 4.4966e-27 1.2812e-25 2.3382e-26
Ja) 0 5.4174e-4 0.010836 2.1808e-7 0 1.9625e-07 3.9215e-6 9.6741e-8
f6 0 0 0 0 0 0 0 0
17 0.0040279 0.50879 0.97407 0.33477 0.0013685 0.42772 0.96423 0.26622
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Table 2 Statistical results of WCA and RWCA algorithm on multimodal functions

Function WCA RWCA

Best Mean Worst St.dev Best Mean Worst St.dev
I8 — 31759 — 34259 —1320.6 98.075 —5965.6 —4545.6 — 1988.9 921.5
N 0 1.3604 2.9849 0.95989 0 0 0 0
f10 8.8818e-16 3.8488e-15 4.4409e-15 1.3467e-15 8.8818e-16 8.8818e-16 8.8818e-16 0
fl1 0 0.10827 0.41874 0.099326 0 0 0 0
f12 1.1779e-31 1.1779e-31 1.1779e-31 2.227e-47 1.1779e-31 1.1779e-31 1.1779e-31 2.227e-47
f13 1.3498e-32 1.3498e-32 1.3498e-32 5.5674e—48 1.3498e-32 1.0498e-32 1.3498e-32 5.5674e—48
fl4 0.398 0.398 0.398 0 0.398 0.398 0.398 0
f15 3 3 3 3.433e-15 3 3 3 3.1272e-15
fl6 — 3.8628 — 3.8628 —3.8628 3.1618e-15 —3.8628 —3.8628 —3.8628 2.2749e-15
f17 -3.29 —-3.26 —-2.26 6.146¢2 -3.29 —3.28 —-2.26 6.046e2
f18 — 10.403 — 8.3149 — 1.8376 3314 —10.403 —9.9028 —2.7519 1.5309
f19 —10.536 — 8.8419 —2.4217 3.1802 —10.536 —9.8442 —2.4217 1.4433

4.2 Constrained optimization problems

In this section, the efficiency of the proposed RWCA is
evaluated by solving several numerical constrained opti-
mization problems with distinct properties extracted from
the CEC2006 competition [38]. The main properties of the
constrained numerical problems are listed in Table 4. From
Table 4, n is “the number of decision variables”, p "’the ratio
between the size of the feasible search space and that the
entire search space” , LI “the number of linear inequality
constraints”, NI “the number of nonlinear inequality con-
straints”, NE “the number of nonlinear equality constraints”,
LE “the number of linear equality constraints” and a “the
number of active constraints”.

For all test problems the initial parameters for RWCA,
Npop, Nsr , dmax and y are chosen as 50, 4, 1E-03 and
0.4 respectively. Whereby, the maximization problems are
converted into minimization using —f(x).

The objective values, Best, Mean, Worst and St.dev for
G1-G5 are obtained by performing 30 independent runs
of WCA and RWCA algorithms and reported in Table 5.
As described in Table 5, it can be seen that the proposed
RWCA algorithm is able to find resulting “Mean” solutions
very close to the global optima solutions for all problems
G1-GS5. With respect to the test problem G1, RWCA is able
to find a typical “best” result to the global optimal solution
f(x) = —30665.53867; and the “best” and “mean” typical of
the the global optimal solution for problem G5. In addition
to, it can be observed that the st.dev over 30 runs for the
G1-G3 test problems are relatively small. In particular, for
problems G35, st.dev of the objective function are equal to
0, which reflects that RWCA is robust and stable for solv-
ing constrained numeric problems. Compared with WCA,
the proposed RWCA algorithm can obtain better results
for the five test problems. RWCA algorithm found better
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“best”,“mean”, “worst”, and St.dev values for G1-G4, and
similar “best”,“mean”, “worst” Results for G5 and a better
st.dev.

To further validate the performances of the proposed
RWCA algorithm, RWCA is compared against seven inno-
vatory algorithms from the literature: improved grey wolf
optimization with modified augmented Lagrangian (MAL-
IGWO) [43], Genetic algorithm (GA) [40], particle swarm
optimization with differential evolution (PSO-DE) [41],
hybrid differential evolution algorithm (HDE), modified
artificial bee colony algorithm (MABC) [46], constrained
optimization by artificial bee colony (COABC) [24] and
modified global best artificial bee colony (MGABC) [6].

Table 6 lists the “best” , “mean” and “worst” obtained
function values, to ensure the comparison fair; the experi-
mental results of MAL-IGWO, GA, PSO-DE, HDE, MABC,
COABC and MGABC reported in Table 6 were straightly
taken from their literatures. For the test problem G1, as seen
from Table 6, the proposed RWCA algorithm is able to find
the global optimal solution in term of “best” similar to the
seven compared algorithms. However, as seen MAL-IGWO,
PSO-DE and COABC obtained the better “best” and HDE
obtained the better“mean” results for problem G2. For the
test problems G3, the proposed RWCA algorithm found
better “best”, “mean” and “worst” results than MABC; and
found better “best” than GA , MABC and MGABC for prob-
lem G4. The above observation and analysis validate that
the proposed RWCA is an effective algorithm for solving
constrained numerical problems.

4.3 Analysis of parameter "'
The main objective of this section is to analysis the effect of

the u parameter setting on the performance of RWCA. with
the aim of investigating the sensitivity of the y parameter,
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Fig.2 Convergence curves of
WCA and RWCA
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Table 3 Comparison results
obtained for RWCA and
different optimization
algorithms

Table 4 Description of
constrained numerical problems

@ Springer

Function RWCA WOA PSO DA GSA MFO DE
f1 Mean 5.9567e-62 1.41e-30 1.36 5303e-1  2.53e-16  1.65¢-31 8.2e-14
St.dev  3.2626e-61 4.91e-30 2.02e-7 1.3180 9.67e-17  491e-31  59e-14
2 Mean 5.9814e-39 1.06e-21 0.042144  2.392 0.055655  2.69e-19  1.5e-09
St.dev  3.2702e-38 2.39¢-21 0.045421 3912 0.194074  6.22e-19  9.9¢-10
f3 Mean 4.5493e-57 5.3901e-07 70.12562 21545 896.5347  2.05e-11  6.8e-11
St.dev 2.4908e-56 2.9310e-06 22.11924  935.17 3189559 4.2le-11  7.4e-11
fA4  Mean 4.4966e-27 0.072581 1.086481  1.153 7.35487 57%-06 0
St.dev 2.3382e-26 0.39747 0.317039  2.702 1.741452  3.17¢e-05 0
f5 Mean 1.9625¢-07 27.86558 96.71832  6784.5 67.54309  133.11 0
St.dev 9.6741e-8  0.763626 60.11559  21974.5 6222534  555.57 0
f6  Mean 0 3.116266 0.000102  2.2023 2.5e-16 4.78¢-32 0
St.dev 0 0.532429 8.28e-05  5.528 1.74e-16  1.27¢-31 0
f7  Mean 4.2772¢e-6  1.425e-7 0.122854  6.9¢-3 0.089441  1.2e-3 70.00463
St.dev  0.26622 1.149e-7 0.044957  7.6e3 0.04339 7.2e—4 0.0012
f8 Mean —4545.6 —5080.76  —4841.29 —3213.66 -—2821.07 —3329.13 —11080.1
St.dev 921.5 695.7968 1152.814  431.748 493.0375  288.317 574.7
O Mean 0 0 46.70423  11.561 2596841  12.8372 69.2
St.dev 0 0 11.62938  10.177 7.470068  7.352 38.8
f10 Mean 8.8818e-16 7.4043 0.276015  3.14e-5 0.062087  8.88e-16  9.7e-08
St.dev 0 9.897572 0.50901 1.7e-4 0.23628 1.00e-31  4.2e-08
f11 Mean 0 0.000289 0.009215  0.3846 2770154  1.78¢e-01 0
St.dev 0 0.00158 0.007724  0.3826 5.040343  8.43e-2 0
f12 Mean 1.1779e-31 0.339676 0.006917  0.5296 1.799617  3.11e-02  7.9e-15
St.dev 2.227e-47  0.214864 0.026301  0.6912 0.95114 9.487e-2  8e-15
f13  Mean 1.0498e-32 1.889015 0.006675  0.5292 8.899084  1.10e-03  S.le-14
St.dev 5.5674e-48 0.266088 0.008907  0.7173 7.126241  3.33e-3 4.8e-14
f14  Mean 0.398 0.398 0.398 0.3.98 0.398 0.398 0.398
St.dev 0 2.7e-05 0 7.60e13 0 1.13e-16  9.9e-09
f15 Mean 3 3 3 3 3 3 3
St.dev 3.1272e-15 4.22e-15 1.33e-15  1.38e-06 4.17e-15  1.95e-15  2e-15
fl16 Mean — 3.8628 - 385616 —3.8628 —3.86 —3.8628 3.86 N/A
St.dev  2.2749e-15 0.002706 2.58e-15 1.587e-3  2.29e-15 2.7le-15 N/A
f17 Mean —3.28 —3.2202 —-3.26634 -325 - 331778 -3.22 N/A
St.dev  6.046e-2 0.098696 0.060516  6.720e-2  0.023081  4.5066e-2 N/A
f18 Mean —9.9028 —8.18178  —8.45653 —-10.4 —9.68447 —-9.35 —10.403
St.dev  1.5309 3.829202 3.087094  0.192434  2.014088  2.423664  3.9e-07
f19 Mean —9.8442 —9.34238 —-9.95291 -103 —10.536 —-10.3 —10.536
St.dev  1.4433 2.414737 1.782786  1.060781  2.6e-15 1.39948 1.9e-07
The best attained statistical results (mean and standard deviation) are highlighted in bold
Function ID  f(x) type Problem type n p(%) LI NE NI LE a [ i
Gl Quadratic Min 5 521230 0 O 6 0 2 —30665.53867
G2 Quadratic Min 10 00003 3 O 5 0 6 24.306209
G3 Polynomial Min 7 05251 0 O 4 0 2 680.630057
G4 Linear Min 8§ 00010 3 O 30 6 7049.24802
G5 Quadratic Max 347713 0 0 1 0 0 1.00000
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several experiments for solving five constrained numerical
problems (G1-G5) with 30 independent runs have been
performed.

As mentioned previously, the 4 parameter has the profi-
ciency of adjusting the range of searching region near the
best solution. With the aim of the y parameter study, all
other parameters settings of RWCA were kept unchanged;

and RWCA is tested with different values of u: 0.1, 0.2,
0.3, 0.4 and 0.5.

The best and mean values of the constrained numeri-
cal problem objective function are summarized in Table 7
.Based on the results recorded in Table 7, a recommended
value for the u parameter is set to 0.4.

Table 5 Statistical results of WCA and RWCA algorithm on Constrained numerical problems

Function RWCA WCA
Best Mean Worst St.dev Best Mean Worst St.dev
Gl —30665.53867 —30665.5379547 - 30665.5233568  0.00352299731 —30666.75111 — 30666.74930 —30666.7374 0.00355035
G2 24.40061143543 25.43319101453 26.4237858525 1.5431248221 24.47779949 28.105921756 32.79760011 2.38927372
G3 680.630478509 680.637660382 680.684003898 0.0391426637583  680.6517860 680.7722062 680.9591332 0.07991533
G4 7049.32961241 8317.15836709 13120.516179989  1240.694873032  7109.138173 9531.775360 18342.00464 244365135
G5 -1 -1 -1 0 -1 -1 -1 1.2711E-16
Table 6 Comparison of RWCA results with regard to different algorithms on constrained numerical problems
Function RWCA MAL-IGWO GA PSO-DE HDE MABC COABC MGABC
Gl Best —30665.5386713 —30665.53868 —30665.539 —30665.5387 —30665.54 —30665.539 —30665.5387 — 30665.54
Mean —30665.5376881 —30665.53867 —30665.539 —30665.5387 —30665.54 —30665.539 —30665.5387 — 30665.54
Worst  —30665.5233568 — 30665.53867 —30665.539 —30665.5387 —30665.54 —30665.539 —30665.5387 — 30665.54
G2 Best  24.40061143543  24.306209 24.333 24.3062091 24.31 24.315 24.3062 24.32653
Mean 25.43319101454 2431 24.387 24.3062100 24.306209  24.415 24.3062 24.78064
Worst  26.4237858526 24.306209 24.427 24.3062172 24.31 24.854 24.3062 25.09927
G3 Best  680.630478509 680.630037 680.631 680.6300574  680.63 680.632 680.63005 680.6302
Mean 680.637660382 680.630052 680.634 680.6300574  680.63 680.647 680.63005 680.6309
Worst  680.684003898 680.630057 680.637 680.6300574  680.63 680.691 680.63005 680.6322
G4 Best  7049.32961241 7049.23670 7049.861 7049.248021  7049.25 7051.706 7049.248 7104.006
Mean 8317.15836709 7049.23678 7131.084 7049.248038  7049.34 7233.882 7049.248 7357.461
Worst  13120.5161799 7049.23693 7263.461 7049.248233  7050.23 7473.109 7049.248 7504.944
G5 Best -1 -1 -1 -1 -1 -1 -1 -1
Mean -1 -1 -1 -1 -1 -1 -1 -1
Worst  —1 -1 NA -1 -1 -1 -1 -1
Table 7 Experimental results of RWCA with varying u values
Function u=0.1 u=02 u=03 u=04 u=0.5
Gl Best —30665.53867086600  — 30665.53867130919  — 30665.53867146241  — 3.06655386712672 — 30665.53867091266
Mean - 30665.53456178970  — 30665.53768806154  — 30665.53738850630  — 3.066553795477157 — 30665.53805278325
G2  Best 24.686819946426752 24.713979261467394 24.672498912860164 24.400611435439497 24.654308616123654
Mean  27.169967121020655 27.189462664782805 27.157627411534797 26.433191014537027 27.087088854785282
G3  Best 680.6360629694065 680.6444462398060 680.6351110564727 680.6304785096923 680.6369084149803
Mean  680.7077412763562 680.6958662080972 680.6963826195898 680.6376603822925 680.6946003870487
G4  Best 7.132043920970878 7098.566179492316 7065.331807218106 7049.329612417167 7.119826056831297
Mean  8.476611113404624 8619.069093291610 8316.651175871899 8317.158367097893 8.924311885842019
G5 Best -1 -1 -1 -1 -1
Mean -1 -1 -1 -1 -1
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4.4 Constrained engineering problems

In this section, the proposed RWCA performance is evalu-
ated on real-world constrained problems, 3 well-studied
engineering design problems have been solved: (1) Tension/
compression spring design, (2) pressure vessel design and
(3) welded beam design problem. RWCA algorithm parame-
ters values for solving the constrained engineering problems
were kept the same set as follows: Npop=50, Nsr=4 , dmax
= 1E-03 and x =0.4.

4.4.1 Tension/compression spring design problem

The tension/compression spring design problem includes
three continuous variables and four non-linear inequality
constraints. The problem was presented by Arora [4] to
minimize the weight f(x) of a tension/compression spring
subject to the following constraints: “minimum deflection”
(gl), “shear stress” (g2), “surge frequency” (g3), and “lim-
its on outside diameters” (g4). The three design variables
are the wire diameter d, the mean coil diameter D, and the
number of active coils P, as shown in fig 3; the variable vec-
tor is given by:

X =(d,D,P) = (x;,x,%3)

Tables 8 and 9 compare the statistical optimization results
obtained by RWCA, WCA and various optimization algo-
rithms reported in the literature on tension/compression
spring design problem.

From the comparison results listed in Table 9, the pro-
posed RWCA obtain the second best in term of “best”,
”mean” and “worst”. Moreover, RWCA outperforms all
other algorithms, in terms of standard deviation results;
which indicates the RWCA robustness in finding the global
optima solution.

4.4.2 Pressure vessel design problem
The pressure vessel design (PVD) problem is a mixed-inte-
ger optimization problem introduced in [22]; where a cylin-

drical pressure vessel with two hemispherical heads at both
ends is deliberate for minimum fabrication cost, considering

— =
d

Fig.3 Tension/compression spring design problem Schema
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the material cost, forming and welding. The problem math-
ematical model has one nonlinear (g3) and three linear
inequality (g1, g2 and g4) constraints. The design variables
associated with this problem includes two continuous vari-
ables : internal radius "R” and length of the vessel without
heads ”L”; and two discrete design variables: “the depth of
the shell” T, and “thickness of the head” T}, as shown in
Fig. 4. Whereby, the variable vector of the PVD problem to
be optimized is:

X = (Ts5 Tth’ L) = (x1’x23x3’x4)

The pressure vessel design problem has been solved with
regard to the following design variable bounds:

ModelI: 1 <x,, <99 and 10 < x;4 <200

Moreover, intending to examine the entire constrained
region, the upper limit range of the design variable x, has
extended:

Model IT:1 <x;, €99, 10 <x3 <200 and 10 < x; <240

Tables 10 and 11 compare the optimization results
obtained by the proposed RWCA ,basic WCA and other
several algorithms reported in the literature to solve PV
problem. The results of compared algorithms are taken
directly from their original papers, while "NA” denotes the
results are not available. From Table 11, it can be realized
that for model I: compared to BWO, RWA reported sec-
ond best results. While, RWCA got better results in term
of “best, mean and worst” compared to WCA and all other
algorithms. Meanwhile for model II: RWCA was able to find
the best results in term of best, and the second best in term
of mean measure.

4.4.3 Welded beam design problem

Welded beam design problem was proposed by [65], the
objective of this problem is to obtain the fabrication cost
minimum value of the welded beam subject to inequality
constraints. The optimization constraints are: “shear stress”
7, “bucking load on the bar” P, “bending stress in the beam”
o, “deflection rate of the beam”  and side constraints. The
problem includes four design variables for optimizing the
fabrication cost: “ thickness of the weld” h, “length of the

=
=

Fig.4 Pressure vessel design problem Schema
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bar” 1, ”thickness of the bar” b and “height of the bar” t,
Fig. 5.

X =(,11,D0)=(x),x),X3,X4)

The performance of the RWCA for solving the Welded
beam design problem is assessed and compared with WCA
and other algorithms from the literature that were proposed
to solve the problem, the comparisons results are given in
Tables 12 and 13.

Referring to Table 12, the solutions realized by the pro-
posed RWCA on the basis of “best, mean, worst” objective
function values and std.dev are better than those obtained
by the WCA. From the results in Table 13, RWCA outper-
formed other reported results in term of best, mean and worst
except for those obtained by PSO-DE and BWO algorithm.

Fig.5 Welded beam design problem Schema

Table9 Comparison results of RWCA with different algorithms for
the tension/compression spring problem

Method Best Mean Worst St.dev
SCPSO [45] 0.0126652 0.0127576  0.0146117 2.70e-04
GSA [61] 0.0128739 0.0134389 0.0142117 1.34e-02
GDA [7] 0.012665 0.012875 0.014079  2.97e-04
GWO [54] 0.0126723 0.0126971 0.0127208 2.10e-05
MVO [48] 0.0128169 0.0144644  0.0178397 1.62e-03
TEO [34] 0.012665 0.012685 0.012715  4.41e-06
EEGWO [42] 0.012665 0.012685 0.012720  2.22e-05
CWCAIII [30] 0.012672 0.013401 0.016811 0.4578e-03
BWO [27] 0.0126029 0.012613028 0.0126421 2.6e-5
WCA [20] 0.012665 0.012746 0.012952  8.06e-05
RWCA 0.0126652 0.0126828 0.012773  1.00e-05

5 Conclusion

This paper proposed a reconfigured water cycle algorithm
(RWCA) for solving unconstrained, constrained numeri-
cal and real world engineering problems. Firstly, a modi-
fied position-updated strategy was proposed to improve the
exploration ability of the RWCA algorithm. The updating
strategy of the proposed RWCA algorithm allows the sea
to update their position using Cauchy distribution, then a
greedy procedure between the current sea and the cauchy
sea is applied. In this greedy procedure, the position which
is better in term of the fitness cost is selected. As a results
of the cauchy distribution strong disrupting, it can promote

Table 8 Comparison of the best

- ; . Method X; Xy X3 Sonin

solution for various algorithms

on the tension/compression SCPSO [45] 0.051688 0.356705 11.289687 0.0126652

spring problem GSA [61] 0.317312 0.05000 14.22867 0.0128739
GDA [7] 0.0516925 0.3568108 11.2835059 0.012665
GWO [54] 0.051178 0.344541 12.04249 0.0126723
MVO [48] 0.05000 0.315956 14.22623 0.0128169
TEO [34] 0.051775 0.358792 11.168390 0.012665
EEGWO [42] 0.051673 0.35634 113113 0.012665
WOA [53] 0.051207 0.345215 12.0043032 0.0126763
BWOA [10] 0.051602 0.357488 11.2441198 0.0126654
MAL-IGWO [43] 0.0517030133 0.3570705348 11.269309420 0.01266523
CWCA 1II [30] 0.05170910 0.3571073 11.27082577 0.01267157
NRO [73] 0.05168896 0.356715313 11.289108 018 0.01266523
BWO [27] 0.051066 0.342967 12.091428 0.0126029
RFO [60] 0.05189 0.36142 11.58436 0.01321
PBO [59] 0.05102 0.35756 11.6994 0.01275
WCA [20] 0.051680 0.356522 11300410 0.012665
RWCA 0.05000 0.3174254002225493 13.95995278 0.01266523
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Table 10 Comparison of

. . Model  Method X X, X3 X4 Sonin
the best solution for various
algorithms on the PVD problem | G-QPSO [65] 0.8125 0.4375 42.0984 176.6372 6059.7208
GDA [7] 0.8125 0.4375 42.0975 176.6484 6059.8391
MBA [62] 0.7802 0.3856 40.4292 198.4964 5889.3216
CSA [5] 0.8125 0.4375 42.0984 176.6366 6059.7144
SCA [51] 0.817577 0417932  41.74939 183.5727 6137.3724
TEO [34] 0.8125 0.4325 42.0984 173.6366 6059.71
EEGWO [42] 13.09291  6.792196  42.09758 176.6495 6059.8704
Hybrid IWO [11] 1.24000  0.5061 54.20 97.3 5980.000
BWO [27] 0.777821 0373174  39.9973587  199.93614 5796.0389
RFO [60] 0.81425  0.44521 42.20231 176.62145 61133195
PBO [59] 0.81327  0.43702 42.04601 176.75597 6057.54657
WCA [20] 0.7781 0.3846 40.3196 200.0000 5885.3327
RWCA 0.7781 0.3846 40.3195 200.0000 5885.3318
II FSA [28] 0.7683257 0.3797837  39.8096222  207.2255595  5868.764836
PSOStr [14] 0.75 0.375 38.86010 221.36549 5850.38306
Mixed-FA [21] 0.75 0.375 38.86010 221.36547 5850.38306
THS [44] 0.75 0.375 38.86010 221.36553 5849.76169
WCA 0.7275 0359648  37.699014  240.000 5804.37697
RWCA 0.9020 0.445885  46.738534  126.5267 5804.37675
Table 11 Cqmp a.rison results Model Method Best Mean Worst St.dev
of RWCA with different
algorithms for the PV problem I G-QPSO [65] 6059.7208 6440.3786 7544.4925 4484711
GDA [7] 6059.8391 6149.7276 6823.6024 210.77
MBA [62] 5889.3216 6200.6476 6392.5062 160.34
CSA [5] 6059.7144 6342.4991 7332.8416 384.9454
SCA [51] 6137.3724 6326.7606 6512.3541 126.609
TEO [34] 6059.71 6138.61 6410.19 129.9033
EEGWO [42] 6059.8704 6066.7220 6091.0922 10.64121
Hybrid IWO [11]  5980.000 6500.00 7300.00 352.000
BWO [27] 5796.0389 5799.0214 5801.2113 002.073
WCA [20] 5885.3327 6198.6172 6590.2129 213.0490
RWCA 5885.3318 6059.1913 6319.0024 201.86895
Il FSA [28] 5868.764836 6164.585867 6804.328100 257.473670
PSOStr [14] 5850.38306 NA NA NA
Mixed-FA [21] 5850.38306 5937.33790 6258.96825 164.54747
IHS [44] 5849.76169 NA NA NA
WCA 5804.3769794  6354.02071796  7319.00187 596.42664
RWCA 5804.3767571  6113.78039566  7005.107262963  383.0020

the randomness of RWCA and improve the algorithm global
search ability.

Secondly, a non-linear control parameter strategy was
adopted to balance the harmony between exploitation and
exploration, which leads to improve the convergence preci-
sion and speed. Moreover, for solving constrained problems
the impact of parameter 4 was manipulated and a recom-
mended value for the y parameter was set. 19 benchmark test
functions, five constrained numerical and three engineering

@ Springer

applications were laborious in order to validate and verify
the performance of the proposed RWCA algorithm. Experi-
mental results showed that, the proposed RWCA algorithm
provides highly competitive results compared to WCA and
other well known optimization algorithms. The main rea-
son is that, the proposed RWCA uses hybridization of major
advantages of the WCA, Cauchy distribution, non-linear
control parameter and sensitivity adjustment of the y param-
eter. Consequently, it can be designated that the proposed
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Table 12 Comparison of

the best solution for various Method 1 2 3 4 S

algorithms on the Welded beam  pga [28] 0.2443 6.2158 8.2939 0.2443 2.3811

design problem HEAA [71] 0.2444 6.2175 82915 0.2444 2.3810
EEGWO [42] 0.2444 6.2170 8.2928 0.2444 2.3813
WOA [53] 0.205396 3.484293 9.037426 0.206276 1.730499
Mixed-FA [21] 0.2015 3.562 9.0414 0.2057 173121
GWO [54] 0.205676 3.478377 9.03681 0.205778 1.72624
MPSO [32] 0.20573 3.47049 9.03662 0.20573 172485084
MVO [48] 0.205463 3.473193 9.044502 0.205695 1.72645
NRO [73] 0.205729 3.4704887 9.036624 0.2057296 172485231
AATM [70] 0.2441 6.2209 8.2982 0.2444 2.3823
BWO [27] 0.198694 3.421708 9.028637 0.200138 1.663761
RFO [60] 0.21846 3.51024 8.87254 0.22491 1.86612
PBO [59] 0.23258 3.49706 8.91026 0.21194 1.79863
WCA [20] 0.205728 3.470522 9.036620 0.205729 1724856
RWCA 0.205855719 3.4688437 9.0338522 0.2058559 172485424

Table 13 Comparison results of Method Best Mean Worst St.dev

RWCA with other algorithms

for the Welded beam design FSA [28] 23811 2.4042 2.4890 NA

problem HEAA [71] 2.3810 23810 2.3810 1.30E-05
EEGWO [42] 23813 2.3817 2.3824 4.18E-04
PSO-DE [41] 17248531 17248579 1.7248811 4.1E-06
CDE [33] 1733461 1.768158 1.824105 2.2E-02
AATM [70] 2.3823 2.3870 23916 2.20E-03
GWO [54] 1.725571 1726558 1730932998 1.056486E-03
BWO [27] 1.663761 1.665621 1.664165 2.79E-04
WCA [20] 1.724856 1.726427 1.744697 4.29E-03
RWCA 1.724854247763787 1.7249417 1744356418 1.68562E-03

RWCA sustains competitiveness on solving unconstrained,
constrained and engineering practical problems with com-
plex search spaces.
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