
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2020) 11:267–290 
https://doi.org/10.1007/s12652-019-01265-7

ORIGINAL RESEARCH

Artificial bee colony with enhanced food locations for solving 
mechanical engineering design problems

Tarun K. Sharma1  · Ajith Abraham2

Received: 26 September 2018 / Accepted: 6 March 2019 / Published online: 16 March 2019 
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Artificial Bee colony (ABC) simulates the intelligent foraging behavior of bees. ABC consists of three kinds of bees: 
employed, onlooker and scout. Employed bees perform exploration and onlooker bees perform exploitation whereas scout 
bees are responsible for randomly searching the food source in the feasible region. Being simple and having fewer control 
parameters ABC has been widely used to solve complex multifaceted optimization problems. ABC performs well at explo-
ration than exploitation. The success of any nontraditional algorithm depends on these two antagonist factors. Focusing on 
this limitation of ABC, in this study the food locations in basic ABC are enhanced using Opposition based learning (OBL) 
concept. This variant is improved by incorporating greediness in searching behavior and named as I-ABC greedy. The modifi-
cations help in maintaining population diversity as well as enhance exploitation. The proposal is validated on seven mechani-
cal engineering design problems. The simulated results have been noticed competent with that of state-of-art algorithms.

Keywords Artificial bee colony · Engineering design problems · Constrained Optimization · Convergence · Opposition 
based learning

1 Introduction

Optimization problems exist in every sphere of human life; 
may it be Science, Social Science, Engineering and Man-
agement (D’Apice et al. 2014; Ha and Gao 2017; Chen and 
Chuang 2018; Safarzadeh et al. 2018). These optimization 
problems are generally solved by traditional or non tradi-
tional methods, based on the complexity of the problem. 
A traditional method such as gradient search requires a 
problem to be continuous and differentiable where as non-
traditional method hardly requires any domain knowledge 
of the problem (Tang et al. 2014; Salomon 1998). These 
methods generally simulates the behavior of natural species 
such as flock of birds, school of fishes, ants, bees etc and 
are inspired by the Darwin theory of ‘survival of the fittest’ 

(Holland 1975). The brief overview of non traditional meth-
ods can be referred from (Karaboga 2005; Rajpurohit et al. 
2017). Among these methods Artificial Bee Colony (ABC) 
is recently introduced by Karaboga (2005). ABC mimics the 
foraging behavior of natural bees. Due to its simple struc-
ture and fewer number of control parameters, ABC has been 
widely applied to solve many applications which are pre-
sented in Second Section. However ABC gained the popular-
ity in the minimum span of time, but there is ‘no free lunch’ 
algorithm available that can equally be applied to solve all 
type of optimization problems. Every nontraditional algo-
rithm has certain limitations. In ABC single search equa-
tion is responsible for performing both exploration as well 
as exploitation. This limits ABC in exploitation capability. 
Focusing on this limitation of ABC, in this study the food 
locations in basic ABC are enhanced using Opposition based 
learning (OBL) concept which helps in maintaining popula-
tion diversity. Also the variant is modified by embedding 
greedy search in the search equation and named as I-ABC 
greedy. This study is based on Intermediate food locations 
in ABC (I-ABC) (Sharma and Pant 2011, 2013) that uses 
Opposition Based Learning (OBL) concept. I-ABC, fur-
ther modified to accelerate the convergence rate and the 
enhanced variant is named as I-ABC greedy. In this work 
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I-ABC greedy algorithm is implemented to solve seven con-
strained optimization problems of mechanical engineering.

The structure of the present study is as follows: Sect. 2 
presents a brief literature review of the applications and 
modified variants of ABC. Introduction to ABC is presented 
in Sect. 3. Section 4 discusses the proposed I-ABC greedy 
algorithm. Parameter settings are given in Sect. 5. Seven 
constrained optimization problems of mechanical engineer-
ing with simulated results are presented and analyzed in 
Sect. 6. Finally paper concludes with future scope in Sect. 7.

2  Literature review

ABC is recently introduced and most popular swarm intel-
ligence algorithm that simulates the foraging behavior of 
honey bees. ABC is proposed by Karaboga in 2005 (2005). 
ABC has shown competitive results when applied to solve 
many real time applications. Initially ABC was introduced 
to handle unconstrained optimization problems (Karaboga 
and Basturk 2007b) which later modified to handle and solve 
constrained optimization problems (Karaboga and Basturk 
2007a, b; Karaboga and Akay 2011). However like other 
swarm intelligence algorithms it also suffers with slow con-
vergence rate (Mezura-Montes and Coello Coello 2011). 
Therefore several researchers have modified the basic ABC 
structure and presented the hybrid variants of ABC in order 
to improve the efficiency and efficacy of the ABC by provid-
ing a tradeoff between exploration and exploitation (Diwold 
et al. 2011; Bansal and Sharma 2012; Kumar et al. 2013; 
Jadon et al. 2015). This section carries the literature review 
of the hybrid variants of ABC for solving constrained opti-
mization problems (COP).

In 2011, Brajevic et  al. (2011) presented a SC-ABC 
(simple constrained ABC) where the best solutions are car-
ried into new run as initial solutions. This makes each run 
dependent on the previous run. All the infeasible solutions 
found so far are replaced by randomly generated solutions 
in Scout bee phase. Mezura-Montes and Cetina-Domłnguez 
(2012), presented a modified variant M-ABC (modified 
ABC). They have done four modifications in the structure 
of ABC: embedded tournament selection in onlooker phase 
and smart flight operator in scout phase and handling bound-
ary constraints. Also dynamic tolerance is used for equality 
constraints. Brajevic and Tuba (2013), introduced an ABC 
variant called upgraded ABC (UABC) for solving engineer-
ing design constrained problems. In UABC the parameter, 
modification rate (MR), is fine tuned as well as the scout 
bee number is dynamically adapted using a new control 
parameter, ISPP to enhance exploration. In 2014, Li and Yin 
(2014) presented a Self adaptive ABC (SACABC) algorithm 
that uses Deb’s rule for generating feasible solution in the 
employed bee phase while onlooker bee phase utilizes the 

multi-objective optimization method. Tsai (2014) proposed 
a hybrid variant of ABC named as ABC-BA which inte-
grates ABC and Bees Algorithm. In ABC-BA a constraint 
handling method similar to penalty method is introduced 
where fitness value of a feasible solution is treated as objec-
tive function value and fitness value of infeasible solution 
is considered as violation. Brajevic (2015) presented five 
modifications in ABC. It uses two modified search operators 
in the employed and onlooker phase and random search is 
replaced with crossover in scout phase of ABC to improve 
exploitation capability. Secondly equality constraints are 
handled using dynamic tolerance while boundary con-
straints are handled with some improved mechanism. Ayan 
et al. (2015) proposed chaotic ABC to solve optimal power 
flow problem. Pan (2016) proposed a co-evolutionary ABC 
(CCABC) to solve steelmaking continuous casting problem. 
In CCABC there are two sub swarms that address each sub 
problem. Bhambu et al. (2018) presented a MGABC (modi-
fied Gbest-guided ABC) that adjusts solutions step size in 
each iterations.

Sharma and Pant (2017) proposed a hybrid variant that 
integrates ABC and Shuffled Frog Leaping (SFL) algorithm 
and named it as Shuffled-ABC. Shuffled-ABC initiates with 
generation of initial population using randomly distribution 
and chaotic system. Then this population is divided in to two 
parts based on their fitness values. The first group contains 
the superior population and applies ABC to process where as 
second having inferior population applies SFLA to process. 
Akay and Karaboga (2017) presented nine variants of ABC 
with modifications in various phases of employed, onlooker 
and scout along with mutation, crossover operators of Differ-
ential Evaluation algorithm. Liang et al. (2017) introduced a 
modified variant of ABC named as I-ABC (improved artifi-
cial bee colony) to solve constrained optimization problems, 
in which Deb’s constraint handling rules are used to handle 
the constraints. Liang suggested few modifications in the 
basic structure of ABC. At initial better feasible solutions 
are selected and then new selection strategy based on rank 
selection is introduced. Later search equation is modified by 
embedding the information of best solution found so far that 
adapts control parameters to justify exploration and exploita-
tion. The algorithm was tested over a set of 14 benchmark 
constrained functions considered from the literature. Sundar 
et al. (2017) proposed a hybrid ABC algorithm to solve job 
scheduling problem where local search mechanism is used 
to improvise the quality of the solutions.

In 2018, Liu et  al. (2018) proposed modified ABC 
that uses dynamic penalty method to handle constraints; 
Employed bee phase is modified using Lévy flight along 
with logistic map. Further onlooker bee phase uses best and 
its two neighboring solutions and boundary constraints are 
handled using best solutions. Wang and Jiao-Hong (2018) 
proposed a hybrid method that encompasses Krill Herd and 
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ABC for exchanging the information that results in balanc-
ing exploration and exploitation process. Wang et al. (2019) 
propose a method based on ANN and SFLA for selection 
of outsourcing service in cement equipment manufacturing 
company. A brief overview of ABC proposals for handling 
constraints are discussed in Table 1.

3  Brief introduction to artificial bee colony

Artificial Bee Colony simulates the foraging process of 
natural honey bees. The bee colony family in ABC con-
sists of three members: employed, onlooker and scout bees. 
Scout bees’ initiates searching of food sources randomly, 
once the potential food sources are identified by scout they 
become employed bees. Then food sources are exploited 
by employed bees that also shares the information about 
the quality and quantity of food sources to the onlooker 
(bees resting at hive and waiting for the information from 
employed bees). A specific “waggle dance” is performed to 
share food information. The ABC algorithm is presented 
below:

3.1  Initialization of random food sources

The random food sources (FS) are generated in the search 
space using following Eq. (1):

where i represents the FS and j denotes the jth dimension. 
max and min denote the upper and lower bounds.

(1)xij = maxj + rand(0, 1) ×
(
maxj − minj

)
,

3.2  Employed bee process

The search equation involved in this phase and also performs 
the global search by introducing new food sources Vi = (vi1, 
vi2,…viD) corresponding to Xi = (xi1, xi2,…xiD) is discussed 
below:

where k is selected randomly and distinct from i. Greedy 
selection mechanism is performed to select the population 
to store in a trail vector. In case vij fails corresponding to 
boundary constraints then they are handled using following 
Eq. (3):

From the Eq. (3), new solution may generated then there 
will be greedy selection in Eqs. (3) and (4)

where fit() represents the fitness value which is defined in 
Eq. (5) (for minimization case):

 where f() represents the objective function value.

(2)vij = xij + rand(−1, 1) × (xij − xkj),

(3)vij =

{
maxj if vij > maxj,

minj if vij < minj.

(4)xi =

{
vi if fit(vi) > fit

(
xi
)
,

xi otherwise.

(5)fit(xi) =

{
1

(1+f (xi)
if f (xi ) > 0

1 + abs f
(
xi
)

if f (xi ) ≤ 0,

Table 1  Brief overview 
of ABC & modified ABC 
proposals handling constrained 
optimization functions

Algorithm (Author(s), Year) Constrained handling methodology

ABC (Bernardino et al. 2007) Deb’s Rule
SM-ABC (Erbatur et al. 2000) Deb’s Rule
Elitist-ABC (Eskandar et al. 2012) Deb’s Rule
Modified ABC (Bernardino et al. 2008) Deb’s Rule
SC-ABC (Brajevic 2015) Deb’s Rule
M-ABC (Brajevic and Tuba 2013) Deb’s Rule
U-ABC (Brajevic et al. 2011) Deb’s Rule
SACABC (Brajević and Ignjatović 2018) Multiobjective and Deb’s Rule
ABC-BA (Cagnina et al. 2008) Penalty Method
CB-ABC (Chen and Chuang 2018) Deb’s Rule
CABC (Coelho 2010) Penalty Method
CCABC (Coello Coello 2000) Penalty Method
i-ABC (Gandomi et al. 2013) Deb’s Rule
MGABC (Coello Coello and Becerra 2004) Deb’s Rule
Shuffled-ABC (Coello Coello and Montes 2002) Penalty Method
ABCV1-9 (Coello Coello and Landa-becerra 2003) Deb’s Rule
I-ABC (D’Apice et al. 2014) Deb’s Rule
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3.3  Onlooker bee process

Onlooker bee carry out local search in the region of the 
food sources shared by employed bee. Equation (6) is used 
to choose the food source by Onlooker bee from a set of FS 
solutions. Probability Pi is used to choose the food source 
(solution).

Onlooker bee chooses the food source having better prob-
ability, then Eq. (2) is used to exploit the food source and 
new food source is generated. After this a greedy process is 
followed using Eq. (4).

3.4  Scout bee process

If the food source does not improve in the fix number of tri-
als (limit a control parameter) then employed bees turns into 
scout bees and randomly forage for the new food sources.

Initially ABC was designed to handle unconstrained opti-
mization problems where it has shown competitive edge over 
PSO, DE and GA (Karaboga and Akay 2009). Later ABC 
was modified to handle and solve COPs (Karaboga and Akay 
2011) by adding one more parameter, modification rate (MR) 
in employed and onlooker phase, constraints were handled 
using Deb’s rule (Deb 2000) and thirdly another control 
parameter named SPP is added along with limit in scout bee 
phase that controls the abandoned food source, if it exceeds 
limit. If it exceeds limit then a scout production process is 
carried out. SPP ensures that the new food source randomly 
generated by the scout bee replace the proposed food source. 
Deb’s rule suggests that:

(a) Feasible solution is selected over infeasible solution.
(b) In case two feasible solutions are there then the solution 

having best objective function value would be consid-
ered.

(c) If both the solutions are infeasible then the one vio-
lating minimum number of constraints would be pre-
ferred.

Following Eq. (7) is used by the employed and onlooker 
bees to generate the new food source.

where φij is a random number in the range [− 1,1] and MR 
controls the modification in xij and R ∈ [0,1].

(6)Pi = fit(xi)∕

FS∑
i=1

fit(xi).

(7)vij =

{
xij + 𝜑ij

(
xki − xij

)
if Rj < MR

xij Otherwise
,

4  I‑ABC greedy: proposed scheme

The following proposal has been proposed by Sharma and 
Pant (2013) for solving unconstrained optimization prob-
lems. This study is extended here to implement the proposed 
algorithms on COP’s.

4.1  Motivation and concept involved 
in the proposed Algorithm: I‑ABC greedy

In order to enhance the solution diversity as well as con-
vergence rate the basic ABC is improved by embedding 
Opposition based learning (OBL) concept while initialing 
the initial solution and later the search equation (Eq. 2) is 
modified by inserting a greedy concept. The concept of OBL 
is discussed below:

4.1.1  Opposition based learning (OBL)

In normal process, the initial population is randomly gener-
ated and we initiate towards the solution with this random 
guess which may or may not be in the vicinity of the exact 
solution. Sometimes, considering the worst scenario, the 
solution may lie in opposite direction then the process of 
search may take comparatively more time. Also not having 
the prior information about the solution, it is not possible 
to make an initial best guess. Therefore, simultaneously 
searching process must be performed in all directions or in 
opposite direction. This also provides solutions diversity. 
This is why the concept of OBL, proposed by Rahnamayan 
et al. (2008) is embedded in the proposal.

Opposite solutions to initially random generated popula-
tions are generated using the concept of opposite numbers. 
Following Eq. (8) is used to generate opposite solutions:

Let x ∈ in a certain defined interval x ∈ [lb, ub] , then 
opposite number x̄ is calculated as:

4.2  Steps involved in proposed scheme

4.2.1  Initialization process

The basic structure of ABC is modified while initializing 
initial set of solutions (food sources). Following steps are 
involved to generate the initial solutions (food sources):

• Firstly, solutions are generated using the uniformly dis-
tributed random numbers, say Pop1, where Pop1 repre-
sents {U1, U2,..., UN}. Evaluate their fitness value.

• Secondly, apply the concept of OBL and generate the 
corresponding opposite solutions, say Pop2, where Pop2 
represents {O1, O2,…, ON}. Evaluate their fitness value.

(8)x̄ = lb − ub − x
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There will be 2N populations, one from randomly gener-
ated and other will be from opposite numbers.

• Then the mean of Pop1 and Pop2 named as intermedi-
ate locations (IL) (solutions) based on fitness values is 
computed Eq. (9):

After this the elite N, based on fitness values are taken as 
initial solutions (XIL) or food sources.

Sphere and Griekwank functions are used to demonstrate 
the generation of initial solution using the above discussed 
scheme in Fig. 1.

4.2.2  Modification in the search mechanism

Now in order to enhance the exploitation capability as well 
as the convergence rate, search equation (Eq. 2) is modified 
by bounding the search in the vicinity of the best solution 
i.e. xbest,j is selected over xij in Eq. (2). This also helps in 
managing the balance between exploration and exploitation 
process. Hence Eqs. (2) and (7) are modified as:

(9)
IL = {

(
U1 + O1

)
∕2,

(
U2 + O2

)
∕2,… ,

(
UN + ON

)
∕2}.

These two modifications in basic ABC defines I-ABC 
greedy algorithm.

4.3  Constraint handling

Constraints are handled using following Deb’s rules (2000):

(a) Feasible solution is selected over infeasible solution.
(b) In case two feasible solutions are there then the solution 

having best objective function value would be consid-
ered.

(c) If both the solutions are infeasible then the one vio-
lating minimum number of constraints would be pre-
ferred.

The notations are same as discussed in Eq. (2). The flow 
graph of the proposals is demonstrated in Fig. 2.

(10)vij = xbest,j + �ij

(
xbest,j − xkj

)

(11)vij =

{
xbest,j + 𝜑

(
xbest,j − xkj

)
if Rj < MR

xij Otherwise

Fig. 1  Demonstration of 
initial population generation 
for Sphere in a uniformly 
random distribution b using the 
proposed concept of OBL and 
for Griekwank in c uniformly 
random distribution d using 
the proposed concept of OBL 
(Babaeizadeh and Ahmad 2016)
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5  Parameter settings and evaluation 
criterion

• Stopping criterion 500,000 number of number of func-
tion evaluations (NFE’s)

• Runs: Each algorithm performed 25 independent runs
• Statistical results in terms of Best, Mean, Median, Worst 

and Standard Deviation (SD) have been computed (Liang 
et al. 2006).

• Deb’s rule are used to handle the constraints

5.1  Control parameters

Algorithms are highly sensitive and plays a significant role 
in search mechanism. Also for unbiased results comparison 
parameters are to be tuned accordingly. In order to make 
fair comparison the algorithms considered for simulated 

result comparison are adopted with their original param-
eter setting as mentioned in the original articles (Coello 
Coello 2000; Coello Coello and Montes 2002; Lampinen 
2002; Ray and Liew 2003; Coello Coello and Becerra 2004; 
Krohling and Coelho 2006; He and Wang 2007a, b; Yuan 
and Qian 2010; Zahara and Kao 2009; Yang 2010; Kashan 
2011; Eskandar et al. 2012; Akay and Karaboga 2012; Sado-
llah et al. 2013; Gong et al. 2014; Baykasolu and Ozsoydan 
2015; Guedria 2016; Yi et al. 2016; Brajević and Ignjatović 
2018). For ABC the parameters are considered from (Akay 
and Karaboga 2012) and for I-ABC greedy following is the 
adjustment of control parameters (Table 1):

All the algorithms are executed in Dev C + + with the 
following machine configuration:

Processor Intel(R) Core (TM) i3-5005U CPU @2.00 GHz 
having 4 GB RAM. An inbuilt rand () function in C + + is 
used to initialize the random numbers.

Fig. 2  Flow graph of the pro-
posed I-ABC greedy algorithm

Intermediate Solutions (Food locations) are identified using Eq. (9)

Determine Neighbors of the 
Chosen Food Sources by the 

Onlooker Bees Eq. (10) 

Evalaute the amount of nectar 

Employed Bee Phase 
Identify the neighbors using Eq. (10)

Evaluate the amount of nectar

Perform Selection

If the Onlookers 
Distributed?

Memorize the best value  
(in this case a vector represent the minimum fitness value)

Identify all the abandoned solutions (Food Sources) 

New positions are generated for the abandoned solutions using Eq. (11)

If the Termination 
Condition Satisfied ?

Final Food Positions 

No 

No 

Yes 

Solutions are initiated using uniformly distributed random numbers & OBL Technique (Set of 2N Solutions) 

Yes 

Evaluate and select the N elite solutions based on fitness values

Memorize the best value  
(in this case a vector represent the minimum fitness value)
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The parameter settings for all the algorithms considered 
for statistical results comparisons are kept same as men-
tioned in the literature (see Table 2).

6  Mechanical engineering design 
optimization problems and result analysis

6.1  Welded beam design (WBD) problem (Rao 1996)

This problem is taken from that aims to optimize the cost of 
design of welded beam. The key objective of the problem 
is to optimize the cost of fabrication. The problem has four 
decision variables with seven restraints presenting shear 
stress (α), beams bending stress (β), deflection on the beam 
( � ) and the bar ( Δc ) having buckling load. The problem is 
detailed below

w.r.t. restraints

where

f (Z) = 1.10471z1z
2

2
+ 0.04811z3z4(14 + z2).

h1(Z) = �(Z) − �max ≤ 0

h2(Z) = �(z) − �max ≤ 0

h3(Z) = z1 − z4 ≤ 0

h4(Z) = 0.10471z2
1
+ 0.04811z3z4

(
14 + z2

)
− 5 ≤ 0

h5(Z) = 0.125 − z1 ≤ 0

h6(Z) = �(z) − �max ≤ 0

h7(Z) = Δ − Δc(z) ≤ 0

Z = (z1, z2, z3, z4)
T ; 0.1 ≤ z1; z4 ≤ 2; 0.1 ≤ z2; z3 ≤ 10,

�(Z) =

√
�

�2 +
2�����z2

2R
+ ���2

�� =
Δ√
2z1z2

��� =
MR

J

The illustration of welded beam is given in Fig. 3.
The simulated statistical results of I-ABC greedy are 

compared with the state-of-art algorithms and are presented 
in Tables 3, 4 and 5. The considered algorithms for result 
comparison are variants of Genetic Algorithm (GA) i.e. GA1 
(GA based Co-evolution Algorithm) (Coello Coello 2000); 
GA2 (GA using dominance based tournament) (Coello 
Coello and Montes 2002); DE (Lampinen 2002); SC (Ray 

M = Δ(14 +
z2

2
)

R =

√
z2
2

4
+

(
z1 + z3

2

)2

J = 2

�√
2z1z2

�
z2
2

12
+

�
z1 + z3

2

�2
��

�(Z) =
504000

z4z
2

3

�(Z) =
65856000

30 × 10
6z4z

3

3

Δc =
4.013 ×

�
30 × 10

6
�

196

�
z2
3
z6
4

36
×

⎡
⎢⎢⎢⎢⎣
1 −

⎛
⎜⎜⎜⎜⎝

z3

�
30×106

4×(12×106)

28

⎞
⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎦

Δ = 6000lb;L = 14inch;E = 30 × 106 psi;G = 12 × 106 psi

�max = 13600 psi; �max = 30000 psi; �max = 0.25 inch.

Table 2  Control parameters of I-ABC greedy algorithm

Colony size (CS) 100 (50 
Onlooker & 50 
employed)

Modification rate (MR) 0.8
Limit 0.5 × CS × D
SPP 0.5 × CS × D

Fig. 3  Illustration of WBD problem
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and Liew 2003); CAEP (Coello Coello and Becerra 2004); 
CPSO-GD (Krohling and Coelho 2006); HPSO (He and 
Wang 2007a, b); HGA (Hybrid GA) (Yuan and Qian 2010); 
NM-PSO (Zahara and Kao 2009); APSO (Yang 2010); LCA 
(Kashan 2011); WCA (Eskandar 2012); ABC (Akay and 
Karaboga 2012); MBA (Sadollah et al. 2013); rank-iMDDE 
(Gong et al. 2014); AFA (Baykasolu and Ozsoydan 2015); 
IAPSO (Guedria 2016); MHS-PCLS (Yi et  al. 2016); 
and UFA (Brajević and Ignjatović 2018). In Table 3, best 
obtained results for all decision variables (DV), restraints 
and objective function value are presented. Tables 4 and 
5, demonstrate the statistically simulated results in terms 
of worst, mean, best, SD and NFE’s for I-ABC greedy and 
other optimizers considered for the comparisons. I-ABC 
greedy has shown the competitive results and able to solve 
this problem efficiently with lesser NFE’s. The same is illus-
trated in Fig. 4.

6.2  Pressure vessel design (PVD) problem

In the series next problem is taken from (Sandgren 1990; 
Kannan and Kramer 1994; Rao 1996). The problem is mixed 
non linear problem. The problem is named as pressure Ves-
sel Design (PVD). This optimization problem aims to obtain 
the value of materials, forming and welding costs in order to 
minimize the total manufacturing cost of a pressure vessel. 
The problem has four decision variables namely z1, z2, z3 and 
z4 along with four restraints. z1 and z2 are discrete where as 
z3 and z4 are continuous variables. z1, z2, z3 and z4 represent 
the shell thickness, head thickness, inner side radius and 
length of the cylinder respectively. The figure of PVD is 
illustrated in Fig. 5. To handle the problem of mixed non 
linear, the discrete variables (z1 and z2) are rounded off to 
their integer part by multiplying with 0.0625. The problem 
of PVD is formulated below:

w.r.t. restraints

where

To verify and compare the statistical results of I-ABC 
greedy algorithm, in this study GA1 (Coello Coello 2000); 

Minimize f (Z) = 0.6224z
1
z
3
z
4
+ 1.7781z

2
z2
3
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GA2 (Coello Coello and Montes 2002); CPSO (Krohling 
and Coelho 2006); HPSO (He and Wang 2007a, b); co-evo-
lutionary differential evolution (CDE) (Huang et al. 2007); 
NM–PSO (Zahara and Kao 2009); G-QPSO (Coelho 2010); 

QPSO (Coelho 2010); LCA (Kashan 2011), WCA (Eskandar 
et al. 2012); PSO (Sadollah et al. 2013); MBA (Sadollah 
et al. 2013); rank-iMDDE (Gong et al. 2014); AFA (Bayk-
asolu and Ozsoydan 2015); IAPSO (Guedria 2016); MHS-
PCLS (Yi et al. 2016); and UFA (Brajević and Ignjatović 
2018) are considered. The results are presented in Tables 6, 
7 and 8. In Table 4 the best results achieved for the decision 
variables and restraints are given. Also in Tables 7 and 8 
the simulated results in terms of best, worst, mean, SD and 
the NFE along with other optimizers are presented. It can 
be clearly noticed from the tables that I-ABC greedy per-
formed at par and able to achieve the optimized results in 
lesser NFE as compared to others considered for comparison 

Table 4  The statically simulated results of WBD problem attained (worst, mean, best, SD and NFE’s) by GA1 &2, CAEP, CPSO, HPSO, PSO-
DE, NM-PSO, SC, DE, WCA, LCA, MBA

Opti. GA1 GA2 CAEP CPSO HPSO PSO-DE NM-PSO SC DE WCA LCA MBA

Worst 1.785835 1.993408 3.179709 1.782143 1.814295 1.724852 1.733393 6.399678 1.824105 1.744697 1.7248523 1.724853
Mean 1.771973 1.792654 1.971809 1.748831 1.74904 1.724852 1.726373 3.002588 1.768158 1.726427 1.7248523 1.724853
Best 1.748309 1.728226 1.724852 1.728024 1.724852 1.724852 1.724717 2.385434 1.733461 1.724856 1.7248523 1.724853
S.D 1.12E02 7.47E02 4.43E01 1.29E02 4.01E02 6.70E16 3.50E03 9.60E01 2.21E02 4.29E03 7.11E15 6.94E19
NFEs 900,000 80,000 50,020 240,000 81,000 66,600 80,000 33,095 204,800 46,450 15,000 47,340

Table 5  The statically simulated results of WBD problem attained (worst, mean, best, SD and NFE’s) by APSO, ABC, rank-iMDDE, UFA, 
IAPSO, UFA, MHS–PCLS and I-ABC greedy 

The best results are highlighted in bold

Opti. APSO ABC Rank-iMDDE AFA IAPSO UFA MHS-PCLS I-ABC greedy

Worst 1.993999 NA 1.724852309 1.724852 1.7248624 1.7248523090 1.724852 1.724910
Mean 1.877851 1.741913 1.724852309 1.724852 1.7248528 1.7248523088 1.724852 1.724865
Best 1.736193 1.724852 1.724852309 1.724852 1.7248523 1.7248523087 1.724852 1.724852
S.D 0.076118 3.1E02 7.71E11 0.000000 2.02E06 7.96E 11 8.11e–10 1.92E-05
NFEs 50,000 30,000 15,000 50,000 12,500 2000 10,000 14,500

Fig. 4  NFE’s used by the opti-
mizers to obtain optimal value 
in WBD Problem
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Fig. 5  Illustration of PVD problem

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



276 T. K. Sharma, A. Abraham 

1 3

else IAPSO. The same is depicted in Fig. 6. This shows that 
I-ABC greedy converges faster than others in comparison. 
All the results for other optimizers are taken from their origi-
nal research.

6.3  Tension/compression spring design (T/CSD) 
optimization problem (Ha and Gao 2017)

The problem focuses on optimization of the weight of the 
compression string. The problem consists of three decision 

variables namely z1, z2 and z3 with four restraints defining 
deflection, frequency, shear stress and outside diameter lim-
its. There are separate conditions for each variable. The deci-
sion variables z1, z2 and z3 denotes diameter of wire, mean 
coil diameter and active coils respectively. The diagram of 
(T/CSD) is illustrated in Fig. 7. The mathematical formula-
tion of the problem is stated below.

w.r.t. restraints
Minimize f (Z) = (z3 + 2)z2z

2

1

Table 6  The best simulated results for PVD problem attained by CDE, GA1, CPSO, HPSO, NM-PSO, G-QPSO, WCA, MBA, APSO, ABC, 
IAPSO, UFA, MHS-PCLS and I-ABC greedy 

DV decision variables

D.V.* z1 z2 z3 z4 h1(Z) h2(Z) h3(Z) h4(Z) f(Z)

CDE 0.8125 0.4375 42.0984 176.6376 − 6.67E–07 − 3.58E–02 − 3.705123 − 63.3623 6059.734
GA1 0.8125 0.4375 42.0974 176.654 − 2.01E–03 − 3.58E–02 − 24.7593 − 63.346 6059.9463
CPSO 0.8125 0.4375 42.0913 176.7465 − 1.37E–06 − 3.59E–04 − 118.7687 − 63.2535 6061.0777
HPSO 0.8125 0.4375 42.0984 176.6366 − 8.80E–07 − 3.58E–02 3.1226 − 63.3634 6059.7143
NM-PSO 0.8036 0.3972 41.6392 182.412 3.65E–05 3.79E–05 − 1.5914 − 57.5879 5930.3137
G-QPSO 0.8125 0.4375 42.0984 176.6372 − 8.79E–07 − 3.58E–02 − 0.2179 − 63.3628 6059.7208
WCA 0.7781 0.3846 40.3196 200 − 2.95E–11 − 7.15E–11 − 1.35E–06 − 40 5885.3327
MBA 0.7802 0.3856 40.4292 198.4964 0 0 − 86.3645 − 41.5035 5889.3216
APSO 0.8125 0.4375 42.0984 176.6374 − 9.54E–07 − 3.59E–02 − 63.3626 − 0.9111 6059.72418
ABC 0.8125 0.4375 42.098446 176.636596 0.000000 − 0.035881 − 0.000226 − 63.363404 6059.714339
IAPSO 0.8125 0.4375 42.0984 176.6366 − 4.09E–13 −3.58E–2 −1.39E–07 −63.363.34 6059.71433
UFA 0.8125 0.4375 42.098445 176.63659 −9.76E–13 −0.04 −3.60E–7 NA 6059.71433
MHS–PCLS 0.8125 0.4375 42.098446 176.636596 −1.6928E–11 −3.59E–02 −1.7664E–05 −63.3634 6059.71433
I-ABC greedy 0.8125 0.4375 42.0984 176.6369 − 1.27E–11 − 3.58E–02 − 1.26E–06 − 63.2963 6059.7124

Table 7  The statically simulated results of PVD problem attained (worst, mean, best SD and NFE’s) by I-ABC greedy, GA1, GA2, CPSO, 
HPSO, NM-PSO, G-QPSO, QPSO, PSO, CDE, WCA, LCA

Opti GA1 GA2 CPSO HPSO NM-PSO G-QPSO QPSO PSO CDE WCA LCA

Worst 6308.497 6469.322 6363.8041 6288.677 5960.0557 7544.4925 8017.2816 14076.324 6371.0455 6590.2129 6090.6114
Mean 6293.8432 6177.2533 6147.1332 6099.9323 5946.7901 6440.3786 6440.3786 8756.6803 6085.2303 6198.6172 6070.5884
Best 6288.7445 6059.9463 6061.0777 6059.7143 5930.3137 6059.7208 6059.7209 6693.7212 6059.734 5885.3327 6059.8553
SD 7.4133 130.9297 86.45 86.2 9.161 448.4711 479.2671 1492.567 43.013 213.049 11.37534
NFEs 900,000 80,000 240,000 81,000 80,000 8000 8000 8000 204,800 27,500 24,000

Table 8  The statically simulated results of PVD problem attained (worst, mean, best SD and NFE’s) by I-ABC greedy, MBA, APSO, ABC, 
rank-iMDDE, UFA, IAPSO, UFA, MHS–PCLS and I-ABC greedy  

The best results are highlighted in bold

Opti MBA APSO ABC Rank-iMDDE AFA IAPSO UFA MHS-PCLS I-ABC greedy

Worst 6392.5062 7544.49272 NA 6059.714335 6090.52614259 6068.78539 6059.7143352069 6059.71439 6086..982
Mean 6200.64765 6470.71568 6245.308144 6059.714335 6064.33605261 6068.7539 6059.714335100 6059.71434 6067.816
Best 5889.3216 6059.7242 6059.714736 6059.714335 6059.71427196 6059.7143 6059.7143350561 6059.71433 6059.7142
SD 160.34 326.9688 205.1332 7.57E–07 11.28785324 14.0057 3.47E-08 1.28120E–05 19.044
NFEs 70,650 200,000 30,000 15,000 50,000 7,500 2000 10, 000 8000
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where

For the analysis over results, the proposal is compared 
with other optimizers refereed from the literature. The opti-
mizers are GA1(Coello Coello 2000); DE (Lampinen 2002); 
GA2 (Coello Coello and Montes 2002); SC (Ray and Liew 

h1(Z) = 1 −
z3
2
z3

7.1785z4
1

≤ 0

h2(Z) =
4z2

2
− z1z2

12.566
(
z2z

3

1

)
− z4

1

+
1

5.108z2
1

− 1 ≤ 0

h3(Z) = 1 −
140.45z1

z2
2
z3

≤ 0

h4(Z) =
z2 + z1

1.5
− 1 ≤ 0

0.05 ≤ z1 ≤ 2; .25 ≤ z2 ≤ 1.3; 2 ≤ z3 ≤ 15.

2003); CPSO (Coello Coello and Becerra 2004); (µ + λ)-ES 
(Mezura-Montes and Coello Coello 2005); HPSO (He and 
Wang 2007a, b); ABC (Karaboga and Basturk 2007a); 
DEDS (Zhang et al. 2008); NM–PSO (Zahara and Kao 
2009); HEAA (Wang et al. 2009); G-QPSO (Coelho 2010); 
APSO (Yang 2010); QPSO (Coelho 2010); PSO–DE (Liu 
et al. 2010); DELC (Wang and Li 2010); PSO (Sadollah 
2013); rank-iMDDE (Gong et al. 2014); AFA (Baykasolu 
and Ozsoydan 2015); IAPSO (Guedria 2016); MHS-PCLS 
(Yi et al. 2016); and UFA (Brajević and Ignjatović 2018). 
Table 9 presents the best simulated and comparative results 
of T/CSD problem attained by G-QPSO, DEDS, HEAA, 
NM–PSO, DELC, WCA, LCA, MBA, APSO, ABC, IAPSO, 
UFA, MHS–PCLS and I-ABC greedy. Also in Tables 10 
and 11 (divided in two tables as there are several optimizers 
considered for results comparisons) the statically simulated 
results of T/CSD problem attained (worst, mean, best SD 
and NFE’s) by DE, DELC, DEDS, HEAA, PSO–DE, SC, 
(µ + λ)-ES, ABC, LCA, WCA, MBA, APSO, GA1,GA2, 
CAEP, CPSO, HPSO, NM–PSO, G-QPSO, QPSO, PSO, 
ABC, IAPSO, UFA, MHS–PCLS and I-ABC greedy are 
presented. It can be analyzed that G-QPSO, QPSO, PSO, 
IAPSO and I-ABC greedy took 2000 NFEs only to attain the 
global optimal value. The same is depicted in Fig. 8.

6.4  Gear train design (GTD) optimization problem 
(Ha and Gao 2017)

The objective of the problem is to optimize the cost incurred 
in gear ratio in GTD. The design is presented in Fig. 9. The 
problem has only four integer decision variables namely z1, 
z2, z3, and z4 with only one limit condition. The variables 
correspond to the gear teeth numbers of A, B. D & F. The 
value of decision variables ranges from 12 to 60. The math-
ematical formulation of GTD is given below.

Minimize f (Z) =

((
1

6.931

)
−

(
z2z3

z1z4

))2

,

Fig. 6  NFE’s used by the opti-
mizers to obtain optimal value 
in PVD Problem
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Fig. 7  Tension/compression spring design (T/CSD) optimization 
problem
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w.r.t. restraints

The obtained simulated results are presented in Table. To 
test a13nd validate the efficiency the proposal is compared 
with results obtained by CSA (Cuckoo Search Algorithm) 
(Gandomi et al. 2013); UPSO (Unified PSO) (Wang et al. 
2005); ABC (Karaboga and Basturk 2007a); APSO (Yang 
2010); MBA (Sadollah et al. 2013); IAPSO (Guedria 2016); 
and UFA (Brajević and Ignjatović 2018). In Table 12, the 
value obtained for all the decision variables is given and 

12.0 ≤ zi ≤ 60.0.

6.5  Speed reducer design (SRD) problem

The problem of speed reducer is taken form Golinski (1973) 
and Rao (1996) with an objective of optimizing the weight 
of speed reducer with respect to the restraints and condi-
tions. The problem has seven decision variables with eleven 
restraints and boundary conditions for seven variables. All 
the variables are continuous except z3. There are two cases 
of the problem, with a difference of only one boundary con-
dition of z5. This problem is complex and mixed integer. 
The diagram of SED is shown in Fig. 11 and mathematical 
formulation is presented below:
Case 1 

Minimize f (Z)

= 0.7854z1z
2

2

(
3.3333z2

3
+ 14.9334z3 − 43.0934
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z2
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+ 0.7854(z4z
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Table 9  Best simulated and comparative results of T/CSD problem attained by I-ABC greedy, G-QPSO, DEDS, HEAA, NM-PSO, DELC, 
WCA, LCA, MB, APSO, ABC, IAPSO, UFA, MHS-PCLS and I-ABC greedy 

D.V. z1 z2 z3 h1(Z) h2(Z) h3(Z) h4(Z) f(Z)

G-QPSO 0.051515 0.352529 11.538862 − 4.83E–05 − 3.57E–05 −4.0455 − 0.73064 0.012665
DEDS 0.051689 0.356717 11.288965 1.45E–09 − 1.19E–09 − 4.053785 − 0.727728 0.012665
HEAA 0.051689 0.356729 11.288293 3.96E–10 − 3.59E–10 − 4.053808 − 0.72772 0.012665
NM–PSO 0.05162 0.355498 11.333272 1.01E–03 9.94E–04 − 4.061859 − 0.728588 0.01263
DELC 0.051689 0.356717 11.288965 − 3.40E– 09 2.44E–09 − 4.053785 − 0.727728 0.012665
WCA 0.05168 0.356522 11.30041 − 1.65E–13 − 7.9E–14 − 4.053399 − 0.727864 0.012665
LCA 0.051689 0.356718 11.28896 NA NA NA NA 0.01266523
MB 0.051656 0.35594 11.344665 0 0 − 4.052248 − 0.728268 0.012665
APSO 0.052588 0.378343 10.138862 − 1.55E–04 − 8.33E–04 − 4.089171 − 1.069069 0.0127
ABC 0.051749 0.358179 11.203763 0.000000 0.000000 − 4.056663 − 0.726713 0.012665
IAPSO 0.051685 0.356629 11.294175 − 1.97E–10 − 4.64E–10 − 4.053610 − 1.091686 0.01266523
UFA 0.05168967 0.3567324 11.2881015 −5.98E − 10 −1.63E–10 −4.054 −0.728 0.0126652328
MHS–PCLS 0.05168918 0.35672077 11.288788 −2.2128E–10 −4.5078E–11 −4.0538 −0.7277 0.0126652
I-ABC greedy 0.051686 0.356014 11.202765 – 6.98E–05 − 2.08E–05 − 4.053.610 − 1.091.686 0.012665

compared with CSA, MBA, APSO, IAPSO and UFA. In 
Table 13 comparative statistical results obtained in terms 
of worst, mean, best, SD and NFSs are presented. It can be 
analyzed from the Tables that I-ABC greedy is competitive 
in solving the problem of GTD. I-ABC greedy converges fast 
and took only 795 NFEs to achieve the optimized results. 
Also the comparative analysis is depicted in Fig. 10.
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Fig. 8  NFE’s used by the opti-
mizers to obtain optimal value 
in T/CSD Optimization Problem
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Fig. 9  Illustration of Gear Train Design (GTD) Optimization problem

Table 12  Best and comparative results of attained by GTD problem 
obtained by CS, MBA, APSO, ABC, IAPSO, UFA and I-ABC greedy 

D.V. z1 z2 z3 z4 f(Z)

CS 43 16 19 49 2.70E–12
MBA 43 16 19 49 2.70E–12
APSO 43 16 19 49 2.70E–12
ABC 49 16 19 43 0
IAPSO 43 16 19 49 2.700857E–

12
UFA 49 16 19 43 2.700857E–

12
I-ABC greedy 43 16 19 49 2.70E–12

Table 13  The statically simulated results of GTD problem attained (worst, mean, best SD and NFE’s) by MBA, UPSO, CS, APSO, ABC, 
IAPSO, UFA and I-ABC greedy 

The best results are highlighted in bold

Optimizer MBA UPSO CS APSO ABC IAPSO UFA I-ABC greedy

Worst 2.062904E–08 N.A 2.36E–09 7.07E–06 NA 1.827380E–08 1.361649E-09 1.68E–08
Mean 2.471635E–09 3.80562E–08 1.98E–09 4.78E–07 3.641339E–10 5.492477E–09 2.953672E-10 6.452E–09
Best 2.700857E–12 2.700857E–12 2.70E–12 2.70E–12 2.700857E–12 2.700857E–12 2.700857E–12 2.702E–12
SD 3.94E–09 1.09E–07 3.55E–09 1.44E–06 5.525811E–10 6.36E–09 3.75E-10 5.29E–10
NFSs 1120 100,000 5,000 8,000 60 800 450 60
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1 3

where

Case 2 The problem differs in the bound of variable z5 that 
changes to:

The simulated results of SRD problem are presented in 
Tables 14, 15, 16 and 17. The results of the proposal are 
also compared with SES (Coello Coello and Landa-becerra 
2003); COPSO (Aguirre et al. 2007); DES (Kim et al. 2007); 
SiC-PSO (Cagnina et al. 2008); MBFOA (Mezura-Montes 
and Hernández-Ocaña 2009a; Mezura-Montes and Cetina-
Domínguez 2009b); LCA (Kashan 2011); rank-iMDDE 
(Gong et al. 2014); AFA (Baykasolu and Ozsoydan 2015); 
IAPSO (Guedria 2016); MHS-PCLS (Yi et al. 2016); and 
UFA (Brajević and Ignjatović 2018). I-ABC greedy has 
shown the effective performance in optimizing the results of 

2.6 ≤ z
1
≤ 3.6;0.7 ≤ z

2
≤ 0.8;17 ≤ z

3
≤ 28;7.3 ≤ z

4

≤ 8.3;7.8 ≤ z
5
≤ 8.3;2.9 ≤ z

6
≤ 3.9;5.0 ≤ z

7
≤ 5.5

7.3 ≤ z5 ≤ 8.3.

the problem. It can be observed form the results in Table 14 
that I-ABC greedy took 6500 NFEs to obtain the optimal 
results where as UFA took only 3000 NFE’s to achieve the 
optimal result. UFA converges faster in comparison to the 
proposed algorithm but the statistical results presents the 
efficacy of I-ABC greedy algorithm in comparison to other 
Metaheuristics considered. The same is depicted in Fig. 12.

6.6  Cantilever beam design

This problem is refereed from Erbatur et al. (2000). In this 
problem volume is to be minimized. There are ten decision 
variables (b1,…,b5; h1,…,h5) that correspond to height and 
breadth of each rectangular cross section. The problem is 
defined as:

w.r.t. restraints

h11(Z) = � ≤ 2.7 cm,

dip reflection in vertical direction.
Where b1, h1 are integer variables; b2, b3 have the discrete 

values and generally considered from 2.40, 2.60, 2.80 and 
3.10; also h2, h3 have the discrete values and generally con-
sidered from 45.00, 50.00, 55.00 and 60.00. Variables b4, b5, 
h4 and h5 are continuous in nature. 200GPa is the Young’s 
modulus of the material. The cantilever beam is illustrated 
in Fig. 13.

Minimize f (Z) = 100

5∑
k=1

hibi.

hk(Z) = �k ≤ 14000 N∕cm2

hk+5(Z) =
hk

bk
≤ 20

0

20000

40000

60000

80000

100000

120000

MBA UPSO CS APSO ABC IAPSO UFA I – ABC 
greedy

N
FE

Algorithms

Fig. 10  NFE’s used by the optimizers to obtain optimal value in GTD 
Optimization Problem

Fig. 11  Illustration of SRD problem

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



282 T. K. Sharma, A. Abraham 

1 3

Ta
bl

e 
14

  
Th

e 
st

at
ic

al
ly

 s
im

ul
at

ed
 re

su
lts

 o
f S

R
D

 p
ro

bl
em

 a
tta

in
ed

 (w
or

st,
 m

ea
n,

 b
es

t S
D

 a
nd

 N
FE

’s
) b

y 
Si

C
-P

SO
, C

O
PS

O
, M

B
FO

A
, D

ES
, S

ES
, L

CA
, A

PS
O

, A
B

C
, I

A
PS

O
, U

FA
 a

nd
 I-

A
B

C
 

gr
ee

dy
 (C

as
e 

– 
1)

Th
e 

be
st 

re
su

lts
 a

re
 h

ig
hl

ig
ht

ed
 in

 b
ol

d

M
et

ho
d

Si
C

-P
SO

CO
PS

O
M

B
FO

A
D

ES
SE

S
LC

A
A

PS
O

A
B

C
IA

PS
O

U
FA

I-A
B

C
 g

re
ed

y

W
or

st
N

A
N

A
N

A
N

A
32

26
.2

48
29

1
29

96
.3

48
16

5
46

77
.0

05
18

7
N

A
29

96
.3

48
16

49
7

29
96

.3
48

16
49

98
6

29
96
.3
48
16
5

M
ea

n
29

96
.4

08
5

29
96

.4
08

52
5

30
14

.7
59

29
96

.3
48

30
88

.7
77

81
6

29
96

.3
48

16
5

38
55

.5
81

55
7

29
97

.0
58

41
2

29
96

.3
48

16
49

7
29

96
.3

48
16

49
88

5
29
96
.3
48
16
5

B
es

t
29

96
.3

48
16

29
96

.3
72

44
8

29
99

.2
64

29
96

.3
48

30
25

.0
05

12
7

29
96

.3
48

16
5

31
77

.5
30

77
1

29
97

.0
58

41
2

29
96

.3
48

16
49

7
29

96
.3

48
16

49
76

0
29
96
.3
48
16
5

SD
0

2.
86

7E
–0

2
11

7.
54

E–
06

47
.3

61
89

2.
63

E–
12

47
3.

76
7

0
68
8E

–1
3

4.
51

E–
09

6.
25

E–
12

N
FE

’s
24

,0
00

30
,0

00
30

,0
00

36
,0

00
36

,0
00

24
,0

00
30

,0
00

30
,0

00
60

00
30

00
65

00

Ta
bl

e 
15

  
Th

e 
be

st 
si

m
ul

at
ed

 re
su

lts
 fo

r S
R

D
 p

ro
bl

em
 a

tta
in

ed
 b

y 
di

ffe
re

nt
 O

pt
im

iz
er

s (
C

as
e 

– 
2)

D
.V

.
z 1

z 2
z 3

z 4
z 5

z 6
z 7

f(Z
)

D
ED

S
3.

5
0.

7
17

7.
3

7.
71

53
19

3.
35

02
14

5.
28

66
54

29
94

.4
71

06
6

D
EL

C
3.

5
0.

7
17

7.
3

7.
71

53
19

3.
35

02
14

5.
28

66
54

29
94

.4
71

06
6

H
EA

A
3.

50
00

22
0.

7
17

.0
00

01
2

7.
30

04
27

7.
71

53
77

3.
35

02
3

5.
28

66
63

29
94

.4
99

10
7

M
D

E
3.

50
00

1
0.

7
17

7.
30

01
56

7.
80

00
27

3.
35

02
21

5.
28

66
85

29
96

.3
56

68
9

PS
O

-D
E

3.
5

0.
7

17
7.

3
7.

8
3.

35
02

14
5.

28
66

83
2

29
96

.3
48

16
7

W
CA

 
3.

5
0.

7
17

7.
3

7.
71

53
19

3.
35

02
14

5.
28

66
54

29
94

.4
71

06
6

M
BA

3.
5

0.
7

17
7.

30
00

33
7.

71
57

72
3.

35
02

18
5.

28
66

54
29

94
.4

82
45

3
LC

A
3.

5
0.

7
17

7.
3

7.
8

3.
35

02
14

66
6

5.
28

66
83

23
29

94
.4

71
06

6
A

PS
O

3.
50

13
13

0.
7

18
8.

12
78

14
8.

04
21

21
3.

35
24

46
5.

28
70

76
31

87
.6

30
48

6
A

B
C

3.
49

99
99

0.
7

17
7.

3
7.

8
3.

35
02

15
5.

28
78

00
29

97
.0

58
41

2
IA

PS
O

3.
5

0.
7

17
7.

3
7.

71
53

19
9

3.
35

02
14

66
60

96
5.

28
66

54
46

49
79

29
94

.4
71

06
61

45
9

U
FA

3.
5

0.
7

17
7.

3
7.

8
3.

35
02

14
66

61
0

5.
28

66
83

22
97

29
96

.3
48

16
M

H
S–

PC
LS

3.
5

0.
7

17
7.

3
7.

71
53

19
9

3.
35

02
14

6
5.

28
66

54
5

29
94

.4
71

06
8

I-A
B

C
 g

re
ed

y
3.

50
02

1
0.

7
17

7.
30

7.
71

53
11

89
3.

35
02

14
68

9
5.

28
66

55
4

29
94

.4
71

03
15

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



283Artificial bee colony with enhanced food locations for solving mechanical engineering design…

1 3

Ta
bl

e 
16

  
Th

e 
st

at
ic

al
ly

 si
m

ul
at

ed
 re

su
lts

 o
f S

R
D

 p
ro

bl
em

 a
tta

in
ed

 (w
or

st,
 m

ea
n,

 b
es

t S
D

 a
nd

 N
FE

’s
) b

y 
SC

, P
SO

-D
E,

 D
EL

C
, D

ED
S,

 H
EA

A
, M

D
E,

 (µ
 +

 λ)
-E

S,
 A

B
C

, W
CA

, L
CA

 (C
as

e 
– 

2)

Th
e 

be
st 

re
su

lt 
is

 h
ig

hl
ig

ht
ed

 in
 b

ol
d

O
pt

i
SC

PS
O

-D
E

D
EL

C
D

ED
S

H
EA

A
M

D
E

(µ
 +

 λ)
-E

S
A

B
C

W
CA

 
LC

A

W
or

st
30

09
.9

64
73

6
29

96
.3

48
20

4
29

94
.4

71
07

29
94

.4
71

07
29

94
.7

52
31

1
N

A
N

A
N

A
29

94
.5

05
57

8
29

94
.4

71
06

6
M

ea
n

30
01

.7
58

26
4

29
96

.3
48

17
4

29
94

.4
71

07
29

94
.4

71
07

29
94

.6
13

36
8

29
96

.3
67

22
29

96
.3

48
29

97
.0

58
29

94
.4

74
39

2
29

94
.4

71
06

6
B

es
t

29
94

.7
44

24
1

29
96

.3
48

16
7

29
94

.4
71

07
29

94
.4

71
07

29
94

.4
99

10
7

29
96

.3
56

68
9

29
96

.3
48

29
97

.0
58

29
94

.4
71

06
6

29
94

.4
71

06
6

S.
D

4
6.

4E
 -0

6
1.

9E
 -1

2
3.

6E
–1

2
7.

0E
–0

2
8.

2E
 -0

3
0

0
7.

4E
–0

3
2.

66
E–

12
N

FS
s

54
,4

56
54

,3
50

30
,0

00
30

,0
00

40
,0

00
24

,0
00

30
,0

00
30

,0
00

15
,1
50

24
,0

00

Ta
bl

e 
17

  
Th

e 
st

at
ic

al
ly

 si
m

ul
at

ed
 re

su
lts

 o
f S

R
D

 p
ro

bl
em

 a
tta

in
ed

 (w
or

st,
 m

ea
n,

 b
es

t S
D

 a
nd

 N
FE

’s
) b

y 
M

BA
, A

PS
O

, A
B

C
, r

an
k-

iM
D

D
E,

 A
FA

, I
A

PS
O

, U
FA

, M
H

S-
PC

LS
 a

nd
 I-

A
B

C
 g

re
ed

y 
(C

as
e 

– 
2)

Th
e 

be
st 

re
su

lts
 a

re
 h

ig
hl

ig
ht

ed
 in

 b
ol

d

O
pt

i
M

BA
A

PS
O

A
B

C
ra

nk
-iM

D
D

E
A

FA
IA

PS
O

U
FA

M
H

S-
PC

LS
I-A

B
C

 g
re

ed
y

W
or

st
29

99
.6

52
4

44
43

.0
17

64
N

A
29

94
.4

71
06

6
29

96
.6

69
01

6
29

94
.4

71
06

61
54

89
29

94
.4

71
06

62
20

0
29
94
.4
71
10
6

29
94

.9
02

M
ea

n
29

96
.7

69
38

22
.6

40
62

29
95

.6
53

1
29

94
.4

71
06

6
29

96
.5

14
87

4
29

94
.4

71
06

61
47

77
29

94
.4

71
06

61
87

2
29
94
.4
71
07
7

29
94

.6
63

1
B

es
t

29
94

.4
82

5
31

87
.6

30
49

29
94

.4
72

43
29

94
.4

71
06

6
29

96
.3

72
69

8
29

94
.4

71
06

61
45

98
29

94
.4

71
06

61
64

7
29

94
.4

71
06

8
29
94
.4
71
0

S.
D

1.
56

36
6.

14
6

2.
98

E–
12

7.
93
E–

13
0.

09
2.

65
E 

-0
9

1.
53

E–
08

7.
14

29
49

E–
06

1.
87
E–

12
N

FS
s

63
00

30
,0

00
30

,0
00

19
,9

20
50

,0
00

60
00

30
00

10
, 0

00
65

00

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



284 T. K. Sharma, A. Abraham 

1 3

6.6.1  Result discussion of Cantilever design problem

The statistical simulated results are presented in the 
Tables 18 and 19. The results of I-ABC greedy are compared 
with that of basic ABC, GAOS-Erbatur (Erbatur et al. 2000); 
AIS-GA & AIS-GAC (Bernardino et al. 2007); (AIS-GAH) 
&  (APMbc) (Bernardino et al. 2008) and SR (Runarsson and 
Yao 2000). The parametric setting for all the algorithms are 
same as mentioned in the research articles. In Table 18, 
results found in terms of Best, Median, Average (Avg.), 
Standard Deviation (SD), Worst and NFE are presented. 
I-ABC greedy has shown the efficiency in evaluating the best 
optimized value which is very close to the value achieved by 
SR. Also I-ABC greedy took minimum number of NFE in 
achieving the optimized volume. In other cases NFE is fixed. 
Figure 14 depicts the NFEs comparisons. Table 19 presented 
the value of the decision variables (b1,…b5 & h1,…,h5) and 
the estimated value of the volume achieved.
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(b) Case 2 
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6.7  Optimization problem of design of Multiple 
Disk Clutch Brake (MDCB)

This problem is taken from Osyczka (2002). The objec-
tive of the problem is to minimize the mass of MDCB. The 
problem has five decision discrete variables namely disc 
thickness, actuating force, inner & outer radius as well as 
friction surfaces that need to be computed while satisfying 
eight restraints. These variables are represented by γ0, γ1, 
γ2, γ3 and γ4. These variables are conditioned to select the 
following values:

The problem is defined below and the illustration of 
MDCB is shown in Fig. 15.

w.r.t. restraints

�0 = 60, 61, 62, 63… , 80; �1 = 90, 91, 92, 93..., 110; �2 = 1, 1.5, 2.0, 2.5… , 3;

�3 = 600, 610, 620, 630… , 1000 and �4 = 2, 3, 4, 5… , 9.

Minimize f (Z) = �
(
�2
0
− �2

i

)
× t × (Q + 1)�

h1(Z) = �0 − �i − Δr ≥ 0

h2(Z) = lmax − (Q + 1)(t + �) ≥ 0

h3(Z) = Pmax − Prz ≥ 0

h4(Z) = Pmax × �sr max − Prz × �sr ≥ 0

h5(Z) = �sr max − �sr ≥ 0

where

h6(Z) = Tmax − T ≥ 0

h7(Z) = Mh − sMs ≥ 0

h8(Z) = T ≥ 0

Fig. 13  Cantilever Beam design

Table 19  Simulated 
comparative best results for the 
decision variables in Cantilever 
design problem by by I-ABC 
greedy, GAOS-Erbatur, 
AIS-GA, AIS-GAC, AIS-GAH, 
 APMbc, SR,  APMrc

D.V. b1 b2 b3 b4 b5 h1 h2 h3 h4 h5 V

GAOS-Erbatur 3 3.1 2.6 2.3 1.8 60 55 50 45.5 35 64,815
AIS-GA 3 3.1 2.8 2.2348 2.0038 60 55 50 44.3945 32.878708 65559.6
AIS-GAC 3 3.1 2.6 2.3107 2.2254 60 60 50 43.1857 31.250282 66533.47
AIS-GAH 3 3.1 2.6 2.2947 1.825 60 55 50 45.2153 35.1191 64834.7
APMbc 3 3.1 2.6 2.2094 2.0944 60 60 50 44.0428 31.9867 66030.05
SR 3 3.1 2.6 2.2837 1.7532 60 55 50 45.5507 35.0631 64599.65
APMrc 3 3.1 2.6 2.2978 1.7574 60 55 50 45.5037 34.9492 64647.82
ABC 3 3.1 2.6 2.2977 1.7575 60 55 50 45.5508 24.9786 64599.65
I-ABC greedy 3 3.1 2.6 2.291 2.0671 60 55 50 45.5487 35.0912 64599.64
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Fig. 14  NFE’s used by the optimizers to obtain optimal value in Can-
tilever design Problem

Fig. 15  Illustration of MDCB
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Mh =
2

3
�FZ

�3
0
− �3

i

�2
0
− �2

i

Prz =
F

�(�2
0
− �2

i
)

vrz =
2�n

(
�3
0
− �3

i

)

90
(
�2
0
− �2

i

)

T =
I2�n

30(Mh −Mf )

The simulated results of MDCB are presented in the 
Tables 20 and 21. The results of I-ABC greedy are compared 
with the simulated results of TLBO, WCA, APSO, ABC and 
IAPSO in terms of Worst, Mean, Best, SD and NFEs. I-ABC 
greedy took 750 NFEs where as IAPSO achieved the opti-
mal results within 400 NFEs. Further best and comparative 
results of attained by MDCBD problem obtained by ABC, 
I-ABC greedy, NSGA-II (Deb and Srinivasan 2006); TLBO 
(Rao et al. 2011); WCA (Eskandar et al. 2012); APSO (Yang 
2010) and IAPSO (Guedria 2016) are presented in Table 21 
(see Fig. 16).

6.8  Analyses

In Fig. 17 a radar presentation of the mean values obtained 
by all the seven considered problems by different optimizers 
are presented. Radar basically displays values to the centre 
point. It can be analyzed that I-ABC greedy is able to solve 
all the considered problems competitively with best con-
vergence rate. In case of GTD problem the graph is plotted 

tmin = 1.5; tmax = 3; Δr = 20 mm;

Iz = 55kgmm2
; Fmin = 600; Zmin = 2;

Zmax = 9; Pmax = 1Mpa; Fmax

= 1000N; Tmax = 15s; � = 0.5; s = 1.5;

Ms = 40Nm; Mf = 3Nm; n

= 250rpm; vsr max =
10m

s
; lmax

= 30mm; �
0 min = 90; �

0 max = 110;

�i min = 60; �i max = 80;

0

500

1000

1500

2000

2500

TLBO WCA APSO ABC IAPSO I-ABC
greedy

N
FE

Algorithms

Fig. 16  NFE’s used by the optimizers to obtain optimal value in 
MDCBD problem

Table 20  The statically 
simulated results of MDCBD 
problem attained (worst, mean, 
best SD and NFE’s) by ABC, 
I-ABC greedy, TLBO, WCA, 
APSO, IAPSO

The best results are highlighted in bold

Optimizers TLBO WCA APSO ABC IAPSO I-ABC greedy

Worst 0.392071 0.313656 0.716313 0.313677 0.313656 0.313656
Mean 0.327166 0.313656 0.506829 0.313659 0.313656 0.313656
Best 0.313657 0.313656 0.337181 0.313657 0.313656 0.313656
S.D NA 1.69E–16 0.09767 5.97E–15 1.13E–16 1.27E–16
NFEs > 900 500 2000 1500 400 750

Table 21  Best and comparative results of attained by MDCBD problem obtained by ABC, I-ABC greedy, NSGA-II, TLBO, WCA and APSO

D.V. z1 z2 z3 z4 z5 h1(Z) h2(Z) h3(Z) h4(Z) h5(Z) h6(Z) h7(Z) h8(Z) f(Z)

NSGA-II 70 90 1.5 1000 3 0 22 0.9005 9.7906 7.8947 3.3527 60.625 11.6473 0.4704
TLBO 70 90 1 810 3 0 24 0.919427 9830.371 7894.6965 0.702013 37706.25 14.297986 0.313656
WCA 70 90 1 910 3 0 24 0.90948 9.809429 7.894696 2.231421 49.768749 12.768578 0.313656
APSO 76 96 1 840 3 0 24 0.922273167 9.824211285 7.738378002 1.3966105 48.8483721 13.60338949 0.337181
ABC 70 90 1 900 3 0 24 0.9114743 9.8219772 7.8956441 1.3895732 48.678478 13.658382 0.317652
IAPSO 70 90 1 900 3 0 24 0.910475344 9.8115234375 7.89469659 1.359771388 48.5625 13.64022861 0.313656
I-ABC 

greedy
70 90 1 900 3 0 24 0.9108733 9.8207371 7.8946555 1.3619831 48.57545 13.641874 0.313766
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Fig. 17  Radar illustration of 
mean values of all the seven 
problems

(a) Cantilever Beam design  (b) SRD (2)

(c) SRD (1)    (d)T/CSD

(e) GTD (log10) (f) PVD 
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using logarithm of base 10 as the values are very close to 
zero. Also, in Table 22 the statistical results based on per-
formance of optimizers for seven mechanical engineering 
design problems are discussed.

7  Conclusions

In this study a variant of ABC named I-ABC greedy is pre-
sented. I-ABC greedy incorporates OBL concept for main-
taining the population diversity and the modified searching 
behavior of employed and onlooker bee to enhance exploita-
tion. So, I-ABC greedy balances exploration and exploitation 
process and assist in accelerating convergence rate. I-ABC 
greedy uses Debs technique for handling the constraints. The 
proposal is validated on a set of seven mechanical engineer-
ing optimization problems is taken from the literature. The 
results of I-ABC greedy are compared with the results of 
the other optimizers refereed from the literature. The stati-
cally simulated results on all the problems justify the effec-
tiveness of I-ABC greedy algorithm in comparison to other 
considered optimizers. Also I-ABC greedy demonstrates the 
efficient convergence rate in achieving optimal results.

In future the constrained handling techniques affect can 
be examined on I-ABC greedy as well as multi-objective 
optimization problems would be considered to evaluate the 
efficiency of I-ABC greedy algorithm.
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