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1. Introduction 

 

Owing to the increasing demand for conventional 
construction materials, resulting from increasing 

urbanization and changing human lifestyles, there has been 

a growing interest, over the years, concerning sustainable 

development in the built environment. The solution to the 

scarcity of materials has been found in the use of alternative 

materials, routinely emanating as industrial or construction 

rejects. The aforementioned sources are known to pollute 

the environment and consequently creating various health 

and environmental issues. Moreover, indiscriminate 

disposal of waste materials causing soil degradation 

remains a great concern, particularly in some developing 

nations of the world.  

 Thus, sustainable measures majorly lie in finding 

lasting solutions to material use and environmental 

management. On the path of materials, numerous examples 

have been tested for the possibility of incorporation into 
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fresh cementitious systems, thus ensuring that natural 

materials sources are preserved. These include materials 

originating locally (crushed rocks, stone dust, laterite) or 

those sourced from industrial, construction, and demolition 

debris (glass, ceramics, steel slags, marble).  

Several experimental studies have dwelt on reusing 

waste materials for the production of new products, with 

significant results (Cheng et al. 2016, Erdem et al. 2018, 

Madurwar et al. 2013, Mehta and Ashish 2019, Paris et al. 

2016). In the study by Paris et al. (2016), numerous 

supplementary cementitious materials (SCMs) were 

evaluated, and a nontraditional use of SCMs were proposed. 

From all, it is clear that steel slag, a byproduct of the steel 

rolling process, is one that has been overly explored (Jiang 

et al. 2018). The prospect of this material is high; a report 

by Guo et al. (Guo et al. 2018a) has shown that steel slag is 

strategically reused for various applications in industrial 

regions like Japan (98.4% rate) Europe (87.0% rate), and 

United States (84.4% rate). However, it is practically not 

feasible for steel slag to be used for the fresh production of 

steel, except only for secondary applications. In some less 

developed countries in Africa, steel slag is used for filling 

failed spots on roads or mostly piled up within the premises 

of the production site (Awoyera et al. 2016), thereby 

constituting a nuisance to the environment. The application 

of steel slag covers three categories, in the form of powder 

 
 
 

A new formulation for strength characteristics of steel slag aggregate 
concrete using an artificial intelligence-based approach 

 

Paul O. Awoyera1a, Iman Mansouri2, Ajith Abraham3b and Amelec Viloria4a 
 

1Department of Civil Engineering, Covenant University, Ota, Nigeria 
2Department of Civil Engineering, Birjand University of Technology, 97175-569 Birjand, Iran 

3Machine Intelligence Research Labs, Auburn, Washington, 98071, United States 
4Universidad de la Costa, Barranquilla, Colombia 

 
(Received June 13, 2020, Revised February 25, 2021, Accepted March 4, 2021) 

 
Abstract.  Steel slag, an industrial reject from the steel rolling process, has been identified as one of the suitable, 

environmentally friendly materials for concrete production. Given that the coarse aggregate portion represents about 70% of 

concrete constituents, other economic approaches have been found in the use of alternative materials such as steel slag in 

concrete. Unfortunately, a standard framework for its application is still lacking. Therefore, this study proposed functional model 

equations for the determination of strength properties (compression and splitting tensile) of steel slag aggregate concrete 

(SSAC), using gene expression programming (GEP). The study, in the experimental phase, utilized steel slag as a partial 

replacement of crushed rock, in steps 20%, 40%, 60%, 80%, and 100%, respectively. The predictor variables included in the 

analysis were cement, sand, granite, steel slag, water/cement ratio, and curing regime (age). For the model development, 60-75% 

of the dataset was used as the training set, while the remaining data was used for testing the model. Empirical results illustrate 

that steel aggregate could be used up to 100% replacement of conventional aggregate, while also yielding comparable results as 

the latter. The GEP-based functional relations were tested statistically. The minimum absolute percentage error (MAPE), and 

root mean square error (RMSE) for compressive strength are 6.9 and 1.4, and 12.52 and 0.91 for the train and test datasets, 

respectively. With the consistency of both the training and testing datasets, the model has shown a strong capacity to predict the 

strength properties of SSAC. The results showed that the proposed model equations are reliably suitable for estimating SSAC 

strength properties. The GEP-based formula is relatively simple and useful for pre-design applications. 
 

Keywords:  concrete; steel slag; strength properties; genetic expression programming; experimental data 

 



 

Paul O. Awoyera, Iman Mansouri, Ajith Abraham and Amelec Viloria 

 

for cementitious mixture, fine and coarse aggregate in 

concrete. Steel slag, in powder form of about 5%, has been 

used to suppress the swelling potential and improved the 

strength of expansive soil (Wu et al. 2019). Zalnezhad and 

Hesami (2019) utilized steel slag aggregate and bitumen 

emulsion to enhance the performance of micro-surfacing 

mixture. It was reported that steel slag-containing mixtures 

exhibited a more pronounced behavior in terms of rutting 

and stripping distresses.  
Artificial intelligence applications have been used in a 

wide range of engineering problems (Abraham et al. 2017, 

Abraham et al. 2008, Nedjah et al. 2009). Based on 

experimental studies, several predictive models are 

generated to facilitate the reuse of proposed products. At the 

same time, model development helps to prevent repeated 

experimentation and waste of material resources. The 

common predictors have been developed based on linear 

and multiple regression equations, artificial neural networks 

(ANN), and fuzzy analogy. All the methods have been tried 

on steel slag aggregate concrete (Awoyera 2018). However, 

a significant limitation on the methods above is that they 

only function as a predictor, without giving a correct 

formulation that determines the performance of the 

materials. In the last decade, several successful attempts 

have been made using gene expression programming 

(GEP), for solving various problems in the field of 

engineering (Abdollahzadeh et al. 2016, Castelli et al. 2017, 

Cladera et al. 2014, D’Aniello et al. 2015, Ebrahimzade et 

al. 2018, Golafshani et al. 2014, Güneyisi et al. 2013, 

Güneyisi and Nour 2019, Hodhod et al. 2018, Mahdavi 

Jafari and Khayati 2018, Mansouri et al. 2018, Mansouri et 

al. 2017, Mansouri and Farzampour 2018, Murad 2020, 

Nour and Güneyisi 2019, Saridemir 2016, Tsai and Liao 

2019). GEP technique offers a cutting-edge solution to 

problems across the field of engineering. The solutions 

obtained from the analysis fit to satisfy sustainability 

considerations in the field of engineering. Therefore, in this 

study, a new formulation of strength characteristics of steel 

slag aggregate concrete (SSAC) based on the GEP 

technique is proposed. The study considers steel slag as a 

partial replacement for conventional aggregate (crushed 

rock), where other materials were kept constant. The need 

to replace the coarse aggregate portion was due to the fact 

that coarse aggregate constitutes the largest portion of the 

concrete constituents. So, it is considered an economical 

approach to introduce steel slag into a concrete mixture. 

Overall, the outcome of this study is expected to serve as a 

reference for researchers and other stakeholders in the 

construction and building sector. 

 

 
2. State of the art on steel slag aggregate concrete 
 

The production of concrete using steel slag has become 

popular in the last couple of decades. It has been reported 

from different quarters that steel slag aggregate has 

somewhat similar properties as the conventional aggregates 

(Maslehuddin et al. 2003, Subathra Devi and Gnanavel 

2014, Yi et al. 2012). It is also commonly studied for use as 

supplementary cementitious material (Wang and Suraneni 

2019). Although, steel slag tends to swell within a short 

space of time, however, studies (Akinwumi 2014, Oliveira 

et al. 2018) have suggested stockpiling steel slag in a cool 

environment for up to 14 days before use to control its 

swelling behavior.  

In a study by Gupta and Sachdeva (Gupta and Sachdeva 

2019), the potential of using Argon Oxygen Decarburization 

(AOD) steel slag for the production of concrete was 

investigated. Steel slag contents varying from 10-25% in 

step of 5% was used a partial replacement of cement for the 

development of concrete pavement. The study established 

that AOD slag could suitably replace segments in rigid 

pavement construction. In a related study, the strength and 

durability properties of a five years old concrete made with 

steel slag powder were evaluated (Han and Zhang 2018). 

The authors reported higher compressive strength, lower 

porosity, and very low permeability in concrete as steel slag 

content was increased. Ding et al. (2019) explored the 

pressure sensitivity of a new smart polymer concrete 

incorporating steel slag and graphite in an epoxy resin 

concrete, thus checking the pressure-sensitive properties of 

the concrete in uniaxial compression. Their study showed 

that there was an increase in the resistance and strain of the 

concrete containing graphite and steel slag, with evidence 

of concordant monotonicity. It has also been reported that 

steel slag, when used as a partial replacement of 

conventional aggregate in concrete, is effective for process 

such as:  gamma radiation shielding (Baalamurugan et al. 

2019), enhancing static and impact behaviors of concrete at 

about 20% substation rate (Guo et al. 2018b), improving 

water permeability of pervious concrete (Lang et al. 2019), 

increasing the mechanical and fracture properties of roller-

compacted concrete (owing to its sharp edges and surface 

roughness) (Rooholamini et al. 2019), long-term effect on 

compressive strength of ultra-high performance concrete 

(through filling effect) (Zhang et al. 2019). 

In terms of microstructure, a study by Liu and Guo (Liu 

and Guo 2019) revealed the presence of a dense pore 

structure for hardened composite binders made with steel 

slag. It was shown that concrete after ten years possessed 

pore ranging from 3.2 to 20 nm. Also, it was reported that a 

hardened composite binder containing steel slag exhibited a 

higher amount of Portlandite (Ca(OH)2). In another study, 

the durability (carbonation at 99.9% CO2 and a pressure of 

0.10 MPa) feature of concrete incorporating steel slag was 

evaluated (Mo et al. 2017). The results of the study showed 

a significant increase in the compressive strength of the 

concrete after it had been exposed to CO2 curing.  

Overall, findings have shown that steel slag exhibits 

appreciable features that support its utilization in 

cementitious composites. However, its full adoption is 

limited due to the lack of standard framework on its 

performance. Therefore, it is an appropriate step to develop 

a formulation to back the utilization of steel slag in the area 

of concrete production. 

 

 
3. Description of the database 

 

The formulation that is derived in this study is based on 

experimental results obtained by the author (Awoyera et al. 
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2015, Awoyera et al. 2016). In the studies, strength 

properties of steel slag aggregate concrete, covering 

compressive strength of 150 mm cubes and split-tensile 

strength of 150×300 mm cylinders, have been determined 

 

 

 

based on a variety of constituent materials and other key 

factors. Steel slag was used as a partial replacement of 

crushed rock; the water/cement ratio ranged from 0.5. 0.55 

and 0.6, curing regime were 7, 14, and 28 days periods. 

Table 1 Input and output data used for formulation 

Cement 

(kg/m3) 

Sand 

(kg/m3) 

Granite 

(kg/m3) 

Steel slag 

(kg/m3) 

Water/cement 

ratio 
Age (days) 

Compressive 

strength (MPa) 

Split-tensile 

strength (MPa) 

286 572 1144 0 0.5 7 21.02 2.3 

286 572 1144 0 0.5 14 21.5 2.42 

286 572 1144 0 0.5 28 22.3 2.47 

286 572 915.2 228.8 0.5 7 23.23 2.59 

286 572 915.2 228.8 0.5 14 23.82 2.62 

286 572 915.2 228.8 0.5 28 25.2 2.68 

286 572 686.4 457.6 0.5 7 26.48 2.99 

286 572 686.4 457.6 0.5 14 27.57 3.02 

286 572 686.4 457.6 0.5 28 29.6 3.08 

286 572 457.6 686.4 0.5 7 31.1 3.39 

286 572 457.6 686.4 0.5 14 32.19 3.42 

286 572 457.6 686.4 0.5 28 32.7 3.5 

286 572 228.8 915.2 0.5 7 33.15 4.19 

286 572 228.8 915.2 0.5 14 35.34 4.24 

286 572 228.8 915.2 0.5 28 37.2 4.34 

286 572 0 1144 0.5 7 34.67 4.77 

286 572 0 1144 0.5 14 36.91 5.3 

286 572 0 1144 0.5 28 39.6 5.67 

286 572 1144 0 0.55 7 20.52 2.26 

286 572 1144 0 0.55 14 21 2.3 

286 572 1144 0 0.55 28 21.8 2.41 

286 572 915.2 228.8 0.55 7 22.7 2.49 

286 572 915.2 228.8 0.55 14 23.22 2.6 

286 572 915.2 228.8 0.55 28 25.2 2.61 

286 572 686.4 457.6 0.55 7 25.23 2.56 

286 572 686.4 457.6 0.55 14 26.92 2.77 

286 572 686.4 457.6 0.55 28 28.75 3 

286 572 457.6 686.4 0.55 7 29.9 2.92 

286 572 457.6 686.4 0.55 14 31.72 3 

286 572 457.6 686.4 0.55 28 32.88 3.42 

286 572 228.8 915.2 0.55 7 32.6 3.33 

286 572 228.8 915.2 0.55 14 34.5 3.4 

286 572 228.8 915.2 0.55 28 36.3 4 

286 572 0 1144 0.55 7 33.12 3.98 

286 572 0 1144 0.55 14 35.42 4.02 

286 572 0 1144 0.55 28 38.87 4.11 

286 572 1144 0 0.6 7 18.89 2.23 

286 572 1144 0 0.6 14 20.5 2.28 

286 572 1144 0 0.6 28 21.5 2.4 

286 572 915.2 228.8 0.6 7 21.67 2.45 

286 572 915.2 228.8 0.6 14 22.72 2.58 

286 572 915.2 228.8 0.6 28 24.7 2.6 

286 572 686.4 457.6 0.6 7 23.7 2.5 

286 572 686.4 457.6 0.6 14 25.87 2.73 

286 572 686.4 457.6 0.6 28 27.93 2.95 

286 572 457.6 686.4 0.6 7 28.9 2.87 

286 572 457.6 686.4 0.6 14 31.22 2.97 

286 572 457.6 686.4 0.6 28 32.38 3.31 

286 572 228.8 915.2 0.6 7 32.1 3.32 

286 572 228.8 915.2 0.6 14 34.05 3.4 

286 572 228.8 915.2 0.6 28 35.8 3.78 

286 572 0 1144 0.6 7 32.62 3.82 

286 572 0 1144 0.6 14 34.92 4.01 

286 572 0 1144 0.6 28 37.54 4.07 
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Both cement and river sand (fine aggregate) portions were 

kept constant throughout the experimentation. The database 

employed is presented in Table 1, showing the materials and 

factor variations and the corresponding strength outputs. It 

is noteworthy that the strength results presented were an 

average of a triplicate test on samples using a compression 

machine. 

 

 

4. Modeling technique 

 

4.1 The theoretical background of GEP 
 
Gene expression programming (GEP), a programming 

tool based on a genetic algorithm developed by Ferreira 

(Ferreira 2001), is well known for its capability in providing 

solutions to the complex situation of a relatively minimal 

data set. Predefined solvers are not necessary for the 

process. The use of GEP has become popular in several 

civil and structural engineering applications (Cevik and 

Sonebi 2008, Farzampour et al. 2019, Ozbay et al. 2010, 

Tsai 2013). GEP is capable of predicting the performance of 

a structural component based on predefined experimental 

data set. Some application of GEP includes the prediction of 

strength, durability, and elastic properties of concrete.  

The dynamic nature of the GEP makes it produce model 

output, which is coded in the form of chromosomes, using 

expression trees, Karva language, and many programming 

languages, such as VBA, MATLAB, CBB. This also allows 

GEP to generate empirical expressions for problems where 

there are no analytical expressions. Overall, the best fit 

experimental result is achieved by simply deleting or adding 

up the various factors involved. In GEP expressions, there 

are one or more elements called genes in the chromosomes, 

which have a head and tail (Murad 2020). The gene’s tail is 

comprised of terminal symbols, inform of constants or 

variables (1, a, b, c). However, the gene’s head is comprised 

of functions and terminal symbols (1, a, b, √, cos, *, /). The 

outputs in GEP are influenced by some factors, such as the 

complexity of the functions, which normally caused an 

increment in a number of genes, or a high number of 

chromosomes, which results in increased running time 

(Gandomi et al. 2014). Generally, modeling in GEP requires 

selecting a fitness function, and terminals and functions 

needed for building the chromosomes. This is then followed 

by the determination of the number of genes, head length, 

and the number of chromosomes, before finally choosing 

genetic operators and linking functions.  

 

4.2 GEP modeling 
 

In this study, a popular software, GeneXproTools 

(GepSoft 2015), was used for the development of the GEP 

models for the prediction of strength properties of concrete 

containing steel slag. By randomly selecting gene numbers, 

head size, and linking functions, various GEP models were 

developed. However, a model that best fits the experimental 

data set was finally selected. Table 2 presents the 

parameters chosen for developing the GEP model. 

Generally, the GEP model has a genome, which is made 

Table 2 Parameters considered for GEP formulation 

Function set +,˗,*,/,Sqrt,Exp,Ln 

Generation number 5396101 

Number of chromosomes 150 

Head size 10 

Number of genes 1 

Linking function + 

Mutation rate 0.044 

Inversion rate 0.1 

 

 

up of linear, symbolic string and chromosomes of fixed 

length. The genes represented in the expression trees of the 

model are of various sizes and shapes, and such genes are of 

fixed length. However, it generally not advisable to 

excessively increase the number of genes, as this could 

result in the development of complex GEP models.  

Mathematical functions and operators are employed in GEP 

model formulation. The use of mathematical operators does 

linking of genes. The genes are of the utmost impact on 

model development. The number of constants in the 

developed model is largely dependent on the constants 

present in the genes. The rate at which mutation takes place 

is backed by the creation of diversity and change of genome 

or replacements of elements (such as changing function or 

terminal with another). In the process of replacement of 

functions, new chromosomes are formed by linking original 

chromosomes. A combination of genes is carried out using 

functions such as ×, +, -, /, etc. The experimental data sets 

were used for model development. In general, GEP uses 

about 65-75% of the dataset as the training dataset, while 

the remaining data were used as a validation dataset. 

The new formulation of strength characteristics of steel slag 

aggregate concrete (SSAC) was derived by adopting the 

experimental data set of the authors. The data sources are 

presented in section 3. In a specified order, all input data 

were used to develop a constant sequence of inputs 

employed in model development. The input nodes include 

the cement (C), sand (S), gravel (G), steel slag (Sg), 

water/cement ratio (w/c), and age (A). 

The variables used in the model development in GEP 

includes, training data having both the input and the 

outputs. An optional set of data having an equal number and 

sequence of input/output variables was utilized for 

examining and testing the performance of the model 

generated. The statistical analyses of the data presented in 

Table 1 have been highlighted in Table 3. There it is clearly 

shown that there is a strong agreement between the training 

and testing data sets, and in essence, it is established that 

the two sets of data show an identical population. The 

parameters got the predictors are Cement (C), Sand (S), 

Granite (G), steel slag (Sg), water/cement ratio (w/c), and 

age (A). 

In this study, gene expression programming was 

executed using GeneXproTools 4.0 software. Series of 

mathematical operations was adopted so as to ensure there 

is accuracy in the model. The GEP data were modified 

several times in order to achieve an optimum model having 

the best fitness characteristics. It is also good to state that 

the GEP model developed contains trigonometric  
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Table 3 Statistics for the experimental data 

 C 

(kg/m3) 

S 

(kg/m3) 

G 

(kg/m3) 

Sg 

(kg/m3) 
w/c A (days) 

Train data 

Number of data 41 41 41 41 41 41 

Average 286 572 530.15 613.85 0.56 15.71 

Standard 

deviation 
0 0 377.48 377.48 0.04 8.54 

COV 0 0 0.71 0.61 0.07 0.54 

Minimum 286 572 0 0 0.5 7 

Maximum 286 572 1144 1144 0.6 28 

Test data 

Number of data 13 13 13 13 13 13 

Average 286 572 704 440 0.52 18.31 

Standard 

deviation 
0 0 432.72 432.72 0.03 9.71 

COV 0 0 0.61 0.98 0.06 0.53 

Minimum 286 572 0 0 0.5 7 

Maximum 286 572 1144 1144 0.6 28 

 

 

operations, in addition to some exponential functions 

(Majidifard et al. 2019). Eq. (1) was used to determine the 

correlation coefficient (R) of the model, which also 

indicates the fitness of the predicted variables as compared 

to experimental (actual) data. It is known statistically that a 

satisfactory model would have higher values of R 

coefficients. Such a model will possess a better capacity to 

approximate data. 

 

 

 𝑅 =  
∑(𝑜𝑖−𝑜𝑚𝑒𝑎𝑛)(𝑡𝑖−𝑡𝑚𝑒𝑎𝑛)

√∑(𝑜𝑖−𝑜𝑚𝑒𝑎𝑛)2 ∑(𝑡𝑖−𝑡𝑚𝑒𝑎𝑛)2
          (1) 

where omean and tmean are the averages of the GEP model 

output (oi) and target output (ti) values, respectively. 

The mathematical formulations for the compressive and 

split tensile strengths of SSAC are given in Eqs. (2) and (3), 

respectively.  

𝑃 = 0.1(𝐶 × 𝑆)1/6√
𝑆𝑔

9.57(𝐴−7.45)
+ 10 𝑤

𝑐⁄ + 0.5𝐺 + 2𝑆𝑔  

(2) 

𝑇 = 0.11𝑃                   (3) 

The equation terms are represented as follows: The 

constants in the first line of Table 3 are Cement (C), Sand 

(S), Granite (G), steel slag (Sg), water/cement ratio (w/c), 

age (A), compressive strength (P), and split-tensile strength 

(T). 

In Fig. 1, the model expression tree is depicted, and 

Figs. 2 and 3 present the prediction performance of the 

proposed model.  

From the model architecture shown in Fig. 1 and 

representation of the factors, it can, thus, be deduced that no 

strict dependence exists among the input factors, and the 

overall performance of the model. 

Fig. 2 shows the comparison between the experimental 

and predicted compressive strength of SSAC, for the train 

and test data sets. The correlation coefficient for the training 

and testing datasets was calculated as 0.935 and 0.981, 

respectively. 

 

 

 
Fig. 1 GEP model expression tree for compressive strength of SSAC 

 

  
(a) Train set (b) Test set 

Fig. 2 Predicted compressive strength using GEP against the observed compressive strength 
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Fig. 4 Prediction performance of the GEP model for 

compressive strength of SSAC 

 

 

Fig. 5 Prediction performance of the GEP model for split-

tensile strength of SSAC 

 
 
5. Results and discussion 

 

The suitability in terms of accuracy and reliability of the 

proposed GEP model was assessed by comparing the 

performances of the GEP models to the experimental data 

for strength characteristics of steel slag aggregate concrete 

(SSAC). As presented in Figs. 4 and 5, there were 

fluctuations of normalized strengths of SSAC factors versus 

experimental values for compressive and split tensile 

strengths, respectively. After this, the study described and 

discussed the unique characteristics of each case.  

 

Table 4 Statistical parameters of the proposed GEP 

formulation for compressive strength 

Index Train data Test data 

RMSE 1.40 0.91 

MSE 4.48 9.38 

MAPE 6.90 12.52 

 

Table 5 Statistical parameters of the proposed GEP 

formulation for split-tensile strength 

Index Train data Test data 

RMSE 0.40 0.17 

MSE 0.25 0.03 

MAPE 12.30 4.97 

 

 

In general statistics, the value of R2 should occur 

between zero to one, from which the value one is an 

indication that a perfect correlation is exhibited between the 

predicted and experimental datasets. Whereas, zero value 

implies that there is no correlation. However, it should be 

noted that an R2 of 1 is never an indication that the 

prediction of the dataset is perfect (Sadeghian and Fam 

2015). It is only an indication that both the predicted and 

the experimental datasets can be linearly correlated. 

Therefore, in this study assumptions and accuracy of the 

proposed model were not based on R2 values only. Besides, 

the study adopted other proven statistical indexes, covering 

mean square error (MSE), mean absolute percentage error 

(MAPE), and root means square error (RMSE). They were 

used to establish the performance of the models. 

Mathematical expressions for the error values are presented 

in Eqs. (4)-(6). With this data, the capability of the models 

is established based on the, lowest values of MAE and 

MAPE. 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑜𝑖 − 𝑡𝑖)

2𝑁
𝑖=1            (2) 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑜𝑖 − 𝑡𝑖)

2𝑁
𝑖=1           (3) 

 𝑀𝐴𝑃𝐸 = 100 ×
1

𝑁
|

𝑡𝑖−𝑜𝑖

𝑡𝑖
|           (4) 

where 𝑜𝑖  is GEP model output, 𝑡𝑖 indicate target output, 

and 𝑁 denotes the number of the sample in the database. 

  

(a) Train set (b) Test set 

Fig. 3 Evaluation of the experimental and predicted compressive strength of SSAC 

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45

C
o

m
p

re
ss

iv
e 

st
re

n
gt

h
 (M

P
a)

Experiment number

Train dataset

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14

C
o

m
p

re
ss

iv
e 

st
re

n
gt

h
 (M

P
a)

Experiment number

Test dataset

338



 

A new formulation for strength characteristics of steel slag aggregate concrete using an artificial intelligence-based approach 

 

Tables 4 and 5 show the stated statistical parameters that 

were used for the prediction models for the compressive 

and split tensile strengths of SSAC, respectively. 

Table 4 shows that the RMSE of the developed GEP 

model was approximately 1.0 MPa and 0.2 MPa for 

compressive and split tensile strengths. The low error 

values in the GEP models confirm that the proposed models 

are reliable and accurate. This is established in the field of 

statistical evaluation (Gandomi et al. 2017). Overall, the 

developed model is well suited for concrete produced using 

ground granulated blast furnace slag, and its production 

within the confines of the factors considered for this 

experimentation. This model is expected to serve as 

standard framework for application of steel slag for 

concrete strength prediction. 

 
 
6. Conclusions 
 

A method is introduced that uses gene-expression 

programming (GEP) symbolic regression to form a 

nonlinear combination of steel slag aggregate concrete 

(SSAC) strengths. Motivated by the difficulty in forecasting 

compressive and split tensile strengths of steel slag 

aggregate concrete, we test the ability of GEP to predict the 

strengths. Input to GEP is 6 independent parameters. The 

data consists of 54 samples of experimental tests conducted 

by the authors. The GEP-based model accurately predicts 

the strengths of SSAC. The proposed model simultaneously 

takes into account the role of several important factors, 

including cement, sand, gravel, steel slag, water/cement 

ratio, and age, representing the behavior of the concrete 

strength.   

The validity of the model was tested for a part of test 

results beyond the training data domain. The validation 

phases confirm the efficiency of the model for its general 

application to the compressive and split tensile strengths of 

SSAC. The minimum absolute percentage error (MAPE), 

and root mean square error (RMSE) for compressive 

strength are 6.9 and 1.4, and 12.52 and 0.91, for the train 

and test datasets, respectively. With the consistency of both 

the training and testing datasets, the model has shown a 

strong capacity to predict the strength properties of SSAC. 

For the split-tensile strength, minimum absolute percentage 

error (MAPE), and root mean square error (RMSE) are 

12.30 and 0.4, and 4.97 and 0.17, for the train and test 

datasets, respectively.  

Based on the results of the study, it is shown that the 

GEP models proposed are efficient for practical use of 

SSAC strength assessment. Moreover, the study revealed 

that there is no strict dependence among the input factors 

and the model performance, based on the evaluation of the 

factor interactions.  
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