
applied
sciences

Article

A Hybrid Metaheuristics Parameter Tuning Approach
for Scheduling through Racing and Case-Based Reasoning

Ivo Pereira 1,2,* , Ana Madureira 2,3,4 , Eliana Costa e Silva 5,6 and Ajith Abraham 7

!"#!$%&'(!
!"#$%&'

Citation: Pereira, I.; Madureira, A.;

Silva, E.C.e.; Abraham, A. A Hybrid

Metaheuristics Parameter Tuning

Approach for Scheduling through

Racing and Case-Based Reasoning.

Appl. Sci. 2021, 11, 3325. https://

doi.org/10.3390/app11083325

Academic Editor: Peng-Yeng Yin

Received: 22 February 2021

Accepted: 4 April 2021

Published: 7 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Science and Technology, Fernando Pessoa University, 4249-004 Porto , Portugal
2 ISRC—Interdisciplinary Studies Research Center, 4200-072 Porto , Portugal; amd@isep.ipp.pt
3 INOV—Instituto de Engenharia de Sistemas e Computadores Inovação, 1000-029 Lisboa , Portugal
4 Institute of Engineering-Polytechnique of Porto (ISEP/IPP), 4200-072 Porto , Portugal
5 CIICESI-ESTG-Polytechnic of Porto, 4610-156 Felgueiras , Portugal; eos@estg.ipp.pt
6 Centro ALGORITMI, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal
7 Machine Intelligence Research Labs, Scientific Network for Innovation and Research Excellence,

Auburn, WA 98071-2259 , USA; ajith.abraham@ieee.org
* Correspondence: ivopereira@ufp.edu.pt; Tel.: +351-225-071-300

Abstract: In real manufacturing environments, scheduling can be defined as the problem of effectively
and efficiently assigning tasks to specific resources. Metaheuristics are often used to obtain near-
optimal solutions in an efficient way. The parameter tuning of metaheuristics allows flexibility and
leads to robust results, but requires careful specifications. The a priori definition of parameter values
is complex, depending on the problem instances and resources. This paper implements a novel
approach to the automatic specification of metaheuristic parameters, for solving the scheduling
problem. This novel approach incorporates two learning techniques, namely, racing and case-based
reasoning (CBR), to provide the system with the ability to learn from previous cases. In order to
evaluate the contributions of the proposed approach, a computational study was performed, focusing
on comparing our results previous published results. All results were validated by analyzing the
statistical significance, allowing us to conclude the statistically significant advantage of the use of the
novel proposed approach.

Keywords: scheduling; metaheuristics; parameter tuning; machine learning; racing; case-based
reasoning

1. Introduction
The scheduling problem is one of the oldest combinatorial optimization problems.

Over the years, different approaches to its resolution have been developed. However,
many of those approaches are impractical in real production environments, due to the
fact of being inherently dynamic, with complex constraints and unexpected disruptions.
In most real-world environments, scheduling is a progressive reactive process where the
presence of real-time information continuously requires the reconsideration and review of
predetermined plans.

For combinatorial optimization problems such as scheduling, there is the need to select,
from a discrete and finite set of data, the best subset satisfying certain criteria of economic
and operational nature. The great challenge of these problems is to produce the closest
possible solutions to the optimal solution, in a competitive time. Scheduling problems are
combinatorial optimization problems classified as NP-hard, subject to constraints with a
dynamic and very complex resolution nature.

Among the several approaches for solving combinatorial optimization problems, there
are the approximation methods in which the goal is to find near-optimal solutions in
acceptable runtimes. Metaheuristics are included in this category, and many of them are
inspired by nature. Metaheuristics are increasingly used in areas where complexity and

Appl. Sci. 2021, 11, 3325. https://doi.org/10.3390/app11083325 https://www.mdpi.com/journal/applsci

Appl. Sci. 2021, 11, 3325 2 of 28

needs for timely decision making made the use of exact techniques prohibitive. One of
the crucial tasks to achieve good performance is the parameter tuning of metaheuristics.
The parameter tuning is responsible for the efficiency of any metaheuristic algorithm [1].

One of the most difficult, yet not significantly explored, fields of metaheuristics
research, is achieving optimal parameter tuning. An algorithm with properly tuned
parameters converges to the global location faster, which increases the algorithm’s efficiency
even further [1]. While it has long been understood that a metaheuristic’s efficiency is
dependent on the values of its parameters, the parameter tuning issue was not formally
addressed by the academic community until the late twentieth century. [2]. Metaheuristics
were manually tuned during the first few decades of study, i.e., by conducting experiments
with various parameter values and choosing the best one [3]. The user would generally do
this based on his own experience or by trial and error driven by rules of thumb. This process
is not only time-consuming, but also prone to error, difficult to replicate and costly [4,5].

In the last 20 years, the literature has increasingly emphasized the need for more
systematic approaches to metaheuristic parameter tuning. As a result, researchers and end
users have paid more attention to the parameter tuning issue, and more effort has been put
into developing systematic and sophisticated approaches to address it [3]. Transferring
part of the parameter tuning effort to the algorithm is one of the oldest and most important
goals in the field of metaheuristics. The goal is to equip metaheuristics with intelligent
mechanisms that enable them to respond to the problem or situation on their own. [5].
Metaheuristics’ parameter tuning can be efficiently performed using learning techniques,
in order to free the user of that effort.

The main motivation of the presented study arose from the need to propose and
develop new approaches that are able to adaptively control, coordinate and optimize the
solutions to the different challenges in optimizing the scheduling problems present in real
production environments. This work was carried out with the aim of being integrated
in the AutoDynAgents system [6–9], which is a multi-agent system for the autonomous,
distributed and cooperative resolution of scheduling problems subject to disruption. Auto-
DynAgents system uses metaheuristics for determining (near-)optimal scheduling plans.
Once the system’s environment is complex, dynamic and unpredictable, the learning issues
become indispensable. Thus, the need for implementing an intelligent approach for select-
ing and tuning metaheuristics arose. The objective of this work is to automatic determine
a parameter combination to solve new instances of scheduling problems. This approach
required the incorporation of learning techniques in order to provide the system with the
ability to learn from experience in solving previous similar cases.

Racing is a machine learning technique that has been used to test a group of candidates
in a refined and efficient manner, releasing those that tend to be less promising during
the evaluation process. Racing can be used to easily and efficiently tune metaheuristic
parameters. Case-based reasoning (CBR) is a problem-solving paradigm that differs from
other AI methods in a number of ways. CBR should use basic knowledge of concrete
circumstances (cases) of a problem instead of relying solely on general knowledge. Based
on previous research, the usage of racing together with CBR seems very promising, since
previous results already showed the advantages of using CBR and racing separately [9,10].
In this work, racing and case-based reasoning are used together to deal with this problem,
and then a novel racing + CBR approach for metaheuristics parameter tuning is proposed.

This paper is organized as follows: Section 2 defines the scheduling problem used in
this work; Section 3 presents a literature review and related work, including details about
the multi-agent system supporting the system architecture; Section 4 presents the main
contribution of this work—a racing + CBR approach for solving the parameter tuning of
metaheuristics problem; Section 5 presents the computational study used to validate the
proposed approach; finally Section 6 puts forward some conclusions and future work.

Appl. Sci. 2021, 11, 3325 3 of 28

2. Scheduling Problem Definition
The scheduling problem is a combinatorial optimization problem subject to constraints,

with a dynamic nature, and its solution poses challenges. Pinedo [11] pointed out that
scheduling can be defined as the allocation of resources to tasks over time, and that it is a
decision making process in order to optimize one or more objectives.

The main elements of a production scheduling problem are: machines, tasks, opera-
tions and plans. A machine is characterized by its qualitative (or functional) characteristics
and its quantitative capabilities. A task is composed by a set of operations that may either
be sequential or concurrent. Each task is associated with a precedence graph of operations.
An operation is processed on a machine. Each operation can be associated with a processing
time in a machine, plus the set-up, transport and waiting times on that machine. A schedul-
ing plan is a task execution program, with clear identification of the tasks’ processing
sequence on the machines, and the start and completion times of task operations. A plan
is said to be admissible or feasible if it is possible to be totally fulfilled while obeying the
imposed constraints. In practice, scheduling problems are discrete, distributed, dynamic
and non-deterministic. Those are quite different from theoretical problems [11].

This paper considers scheduling problems based on job–shop [11] with some addi-
tional constraints, which are important for a more realistic representation of the manufac-
turing process. These problems are known as extended job–shop scheduling problems [12].
Additional constraints considered for this type of problem are: different release and due
dates for each task; priorities associated with the tasks; the possibility that not all machines
are used for all tasks; a job can have more than one operation to be performed on the same
machine; the possibility of simultaneous processing operations belonging to the same task;
the existence of alternative machines, whether identical or not, for processing operations.

It is also important to note that no task starts its processing before the respective
release date, and its completion shall not exceed the due date (although it can be possible,
usually with some penalization).

In this work, solutions are encoded by a direct representation, where the schedule is
described as a sequence of operations. Therefore, each position represents an operation
index with initial and final processing times. Each operation is characterized by the
index (i, j, k, l), which contains natural numbers, where i defines the machine in which
the operation k is processed, j the job (task) it belongs to and l the graph precedence level.
Level 1 corresponds to initial operations, without precedents [8,13].

The minimization of total completion time, also known as the makespan [11], is:

Min Cmax = max(Fj), 8j = 1, ..., n,

subject to
STijkl + pijkl STij0k0 l0

8j = 1, ...n, 8(Oijkl , Oij0k0 l0)

(1)

The constraints from Equation (1) represents the precedent relationship between two
operations k e k0(k 6= k0, k < k0 and l l0) of the same job j, which can be executed on
different machines k and k0, and at different levels l and l0.

STijkl � tijkl+1 , 8Oijkl (2)

This constraint on (2) represents that the processing time to start operation Oijkl must
be larger or equal to the earliest starting time for the same operation.

3. Literature Review and Related Work
In this section a review of metaheuristics and learning approaches to deal with the

parameter tuning problem is shown. Concerning the learning approaches, the focus is on
racing and case-based reasoning.

Appl. Sci. 2021, 11, 3325 4 of 28

3.1. Metaheuristics and Parameter Tuning
Metaheuristics are optimization techniques, and some of them can be associated with

biological systems found in nature. These techniques are very useful in getting good
solutions requiring low computational times, and sometimes they can even reach optimal
solutions. However, for these (near-)optimal solutions to be achieved, the correct tuning of
the parameters is required. This parameter tuning process requires some expert knowledge
of metaheuristics and also of the optimization problem. To tune the parameters, the trial
and error method is often used. The difficulty increases when more than one metaheuristic
is able to solve the problem. In this case, the system shall first select the metaheuristic and
only then proceed with the parameters tuning.

There are several concepts common to different types of metaheuristic [12,14,15]—
namely: (i) the initial solution may be randomly generated or made through constructive
heuristics; (ii) the objective function depends on the problem to solve, can be maximization
or minimization, and is one of the most important elements in the process of implementing
a metaheuristic; (iii) the objective function defines the goal to be achieved and guides
the search process looking for good solutions; (iv) the structure of the neighborhood
or population is also important because it defines the search space solutions; (v) a stop
criterion is usually used, such as the maximum number of iterations or a specific number
of iterations with no improvement in the best solution; (vi) it may also use a computational
time limit.

Given the necessity of obtaining a solution to a problem, a particular metaheuristic
shall be selected. This choice is commonly considered difficult and should be the result
of a study about the type of problem and understanding of the available techniques. It is
also difficult to elect a metaheuristic as the best of all, because it depends on the problem
in question, and each has advantages and disadvantages [16]. For instance, simulated
annealing can deal with arbitrary systems and cost functions and is relatively easy to code,
even for complex problems, but cooling must be very slow to enforce regularities of the
layout. Ant colony optimization guarantees the convergence, but the time to convergence
is uncertain.

The reader can find in the literature many different metaheuristics, but it can generally
be said that these techniques fall into three categories [3,12,14,15,17–19]: based on the local
search algorithm (Tabu search, simulated annealing, GRASP, among others), evolutionary
computing (genetic algorithms, memetic algorithms, differential evolution, etc.) or swarm
intelligence (such as ant colony optimization, particle swarm optimization and artificial
bee colony).

The definition of values for metaheuristic parameters is a tedious task and has a great
performance impact, which can lead to considerable interest in many mechanisms that
may try to automatically adjust the parameters for a given problem [4,20,21]. Moreover,
Smit and Eiben [22] reported that some parameters are more relevant than others, since
some values affect the performance more than others, and thus more care is required when
setting them. Furthermore, some authors [1,3,23] argued that the parameter tuning is a
crucial factor and has a strong impact on the performance of metaheuristics. An algorithm
having properly tuned parameters converges to the global position faster, which further
improves the efficiency of an algorithm [1].

Some authors argued that it is not possible to obtain optimal values for metaheuristics’
parameters [15,21,24]. There are also theorems that prove the impossibility of obtaining gen-
eral good parameter definitions for all types of problems. The no free lunch theorems [25]
state that there is not an universal algorithm which works well for all optimization prob-
lems. This indicates that one need to tailor the adopted algorithm for problems at hand
to improve the performance and to obtain good solutions. Moreover, this also implies
that parameter tuning is not a one-time task, meaning that researchers and users need to
address the parameter tuning problem again and again when facing new problems [3].

Given this, several approaches have been proposed to solve the metaheuristics pa-
rameter tuning problem. In the literature, one can find approaches that attempt to find

Appl. Sci. 2021, 11, 3325 5 of 28

the best parameters for a given configuration issue [20,26–37]. All these techniques aim to
find a parameter definition to optimize an objective function that covers all instances of a
problem. If the instances are homogeneous, that approach behaves well. However, if the
instances have a heterogeneous distribution or even unrelated application areas, then the
best parameter settings can vary from instance to instance.

There are two different approaches to the parameter tuning of metaheuristics [15]:
offline and online (Figure 1). In the offline parameter tuning, the values of various param-
eters are defined before the execution of the metaheuristic. On the other hand, in online
approaches, parameters are controlled and updated dynamically or adaptively during the
execution of the technique. These approaches are also known by parameter tuning and
control, respectively [21,38–42].

Figure 1. Metaheuristic parameter tuning strategies (adapted from [15]).

The purpose of offline parameter tuning is to obtain parameter values that may be
useful for the resolution of a large number of instances, which requires several experimental
evaluations [39]. Usually, metaheuristics are tuned one parameter at a time, and their
best values are empirically determined. Thus, the interaction between the parameters is
generally not studied.

To overcome this problem, Design of Experiments (DOE) is often used [43–45]. Be-
fore being able to use a DOE approach, it is necessary to take into account the factors
representing the variations of parameters and the levels representing different values for
the parameters (which may be quantitative or qualitative), which means that it is a very
time-consuming task [21]. Johnson [46] discussed different aspects of the DOE specification
and analysis with stochastic optimization algorithms. The great disadvantage of using a
DOE approach is the high computational cost when there are a large number of param-
eters and where the domains of the respective values are high, since a large number of
experiments are need [47].

In offline parameter tuning, a meta-optimization approach can be done by any
(meta)heuristic, resulting in a meta-metaheuristic [15]. Meta-optimization consists of
two levels [15]: the meta-level and the base level. In the meta-level, solutions represent
the parameters to optimize, such as the size of the tabu list in Tabu search, the cooling
rate in simulated annealing and the crossover and mutation rates of genetic algorithms.
At this level, the objective function of a solution corresponds to the best solution found
(or another performance indicator) for metaheuristics with the specified parameters. Thus,
each solution at the meta-level corresponds to an independent metaheuristic at the base
level. Meta-optimization is largely used in evolutionary computation [48].

In problems with heterogeneous distributions, the best parameter settings can vary
from instance to instance. Hutter et al. [20] demonstrated that machine learning models

Appl. Sci. 2021, 11, 3325 6 of 28

can make amazingly accurate predictions of runtime distributions of random and incom-
plete research methods such as metaheuristics, and how these models can be used to
automatically adjust the parameters for each instance of a problem in order to optimize the
performance, without requiring human intervention. A review on learning approaches for
parameter tuning is presented in the next subsection.

Some authors argue that leaving the parameters’ values fixed during the execution
of an algorithm seems to be inappropriate [21]. The idea of search algorithms that can
automatically adapt their parameters during the search process has gained considerable
interest among researchers [21]. They are called online approaches and monitor the progress
of the searching process while adjusting the values of parameters in real time.

Online approaches can be divided into dynamic and adaptive [15,38,39]. In dynamic
approaches, changes in parameter values are randomly or deterministically carried out,
without taking into account the search process. In adaptive approaches, parameter values
change according to the search process by memory usage or pre-established rules. A sub-
class, often used in the evolutionary computation community, is self-adaptive approaches
consisting of the parameters’ evolutions during the search. Thus, parameters are encoded
and are subject to change as different problems’ solutions [21].

3.2. Learning Approaches for Parameter Tuning
The parameter tuning of metaheuristics is still often performed without the use of

automatic procedures and has received little attention from researchers. Only recently,
consolidated methodologies to address this problem efficiently and effectively begun to
emerge in the literature, although few fall within the application of learning approaches.

In addition to the racing algorithms (Section 3.2.1) and case-based reasoning (Section 3.2.2),
described in more detail because they are used in this work to address the problem of
tuning metaheuristics parameters, the reader can find other approaches in the literature.
Dobslaw [49] presented a framework for simplifying and standardizing metaheuristics
parameters by applying DOE and artificial neural networks. The training stage was divided
into experimental and learning phases. These phases were connected and represented
the greatest part of the computational time expenses. Miles-Smith [50] presented and
discussed a method to solve the problem of algorithm selection, from the point of view of
the learning problem, by incorporating meta-learning concepts. Stoean et al. [51] had a
combined methodology to solve the parameter tuning problem in metaheuristics and used
a sampling approach to generate a large diverse set of values for the parameters to be tuned.
This set is then subjected to regression by use of an evolutionary approach around support
vector machines. Zennaki and Ech-Cherif [52] used machine learning techniques such as
decision trees, learned from a group of multiple instances of solutions randomly generated.
These instances solutions are used repeatedly to predict the quality of a solution to a given
instance of the combinatorial optimization problem, which is used to guide and tune the
metaheuristic for more promising areas of the search space. Lessmann et al. [53] presented
an approach based on data mining for dealing with the problem of tuning particle swarm
optimization. The authors proposed a hybrid system employing regression models to learn
appropriate values for the parameters based on past movements of this technique.

3.2.1. Racing
Birattari [4] argued that a brute-force approach is clearly not the best solution for

solving the parameters tuning problem. A more refined and efficient way to perform
metaheuristics tuning can be achieved by streamlining the evaluation of candidates and
releasing those who appear to be less promising during the evaluation process. This state-
ment summarizes the racing approaches applied to the parameters tuning of combinatorial
optimization techniques (Figure 2). The information that follows is based on [4,39].

Appl. Sci. 2021, 11, 3325 7 of 28

Figure 2. Graphical representation of the computational effort by racing vs. brute force approaches
executing a number of instances over a number of candidates [4]. The dashed line represents the
computational effort of brute force approaches. The gray curve represents the computational effort of
racing approaches.

In the 1990s, Maron and Moore [54] proposed the Hoeffding race method, in order to
speed up the selection of models in supervised learning problems. Hoeffding race adopted
a statistical test based on the formula of Hoeffding [55], concerning the confidence in the
empirical average of k positive numbers, whose sample is used independently from the
same distribution.

However, the Hoeffding race adopts a non-parametric test, even if the adopted test
needs knowledge of a limit on the observed error, and this aspect reduces significantly the
range of applications of the method. Despite this fact, the idea behind racing approaches
is very appealing. Lee and Moore [56] proposed some algorithms based on different
statistical tests. Among them, BRACE is based on Bayesian statistics and implements
a statistical technique known as blocking [44,57,58]. A block plan is an experimental
definition that is possibly adopted when two or more candidates have to be compared.
Blocks improve that comparison accuracy. A block is a set of relatively homogeneous
experimental conditions under which all the candidates are tested. In the best candidate
selection context, the adoption of block plans is particularly natural and simple: each
survivor candidate is tested in the same examples, and each instance is therefore a block in
the considered plan.

The statistical test adopted in BRACE is equivalent to the paired t-test [59] performed
between each pair of survivor candidates. Contrary to the test adopted in Hoeffding race,
the t-test is a parametric process and therefore is based on some assumptions concerning
stochastic variables. BRACE proved to be very effective and is reported as capable of
achieving better results than the Hoeffding race [54,56].

The F-race method [27] is a racing approach that integrates into a single algorithm
the best features of Hoeffding race and BRACE. As already mentioned, Hoeffding race
adopts a non-parametric approach but does not consider blocking. On the other hand,
BRACE adopts blocking but discards the non-parametric definition by a Bayesian approach.
F-race is based on the Friedman test (Friedman two-way analysis of variance by ranks)
that implements a block plan in an extremely natural manner and is, at the same time,
a non-parametric test [44].

To give a description of Friedman test, let us assume that F-race reached step k, where
there are still k� 1 configurations in the run. The Friedman test assumes that the observed
costs for the candidates still in the race are k mutually independent random variables,
called blocks. Each block corresponds to the computational results in an instance for each
configuration still in the race at step k.

Appl. Sci. 2021, 11, 3325 8 of 28

Birattari [4] described that, in addition to the Friedman test, the Wilcoxon test (Wilcoxon
matched-pairs, signed-ranks) can be used [44] when there are only two candidates in the
run, since it has proven to be more robust and efficient.

In F-race, ranking plays an important dual role. First, it is connected with the non-
parametric nature of the ranking based test. The main merit of the non-parametric analysis
is that it does not require the formulation of hypotheses on the distribution of observations.
It is precisely in the adoption of a statistical test based on ranking that it differs from
previously published works [4].

The racing approach used in this work is based on a general F-race algorithm.

3.2.2. Case-Based Reasoning
Case-based reasoning (CBR) [60] is an artificial intelligence methodology that solves

new problems through the use of information about similar previous solutions. This
technique has been the subject of great attention from the scientific community over the
past two decades [61–64].

Previously solved problems and their solutions (or associated strategies) are stored as
cases and stored in a repository, named casebase, so they can be reused in the future [65,66].
Instead of defining a set of rules or general terms, a CBR module solves the new problem
by reusing previously solved similar problems [67]. Usually, it is necessary to adapt the
solutions to the new case; the solutions shall be kept and the casebase updated [66]. The
information described in this subsection was based on [60,61].

Case-based reasoning is a problem-solving paradigm quite different from other artifi-
cial intelligence approaches. Instead of relying only on general knowledge of a problem
domain, CBR is able to use specific knowledge of previously known situations of a problem
(cases). A new problem is solved by searching for a similar past case and reusing it in the
new situation. Another important difference is based on the fact that CBR is an incremen-
tal and sustained approach to learning, since a new experience is retained every time a
problem is solved, becoming immediate available for solving future problems.

In CBR terminology, a case usually denotes a problem situation. A previously experi-
enced situation, which was captured and learned, is referred to as a past case. A new case
that is yet unresolved is a description of a new problem to solve. Thus, CBR is a cyclical
and integrated process of problem solving, learning from experience for solving new cases.

Thus, a general CBR cycle (Figure 3) can be described through the following four
processes, known as "the four REs" [65,68]: retrieve the most similar case (or cases); reuse
the information and knowledge from the retrieved case in order to propose a solution;
revise the proposed solution; retain the newly solved case for future use.

The retrieving phase begins with a partial description of the problem and ends when
the most similar case in the casebase is found. This phase requires identifying a prob-
lem, which may involve the simple observation of its features, but also more elaborate
approaches in order to try to understand the problem in context, return a set of sufficiently
similar cases according to a minimum similarity and select the best case among all. The
reusing of the recovered case’s solution focuses on two aspects: the differences between
the past and current cases; and identifying the parts of the recovered case that can be trans-
ferred to the new case, which can be accomplished through a direct copy or through some
adjustments. In simpler classification tasks, the differences are considered not relevant
and the recovered solution is transferred to the new case. This is a trivial kind of reusing.
However, other approaches take into account the differences between the two cases, and the
reused part cannot be directly transferred to the new case. It requires a process of adapta-
tion that takes into account those differences. The revising phase’s objective is to apply the
solution suggested by the reusing phase to an execution environment, evaluate the results
and learn from the success (passage to the next stage) or perform solution repair through
the use of a specific problem’s domain knowledge. Finally, the retention phase allows one
to incorporate the useful learned knowledge in the existing knowledge. Learning from the
success or failure of the proposed solution is triggered by the outcome of the evaluation

Appl. Sci. 2021, 11, 3325 9 of 28

and possible repair. This phase involves selecting the information to retain, in what way it
should be retained, how to index the information for afuture reuse, and how to integrate
the new case in the memory structure.

Figure 3. The case-based reasoning (CBR) cycle (adapted from [61]).

A new case to be solved by CBR is used to retrieve an old case from the casebase in
the first stage. The aim of the second stage is to find the previous case that is the most
similar to the one that was found in the casebase. This retrieved case is used to propose a
solution to the new case during the reusing process. This means that, since the two cases are
identical, the solution used to solve the retrieved case can also be used to solve the new case.
The proposed solution is checked, for example, by implementing the method, and adapted
if necessary in the revising process. Finally, in the retaining phase, the information is
retained for future use, and the casebase is updated with the new learned case [60,61].

3.3. AutoDynAgents: A Multi-Agent Scheduling System
The multi-agent system for scheduling used in this work is well described in the

literature and is known as AutoDynAgents [6–9].
In the AutoDynAgents system (Figure 4) there are agents to represent tasks and agents

representing resources (or machines). There are also agents representing some autonomic
computing self-behaviors, described in [6].

In this architecture, the most important type of agent is the resource agent. Each
resource agent is able to: find a (near-)optimal solution by applying a metaheuristic (Tabu
search, simulated annealing, genetic algorithms, ant colony optimization, particle swarm
optimization or artificial bee colony); adapt the chosen technique configuration parameters
according to the problem to solve; deal with the disturbances that may occur, i.e., arrival
of new tasks, canceled jobs, changing the attributes of tasks, etc.; and communicate with
other agents in order to solve the given scheduling problem.

The scheduling approach used by AutoDynAgents differs from those found in the
literature. Each resource agent is responsible to optimize operations for a given machine,
by using metaheuristics, and then a group of agents work together to achieve a good
solution to the problem, in feasible computational time.

Appl. Sci. 2021, 11, 3325 10 of 28

Figure 4. AutoDynAgents system architecture [7].

In a generic way, the AutoDynAgents system has an autonomous architecture with a
team model and consists of three main components:

• The hybrid scheduling module that uses metaheuristics and a mechanism to repair
activities between resources. The purpose of this mechanism is to repair the operations
executed by a machine, taking into account the tasks technological constraints (i.e.,
the precedence relations of operations) in order to obtain good scheduling plans.

• The dynamic adaptation module that includes mechanisms for regenerating neigh-
borhoods/populations in dynamic environments, increasing or decreasing them
according to the arrival of new tasks or cancellation of existing ones.

• The coordination module, aiming to improve the solutions found by the agents
through cooperation (agents act jointly in order to enhance a common goal) or negoti-
ation (agents compete with each other in order to improve their individual solutions).

The work on this paper focuses on the hybrid scheduling module. Specifically, the rac-
ing + CBR module is used by the self-optimizing agent. One can find more details about
the dynamic adaptation module in [69,70] and about the coordination module in [13,71,72].

4. Racing + CBR Module
The goal of this work is to provide AutoDynAgents system the ability of self-parameter

metaheuristic tuning, according to the scheduling instances being solved [16]. AutoDynA-
gents system shall be able to autonomously pick a metaheuristic and set the parameters,

Appl. Sci. 2021, 11, 3325 11 of 28

according to the characteristics of the current situation (e.g., size and complexity of the
problem instance). In addition, the system shall be capable to switch from a technique to
another, depending on the instance to treat and accumulated past experience. Regarding
the AutoDynAgents system architecture, this module is inside the self-optimizing agent
(Figure 4). In this proposal, the parameter tuning is done through learning based on
past experience.

The novel proposed hybrid approach integrates two different but complementary
techniques (Figure 5) [16]: racing and CBR. Racing is executed first, with the objective of an
extensive study of different parameters combinations, for several instances. After finishing
the racing submodule, its output acts as an input to the CBR module. The communication
between the two modules is done through the casebase. For a particular instance to solve,
the CBR module is responsible for the metaheuristic recommendation and tuning the
respective parameters. CBR can be executed several times with the same initial racing
study, and is capable of evolving during its lifetime.

Figure 5. Racing + CBR module architecture.

4.1. Racing Submodule
The racing submodule’s goal is to carry out a study of parameter combinations for

different metaheuristics, optimizing several objective functions. Algorithm 1 describes in
pseudocode the steps to this study. Thus, the input parameters refer to the list of objective
functions to optimize and a metaheuristics list to validate.

The first step is to get a list of candidate parameters for each metaheuristic and to
make them race among each other. These races are performed for a specified number of
instances. For each instance, each combination of parameters is tested in the system, and
the results are stored in the database. At the end of each instance run, candidates that
obtained the worst results are removed. At the end of the race, the best candidate is the
one who was able to survive through all instances.

The racing submodule arises from an adaptation of the F-race method. The inability
to use a direct implementation of the candidate elimination algorithm, due to lack of a
sufficient number of scheduling instances, led to the need for adapting and implementing
a solution where the overall operation was similar to the generic racing algorithm [4].

The most relevant part of this whole process is the removeCandidates() method, de-
scribed in Algorithm 2, since it decides which candidates will be removed from the race.
This algorithm takes as input parameters the current race and the list of candidate param-
eters, and returns the list of surviving parameters. The first check verifies if the list of
candidate parameters has more than one combination; otherwise we are facing the best
case. Then it needs to find out what statistical test shall be used. If the list of candidates
has more than two elements, the algorithm applies the Friedman test. Otherwise, it uses
the Wilcoxon test.

The Friedman test (Algorithm 3) requires that all candidates have been tested in at
least two instances. This implies that at the end of the first instance, all candidates survive.
Friedman test gets the ordered rankings from the candidates and calculates the sum of
those rankings for each candidate. The number of survivors is the best, n (Equation (3)).

Appl. Sci. 2021, 11, 3325 12 of 28

Algorithm 1 Racing algorithm.

Input: listObjFunc, listMH . list of objective functions, list of metaheuristics
Begin
listInstances ∆ . array to store instances
listParams ∆ . array to store candidate parameters
listInstances getInstances() . get problem instances
for all mh 2 listMH do . for all metaheuristics

listParams getParams(objFunc, mh) . get candidate parameters
race createRace(listParams) . create race to evaluate candidates
for all instance 2 listInstances do . for all instances

for all params 2 listParams do . for all candidate parameters
run createRun(race, instance, params) . create run to evaluate each

candidate parameters combination
executeRun(run)

end for
listParams removeCandidates(race, listParams) . remove worst candidates

end for
best race.getBestCandidate() . get the best surviving parameters combination
race.calculateStoreAvg(best) . calculate and store the average values for the best

candidate
end for
End

Algorithm 2 removeCandidates() method.

Input: race, listParams . current race, list of candidate parameters
Output: listParams . list of surviving candidate parameters

Begin
if size(listParams) > 1 then

listInstances race.getIntances() . gets race instances
if size(listParams) > 2 then . applies Friedman when more than two

listParams applyFriedmanTest(listParams, listInstances)
else . applies Wilcoxon test when there are only two candidates

listParams applyWilcoxonTest(listParams, listInstances)
end if

end if
return listParams
End

Algorithm 3 The Friedman test.

Input: listParams, listInstances . list of candidate parameters, list of instances
Output: listParams . list of surviving candidates

Begin
ranks ∆ . rankings matrix for candidate parameters per instance
sumRanks ∆ . array of rankings sum for candidate parameters
inst size(listInstances) . number of instances
cand size(listParams) . number of candidates
if inst > 1 then

ranks sortRankFriedman(listInstances, listParams)
sumRanks ranksSum(ranks)
surv calcNumSurv(inst, cand) . Equation (3)
listParams getSurviving(sobrev, sumRanks)

end if
return listParams
End

Appl. Sci. 2021, 11, 3325 13 of 28

The number of survivors at each step (Equation (3)) is dependent on the number
of instances already executed and the number of candidates. Moreover, it is calculated
according to the 1/ log2 function, which allows one to obtain behavior similar to the F-race.
With this function, it is possible to get quick convergence to the best candidate for even a
small number of instances, unlike what happens with the original F-race method.

surv = round
✓

1
log2(inst + 1)

⇥ cand
◆

(3)

where inst is the number of instances and cand is the number of candidates.
When there are only two candidates, the Wilcoxon test is used instead. The Wilcoxon

test (Algorithm 4) compares two candidates slightly differently from the Friedman test.
First, an array with the differences of the performance values in several instances between
the first and second candidate is obtained. Next, a ranking of the absolute values of these
differences is calculated, and then w values resulting from the weighted sum of the ranks
and signs of difference values are calculated (Equation (4)).

w =
inst

Â
i=0

ranks[i]⇥ signs[i] (4)

where inst is the number of instances, ranks[i] is the ranking of instance i and signs[i] is the
signal of instance i.

Algorithm 4 The Wilcoxon test.

Input: listParams, listInstances . list of candidate parameters, list of instances
Output: listParams . list of surviving candidates

Begin
inst size(listInstances) . number of instances
a getResults(listInstances, listParams.get(0)) . array with the results per instance for
the first candidate
b getResults(listInstances, listParams.get(1)) . array with the results per instance for
the second candidate
di f calcDi f f erence(a, b) . array with the difference between the first and second
candidates
absDi f abs(di f) . array with the absolute value for the differences
ranks calcRankings(absDi f) . array with the rankings of the differences
signs calcSign(di f) . array with the signal of the differences
w calcW(ranks, signs, inst) . value to validate the Wilcoxon test, calculated by
Equation (4)
if w < 0 then

listParams.remove(1) . first candidate is better, remove the second
else

listParams.remove(1) . second candidate is better, remove the first
end if
return listParams
End

If the w value is less than zero, it means that the first candidate is better; otherwise,
the second candidate is chosen. In any case, the worst candidate is eliminated.

4.2. CBR Submodule
The CBR submodule’s aim is to find the most similar case with the new problem,

regardless of which metaheuristic is used. As a consequence, the returned case includes the
metaheuristic and the necessary parameters to use. Since the device must determine which
procedure and parameters to use, this method seems to be appropriate for the problem
at hand.

Appl. Sci. 2021, 11, 3325 14 of 28

The CBR submodule consists of a cycle similar to that described in Section 3.2.2. This
cycle consists of four main processes: retrieve, reuse, revise and retain (see Algorithm 5).
Note that, in the revise stage, there is communication with the multi-agent system in order
to execute the new case and extract results of completion and execution times.

Algorithm 5 Case-based reasoning

Input: newCase
Begin
listCases retrieve(newCase) . retrieving phase
bestCase reuse(listCases) . reusing phase
solution getSolution(bestCase) . get the solution for the best case
simBestCase getSimilarity(bestCase) . get the similarity
revisedSolution revise(solution, simBestCase) . revising phase
results executeCaseMAS(newCase, revisedSolution) . execute in MAS
retain(newCase, revisedSolution, results) . retaining phase
End

Whenever a new instance arises, the CBR submodule creates a new case, which is
solved through the recovery of one or more previous similar cases. After obtaining a list
with the most similar cases, the most similar case among all is reused and is suggested as a
possible solution. In the next step, and before proceeding to the communication with the
multi-agent system, the revision of the suggested solution is performed by adjusting and
refining the parameters. Finally, the case is accepted as a final solution and retained in the
case base as a new learned case.

4.2.1. Retrieving Phase
The retrieving phase aims to search the casebase for the most similar past cases with

the new case, and retrieve them for analysis in order to be subsequently selected one of the
best cases and reuse it in the next phase.

This phase, described in Algorithm 6, receives the new case as an input parameter.
As output parameter, the algorithm returns a list of retrieved cases; each list element is
a case-similarity pair where each case and the respective similarity with the new case
are specified.

Algorithm 6 Retrieving phase.

Input: newCase
Output: listCases . list of retrieved cases, with similarities

Begin
listCases ∆
minSim 0.70 . minimum similarity
listPreCases queryCaseBase(newCase) . pre-select the casebase
for all case 2 listPreCases do

sim calcSimilarity(case, newCase) . calculate the similarity
if sim � minSim then . if similarity greater than minimum similarity

listCases.add(case, sim) . add case to list
end if

end for
return listCases
End

A minimum similarity of 0.70 in a [0, 1] range was defined, which means a case needs
to be at least 70% similar to the new case to be selected. This minimum similarity is the
sum of Njobs, ProbType and MultiLevel weights, explained further in the Equation (6).

Appl. Sci. 2021, 11, 3325 15 of 28

After initializing the variables, the algorithm begins by making a pre-selection of cases,
to select only cases that might be considered sufficiently similar, i.e., with similarity greater
than the minimum similarity of 0.70.

For each pre-selected case, the similarity to the new case is calculated, and if it is better
than or equal to the previously specified minimum similarity, the case is added to the list
to be returned, together with the respective similarity value. At the end of the algorithm,
this list of cases is returned.

One of the most important aspects of a CBR system is the similarity measure between
cases. The attributes to consider for the similarity measure are: the number of tasks (Njobs),
the number of machines (Nmachines), the type of problem (ProbType), the multi-level (if
instances have operations with more than one precedence) feature (MultiLevel) and the
known optimal conclusion time (OptCmax). These attributes are weighted differently in the
similarity measure, as defined in Equation (5). The similarity measure is a value between
zero (0) and one (1), corresponding to no similar cases and equal cases respectively. It is
the result of a weighted sum of the similarities between the different attributes.

In Equation (6), the weights for each attribute are presented. More importance is given
to Njobs and Nmachines, as these are the ones that best define the problem dimension,
a fundamental characteristic for metaheuristic tuning. Njobs is the most important attribute
of the problem dimension, since it defines how many jobs are processed. Nmachines defines
how these tasks are divided for processing. Thus, we considered a weight of 50% for Njobs
and 25% for Nmachines. These two attributes together represent 75% of the similarity
measure. ProbType, with 15%, represents some importance for the parameter tuning, since,
e.g., a job–shop problem introduces additional complexity as compared to a single machine
problem. With only 5% each, it was considered that MultiLevel and OptCmax are not as
important as other attributes; however, they are important for the verification of very
similar cases. The OptCmax attribute was taken into account in order to make it possible to
know whether the new case has been previously processed or not because, when known,
this is a unique characteristic of a problem.

similarity =
n

Â
i=0

wi ⇥ simi (5)

where wi is the weight of characteristic i and simi is the similarity of characteristic i.

wNjobs = 0.50; wNmachines = 0.25; wProbType = 0.15; wMultiLevel = wOptCmax
= 0.05; (6)

simNjobs =
min(Njobs1, Njobs2)

max(Njobs1, Njobs2)
(7)

simNmachines =
min(Nmachines1, Nmachines2)
max(Nmachines1, Nmachines2)

(8)

simProbType =

(
0 if ProbType1 6= ProbType2
1 if ProbType1 = ProbType2

(9)

simMultiLevel =

(
0 if MultiLevel1 6= MultiLevel2
1 if MultiLevel1 = MultiLevel2

(10)

simOptCmax
=

(min(OptCmax1,OptCmax2)
max(OptCmax1,OptCmax2)

if OptCmax1 � 0 and OptCmax2 � 0

0 if OptCmax1 < 0 or OptCmax2 < 0
(11)

The Njobs and Nmachines similarities (Equations (7) and (8)) are calculated in the
same way, yielding a value in a [0; 1] range. The ProbType and MultiLevel similarities
(Equations (9) and (10)) can be one (1) if they are the same, or zero (0) if they are different.
For OptCmax (Equation (11)) the similarity is calculated identically to Njobs and Nmachines

Appl. Sci. 2021, 11, 3325 16 of 28

if the values of the two cases are positive. If any value is less than zero (0), this means that
the value is not known, and in this case the similarity for OptCmax is zero.

4.2.2. Reusing Phase
In the reusing phase, the most similar case to the new case is selected, and the re-

spective solution is suggested as a possible solution. Thus, the metaheuristic and the
parameters used for the resolution of that case are copied to the resolution of the new case.

In Algorithm 7, three variables are initialized: simVerySimilar to determine if two
cases are very similar; listBestCases for storing the list of best retrieved cases; and minRatio
to serve as a comparison determining the best cases.

Algorithm 7 Reusing phase.

Input: listCases
Output: bestCase

Begin
simVerySimilar 0.95 . similarity to validate if two cases are very similar
minRatio 0.75 . minimum ratio to add a case into listBestCases
listBestCases ∆ . list to store the best cases
if listCases is empty then

bestCase applyPreDe f inedParameters()
else

for all case 2 listCases do
if compareSims(case, bestCase) � simVerySimilar then

ratio case.OptCmax/case.Cmax
if ratio � minRatio then

listBestCases.add(case)
else

ratioBest bestCase.OptCmax/bestCase.Cmax
if ratio = ratioBest then

if case.TimeExec < bestCase.TimeExec then
bestCase case

end if
else

if ratio > ratioBest then . case is more effective
bestCase case . update best case

end if
end if

end if
else . cases are not very similar, so compare similarities directly

if case.Sim > bestCase.Sim then . case more similar
bestCase case . update best case

end if
end if
if listBestCases is not empty then

index random(0, size(listBestCases)) . randomly selects a case to be
considered as the best

bestCase listBestCases.get(index)
end if

end for
end if
return bestCase
End

First, the algorithm checks if the list of retrieved cases is not empty. If it is empty, then
there are no cases with similarity higher than the minimum similarity. This means that the

Appl. Sci. 2021, 11, 3325 17 of 28

predefined parameters are used, working as a starting point for the resolution of future
similar cases.

When the list of retrieved cases has elements, the most effective cases are selected.
However, if there is no effective case, the most similar case is selected. In this cycle, some
checks are carried out to determine if there are cases with very high similarity. If so, the best
cases or the most effective/efficient cases are selected, by comparing the conclusions and
running times. The verification of very similar cases is performed using Equation (12),
and then the value is compared with simVerySimilar. For this variable, the value of 0.95
was considered; two cases are very similar if the ratio of their similarities is greater than
95%.

When there are very similar cases, it is necessary to calculate the ratio (Equation (13))
between OptCmax and Cmax of each case to make the comparison with minRatio. This
variable indicates that a case is considered as one of the best if the ratio of its OptCmax
by its Cmax is equal to or greater than 75%. When this happens, the case is added to
listBestCases.

When the ratio of a case, ratiocase, is not greater than minRatio, it is necessary to
calculate the ratio for the best case so far. If the ratio of a particular case is equal to bestCase
ratio, the two cases are equally effective and it is necessary to compare the execution times.
If the case runtime is lower than bestCase, then bestCase is updated as a more efficient case
has been found. The bestCase is also updated if the ratio of a particular case is higher than
bestCase ratio, as a more effective case has been found.

When there are not very similar cases, the best case is chosen by a direct comparison
between the similarities from the list of cases.

In the end, if listBestCases is not empty, one of best cases is randomly selected, thereby
ensuring that bestCase is one of the top cases and not simply the best among all. This
proves to be important to avoid stagnation and to avoid choosing the same case too often,
which would not allow the evolution of the system. If the best case among all is always
selected, whenever a new similar case appears, the same case will be selected, except if the
new cases always obtain better results, which is not true due to the underlying stochastic
component of metaheuristics.

If listBestCases is empty, the best case is the most similar one or it is the case that has
the best effectiveness-efficiency value.

CompareSims(case1, case2) =
min(simcase1 , simcase2)

max(simcase1 , simcase2)
(12)

where simcasen is the similarity of casen to the new case.

ratiocase =
OptCmaxcase

Cmaxcase
(13)

where OptCmaxcase is the optimum completion time for case and Cmaxcase is the obtained
completion time.

credit = 10 + (1� simCredMin)⇥ 100 (14)

credit = 10 + (1� simBestCase)⇥ 100 (15)

4.2.3. Revising Phase
On the revising phase (Algorithm 8), the CBR submodule proceeds with an adaptation

of the solution suggested by the Reusing phase. The direct use of the suggested solutions
can lead to system stagnation, and thus can leave the system unable to evolve for better
results. Thus, to escape from local optimal solutions and system stagnation, this algorithm
applies some diversity (disturbance) to the solutions.

Appl. Sci. 2021, 11, 3325 18 of 28

Algorithm 8 Revising phase.

Input: solution, simBestCase
Output: revisedSolution

Begin
revisedSolution ∆
simCredMin 0.95
credit 0
if simCredMin < simBestCase then

credit = 10 + (1� simCredMin)⇥ 100
else

credit = 10 + (1� simBestCase)⇥ 100
end if
creditsArray returnCredits(credit, solution) . calculate perturbation
revisedSolution solution.updateParameters(creditsArray)
return revisedSolution
End

Algorithm 8 takes two input parameters, namely, the solution suggested by the
reusing phase (i.e., the suggested metaheuristic and respective parameters) and the best
case similarity. The algorithm returns the same metaheuristic with the revised and changed
parameters. Two important variables are used: credit representing the overall credit to
be distributed by the parameters; and simCredMin representing an auxiliary variable
to ensure a minimal credit. The latter is initialized with the value 0.95, which is the
maximum similarity for which the credit is inversely proportional. This means that cases
with similarity greater than 95% have the same overall credit to be applied in the inclusion
of disturbance.

The second task performed by the algorithm is to verify if the similarity of the most
similar case is greater than 95%. If so, then the credit is initialized with the minimum value
of 15, depending on the value of simCredMin variable (Equation (14)). Otherwise, the credit
will be inversely proportional to the similarity of the best case (Equation (15)). This means
that the less similar a case is, the more disturbance there will be in the parameters of the
suggested metaheuristic.

After initializing the credit, the returnCredits() method is called to distribute the credit
through the different parameters (Algorithm 9). After distributing the credit among the
parameters, the next step is to update the parameters’ values. The returnCredits() algorithm
takes two parameters, the global credit and the metaheuristic with the parameters to update,
and returns an array with the credits to be used in each parameter.

Assigning credit to parameters is only possible if there is enough global credit available,
so that is the first check to make. If there is enough credit then the value assigned to a
parameter is a random value in the range [0; credit/2], uniformly distributed. This value
is stored in an array and discounted from the global credit. Then a random calculation
to decide whether the disturbance will be added or removed to the parameter is made.
Thus, if the value is "true" (1), the credit parameter is set to a negative value, resulting in a
decrease in the value of the parameter; otherwise, it is an increase. In the end, the array of
parameter credits is returned.

In Equation (16), the formula for updating the parameters values is presented. For in-
teger numbers, units are rounded. For float values, the rounding is done to the second
decimal place. The reader should note that, if the credit of the parameter has a negative
value, this will result in a decrease, as previously explained.

Appl. Sci. 2021, 11, 3325 19 of 28

Algorithm 9 returnCredits() method.

Input: credit, solution
Output: creditsArray

Begin
creditsArray ∆
for all param 2 solution.listParams do . for all parameters

if credit > 0 then
creditsArray[param] random(0, credit/2) . random credit
credit = credit� creditsArray[param] . discount given credit
if random(0, 1) = 1 then . decide sign of the value

creditsArray[param] �creditsArray[param] . negative if true
end if

else
creditsArray[param] 0 . there is no more credit to give

end if
end for
return creditsArray
End

With this procedure, the system is capable of introducing disturbances in the suggested
solutions and also escaping the stagnation to achieve better results.

param = param + round
✓✓

param⇥ creditsArray[param]
100

◆
, d

◆
(16)

where param is the parameter that is being updated and d assumes the number of decimal
places with which to perform the rounding (i.e., 0 or 2).

4.2.4. Retaining Phase
Finally, after executing the new case, it is necessary to store the information in the

casebase, which is performed in the retaining phase. First, values of conclusion and
execution times are collected, resulting from the execution of the new case in the multi-
agent system. The solution is retained for future use. With this phase, the CBR cycle is
concluded. In the next run, this newly solved case will be available to be used in the
resolution of a new case.

5. Computational Results and Discussion
This section presents and describes the computational experiments for the validation

of the proposed racing + CBR approach. Benchmark instances of job–shop scheduling
problems extracted from OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/info.html
accessed on 2013) have been used. The reader shall note that the proposed hybrid approach
is compared separately with each of the techniques used, racing and CBR, but racing +
CBR is also compared with previously published results (a previous approach: [9]).

The implementation was performed via Java programming language, using a H2
database and Hibernate framework as the database access layer. The computer used for the
computational study was an HP Z400 with the following key features: Intel Xeon W3565
3.20 GHz processor, 6GB DDR3 RAM memory, Samsung HD103SJ 1TB 7200rpm hard drive
and Microsoft Windows 7 operating system.

Both of the outcomes are consistent with the goal of reducing the completion time
(Cmax). Every instance was run five times, with the average of the results determined.
The ratio between the optimum value and the average value of Cmax was used to normalize

Appl. Sci. 2021, 11, 3325 20 of 28

the values (Equation (17)) to estimate the deviation value obtained from the value of the
optimal solution cited in the literature.

ratio = 1� OptCmax
Cmax

(17)

where OptCmax is the optimum completion time and Cmax is the obtained completion time.
Rather than comparing the values directly, the deviations of the average values of

Cmax from the optimum value are compared, which is especially useful when dealing with
different Cmax values. Considering, for instance, two scenarios where the optimum values
are 60 and 90, respectively, if we get 65 for the first instance and 98 for the second, we can
infer that the value obtained for the second instance is closer to the optimum, since the
ratio is 0.103 for the first and it is 0.082 for the second.

The CBR casebase was initialized based on the parameters obtained by the racing
module. These parameters are shown in Tables 3–6 and correspond to the outputs from the
racing module. In this hybrid approach, 150 initial cases were inserted, corresponding to
the tuning of six metaheuristics in 25 instances.

Table 1. Values of Tabu search parameters. n is the number of tasks. NeighGen is the percentage
of generated neighbors. NeighSize is the size of the neighborhood. TabuListLen is the length of the
tabu list.

MH n NeighGen NeighSize TabuListLen Stopping Criteria

TS

10

15% 100%

3 5015 1
20 2 125
30 3 175
50 5 200

Table 2. Values of genetic algorithm parameters. InitPopGen is the percentage of the initial popula-
tion. PopSize is the size of the population. NumGen is the number of generations. CrossRate is the
crossover rate. MutRate is the mutation rate.

MH n InitPopGen PopSize NumGen CrossRate MutRate

GA

10

15% 100%

100 75%

1%
15 125 65%
20 150

75%30 200
50 35% 400

Table 3. Values of simulated annealing parameters. InitTemp is the initial temperature. a is the
cooling factor. NumItK is the number of iterations at the same temperature.

MH n InitTemp a NumItK Stopping Criteria

SA

10

15% 80%

5 30
15 10 7020 20
30 30 90
50 200

Appl. Sci. 2021, 11, 3325 21 of 28

Table 4. Values of ant colony optimization parameters. Ants is the number of ants. EvapRate is the
pheromone evaporation rate. a controls the influence of pheromones. b controls the desirability of
state transitions.

MH n Ants EvapRate a b Stopping Criteria

ACO

10 20

80%

2 2 75
15 50 1 10020 30 1 230 50 2 250
50 75 1 350

Table 5. Values of particle swarm optimization parameters. Part is the number of particles. mIn
is the minimum inertia. MIn is the maximum inertia. c1 and c2 are learning factors. mVel is the
minimum velocity. MVel is the maximum velocity.

MH n Part Stopping Criteria mIn MIn c1 c2 mVel MVel

PSO

10 30 1000

40% 95% 2 2 �4 4
15 25 1500
20

75
1750

30 3500
50 4500

Table 6. Values of artificial bee colony parameters. Sn is the size of the population. MaxFail is the
maximum failures allowed.

MH n Sn MaxFail Stopping Criteria

ABC

10 75 1250 2000
15 1750 3000
20

125
2000 3500

30 2250 4000
50 4500

The analysis of the CBR module was carried out using the initial casebase filled by
racing, with the system being run in test instances. The descriptive analysis of the ratio
of the average Cmax for all approaches, including racing + CBR, is presented in Table 7.
By examining the chart in Figure 6, analyzing the median and dispersion of data, it is
possible to draw conclusions about the benefits of the racing + CBR method.

Table 7. Descriptive analysis of the Cmax ratio for all approaches, including the obtained minimum
values, maximum values, averages and standard deviations.

Min Value Max Value Average s

Previous results 0.07 0.57 0.3792 0.13217
Racing 0.08 0.53 0.3474 0.11834

CBR 0.09 0.50 0.3388 0.10736
Racing + CBR 0.07 0.48 0.3142 0.10999

When comparing the results of the racing + CBR approach to the results of the racing
module, one can see a slight improvement in the results, especially in the dispersion,
indicating that the addition of the CBR module can keep the results more consistent.

In Table 7, it is possible to conclude for a lower average and standard deviation than
the racing module, and lower maximum and minimum values, which is crucial given that
the scheduling problem is a minimization problem.

When comparing the findings of the hybrid approach to those of CBR, the difference is
not as important, indicating that combining the two modules could be beneficial. In Table 7,

Appl. Sci. 2021, 11, 3325 22 of 28

the minimum and maximum values have improved, as has the average, but the standard
deviation has increased marginally, though the difference is not important.

Finally, the results of the racing + CBR are compared with the previous published
results [9]. At this point, clear improvements are shown, which indicates a statistically
significant advantage in using learning algorithms in the tuning of metaheuristic parame-
ters in optimization problems. In Table 7 it is possible to note significant improvements,
especially in the average and standard deviation. The minimum values were equal, but
our maximum was lower.

Figure 6. Comparison average results from all approaches.

Analyzing the statistical significance of these findings becomes critical at this stage.
When comparing the previous published results and the results of the hybrid approach
(Table 8), one can claim, with a 95% confidence level, that there are statistically significant
differences between the results obtained initially (without learning) and the results obtained
by the racing + CBR approach, allowing one to infer as to the benefit of its use. The same
conclusions are possible to find about the comparison of the hybrid method against the
results of racing and CBR approaches separately.

Table 8. Student’s t test for paired samples.

Average s t DoF p

Previous vs. Racing + CBR 0.06496 0.06499 5.475 29 0.000
Racing vs. Racing + CBR 0.03314 0.03582 5.068 29 0.000

CBR vs. Racing + CBR 0.02454 0.05208 2.581 29 0.015

To complete the study, in Figure 7 the average execution times achieved by Auto-
DynAgents system with the inclusion of the racing + CBR approach are presented. By
comparing the average execution times of all approaches, it is possible to show that the
hybrid approach significantly improved compared to previous published results, and also
there was a slight improvement in the racing based approach. However, there is no evi-
dence of improvements in efficiency compared to CBR. Thus, in addition to improving the

Appl. Sci. 2021, 11, 3325 23 of 28

effectiveness of the results, the racing + CBR approach also allowed us to improve system
efficiency, especially when compared to the previous results (without learning).

Figure 7. Comparison of the execution times of the obtained average results from all approaches.

A total of 30 instances from OR-Library were considered and solved using each of the
four approaches: previous; CBR; racing; racing + CBR. Therefore, four paired samples of
30 observations each were obtained. The results were normalized. The statistical analysis
was conducted using R [73].

Table 9 shows that there are differences between "previous" and all the other ap-
proaches for the set of tested instances. The p-values obtained for both the Friedman-
aligned ranks and Quade tests indicate very strong evidence against the null hypothesis
that the results using previous results and the other three approaches have the same median
(see Table 10) for solving job–shop scheduling problems. Therefore, there are at least two
solution sets that have different medians of the results.

The results from comparing the racing, CBR and racing + CBR approaches against
previous results, which acts as a control group, are shown in Table 11. Since all the p-
values are <0.05, we may conclude that there are significant differences between all the
approaches and the control.

The results for all pair-wise comparison are depicted in Table 12 and Figure 8. We can
see that, for a 5% significance level, there are significant differences between: (i) previous
and all the other approaches; (ii) CBR and racing + CBR; (iii) racing and racing + CBR.

Table 9. Median, mean, standard deviation and Shapiro–Wilks’ normality test p-values for the results
obtained with the four approaches.

Approach Median Mean Std. Deviation Shapiro Wilks’ p-Value

Previous 0.4095 0.3792 0.1321693 0.10
CBR 0.35210 0.33880 0.107356 0.11

Racing 0.35770 0.34740 0.1183369 0.08
Racing + CBR 0.31900 0.31420 0.1099901 0.06

Appl. Sci. 2021, 11, 3325 24 of 28

Table 10. Multiple comparisons test results.

Test Statistics Df p-Value

Friedman’s Aligned Rank 37.939 3 2.911⇥ 10�08 < 0.05
Quade 16.988 3 9.052⇥ 10�09 < 0.05

Since for each sample the normality was not rejected (see Table 9), for the pairwise
comparison, the paired-sample t-test was used. The results depicted in Table 13 shows,
at a 5% significance level, that hPrevious > hCBR > hRacing+CBR and hPrevious > hRacing >
hRacing+CBR.

In conclusion, there is evidence, with 95% certainty, that:
• The median results using previous are larger than the medians of the results obtained

from CBR; racing; racing + CBR. Therefore all of the approaches CBR, racing and
racing + CBR present improvements when compared to "previous."

• There are no significant differences between CBR and racing, so using one of those
techniques improves the results obtained with previous, but there are no differences
between the performances of CBR and racing approaches.

• Combining CBR and racing into a new approach racing + CBR improves the results
when compared to using previous or CBR or racing.

Table 11. Post hoc tests using previous as a control group.

CBR Racing Racing + CBR

p-value 7.22⇥ 10�06 < 0.05 0.0018 < 0.05 5.95⇥ 10�12 < 0.05

Figure 8. p-values from the comparison between the performances of the four approaches.

Table 12. Post hoc tests for all pair-wise comparisons.

CBR Racing Racing + CBR

Previous 2.2⇥ 10�05 < 0.05 3.6⇥ 10�03 < 0.05 3.6⇥ 10�11 < 0.05
CBR 1.7⇥ 10�01 > 0.05 1.7⇥ 10�02 < 0.05

Racing 5.1⇥ 10�04 < 0.05

Appl. Sci. 2021, 11, 3325 25 of 28

Table 13. Results for the paired-wise comparison.

Null Hypothesis Alternative Hypothesis p-Value

hPrevious = hCBR hPrevious > hCBR 0.0002214 < 0.05
hPrevious = hRacing hPrevious > hRacing 2.611⇥ 10�05 < 0.05

hPrevious = hRacing+CBR hPrevious > hRacing+CBR 3.392⇥ 10�06 < 0.05
hCBR = hRacing+CBR hCBR > hRacing+CBR 0.007589 < 0.05

hRacing = hRacing+CBR hRacing > hRacing+CBR 1.05⇥ 10�05 < 0.05

6. Conclusions
In the field of scheduling problems, this paper suggested a novel hybrid learning

method for parameter tuning metaheuristics.
Since parameter tuning is so critical in the process of developing and implementing

optimization techniques, the proposed hybrid approach was based on racing and CBR,
with the goal of performing metaheuristic selection and tuning. While racing is used to
assess a group of applicants in a refined and efficient manner, releasing those that tend to
be less promising during the selection process, CBR uses previous similar cases to solve
new cases, allowing for learning from experience. The metaheuristics used to generate
scheduling plans can now be chosen and parameterized in the AutoDynAgents system.

The aim of the computational analysis was to see how well the AutoDynAgents
framework performed after learning modules were added. The findings of the hybrid
racing + CBR method were compared to those obtained using racing and CBR separately,
and to previously reported results that did not involve learning mechanisms.

The statistical significance of all of the findings was investigated. The novel proposed
racing + CBR solution was found to have a major statistical benefit. In comparison to
previously reported findings, all of the proposed methods have enhanced the system’s
results. The hybrid racing + CBR method, on the other hand, yielded better results. Based
on the findings, it was possible to draw the conclusion that there is statistical evidence for
the benefit of incorporating learning into the metaheuristic parameter tuning method.

Since each occurrence of events refers to a new case, the proposed module can also
be extended to the resolution of complex scheduling problems with dynamic events, such
as new orders, canceled orders and changes in deadlines. With the inclusion of this new
hybrid learning method, the system becomes more stable, robust and effective in the
resolution of scheduling problems with the existence of dynamic events.

Future work includes extending the computational study to real scheduling problems
with dynamic events and trying to achieve better results by exploring other learning
techniques, such as artificial neural networks.

Author Contributions: Conceptualization, Ivo Pereira and Ana Madureira; data curation, Ivo Pereira;
formal analysis, Ivo Pereira and Eliana Silva; funding acquisition, Ana Madureira; investigation,
Ivo Pereira and Ana Madureira; methodology, Ivo Pereira and Ana Madureira; supervision, Ana
Madureira; validation, Ivo Pereira, Eliana Silva and Ajith Abraham; writing—original draft, Ivo
Pereira; writing—review and editing, Ivo Pereira, Ana Madureira, Eliana Silva and Ajith Abraham.
All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by FEDER Funds through "Programa Operacional Factores
de Competitividade-COMPETE" and by National Funds through FCT "Fundação para a Ciência e a
Tecnologia" through the project: FCOMP-01-0124-FEDER- PEst-OE/EEI/UI0760/2014.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Benchmark instances of job–shop scheduling problems extracted from
OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/info.html accessed on 2013) have been used.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2021, 11, 3325 26 of 28

References
1. Joshi, S.K.; Bansal, J.C. Parameter tuning for meta-heuristics. Knowl. Based Syst. 2020, 189, 105094.
2. Calvet, L.; Juan, A.A.; Serrat, C.; Ries, J. A statistical learning based approach for parameter fine-tuning of metaheuristics. SORT

Stat. Oper. Res. Trans. 2016, 1, 201–224.
3. Huang, C.; Li, Y.; Yao, X. A survey of automatic parameter tuning methods for metaheuristics. IEEE Trans. Evol. Comput. 2019,

24, 201–216.
4. Birattari, M. Tuning Metaheuristics: A Machine Learning Perspective; Springer: Berlin/Heidelberg, Germany, 2009.
5. Cotta, C.; Sevaux, M.; Sörensen, K. Adaptive and Multilevel Metaheuristics; Springer: Berlin/Heidelberg, Germany:2008.
6. Madureira, A.; Santos, F.; Pereira, I. Self-Managing Agents for Dynamic Scheduling in Manufacturing; Proceedings of the 10th annual

conference companion on Genetic and Evolutionary Computation (GECCO); Atlanta, Georgia, USA: 2008.
7. Pereira, I.; Madureira, A. Self-optimizing through CBR learning. In IEEE Congress on Evolutionary Computation (CEC); Barcelona,

Spain: 2010 .
8. Madureira, A.; Pereira, I. Self-Optimization for Dynamic Scheduling in Manufacturing Systems. In Technological Developments in

Networking, Education and Automation; Springer: Dordrecht, Germany, 2010.
9. Pereira, I.; Madureira, A. Self-optimization module for scheduling using case-based reasoning. Appl. Soft Comput. 2013, 13,

1419–1432.
10. Pereira, I.; Madureira, A. Self-Optimizing A Multi-Agent Scheduling System: A Racing Based Approach. In Intelligent Distributed

Computing IX; Springer: Berlin/Heidelberg, Germany, 2016; pp. 275–284.
11. Pinedo, M.L. Scheduling: Theory, Algorithms, and Systems; Springer-Verlag: New York, USA, 2012.
12. Madureira, A. Meta-Heuristics Application to Scheduling in Dynamic Environments of Discrete Manufacturing. Ph.D. Thesis,

University of Minho, Braga, Portugal, 2003. (In Portuguese)
13. Madureira, A.; Pereira, I.; Pereira, P.; Abraham, A. Negotiation Mechanism for Self-organized Scheduling System with Collective

Intelligence. Neurocomputing 2014, 132, 97–110.
14. Gonzalez, T.F. Handbook of Approximation Algorithms and Metaheuristics; CRC Press: Boca Raton, FL, USA, 2007.
15. Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley & Sons: New Jersey, USA 2009.
16. Pereira, I. Intelligent System for Scheduling Assisted by Learning. Ph.D. Thesis, UTAD, Vila Real, Portugal, 2014. (In Portuguese)
17. Glover, F.; Kochenberger, G.A. Handbook of Metaheuristics; Springer Science & Business Media: Berlin/Heidelberg, Germany :

2003.
18. Sabzi, S.; Abbaspour-Gilandeh, Y.; García-Mateos, G. A fast and accurate expert system for weed identification in potato crops

using metaheuristic algorithms. Comput. Ind. 2018, 98, 80–89.
19. Walha, F.; Bekrar, A.; Chaabane, S.; Loukil, T.M. A rail-road PI-hub allocation problem: Active and reactive approaches. Comput.

Ind. 2016, 81, 138–151.
20. Hutter, F.; Hamadi, Y.; Hoos, H.H.; Leyton-Brown, K. Performance prediction and automated tuning of randomized and

parametric algorithms. In Principles and Practice of Constraint Programming; Springer: Berlin/Heidelberg, Germany, 2006.
21. Smith, J.E. Self-adaptation in evolutionary algorithms for combinatorial optimisation. In Adaptive and Multilevel Metaheuristics;

Springer: Berlin/Heidelberg, Germany 2008.
22. Smit, S.K.; Eiben, A.E. Comparing parameter tuning methods for evolutionary algorithms. In IEEE Congress on Evolutionary

Computation (CEC); Trondheim, Norway, 2009.
23. Hoos, H.H. Automated Algorithm Configuration and Parameter Tuning. In Autonomous Search; Hamadi, Y., Monfroy, E., Saubion,

F., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–71.
24. Bartz-Beielstein, T.; Parsopoulos, K.E.; Vrahatis, M.N. Analysis of particle swarm optimization using computational statistics.

In Proceedings of the International Conference of Numerical Analysis and Applied Mathematics, Chalkis, Greece, 10–14
September 2004.

25. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82.
26. Adenso-Diaz, B.; Laguna, M. Fine-tuning of algorithms using fractional experimental designs and local search. Oper. Res. 2006,

54, 99–114.
27. Birattari, M.; Stützle, T.; Paquete, L.; Varrentrapp, K. A Racing Algorithm for Configuring Metaheuristics; In Genetic and Evolutionary

Computation Conference (GECCO); New York, USA,2002.
28. Akay, B.; Karaboga, D. Parameter tuning for the artificial bee colony algorithm. In Proceedings of the International Conference

on Computational Collective Intelligence, Wrocław, Poland, 5–7 October 2009; pp. 608–619.
29. Iwasaki, N.; Yasuda, K.; Ueno, G. Dynamic parameter tuning of particle swarm optimization. IEEE Trans. Electr. Electron. Eng.

2006, 1, 353–363.
30. Bartz-Beielstein, T.; Markon, S. Tuning search algorithms for real-world applications: A regression tree based approach. In

Proceedings of the 2004 Congress on Evolutionary Computation, Portland, OR, USA, 19–23 June 2004; Volume 1, pp. 1111–1118.
31. Amoozegar, M.; Rashedi, E. Parameter tuning of GSA using DOE. In Proceedings of the 4th International Conference on

Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 29–30 October 2014; pp. 431–436.
32. Vafadarnikjoo, A.; Firouzabadi, S.; Mobin, M.; Roshani, A. A meta-heuristic approach to locate optimal switch locations in cellular

mobile networks. In Proceedings of the 2015 American Society of Engineering Management Conference (ASEM2015), Vienna,
Austria, 4–9 October 2015.

Appl. Sci. 2021, 11, 3325 27 of 28

33. Tavana, M.; Kazemi, M.R.; Vafadarnikjoo, A.; Mobin, M. An artificial immune algorithm for ergonomic product classification
using anthropometric measurements. Measurement 2016, 94, 621–629.

34. Yu, A.J.; Seif, J. Minimizing tardiness and maintenance costs in flow shop scheduling by a lower-bound-based GA. Comput. Ind.
Eng. 2016, 97, 26–40.

35. Veček, N.; Mernik, M.; Filipič, B.; Črepinšek, M. Parameter tuning with Chess Rating System (CRS-Tuning) for meta-heuristic
algorithms. Inf. Sci. 2016, 372, 446–469.

36. Kayvanfar, V.; Zandieh, M.; Teymourian, E. An intelligent water drop algorithm to identical parallel machine scheduling with
controllable processing times: A just-in-time approach. Comput. Appl. Math. 2017, 36, 159–184.

37. Mobin, M.; Mousavi, S.M.; Komaki, M.; Tavana, M. A hybrid desirability function approach for tuning parameters in evolutionary
optimization algorithms. Measurement 2018, 114, 417–427.

38. Eiben, A.; Smit, S. Evolutionary algorithm parameters and methods to tune them. In Autonomous Search; Springer:
Berlin/Heidelberg, Germany, 2012.

39. Hamadi, Y.; Monfroy, E.; Saubion, F. An introduction to autonomous search. In Autonomous Search; Springer: Berlin/Heidelberg,
Germany, 2012.

40. Skakov, E.; Malysh, V. Parameter meta-optimization of metaheuristics of solving specific NP-hard facility location problem. J.
Phys. Conf. Ser. 2018, 973, 012063.

41. Karafotias, G.; Hoogendoorn, M.; Eiben, Á.E. Parameter control in evolutionary algorithms: Trends and challenges. IEEE Trans.
Evol. Comput. 2014, 19, 167–187.

42. Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing; Springer: Berlin/Heidelberg, Germany, 2015.
43. Bartz-Beielstein, T. Experimental Research in Evolutionary Computation; Springer: Berlin/Heidelberg, Germany, 2006.
44. Box, G.E.; Hunter, W.G.; Hunter, J.S. Statistics for Experimenters: Design, Innovation, and Discovery; Wiley: Hoboken, NJ, USA, 2005.
45. Coy, S.P.; Golden, B.L.; Runger, G.C.; Wasil, E.A. Using experimental design to find effective parameter settings for heuristics.

J. Heuristics 2001, 7, 77–97.
46. Johnson, D.S. A theoretician’s guide to the experimental analysis of algorithms. In Data Structures, Near Neighbor Searches, and

Methodology: Fifth and Sixth DIMACS Implementation Challenges; American Mathematical Society: Providence, Rhode Island, USA,
2002.

47. Schaffer, J.D.; Caruana, R.A.; Eshelman, L.J.; Das, R. A study of control parameters affecting online performance of genetic
algorithms for function optimization. In Proceedings of the International Conference on Genetic Algorithms, Fairfax, VA, USA,
June 4-7 1989.

48. Yuan, B.; Gallagher, M. Combining Meta-EAs and racing for difficult EA parameter tuning tasks. In Parameter Setting in
Evolutionary Algorithms; Springer: Berlin/Heidelberg, 2007.

49. Dobslaw, F. A parameter tuning framework for metaheuristics based on design of experiments and artificial neural networks. In
Proceedings of the International Conference on Computer Mathematics and Natural Computing, Rome, Italy, 2 April 2010.

50. Smith-Miles, K.A. Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 2008, 41, 1–25.
51. Stoean, R.; Bartz-Beielstein, T.; Preuss, M.; Stoean, C. A Support Vector Machine-Inspired Evolutionary Approach for Parameter Tuning

in Metaheuristics; Working Paper; Available on: https://www.semanticscholar.org/paper/A-Support-Vector-Machine-Inspired-
Evolutionary-for-Stoean-Bartz-Beielstein/e84aa2111ab61e3b000691368fedbfc19b5e01e1, 2009.

52. Zennaki, M.; Ech-Cherif, A. A New Machine Learning based Approach for Tuning Metaheuristics for the Solution of Hard
Combinatorial Optimization Problems. J. Appl. Sci. 2010, 10, 1991–2000.

53. Lessmann, S.; Caserta, M.; Arango, I.M. Tuning metaheuristics: A data mining based approach for particle swarm optimization.
Expert Syst. Appl. 2011, 38, 12826–12838.

54. Maron, O.; Moore, A.W. Hoeffding Races: Accelerating Model Selection Search for Classification and Function Approximation; Advances
in Neural Information Processing Systems; Morgan-Kaufmann: Burlington, Massachusetts, USA, 1993.

55. Hoeffding, W. Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 1963 58, 13-30.
56. Lee, M.S.; Moore, A. Efficient algorithms for minimizing cross validation error. In Proceedings of the Machine Learning, Eighth

International Conference, New Brunswick, NJ, USA, 10–13 July 1994.
57. Dean, A.; Voss, D. Design and Analysis of Experiments; Springer: New York, USA, 1999.
58. Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2008.
59. Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures; Chapman and Hall/CRC: New York, USA, 2003.
60. Aamodt, A.; Plaza, E. Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Commun.

1994, 7, 39–59.
61. Kolodner, J. Case-Based Reasoning; Morgan-Kaufmann: Burlington, Massachusetts, USA, 2014.
62. Chang, J.W.; Lee, M.C.; Wang, T.I. Integrating a semantic-based retrieval agent into case-based reasoning systems: A case study

of an online bookstore. Comput. Ind. 2016, 78, 29–42.
63. Zhang, P.; Essaid, A.; Zanni-Merk, C.; Cavallucci, D.; Ghabri, S. Experience capitalization to support decision making in inventive

problem solving. Comput. Ind. 2018, 101, 25–40.
64. Khosravani, M.R.; Nasiri, S.; Weinberg, K. Application of case-based reasoning in a fault detection system on production of

drippers. Appl. Soft Comput. 2019, 75, 227–232.
65. Beddoe, G.; Petrovic, S.; Li, J. A hybrid metaheuristic case-based reasoning system for nurse rostering. J. Sched. 2009, 12, 99–119.

Appl. Sci. 2021, 11, 3325 28 of 28

66. Burke, E.K.; MacCarthy, B.L.; Petrovic, S.; Qu, R. Knowledge discovery in a hyper-heuristic for course timetabling using
case-based reasoning. In Practice and Theory of Automated Timetabling IV; Springer: Berlin/Heidelberg, Germany, 2003.

67. Petrovic, S.; Yang, Y.; Dror, M. Case-based selection of initialisation heuristics for metaheuristic examination timetabling. Expert
Syst. Appl. 2007, 33, 772–785.

68. Beddoe, G.R.; Petrovic, S. Selecting and weighting features using a genetic algorithm in a case-based reasoning approach to
personnel rostering. Eur. J. Oper. Res. 2006, 175, 649–671.

69. Madureira, A.; Pereira, I.; Sousa, N. Self-organization for scheduling in agile manufacturing. In Proceedings of the 10th
International Conference on Cybernetic Intelligent Systems, London, UK, 1–2 September 2011.

70. Madureira, A.; Pereira, I.; Falcão, D. Dynamic Adaptation for Scheduling Under Rush Manufacturing Orders With Case-Based
Reasoning. In Proceedings of the International Conference on Algebraic and Symbolic Computation, Boston, MA, USA, 26–29
June 2013.

71. Madureira, A.; Pereira, I.; Falcão, D. Cooperative Scheduling System with Emergent Swarm Based Behavior. In Advances in
Information Systems and Technologies; Springer: Berlin/Heidelberg, 2013.

72. Madureira, A.; Cunha, B.; Pereira, I. Cooperation Mechanism for Distributed resource scheduling through artificial bee colony
based self-organized scheduling system. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Beijing,
China, July 6-11, 2014.

73. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna,
Austria, 2014.

