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Abstract: Evolutionary multi-objective optimization (EMO)
methodologies have been amply applied to find a representa-
tive set of Pareto-optimal solutions in the past decade and be-
yond. Although there are advantages of knowing the range
of each objective for Pareto-optimality and the shape of the
Pareto-optimal frontier itself in a problem for an adequate
decision-making, the task of choosing a single preferred Pareto-
optimal solution is also an important task which has received
a lukewarm attention so far. In this paper, we combine one
such preference-based strategy with an EMO methodology and
demonstrate how, instead of one solution, a preferred set of so-
lutions near the reference points can be found parallely. We
propose two approaches for this task: (i) a modified EMO pro-
cedure based on the elitist non-dominated sorting GA or NSGA-
II [1] and (ii) a predator-prey approach based on original grid
based procedure [2]. On two-objective to 10-objective optimiza-
tion test problems, the modified NSGA-II approach shows its
efficacy in finding an adequate set of Pareto-optimal points. On
two and three-objective problems, the predator-prey approach
also demonstrate its usefulness. Such procedures will provide
the decision-maker with a set of solutions near her/his prefer-
ence so that a better and a more reliable decision can be made.
Keywords: Reference point approach, interactive multi-objective
method, decision-making, predator-prey approach, multi-objective
optimization.

I. Introduction

For the past 15 years or so, evolutionary multi-objective op-
timization (EMO) methodologies have adequately demon-
strated their usefulness in finding a well-converged and well-
distributed set of near Pareto-optimal solutions [3, 4]. Due to
these extensive studies and available source codes both com-
mercially and freely, the EMO procedures have been popu-
larly applied in various problem-solving tasks and have re-
ceived a great deal of attention even by the classical multi-
criterion optimization and decision-making communities.

However, recent studies [5] have discovered that at least one
of the EMO methodologies – NSGA-II [1] – faces difficulty
in solving problems with a large number of objectives. The
difficulties are as follows: (i) the visualization of four or
more objective space is a difficulty which may limit EMO
methodologies for finding the entire Pareto-optimal set, (ii)
the emphasis ofall non-dominated solutions in a population
for a large number of objectives may not produce enough se-
lection pressure for a small-sized population to move towards
the Pareto-optimal region fast enough and (iii) there is a need
for a number of solutions that usually increases exponen-
tially in the number of objectives to achieve a constant den-
sity of Pareto-optimal solutions. Although the use of a large
population and a better visualization technique may extend
their applications in solving five or so objectives, but if 10 or
more objectives are to be solved, there exists a considerable
amount of doubt to the use an EMO procedure in finding a
well-representative set of Pareto-optimal solutions. In large-
objective problem-solving, EMO methodologies can be put
to benefit in finding a preferred and smaller set of Pareto-
optimal solutions, instead of the entire frontier. This ap-
proach has a practical viewpoint and allows a decision-maker
to concentrate only to those regions on the Pareto-optimal
frontier which are of interest to her/him. EMO methodolo-
gies may provide an advantage over their classical counter-
parts for another pragmatic reason, which we discuss next.
The classical interactive multi-criterion optimization meth-
ods demand the decision-makers to suggest a reference di-
rection or reference points or other clues [6] which result
in a preferred set of solutions on the Pareto-optimal front.
In these classical approaches, based on such clues, a single-
objective optimization problem is usually formed and a sin-
gle solution is found. A single solution (although optimal
corresponding to the given clue) does not provide a good
idea of the properties of solutions near the desired region
of the front. By providing a clue, the decision-maker is not
usually looking for a single solution, rather she/he is inter-
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ested in knowing the properties of solutions which corre-
spond to the optimum and near-optimum solutions respecting
the clue. This is because while providing the clue in terms
of weight vectors or reference directions or reference points,
the decision-maker has simply provided a higher-level infor-
mation about her/his choice. Ideally, by providing a number
of such clues, the decision-maker in the beginning is inter-
ested in choosing a region of her/his interest. We here argue
that instead of finding a single solution near the region of in-
terest, if a number of solutions in the region of interest are
found, the decision-maker will be able to make a better and
more reliable decision. Moreover, if multiple such regions
of interest can be found simultaneously, decision-makers can
make a more effective and parallel search towards finding an
ultimate preferred solution.
In this paper, we use the concept of reference point methodol-
ogy in an EMO and attempt to find a set of preferred Pareto-
optimal solutions near the regions of interest to a decision-
maker. We suggest two approaches for this purpose. The
modified NSGA-II approach is able to solve as many as 10
objectives effectively and the predator-prey approach with
its current implementation exhibits its potential on two and
three-objective optimization problems. All simulation runs
on test problems and on some engineering design problems
amply demonstrate their usefulness in practice and show an-
other use of a hybrid-EMO methodology in allowing the
decision-maker to solve multi-objective optimization prob-
lems better and with more confidence.

II. Preference-Based EMO Approaches

In the context of finding a preferred set of solutions, instead
of the entire Pareto-optimal set, quite a few studies have been
made in the past. The approach by Deb [7] was motivated by
thegoal programmingidea [8] and required the DM to spec-
ify a goal or an aspiration level for each objective. Based on
that information, Deb modified his NSGA approach to find a
set of solutions which are closest to the supplied goal point,
if the goal point is an infeasible solution and find the solution
which correspond to the supplied goal objective vector, if it
is a feasible one. The method did not care finding the Pareto-
optimal solutions corresponding to the multi-objective opti-
mization problem, rather attempted to find solutions satisfy-
ing the supplied goals.
The weighted-sum approach for multi-objective optimization
was utilized by a number of researchers in finding a few
preferred solutions. The method by Cvetkovic and Parmee
[9] assigned each criterion a weightwi, and additionally re-
quired a minimum level for dominanceτ . Then, the defini-
tion of dominance was redefined as follows:

x Â y ⇔
∑

i:fi(x)≤fi(y)

wi ≥ τ,

with a strict inequality for at least one objective. To facil-
itate specification of the required weights, they suggested a

method to turn fuzzy preferences into specific quantitative
weights. However, since for every criterion the dominance
scheme only considers whether one solution is better than
another solution, and not by how much it is better, this ap-
proach allows only a very coarse guidance and is difficult
to control. Jin and Sendhoff also proposed a way to con-
vert fuzzy preferences into weight intervals, and then used
their dynamic weighted aggregation EA [10] to obtain the
corresponding solutions. This approach converted the multi-
objective optimization problem into a single objective opti-
mization problem by weighted aggregation, but varied the
weights dynamically during the optimization run within the
relevant boundaries.
In the Guided Multi-Objective Evolutionary Algorithm (G-
MOEA) proposed by Branke et al. [11], user preferences
were taken into account by modifying the definition of dom-
inance. The approach allowed the DM to specify, for each
pair of objectives, maximally acceptable trade-offs. For ex-
ample, in the case of two objectives, the DM could define
that an improvement by one unit in objectivef2 is worth a
degradation of objectivef1 by at mosta12 units. Similarly,
a gain in objectivef1 by one unit is worth at mosta21 units
of objectivef2. This information is then used to modify the
dominance scheme as follows for two objectives:

x Â y ⇔ (f1(x) + a12f2(x) ≤ f1(y) + a12f2(y)) ∧
(a21f1(x) + f2(x) ≤ a21f1(y) + f2(y)),

with inequality in at least one case. Although the idea works
quite well for two objectives and was well utilized for dis-
tributed computing purposes elsewhere [12], providing all
pair-wise information in a problem having a large number
of objectives becomes a real difficulty.
In order to find a biased distribution anywhere on the Pareto-
optimal front, a previous study [13] used a biased fitness
sharing approach and implemented on NSGA. Based on a
weight vector specifying the importance of one objective
function over the other, a biased distribution was obtained on
two-objective problems. However, the approach could not be
used to obtain a biased distribution anywhere on the Pareto-
optimal front and in a controlled manner.
Recently, Branke and Deb [14] suggested a modified and
controllable biased sharing approach in which by specify-
ing a reference direction (or a linear utility function), a set
of Pareto-optimal solutions near the best solution of the util-
ity function were found. To implement, all solutions were
projected on to the linear hyper-plane and crowding distance
values were computed by the ratio of the distances of neigh-
boring solutions in the original objective space and on the
projected hyper-plane. Thus, solutions which lie on a plane
parallel to the chosen hyper-plane would have a compara-
tively large crowding distance and would be preferred. The
complete process was shown to converge near to the optimal
solution to the utility function in a number of two and three-
objective optimization problems. The procedure demanded
two user-defined parameters: a reference direction and a pa-
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rameter which controls the extent of diversity needed in the
final set of solutions.
The above preference-based procedures are useful in their
own merits and are some ways to find a preferred set
of Pareto-optimal solutions. However, each of the above
methodologies, including the modified biased sharing ap-
proach, cannot be used for finding points corresponding to
multiple preference conditions simultaneously. In this paper,
we make use some of the above principles and suggest a cou-
ple of new procedures which have the following capabilities:

1. Multiple preference conditions can be specified simul-
taneously.

2. For each preference condition, a set of Pareto-optimal
solutions is the target set of solutions, instead of one
solution.

3. The method is indifferent to the shape of the Pareto-
optimal frontier (such as convex or non-convex, contin-
uous or discrete, connected or disconnected and others).

4. The method is applicable to a large number of objectives
(say, 10 or more), a large number of variables, and linear
or non-linear constraints.

The procedures of this paper are certain ways of finding a
preferred set of solutions in an interactive multi-objective
optimization problem, which are motivated by the classical
reference point approach, which we discuss next.

III. Reference Point Interactive Approach

As an alternative to the value function methods, Wierzbicki
[15] suggested the reference point approach in which the goal
is to achieve a weakly,ε-properly or Pareto-optimal solution
closest to a supplied reference point of aspiration level based
on solving an achievement scalarizing problem. Given a ref-
erence pointz for an M -objective optimization problem of
minimizing (f1(x), . . . , fM (x)) with x ∈ S, the following
single-objective optimization problem is solved for this pur-
pose:

Minimize maxM
i=1 [wi(fi(x)− zi)] ,

Subject to x ∈ S.
(1)

Here, wi is the i-th component of a chosen weight vector
used for scalarizing the objectives. Figure 1 illustrates the
concept. For a chosen reference point, the closest Pareto-
optimal solution (in the sense of the weighted-sum of the ob-
jectives) is the target solution to the reference point method.
To make the procedure interactive and useful in practice,
Wierzbicki [15] suggested a procedure in which the obtained
solutionz′ is used to createM new reference points, as fol-
lows:

z(j) = z + (z′ − z) · e(j), (2)

wheree(j) is the j-th coordinate direction vector. For the
two-objective problem shown in the figure, two such new
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Figure. 1: Classical reference point approach.

reference points (zA andzB) are also shown. New Pareto-
optimal solutions are then found by forming new achieve-
ment scalarizing problems. If the decision-maker is not sat-
isfied with any of these Pareto-optimal solutions, a new refer-
ence point is suggested and the above procedure is repeated.
By repeating the procedure from different reference points,
the decision-maker tries to evaluate the region of Pareto-
optimality, instead of one particular Pareto-optimal point. It
is also interesting to note that the reference point may be a
feasible one (deducible from a solution vector) or an infeasi-
ble point which cannot be obtained from any solution from
the feasible search space. If a reference point is feasible and
is not a Pareto-optimal solution, the decision-maker may then
be interested in knowing solutions which are Pareto-optimal
and close to the reference point. On the other hand, if the ref-
erence point is an infeasible one, the decision-maker would
be interested in finding Pareto-optimal solutions which are
close to the supplied reference point.
To utilize the reference point approach in practice, the
decision-maker needs to supply a reference point and a
weight vector at a time. The location of the reference point
causes the procedure to focus on a certain region in the
Pareto-optimal frontier, whereas a supplied weight vector
makes a finer trade-off among the the objectives and fo-
cuses the procedure to find a single Pareto-optimal solution
(in most situations) trading-off the objectives. Thus, the ref-
erence point provides a higher-level information about the
region to focus and weight vector provides a more detailed
information about what point on the Pareto-optimal front to
converge.

IV. Proposed Reference Point Based EMO Ap-
proach

The classical reference point approach discussed above, will
find a solution depending on the chosen weight vector and is
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therefore subjective. Moreover, the single solution is specific
to the chosen weight vector and does not provide any infor-
mation about how the solution would change with a slight
change in the weight vector. To find a solution for another
weight vector, a new achievement scalarizing problem needs
to be formed again and solved. Moreover, despite some
modifications [16], the reference point approach works with
only one reference point at a time. However, the decision-
maker may be interested in exploring the preferred regions
of Pareto-optimality for multiple reference points simultane-
ously.
With the above principles of reference point approaches and
difficulties with the classical methods, we propose an EMO
methodology by which a set of Pareto-optimal solutions near
a supplied set of reference points will be found, thereby elim-
inating the need of any weight vector and the need of apply-
ing the method again and again. Instead of finding a single
solution corresponding to a particular weight vector, the pro-
posed procedure will attempt to a find a set of solutions in
the neighborhood of the corresponding Pareto-optimal solu-
tion, so that the decision-maker can have a better idea of the
region rather than a single solution.
To implement the procedure, we use the elitist non-
dominated sorting GA or NSGA-II [1]. However, a similar
strategy can also be adopted with any other EMO method-
ology. In the following, we describe an iteration of the
proposed reference-point-based NSGA-II procedure (we call
here as R-NSGA-II) for which the decision-maker supplies
one or more reference points. As usual, both parent and
offspring populations are combined together and a non-
dominated sorting is performed to classify the combined pop-
ulation into different levels of non-domination. Solutions
from the best non-domination levels are chosen front-wise as
before and a modified crowding distance operator (we called
here as a ‘preference operator’) is used to choose a subset of
solutions from the last front which cannot be entirely chosen
to maintain the population size of the next population. The
main ideas behind choosing the preferred set of solutions are
as follows:

1. Solutions closer to the reference points (in the objective
space) are to be emphasized more.

2. Solutions within aε-neighborhood to a near-reference-
point solution are de-emphasized in order to maintain a
diverse set of solutions near each reference point.

The following update to the original NSGA-II niching strat-
egy is performed to incorporate the above two ideas:

Step 1: For each reference point, the normalized Euclidean
distance (see equation (3) later) of each solution of the
front is calculated and the solutions are sorted in ascend-
ing order of distance. This way, the solution closest to
the reference point is assigned a rank of one.

Step 2: After such computations are performed for all refer-
ence points, the minimum of the assigned ranks is as-

signed as thepreference distanceto a solution. This
way, solutions closest to all reference points are as-
signed the smallest preference distance of one. The so-
lutions having next-to-smallest Euclidean distance to all
reference points are assigned the next-to-smallest pref-
erence distance of two, and so on. Thereafter, solutions
with a smaller preference distance are preferred in the
tournament selection and in forming the new population
from the combined population of parents and offspring.

Step 3: To control the extent of obtained solutions, anε-
clearing idea is used in the niching operator. First,
a random solution is picked from the non-dominated
set. Thereafter, all solutions having a sum of normal-
ized difference in objective values ofε or less from the
chosen solution are assigned an artificial large prefer-
ence distance to discourage them to remain in the race.
This way, only one solution within aε-neighborhood
is emphasized. Then, another solution from the non-
dominated set (and is not already considered earlier) is
picked and the above procedure is performed.

The above procedure provides an equal emphasis of solu-
tions closest to each reference point, thereby allowing multi-
ple regions of interest to be found simultaneously in a single
simulation run. Moreover, the use of theε-based selection
strategy (which is also similar to theε-dominance strategies
suggested elsewhere [17, 18]) ensures a spread of solutions
near the preferred Pareto-optimal regions.
In the parlance of the classical reference point approach,
the above procedure is equivalent to using a weight vec-
tor emphasizing each objective function equally or using
wi = 1/M . If the decision-maker is interested in biasing
some objectives more than others, a suitable weight vector
can be used with each reference point and instead of empha-
sizing solutions with the shortest Euclidean distance from a
reference point, solutions with a shortest weighted Euclidean
distance from the reference point can be emphasized. We
replace the Euclidean distance measure with the following
weighted Euclidean distance measure:

dij =

√√√√
M∑

i=1

wi

(
fi(x)− zi

fmax
i − fmin

i

)2

, (3)

where fmax
i and fmin

i are the population maximum and
minimum function values ofi-th objective. Note that this
weighted distance measure can also be used to find a set
of preferred solutions in the case of problems having non-
convex Pareto-optimal front.

V. Simulation Results

We now show simulation results on two to 10 objectives us-
ing the proposed methodology. In all simulations, we use the
SBX operator with an index of 10 and polynomial mutation
with an index 20 [4]. We also use a population of size 100
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for all two-objective problems and run till 500 generations
to investigate if a good distribution of solutions remain for a
large number of iterations.

A. Two-Objective ZDT Test Problems

In this section, we consider three ZDT test problems.

1) Test Problem ZDT1

First, we consider the 30-variable ZDT1 problem. This prob-
lem has a convex Pareto-optimal front spanning continu-
ously in f1 ∈ [0, 1] and follows a function relationship:
f2 = 1−√f1. Figure 2 shows the effect of differentε values
on the distribution. Two reference points are chosen for this
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Figure. 2: Effect ofε in obtaining varying spread of preferred
solutions on ZDT1.

problem and are shown in filled diamonds. Four differentε
values of 0.0001, 0.001, 0.005 and 0.01 are chosen. Solu-
tions withε = 0.0001 are shown on the true Pareto-optimal
front. It is interesting to note how solutions close to the two
chosen reference points are obtained on the Pareto-optimal
front. Solutions with otherε values are shown with an offset
to the true Pareto-optimal front. It is clear that with a large
value ofε, the range of obtained solutions is also large. Thus,
if the decision-maker would like to obtain a large neighbor-
hood of solutions near the desired region, a large value ofε
can be chosen. For a particular population size and a chosen
number of reference points, the extent of obtained solutions
gets fixed by maintaining a distance between consecutive so-
lutions of an amountε.
Next, we consider five reference points, of which two are
feasible and three are infeasible. Figure 3 shows the obtained
solutions withε = 0.001. Near all five reference points, a
good extent of solutions are obtained on the Pareto-optimal
front.
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Figure. 3: Preferred solutions for five reference points with
ε = 0.001 on ZDT1.

To investigate the effect of a weight-vector in obtaining the
preferred distribution (similar to the classical achievement
scalarization approach), we use the normalized Euclidean
distance measure given in equation 3. Figure 4 shows the
obtained distribution with R-NSGA-II withε = 0.001 on
ZDT1 problem for three different weight vectors: (0.5, 0.5),
(0.2, 0.8) and (0.8, 0.2). A reference pointz = (0.3, 0.3) is
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Figure. 4: Biased preferred solutions with different weight
vectors around a reference point for ZDT1.

used. As expected, for the first weight vector, the obtained
solutions are closest to the reference point. For the second
weight vector, more emphasis onf2 is given, thereby finding
solutions which are closer to minimum off2. An opposite
phenomenon is observed with the weight vector (0.8, 0.2), in
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which more emphasis onf1 is provided. These results show
that if the decision-maker is interested in biasing some ob-
jectives more than the others, a biased distribution closest to
the chosen reference point can be obtained by the proposed
R-NSGA-II. In all subsequent simulations, we use a uniform
weight vector, however a non-uniform weight-vector can also
be used, if desired.

2) Test Problem ZDT2

The 30-variable ZDT2 problem is considered next. This
problem has a non-convex Pareto-optimal front ranging in
f1.f2 ∈ [0, 1] with f2 = 1 − f2

1 . Three reference points
are chosen and the obtained set of points withε = 0.001 are
shown in Figure 5. It can be clearly seen that non-convexity
of the Pareto-optimal front does not cause any difficulty to
the proposed methodology.
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Figure. 5: Preferred solutions for three reference points with
ε = 0.001 on ZDT2.

3) Test Problem ZDT3

The 30-variable ZDT3 problem has a disconnected set of
Pareto-optimal fronts. Three reference points are chosen
and the obtained set of solutions found usingε = 0.001 are
shown in Figure 6. It is interesting to note that correspond-
ing to the reference point lying between the two disconnected
fronts, solutions on both fronts are discovered, providing an
idea of the nature of the Pareto-optimality at the region. By
using a classical approach, a solution only one solution on
one of the sub-fronts would have been discovered.
This study also reveals an important matter with the pro-
posed approach, which we discuss next. Since the complete
Pareto-optimal front is not the target of the approach and
since the proposed procedure emphasizes non-dominated so-
lutions, some non-Pareto-optimal solutions can be found by
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Figure. 6: Preferred solutions for three reference points with
ε = 0.001 on ZDT3.

the proposed procedure particularly in problems having non-
continuous Pareto-optimal fronts. Solution A (refer Figure 6)
is one such point which is not a Pareto-optimal solution but
is found as a part of the final subpopulation by the proposed
approach. This solution is non-dominated to the rest of the
obtained solutions, but is not a member of the true Pareto-
optimal set. To make this solution dominated, there exist
no neighboring solution in the objective space. Only when
solutions such as solution B are present in the population,
such spurious solutions (like solution A) will not remain in
the final population. However, the chosen reference points
can be such that the solution B may not be a part of the
preferred solutions. In such situations, such spurious solu-
tions (like solution A) may appear in the final population.
However, to ensure the Pareto-optimality of a solution, an
ε-constraint approach can be applied withf1 ≤ fA

1 con-
straint. If a solution dominating solution A is found by the
ε-constraint approach, then solution A cannot be a member
of the Pareto-optimal set. However, in this paper we realize
the need of such a second-level optimization strategy for en-
suring Pareto-optimality, but we do not perform such a study
here.

B. Three-Objective DTLZ2 Problem

The 11-variable DTLZ2 problem has a three-dimensional,
non-convex, Pareto-optimal front. We use two reference
points ((0.2, 0.2, 0.6)T and(0.8, 0.6, 1.0)T ) as shown in Fig-
ure 7. We useε = 0.01 here. For this and subsequent prob-
lems, we use a population of size 500. Other parameters are
set as before. A good distribution of solutions near the two
reference points is obtained. This indicates the ability of the
proposed procedure in solving three-objective optimization
problems as well.
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Figure. 7: Preferred solutions for two reference points with
ε = 0.01 on DTLZ2.

C. Five-Objective DTLZ2 Problem

Next, we apply the proposed procedure withε = 0.01 to
the 14-variable DTLZ2 problem. Two reference points are
chosen as follows: (i) (0.5, 0.5, 0.5, 0.5, 0.5) and (ii) (0.2,
0.2, 0.2, 0.2, 0.8). Figure 8 shows the value-path plot of the
five-objective solutions. It is clear that two distinct sets of
solutions near the above reference points are obtained by the
proposed procedure. Since the Pareto-optimal solutions in
the DTLZ2 problem satisfy

∑M
i=1 f2

i equal to one, we com-
pute this expression for all obtained solutions and the values
are found to lie within [1.000, 1.044] (at most 4.4% from
one), thereby meaning that all solutions are very close to the
true Pareto-optimal front.
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Figure. 8: Preferred solutions for two reference points with
ε = 0.01 on five-objective DTLZ2.

D. 10-Objective DTLZ2 Problem

We then attempt to solve 19-variable DTLZ2 problem with
one reference point:fi = 0.25 for all i = 1, 2, . . . , 10. We

useε = 0.01 and the obtained distribution is shown in Fig-
ure 9. Although the objective values can vary in [0,1], the
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Figure. 9: Preferred solutions for one reference point with
ε = 0.01 on 10-objective DTLZ2.

points concentrates nearfi = 1/
√

10 or 0.316, which would
be the region closest to the chosen reference point. When we
compute

∑10
i=1 f2

i of all obtained solutions, they are found to
be exactly equal to one, thereby meaning that all R-NSGA-II
solutions are on the true Pareto-optimal front. This study
shows that the proposed procedure is also able to solve a
10-objective problem, although it has been shown elsewhere
[5] that the original NSGA-II faces difficulty in finding a
converged and well-distributed set of solutions on the true
Pareto-optimal front for the same 10-objective DTLZ2 prob-
lem. Thus, it can be concluded that if a small region on a
large-dimensional Pareto-optimal front is the target, the pro-
posed procedure is a way to find it in a reasonable amount of
computations.

VI. Two Engineering Design Problems

Next, we apply the proposed methodology to two engineer-
ing design problems, each having two objectives.

A. Welded Beam Design Problem

The welded beam design problem has four real-parameter
variablesx = (h, `, t, b) and four non-linear constraints. One
of the two objectives is to minimize the cost of fabrication
and other is to minimize the end deflection of the welded
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beam [19]:

Minimize f1(~x) = 1.10471h2` + 0.04811tb(14.0 + `),
Minimize f2(~x) = 2.1952

t3b ,
Subject to g1(~x) ≡ 13, 600− τ(~x) ≥ 0,

g2(~x) ≡ 30, 000− σ(~x) ≥ 0,
g3(~x) ≡ b− h ≥ 0,
g4(~x) ≡ Pc(~x)− 6, 000 ≥ 0,
0.125 ≤ h, b ≤ 5.0,
0.1 ≤ `, t ≤ 10.0.

(4)
There are four constraints. The first constraint makes sure
that the shear stress developed at the support location of the
beam is smaller than the allowable shear strength of the ma-
terial (13,600 psi). The second constraint makes sure that
normal stress developed at the support location of the beam
is smaller than the allowable yield strength of the material
(30,000 psi). The third constraint makes sure that thickness
of the beam is not smaller than the weld thickness from a
practical standpoint. The fourth constraint makes sure that
the allowable buckling load (alongt direction) of the beam
is more than the applied loadF = 6, 000 lbs. A violation
of any of the above four constraints will make the design un-
acceptable. The stress and buckling terms are non-linear to
design variables and are given as follows [20]:

τ(~x) =

q
(τ ′)2 + (τ ′′)2 + (`τ ′τ ′′)/

p
0.25(`2 + (h + t)2),

τ ′ =
6, 000√

2h`
,

τ ′′ =
6, 000(14 + 0.5`)

p
0.25(`2 + (h + t)2)

2 {0.707h`(`2/12 + 0.25(h + t)2)} ,

σ(~x) =
504, 000

t2b
,

Pc(~x) = 64, 746.022(1− 0.0282346t)tb3.

The objectives are conflicting in nature and NSGA-II is ap-
plied elsewhere to find the optimized non-dominated front
to this problem [4]. Here, instead of finding the complete
Pareto-optimal front, we are interested in finding the op-
timized trade-off regions closest to three chosen reference
points:

1. (4,0.0030),

2. (20,0.0020), and

3. (40,0.0002).

Figure 10 shows the obtained solutions. To investigate where
these regions are with respect to the complete trade-off front,
we also show the original NSGA-II solutions with a ‘+’.
First, the obtained preferred solutions are found to be falling
on the trade-off frontier obtained using the original NSGA-
II. Second, solutions close to the given reference points are
found. It is interesting to note that although the second ref-
erence point is feasible. meaning that there may exist a so-
lution vectorx, which will produce the given reference point
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Figure. 10: Preferred solutions for three reference points
with ε = 0.001 on the welded beam design problem.

(that is, corresponding to a cost of 20 units and a deflec-
tion of 0.002 units), the task is to find, if possible, a set of
solutions which are better than the given reference point in
all objectives. The figure shows that the supplied reference
point is not an optimal solution and there exist a number of
solutions which dominate this solutionx. Although short-
est distances from the reference points are preferred, the em-
phasis of non-dominated solutions over dominated solutions
enables Pareto-optimal solutions to be found.
Thus, if the decision-maker is interested in knowing trade-off
optimal solutions in three major areas (minimum cost, inter-
mediate to cost and deflection and minimum deflection) the
proposed procedure is able to find solutions near the supplied
reference points, instead of finding solution on the entire
Pareto-optimal front, thereby allowing the decision-maker to
consider only a few solutions and that too solutions which lie
in the regions of her/his interest.

B. Spring Design Problem

Finally, we consider another engineering design problem in
which two of the three design variables are discrete in nature,
thereby causing the Pareto-optimal front to have a discrete set
of solutions. Diameter of the wire (d), diameter of the spring
(D) and the number of turns (N ) are to be found for minimiz-
ing volume of spring and minimizing the stress developed
due to the application of a load. Denoting the variable vector
x = (x1, x2, x3) = (N, d,D), we write the two-objective,
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eight-constraint optimization problem as follows [21]:

Minimize f1(~x) = 0.25π2x2
2x3(x1 + 2),

Minimize f2(~x) = 8KPmaxx3
πx23 ,

Subject to g1(~x) = lmax − Pmax

k − 1.05(x1 + 2)x2 ≥ 0,
g2(~x) = x2 − dmin ≥ 0,
g3(~x) = Dmax − (x2 + x3) ≥ 0,
g4(~x) = C − 3 ≥ 0,
g5(~x) = δpm − δp ≥ 0,
g6(~x) = Pmax−P

k − δw ≥ 0,
g7(~x) = S − 8KPmaxx3

πx23 ≥ 0,

g8(~x) = Vmax − 0.25π2x2
2x3(x1 + 2) ≥ 0,

x1 is integer,x2 is discrete,x3 is continuous.
(5)

The parameters used are as follows:

K = 4C−1
4C−4

+ 0.615x2
x3

, P = 300 lb, Dmax = 3 in,

Pmax = 1, 000 lb, δw = 1.25 in, δp = P
k

,
δpm = 6 in, S = 189 ksi, dmin = 0.2 in,

G = 11, 500, 000 lb/in2, Vmax = 30 in3, k = Gx2
4

8x1x33 ,

lmax = 14 in, C = x3/x2.

The 42 discrete values ofd are given below:0BBBBBBBB@
0.009, 0.0095, 0.0104, 0.0118, 0.0128, 0.0132,
0.014, 0.015, 0.0162, 0.0173, 0.018, 0.020,
0.023, 0.025, 0.028, 0.032, 0.035, 0.041,
0.047, 0.054, 0.063, 0.072, 0.080, 0.092,
0.105, 0.120, 0.135, 0.148, 0.162, 0.177,
0.192, 0.207, 0.225, 0.244, 0.263, 0.283,
0.307, 0.331, 0.362, 0.394, 0.4375, 0.5.

1CCCCCCCCA
The design variablesd andD are treated as real-valued pa-

rameters in the NSGA-II withd taking discrete values from
the above set andN is treated with a five-bit binary string,
thereby coding integers in the range [1,32]. While SBX and
polynomial mutation operators are used to handled andD,
a single-point crossover and bit-wise mutation are used to
handleN .
We apply the R-NSGA-II with two reference points: (4,
180,000) (feasible) and (25, 20,000) (infeasible) with a uni-
form weight vector and withε = 0.001. Figure 11 shows the
R-NSGA-II solutions which are found to be closer to the two
reference points. The trade-off optimized solutions found by
the original NSGA-II are also shown. It is interesting to note
how the proposed preferred technique can be used to find a
set of solutions near some chosen aspiration points, supplied
by the decision-maker.

VII. A Predator-Prey Approach

Besides the above direct approach in modifying the niching
operator of NSGA-II to find a preferred set of solutions, the
task of finding the solutions corresponding to a set of refer-
ence points appeal a more direct natural approach to be ap-
plied. By considering the reference points aspredatorsand
target solutions closest to them aspreys, we may simulate a
predator-prey hunting procedure to solve the problem.
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Figure. 11: Preferred solutions around two reference points
for the spring design problem.

Laumanns et al. [2] suggested a predator-prey algorithm
in which a predators and preys are randomly placed on a
toroidal grid. Each predator works with a particular objec-
tive and deletes the worst prey it its neighborhood according
to its objective function. Since every predator works with
a different objective, at the end, multiple optimal solutions
are expected to be present in the grid, thereby finding multi-
ple Pareto-optimal solutions simultaneously. Later, Deb [4]
extended the idea to include a weighted sum of objectives
assigned to each predator. Li [22] extended the idea to in-
troduce differing speeds of predators and preys with preda-
tors making moves more often than preys and showed an im-
provement in results, compared to the original method.
Here, we suggest a systematic set of modifications to the
original model of Laumanns et al. [2] by introducing
crossover (although the original procedure [2] suggested, but
did not simulate, the use of a recombination operator), elite
preservation, and an explicit diversity preservation mecha-
nism which performed much better than the existing method-
ologies.

Step 1: Initialize set of preys randomly between the variable
limits.

Step 2: Place these preys on the vertices of undirected con-
nected graph.

Step 3: Place predators randomly on the vertices of the
graph.

Step 4: Assign each predator with a distinct weighted sum
of objectives uniformly created within[0, 1] × [0, 1] ×
. . .× [0, 1], so that the sum of weights is one.

Step 5: Evaluate preys around each predator and select the
worst prey.

Step 6: Create two offspring by applying a crossover oper-
ation between the first and the second best preys in the
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neighborhood of the worst prey. Randomly choose one
of the two offspring and mutate it to create the child so-
lution.

Step 7: Child acceptance criteria:

Step 7a: If the child solution weakly dominates all ex-
isting preys, child becomes a candidate to replace
the worst prey. If the child is not within the influ-
encing region of any existing prey, it replaces the
worst prey. Predator also moves to the position of
the worst prey.

Step 7b: Else if the child solution is dominated by any
existing prey or the child is within the influenc-
ing region of any existing prey, the child is not ac-
cepted and a new child is created by Step 6. The
creation of new child and its acceptance test are
continued a maximum of 10 iterations, after which
the worst prey is retained. In this case, predator
takes a random walk to any position in the grid.

Step 8: This completes one generation of the predator-prey
algorithm. Repeat Steps 5 to 7 for the next generation.

The salient features of the proposed algorithm are as follows:

1. A weighted-sum of objectives per predator is used as a
criterion for deleting the worst prey.

2. A crossover between two good solutions and a subse-
quent mutation are used to create a child solution.

3. The elite preservation and diversity maintenance are en-
sured by accepting a newly created child only when it
weakly dominates all existing preys and it is not within
a predefined region from existing preys.

For achieving the task for finding preferred solutions, we fur-
ther modify the above procedure in the following manner:

1. Each predator is assigned to one of the reference points.
Multiple predator assignment to a single reference point
is also allowed and is recommended.

2. All neighboring preys are divided into two classes: (i)
one which dominates the predator and (ii) the remain-
ing solutions, as shown in Figure 12. To emphasize
convergence to the Pareto-optimal front and closer to
the reference points, we must deemphasize preys which
are away from the Pareto-optimal front. This can be
achieved by carefully comparing normalized distance of
solutions from the reference points in both classes. We
describe this issue next.

3. If the second set is empty, we declare the prey hav-
ing the smallest normalized Euclidean distance from a
predator as the worst prey. Otherwise, we find the prey
in the second set having the largest normalized Euclid-
ean distance and declare it as the worst prey. Note that

(deleted)

predator

f1

f2

Class I

Class II

Figure. 12: Emphasizing preys near Pareto-optimal region.

in the case of a reference point residing in the infeasible
region, there cannot exist any prey in class I and there-
fore the above procedure deletes the prey which furthest
from the reference point.

4. The creation of offspring is identical to the proposed
methodology. However, if only the created offspring is
within a critical normalized distance (we use a value of
0.1 here) from any reference point, this offspring can be
considered as a candidate for inclusion in the grid. If
the offspring is not within the critical distance of any
reference point, it is simply discarded.

With these modifications, we apply the procedure to a num-
ber of scenarios on the two-objective, five-variable ZDT1 test
problem. All these results are taken for 300 generations. The
number of preys is chosen in proportion to the number of
reference points (25 times the number of reference points).
In all cases, 10 predators are considered for each reference
point.
Figure 13 to 16 show the final population of preys for differ-
ent scenarios.
In each case, the predators (or reference points) are shown
using a filled diamond. It is interesting to observe how the
proposed methodology is able to find a concentrated set of
Pareto-optimal solutions near each of the reference points. It
is also interesting to note that the procedure works equally
well for the reference point to lie inside or outside the feasi-
ble objective space.
Next, we apply the proposed predator-prey procedure to a
modified three-objective DTLZ2 problem, as shown in Fig-
ure 17. To make the Pareto-optimal front a convex front (so
that the weighted-sum of objectives can be assigned to each
predator), we have modified the original DTLZ2 problem
[23], by subtracting each function value from(1 + g(x)).
One reference pointz = (0.1, 0.4, 0.7) is considered. 10
predators are used. A population of size 50 is used for 300
generations. The figure shows a nice concentration of 50 so-
lutions on the true Pareto-optimal front near the supplied ref-
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Figure. 13: Preferred solutions with an infeasible reference
point.

erence point. The procedure is quite fast computationally and
the simulation results demonstrate its usefulness in finding
a preferred set of solutions. We are currently investigating
the potential of such a predator-prey procedure for handling
problems with a larger number of objectives.

VIII. Extensions and Future Studies

This paper can be extended in a number of ways. In the
case of R-NSGA-II, the normalization procedure in comput-
ing the Euclidean distance measure (equation 3) is an impor-
tant matter. Here, we have used the population minimum and
maximum objective values for this purpose. In the case of a
single reference point, the EA population is likely to have a
reduced diversity since all solutions are likely to concentrate
in a narrow region on the Pareto-optimal set. This may cause
a normalization difficulty. To avoid such a problem, in addi-
tion to emphasizing solutions near to the reference points, ex-
treme solutions can also simultaneously emphasized (like the
way they were emphasized in another study [5] to estimate
the nadir objective vector). In addition to ranking population
members according to the normalized distance from the ref-
erence points, they are also ranked using their distances from
the extreme population members in a non-dominated front.
Thereafter, the smallest of all ranks are assigned as the pref-
erence distance of a solution and solutions with smaller pref-
erence distances are emphasized as before. Since extreme
solutions are also emphasized in the population, front-wise
minimum and maximum objective values can now be used
for computing the normalized distance measure. This way,
separate subpopulations are expected to form near reference
points and also near the extreme objective solutions on the
Pareto-optimal front. Such a simulation will be useful in not
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Figure. 14: Preferred solutions with a feasible reference
point.

only finding the preferred points near the reference points,
but also in simultaneously getting an idea of the range of the
Pareto-optimal frontier in terms of estimating the nadir point.
Figure 18 shows all 100 population members after 100 gen-
erations. Other GA parameters are identical to those used
before. Here, we have used a weight vector of(1, 1)T and
ε = 0.001. It can be seen that in addition to finding the pre-
ferred solutions near the singleton reference point, solutions
near the extreme Pareto-optimal solutions are also found si-
multaneously. From these solutions, the nadir point can be
computed or an idea of the range of Pareto-optimal solutions
can be obtained. Similarly Figure 19 shows 100 population
members after 300 generations on the three-objective DTLZ2
problem withε = 0.01 and an equal-component weight vec-
tor. In addition to a subpopulation near the chosen refer-
ence point, all three extreme Pareto-optimal solutions are
also found by the procedure.
The ε-clearing strategy used in R-NSGA-II can be replaced
with the grid-basedε-dominance principle [17] can be used.
In the predator-prey approach with a reference point inside
the feasible objective space, the deletion of near predator so-
lution may eliminate a desired Pareto-optimal solution, as
observed in Figure 14. This may be avoided by using rank-
based selection scheme used in R-NSGA-II. Moreover, like
in R-NSGA-II, a strategy controlling the extent of obtained
solutions near each predator may be introduced.

IX. Conclusions

In this paper, we have addressed an important task of com-
bining EMO methodologies with a classical multi-criterion
decision-making approach to not find a single optimal so-
lution, but to find a set of solutions near the desired region
of decision-maker’s interest. With a number of trade-off
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Figure. 15: Preferred solutions with two reference points.

solutions in the region of interests we have argued that the
decision-maker would be able to make a better and more re-
liable decision than with a single solution than that with a
single solution.
The reference point approach is a common methodology in
multi-criterion decision-making, in which one or more ref-
erence (goal) points are specified by the decision-maker be-
fore hand. The target in such an optimization task is then
to identify the Pareto-optimal region closest to the reference
points. We have suggested two different approaches for this
purpose. In the first approach, the niching operator of the
original NSGA-II has been updated to emphasize such solu-
tions. The proposed technique has been applied to a number
of two to 10-objective optimization problems with two to five
reference points and in all cases the desired set of solutions
have been obtained. The approach involves a new parameter
(ε) which controls the extent of the distribution of solutions
near the closest Pareto-optimal solution.
The main crux of this paper is exploitation of the popula-
tion approach of an EMO procedure in finding more than
one solutions not on the entire Pareto-optimal frontier, but in
the regions of Pareto-optimality which are of interest to the
decision-maker. The population slots are well utilized in not
only making animplicit parallel search [24], but also to find
(i) multiple regions of interest simultaneously and (ii) mul-
tiple trade-off solutions in the close vicinity of each desired
region of interest.
The second proposed approach involves another natural
event of predators hunting preys of their likings. By keeping
alive solutions closest to the predators (modeled for the sup-
plied reference points) and by emphasizing non-dominated
solutions for convergence to the Pareto-optimal front, the ap-
proach has been able to achieve the task quite successfully
for two and three-objective optimization problems. As an im-
mediate extension to this work, a more detailed study must be
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Figure. 16: Preferred solutions with three reference points.
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Figure. 17: Obtained solutions with the predator-prey ap-
proach for the three-objective modified DTLZ2 problem.

made to fully exploit the predator-prey approach for higher-
objective problems.
Having been well demonstrated the task of finding multi-
ple Pareto-optimal solutions in multi-objective optimization
problems, the EMO researchers and applicationists should
now concentrate in devising methodologies of solving the
complete task of finding preferred and Pareto-optimal solu-
tions in an interactive manner with a decision-maker. Al-
though the ultimate target in such an activity is to come up
with a single solution, the use of an EMO procedure can be
well applied with a decision-making strategy in finding a set
of preferred solutions in regions of interest to the decision-
maker, so that the solutions in a region collectively bring out
properties of the solutions there. Such an activity will then
allow the decision-maker to first make a higher-level search
of choosing a region of interest on the Pareto-optimal front,
rather than using a single solution to focus on a particular
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Figure. 18: Modified R-NSGA-II to find preferred as well as
extreme Pareto-optimal solutions on ZDT1.

solution.
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