
Engineering Applications of Artificial Intelligence 111 (2022) 104773

A
a

b

c

L
d

G

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Survey paper

A systematic literature review on software defect prediction using artificial
intelligence: Datasets, Data Validation Methods, Approaches, and Tools
Jalaj Pachouly a, Swati Ahirrao a, Ketan Kotecha b,∗, Ganeshsree Selvachandran c,∗,

jith Abraham d

Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, Maharashtra, India
Symbiosis Centre for Applied Artificial Intelligence, Symbiosis International (Deemed University), Pune 412115, Maharashtra, India
Department of Actuarial Science and Applied Statistics, Faculty of Business and Management, UCSI University, Jalan Menara Gading, 56000 Cheras, Kuala
umpur, Malaysia
Machine Intelligence Research Labs, Auburn, WA 98071, USA

A R T I C L E I N F O

Keywords:
Software defect prediction
Classification
Artificial intelligence
Machine learning

A B S T R A C T

Delivering high-quality software products is a challenging task. It needs proper coordination from various
teams in planning, execution, and testing. Many software products have high numbers of defects revealed in a
production environment. Software failures are costly regarding money, time, and reputation for a business and
even life-threatening if utilized in critical applications. Identifying and fixing software defects in the production
system is costly, which could be a trivial task if detected before shipping the product. Binary classification is
commonly used in existing software defect prediction studies. With the advancements in Artificial Intelligence
techniques, there is a great potential to provide meaningful information to software development teams
for producing quality software products. An extensive survey for Software Defect Prediction is necessary
for exploring datasets, data validation methods, defect detection, and prediction approaches and tools. The
survey infers standard datasets utilized in early studies lack adequate features and data validation techniques.
According to the finding of the literature survey, the standard datasets has few labels, resulting in insufficient
details regarding defects. Systematic Literature Reviews (SLR) on Software Defect Prediction are limited.
Hence this SLR presents a comprehensive analysis of defect datasets, dataset validation, detection, prediction
approaches, and tools for Software Defect Prediction. The survey exhibits the futuristic recommendations that
will allow researchers to develop a tool for Software Defect Prediction. The survey introduces the architecture
for developing a software prediction dataset with adequate features and statistical data validation techniques
for multi-label classification for software defects.
1. Introduction

Producing reliable quality software products is a complex process
that requires various team’s combined effort for planning, execution,
and testing. Many software products get high numbers of defects in
the testing phase and even post-deployment in the production environ-
ment. As per the report (Anon, 2018b) published in September 2018, in
the Consortium for IT Software Quality (CISQ), more than 50% of the
total software cost is consumed in identifying and fixing defects and the
losses due to software failures in a production environment. However,
the total cost for software delivery is not entirely visible and can be
correlated with the Iceberg model (Anon, 2018b), as shown in Fig. 1.

∗ Corresponding authors.
E-mail addresses: jalaj.pachouly.phd2019@sitpune.edu.in (J. Pachouly), swatia@sitpune.edu.in (S. Ahirrao), director@sitpune.edu.in (K. Kotecha),

aneshsree@ucsiuniversity.edu.my (G. Selvachandran), ajith.abraham@ieee.org (A. Abraham).

Another white paper, Software fails watch (5th edition) (Anon,
2018a), published in the Tricentis, analyzed the 606 well-known soft-
ware failures. According to the article, 3.7 billion people were im-
pacted, costing $1.7 trillion for assets and involving 314 companies.
These are just a few numbers. Countless incidents have shown that
poor-quality software can have an adverse impact on the business. In
a few cases, it can be life-threatening if the software is used in life-
critical systems. Another study carried out by Cambridge University’s
Judge Business School (Anon, 2013) stated that 30% to 50% of the
cost is spent finding and fixing defects, implying that roughly half of
the time spent by software developers is spent finding and fixing bugs.
Identifying and correcting software defects is crucial for delivering a
reliable software product with fewer bugs. Time and cost can be saved
if the defects are caught in the early stage of the development, but it is
https://doi.org/10.1016/j.engappai.2022.104773
Received 27 November 2021; Received in revised form 1 February 2022; Accepted
Available online xxxx
0952-1976/© 2022 Elsevier Ltd. All rights reserved.
14 February 2022

https://doi.org/10.1016/j.engappai.2022.104773
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2022.104773&domain=pdf
mailto:jalaj.pachouly.phd2019@sitpune.edu.in
mailto:swatia@sitpune.edu.in
mailto:director@sitpune.edu.in
mailto:Ganeshsree@ucsiuniversity.edu.my
mailto:ajith.abraham@ieee.org
https://doi.org/10.1016/j.engappai.2022.104773

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Fig. 1. Software development cost — Iceberg model (Anon, 2018b).
most costly if the defects are found later. It also causes damage to the
organizations financially or in terms of data loss or user inconvenience.
There is a pressing need to build a system that improves the complete
software delivery process to reduce the cost and time required to
produce high-quality software. Software quality and timely delivery of
the software products are the number one priority for a successful,
profitable business. In the direction of improvement, a lot can be
learned from the historical data. A considerable amount of information
is continuously captured in the various digital platforms used in the
software development phase, like planning, development, and testing.
Many companies use Jira, Confluence, Jenkins for Continuous Integra-
tion, Perforce, and GitHub for Code Version Management. Such tools
capture the relevant artifacts during the Software Development Life
Cycle. Considering that we have tons of data available, intelligence can
be generated using relevant data and technology. Predicted Intelligence
can be instrumental in enhancing the reliability of the overall software
delivery process. It can help decrease the rework cost and have more
accurate estimates to meet the estimated deadlines with fewer defects.

1.1. Outline of the paper

Fig. 2 shows the outline of this Systematic Literature Review.
The paper starts with the introduction section, which contains four

subsections detailing the significance, evolution timeline, motivation
for writing this paper, and background of defect identification and the
prediction. The background section provides common defect identifica-
tion and prediction practices using manual testing, automation testing,
and prediction approaches. The prior research section discusses a few
significant studies on Software Defect Prediction and states the research
goals and the study’s contribution. The terminology section briefly
describes commonly used terms in Software Defect Prediction. The
research methodology section describes the SLR process. We followed
the Kitchenham (Kitchenham et al., 2009) guidelines. The research
methodology section contains the keywords used for searching the
research studies in various databases. Selection criteria talk about how
the papers are selected for this SLR. Inclusion and Exclusion criteria
discuss the criteria used to select and filter the papers. The selection of
the paper is made based on the various parameters and the score count
of the paper. The literature outcome section describes the analysis of
the previous studies against the formulated research questions. The
discussion section summarizes the literature outcome on formulated re-
search questions. The limitation of the study section discusses possible
limitations present in this SLR. The conclusion section concludes the
findings as per the analysis. Finally, the future work and opportunity
section discusses the proposed research work based on the limitation
found in the earlier research.
2

1.2. Significance and relevance

Delivering software products with the high-quality demands that
delivered software is bug-free and performs as expected in the produc-
tion environment. The number of defects can be predicted early, before
delivering the product. Most defects can be found and fixed optimally to
deliver the product on the decided timeline using Artificial Intelligence
techniques. Manual testing and automation testing are the traditional
approaches that execute a well-defined, limited number of test cases.
Due to limited resources like human resources and time, traditional
defect finding techniques can detect fewer defects. It also does not
leverage historical defects encountered in the production system for
similar projects or earlier product versions. Getting more probable
defects based on the historical dataset can significantly make the
product more robust. Artificial Intelligence techniques are very useful,
especially Machine Learning and Deep Learning, due to their vital role
in predicting software defects due to great classification capability.
Artificial Intelligence approaches can be used to forecast additional
essential information such as defect severity, defect estimations, code
references, resource allocation, and defect types in addition to software
flaws. Any software development team may use this information to plan
their future development effort based on real historical data and help
them make the best decisions possible.

1.3. Evolution timeline

Prediction of software defects is explored as an active research field.
Fig. 3 shows the evolution of the Software Defect Prediction over the
decade.

In this evolution diagram, learning algorithms are classified by
commonality in their operation and with usages like CPDP, WPDP,
CVDP, and HDP. Table 22, in the miscellaneous section, contains
more details of algorithms that are grouped based on similarity. The
evolution history of Software Defect Prediction is shown in the four
years of the span, starting with 2010.

2010 to 2013: Initial studies of the Software Defect Prediction
were focused on evaluating various Machine Learning algorithms for
improving the accuracy of the prediction and the performance. Naive
Bayes, Bayesian Belief Network (BBN), and Bayesian Network are based
on Bayesian Algorithms. Support Vector Machine (SVM) is an instance-
based Machine Learning approach that uses similarity measurements
to predict new software defects. K-means, Hierarchical Clustering is
the technique used to organize the data into groups with the greatest
commonality to predict the new defect. Adaboost, Boosting is the En-
semble Algorithms used to enhance the prediction using a combination

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Fig. 2. Outline of the Systematic Literature Review.
Fig. 3. Evolution timeline for Software Defect Prediction [2010–2021].
of many weaker models. Finally, Linear Regression uses a linear model
for prediction based on the training data.

2014 to 2017: Aside from existing Machine Learning techniques,
two new ones gained traction in 2014, namely Artificial Neural Net-
works and Decision Tree-based algorithms. Radial Basis Function, Back
Propagation (BPA) algorithm, Resilient Back Propagation, Stochastic
Belief Network, Label Propagation are some of the references of Neu-
ral Networks Algorithms used. Logistic regression and Multiple Lin-
ear Regression are used, which are Regression-based algorithms. K-
Nearest Neighbor regression is used to support nonlinear model data. A
Bayesian Regularization algorithm reduces squared errors and weights,
determining the best combination to form an efficient network. C4.5,
Decision Forest, CART are some of the Decision Tree algorithms used.
3

Ensemble Learning-based techniques include Gradient Boosting, Real
Adaboost, and Stacking. A subset of Association Rules is used to ex-
plore the relation between features and classes to increase prediction
accuracy. Rules are used to study the link between features and classes
to improve prediction accuracy.

2018 to 2021: It is clear from the SLR that Deep Learning, Artificial
Neural Networks started great attraction in the last four years. Deep
belief networks, Convolutional Neural Networks (CNNs), Tree-based
CNN, Deep CNN, Recurrent Neural Networks (RNN), Layered Recurrent
Neural Network, Long Short Term Memory Network, Bi-directional
Long Short Term Memory, Autoencoder, Variational Autoencoder, and
Staked denoising auto-encoder are just a few Deep Learning techniques
that have been used in recent years. Furthermore, Artificial Neural

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Networks such as Multi-Layer Perceptron are used for accurate defect
prediction. Ridge regression (RR), Lasso regression (LR), Elastic-net re-
gression are the new addition in the Regression category. Over-bagging,
Subbagging, Isolation Forest, Deep Forest, and TrAdaBoost are more
variations in Ensemble Learning. Artificial intelligence techniques, par-
ticularly Deep Learning and Artificial Neural Networks, have received
much interest in the last four years for Software Defect Prediction,
as seen in the evolution diagram. Many researchers did their study
to predict the defects using several Artificial Intelligence techniques.
The evolution timeline shows that early research, up until 2016, was
primarily focused on Cross Project Defect Prediction. Within Project
Defect Prediction has received more interest since 2016. In the domain
of Software Defect Prediction, Cross Version Defect Prediction and
Heterogeneous Defect Prediction are relatively new trends.

1.4. Motivation

The existing literature is lacking on systematic literature reviews
for Software Defect Predictions. Earlier research is mainly focused
on defect classification using publicly available datasets. Prediction
outcome is limited, and there are no actionable items for the software
development team. There is a lack of a survey that focuses on the legacy
versus modern approaches for identifying software defects. Earlier
surveys did not cover the existing tools. Before using the data to train
the classifiers, the adequate focus was not given to the data validation
techniques. Hence, a comprehensive survey needs to focus on datasets,
data validation methods, defect detection and prediction approaches,
tools, and recommendations for further research. This Systematic Lit-
erature Review focuses on datasets, methods for data validation, defect
detection and prediction approaches, tools, and recommendations for
future researchers. According to a bibliometric review (Pachouly et al.,
2020), there is a lot of interest in the field of Software Defect Prediction
among researchers aworldwide

1.5. Background

Identifying and fixing software defects is an important task to ensure
quality products. The software development process gets initiated once
the customer has a business requirement. The development process
involves gathering requirements, feasibility studies, and generating
high-level design documents. The enormous task of developing software
gets broken into multiple small tasks like creating numerous use cases.
At the same time, the Quality Assurance engineer or the product
owner comes up with the test case design to ensure that the software
development must meet the business requirements. Quality Assurance
engineers make a suite of test cases that can be manually executed or
automated for execution. Once the code is ready for testing, it is tested
by the testing team, and the testing team comes up with the test reports.
A few failed test cases report a bug in the test report, which means the
business requirement is not met as expected. Bugs are reported when
the test engineer cannot execute or complete the business flow due to
other technical issues. As per Fig. 4, manual and automation testing
finds defects and logs into the defect dataset.

Few test cases that meet the business requirements are marked as
passed. The Quality Assurance engineer logs the defect information into
the defect dataset using the defect tracking system, which creates the
defect dataset for one specific software product release. We can use
this defect dataset and the software repository to develop the defect
prediction dataset. Defect dataset can check if the software code can
be labeled as Buggy or Non-Buggy? Usually, the specific source file is
marked as Buggy if a bug is reported for that particular code. The next
step is to identify the relevant features for the defect prediction once we
have the defect prediction dataset available with the right attributes.
Samples are determined using various sampling techniques, and the
dataset can be validated to see if the data quality is good enough to
predict software defects. Fig. 5 shows the general approach used for
Software Defect Prediction.
4

2. Prior research

The Systematic Literature Review (SLR) aims to answer the for-
mulated research questions by critically investigating the existing re-
search papers for predicting software defects. According to a literature
search, only a few studies have conducted an SLR for Software Defect
Prediction. As per our findings, four survey papers explored defect
predictions. This section discusses previous studies in the field of
Software Defect Prediction that conducted an SLR. Catal et al. (Catal
and Diri, 2009) reviewed the 74 articles collected between 1990–
2007. The survey was focused on datasets, methods, and metrics. One
of the limitations reported in the survey is that many researchers
have used private data source that is inaccessible and leads to non-
reproducible research. As per the survey, Machine Learning techniques
are dominant in the field of Software Defect Prediction. Class, method,
file, component process, and quantitative levels are the six types of
metrics. Machine Learning and Statistical approaches are combined
for defect predictions. As per the survey, significant algorithms for
solving defect prediction problems are Naive Bayes, Random Forests,
and J48. For feature reduction, Principal Component Analysis is found
significant. One of the limitations of the survey was referring to the
smaller number of papers. The survey recommends using Machine
Learning models rather than Statistical methods, as prediction results
are better with Machine Learning. The survey also recommends using
public datasets, as public datasets are accessible, and future researchers
can use them to improve their research by employing repeatable and
additional verification methods. Hall et al. (Hall et al., 2011) focused on
identifying the impact on the fault prediction performance with the in-
dependent variable, the context of the model, and chosen methods. Two
hundred eight studies between the years 2000 to 2010 are selected for
the analysis. The purpose of the survey was to provide guidance and the
path for the future researcher to choose the appropriate model based on
the context of their study. The study also found that the model performs
well with more data, which means the size influences the model’s
performance. As per the survey, the simple model performs well using a
simple Naive Bayes and Logistic Regression technique. In contrast, SVM
seems to underperform as it needs parameter optimization, which is
not considered in many research studies. Process-related metrics do not
outperform Object-Oriented metrics or Source Code metrics, according
to a survey based on 19 studies. However, performance does not
change if we choose only LOC or use object-oriented metrics. Nineteen
conducted studies suggest that if we pick independent variables and use
a combination of the few metrics set, it helps to improve the prediction
performance. Survey also analyzed the prediction performance on data
quality. It is tough to gather high-quality data, and only a few studies
have examined data validation. Handling class imbalance is significant
for the quality of the fault prediction. The research confirmed the effect
of the class imbalance on the quality of prediction results. The survey
indicates that one research study indicated the severity of the defects
as medium and high, although the severity is subjective and difficult
to generalize. Still, severity is important information that helps the
development team prioritize and focus on the high severity issues.
Sobrinho et al. (Hall et al., 2011) survey various substandard code
practices, making the products inferior. This survey does not discuss the
prediction of the defect directly. However, it gives useful information
about the bugs and the quality issues in the code that any software
development team needs to know to produce a quality product. Some
of the bad smells are duplicate code, anti-pattern, and BLOB class or
GOD class which is well known to produce negative consequences. GOD
class is identified based on the number of instance variables, or in
other words, class, which is doing many things and does not have a
single atomic goal. GOD class is a code smell that makes maintenance
of the code hard and produces more defects associated with such
classes. Sometimes such challenges are referred to as Technical Debt.
The more the technical debt, the less the product quality and the
huge possibility of the unidentified hidden defects in the delivered

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Fig. 4. Manual and automation testing approach.
Fig. 5. Software Defect Prediction — general approach.
software. The survey’s focus was analyzing the source code with low-
level structure and identifying the bad coding architectural decisions
that make it sub-optimal and of low quality. The survey also identified
that the development community started paying attention in recent
years to keep track of the bad smell in the code and keep it as low
as possible. Hosseini et al. (Hosseini et al., 2017) worked to better
understand the state of the art in CPDP in terms of metrics, models, data
techniques, datasets, and associated performance. They also compared
the performance of CPDP vs. WPDP models. Nearest-Neighbor and
Decision Tree models perform well in CPDP. However, the popular
Naive Bayes models get average results. Ensemble performance varies
substantially depending on the F-Measure and AUC. For data strategies
that handle CPDP problems, row/column processing enhances Recall
for CPDP, although it lowers precision. This has been seen on several
occasions, notably in a meta-analysis comparing CPDP with WPDP. The
records from NASA and Jureczko appear to favor CPDP over WPDP
more frequently. CPDP is still a problem, and additional study is needed
before reliable applications can be implemented. Table 1 provides a
summary of existing SLR investigations. Prior research surveys men-
tioned above address various questions related to identifying metrics,
5

figuring out the classification algorithms, predicting performance, and
exploring the impact of the bad smell on the code. Although as per the
observation, the number of the surveys done on the Software Defect
Prediction is very low, and here are the few limitations observed in the
existing surveys:

1. Most early research was merely involved in the code classifi-
cation as Buggy vs. Non-Buggy. The survey was limited to a
comprehensive analysis of the binary classification, which is
useful information but does not provide any futuristic direction.

2. Existing surveys did not generate actionable task items, which
the development teams could leverage. Existing literature did
not explore additional information related to defects, like what
code changes are required to fix the defects, the estimate for the
defects, and who is the right resource to fix the defect?

3. Most of the research has used the publicly available dataset in
the existing literature, which was created for defect classification
only. Hence, it did not contain the adequate feature to generate
additional useful information for the defects.

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773

t
v
d
d
o
i
t
a
t
o
a
t
S
t
p

2

a
s

2

b

Table 1
A summary of existing SLR.

Sr. No. SLR Year Focus Key Observations

1 A systematic review of
software fault prediction
studies (Catal and Diri,
2009)

2009 The survey’s focus was metrics, methods, and
datasets used around Software Defect Prediction.

ML usage increased from 2005. Due to the usage of private
data, many pieces of research are not repeatable. Method
Level Metrics are most dominant for defect prediction. They
recommended the usage of Class level metrics in the Design
phase of Software development.

2 A Systematic Literature
Review and Meta-analysis
on Cross Project Defect
Prediction (Hosseini et al.,
2017)

2017 Gain a better understanding of the state-of-the-art
for CPDP in terms of models, metrics, datasets,
techniques, and associated performances.

Nearest-Neighbor and Decision Tree models perform well for
CPDP; however, the popular Naive Bayes models get average
results. Ensemble performance varies substantially depending
on the F-measure and AUC. The records from NASA and
Jureczko appear to favor CPDP over WPDP.

3 A systematic literature
review on bad smells
–5 W’s: which, when,
what, who, where
(Sobrinho et al., 2018)

2018 The review’s focus was to investigate the bad
smells in the code and the work done by early
researchers. What kind of bad smells in the code is
causing the issues? The findings also point to
future efforts against the bad smell.

Duplicate code bed smell is studied well and classified as
Duplicate Code Group (DCG). Other smells are grouped as
Other Bed Smell Group (OSBG). 69.8% of research is
conducted around the Duplicate Code Group.

4 A Systematic Literature
Review on Fault Prediction
Performance in Software
Engineering (Hall et al.,
2011)

2011 The study looked at how the context of models,
the independent variables employed, and the
modeling methodologies used influenced the
performance of defect prediction models.

Most research provides insufficient contextual and
methodological information to fully comprehend a model. As
a result, it is difficult for potential model users to find one
that fits their needs, and just a few models have made it
into industrial practice.
3

T
t

3

t

3

t
c

3

o

4. The existing survey did not pay attention to the challenges for
collecting the quality dataset for the Software Defect Prediction.
Collecting the quality data with the relevant feature is difficult.
Creating or extending existing datasets is necessary if we extend
the prediction to have more useful information than binary
classification.

5. The prior survey did not analyze the existing tools available at
our disposal for the Software Defect Prediction.

6. The existing survey did not pay enough attention to the dataset
validation, which is very important and ensures the capability of
the training model to predict the defects.

It gives enough justification for conducting a Systematic Litera-
ure Review that will explore various prediction approaches, datasets,
alidation techniques, existing tools, and possible futuristic recommen-
ations, which can be helpful for new researchers. Historical defect
atasets contain useful information that can give the software devel-
pment team significant pointers. Hence Systematic Literature Review
s required exploring on the dataset challenges, appropriateness of
he dataset with the set of relevant features, existing available tools
nd, extending the scope of prediction with additional useful informa-
ion around the defect. This SLR presents the comprehensive analysis
f defect-finding approaches, data validation methods, existing tools
vailable for Software Defect Prediction, and Artificial Intelligence
echniques to bridge the gap and make the prediction actionable.
uch information will undoubtedly aid future researchers in gaining a
horough understanding of previous work and the obvious next step for
redictions related to software defects.

.1. Research goals

The major purpose of SLR is to conduct a critical study of available
pproaches in the context of Software Defect Prediction to discover
olutions to the research question posed in Table 2.

.2. Contributions of the study

Contributions made by Systematic Literature Review are as given
elow:

1. A comprehensive analysis is done for popular approaches (detec-
tion and prediction based) employed for software defect identi-
fication.
6

2. A comprehensive analysis was done on the available datasets
and explored the challenges faced in the publicly available Soft-
ware Defect Prediction datasets like Class Imbalance, Feature
Selection, Sampling requirements.

3. Explored the dataset validation methods used in the early re-
search and identified that most research studies lack data vali-
dation methods.

4. For Software Defect Prediction, a comprehensive analysis of
Artificial Intelligence techniques, notably Machine Learning and
Deep Learning approach, is presented.

5. Summarized the available existing tools and the frameworks,
which are specifically designed for Software Defect Prediction.

6. Proposing Multi-Label classification for extending the scope of
defect prediction for defect severity, defect estimates, code ref-
erences, resource allocation, and defect types using Artificial
Intelligence techniques and ensuring a custom dataset has the
adequate features for such prediction.

7. The study is proposing the Architecture that creates the bal-
anced dataset from the Open-Source Repository (GitHub) with
adequate features for Multi-Label classification and gets more
significant information about predicting and fixing the software
defects. The architecture also focuses on the dataset validation
methods to ensure a Better-quality dataset that predicts Software
Defect Predictions.

. Terminology

Fig. 6 shows various common terms related to software defects.
he study mentions a detailed taxonomy of Software Defect Predic-
ions (Caulo and Scanniello, 2020).

.1. Software defect

A software defect is a malfunctioning of the software due to which
he end-user requirement does not get fulfilled.

.2. Defect prediction

Defect prediction is a mechanism that indicates possible defects in
he newly written code or modified existing code without testing the
ode.

.3. Agile methodology

A method of project management that divides a project into numer-
us phases.

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773

3

k

3

f
a

Table 2
Research questions.

Number Research Questions Discussion

RQ1 What are the various approaches for finding
defects in the newly developed code?

Do we need to investigate the various defect-finding approaches
used to identify software defects? What are the present trends and
prospects for detecting software defects?

RQ2 What are the available datasets, and are they good
enough for predicting various actionable tasks
related to defects?

Merely classifying the code as Buggy or Not-Buggy is not adding
much value to the development team. Previous studies have
concentrated on datasets with limited binary classification
capabilities. We need to explore if the existing datasets are good
enough to predict code pointers, resource allocation, and
estimation, among others.

RQ3 What are the available data validation techniques
to ensure that training data is appropriate for
Software Defect Prediction modeling?

The exploration of Parametric and Non-Parametric tests to validate
the appropriateness of the dataset for the desired prediction around
the software defects.

RQ4 What are the various tools/frameworks available
for Software Defect Prediction?

Do we have any existing tools commercially available for
defect-related predictions? What are the advantages and the
shortcomings?

RQ5 What is the possible futuristic direction for
Software Defect Prediction, and what can be
predicted for software defects to enhance the
standard of the delivered software product?

This research question seeks a futuristic framework or tools based
on Artificial Intelligence techniques that can predict additional
information about software defects, such as resource allocation,
defect estimates, and possible code fixes, to enhance the quality of
the produced source code.
Fig. 6. Software Defect Prediction—Terminology..
.4. Confluence

Confluence is a collaborative workspace for teams that combines
nowledge and collaboration.

.5. Resource allocation

Resource allocation refers to allocating the human resources for
ixing the defects. Resource allocations involve combining the tester
nd developer.
7

3.6. Story point

Story point is an estimation technique mostly used in the Agile-
based development system, where the story point is given using the
Fibonacci series. The valid numbers sequence can be — 0, 1, 1, 2, 3, 5,
8, 13, 21, 34, etc.

3.7. Code references

Here, code references highlight probable code modifications that
developers should fix the defects. One way to enhance efficiency is

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Fig. 7. Defect life cycle.
to give software developers clues to potential areas of the code that
need to be changed to fix either the predicted or detected defects.

3.8. Defect life cycle

The defect life cycle of the defect is shown in Fig. 7, indicating the
transitions of defect states.

3.9. Defect states

The defect discovered during testing can be in a variety of states.
Table 3 shows various states of the defect.

4. Research methodology

Formulating the right research question is crucial for any SLR. These
research questions are framed using the PIOC (Population, Intervention,
Outcome, Context) approach published by Kitchenham (Kitchenham
et al., 2009), as shown in Table 4. PRISMA guidelines published by
Kitchenham and Charters (Kitchenham et al., 2009) are referred into
the presented SLR to answer the formulated research questions.

4.1. Search keywords

Search keywords used for the Systematic Literature Review are
Software Defect Prediction, Software Fault Prediction, Software Bug
Prediction, Software Defect Forecasting, Artificial Intelligence, and Ma-
chine Learning. Fig. 8 shows the results from the database searches and

filtering of papers on various criteria. Fig. 9 shows the SLR process.

8

4.2. Selection criterion

Table 5 shows search keywords and queries used as a search strategy
for selecting the data for this SLR. In the presented paper, research is
limited to 2010 to 2021.

4.3. Inclusion and exclusion criteria

Additional filter criteria are employed to find high-quality studies.
Table 6 shows a few filter criteria applied to this SLR.

Table 7 displays the number of filtered studies based on the criteria

4.4. Quality assessment criteria

Quality assessment for the selected studies is driven by the guide-
lines provided by Kitchenham et al. (2009). These guidelines help filter
out the articles missing the proof of the significant findings claimed in
the paper, empirical analysis, justification of the proposed arguments,
etc. The selection of an article is based on the score achieved, based on
the guidelines. As per Fig. 10, the minimum qualification score for the
selected study is 4.

5. Literature outcome

The Systematic Literature Review was conducted with 146 research
studies in Software Defect Prediction to get details. This Section dis-
cusses various approaches used for defect identification. It includes
defect identification based on defect detection and defects prediction.
The distribution of topics across the 146 selected studies is shown in

Fig. 11.

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773

Fig. 8. Database search results for Software Defect Prediction.

Fig. 9. The SLR process.

9

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Table 3
Defect states.

State Description

New When the defects first surfaced in the testing and were logged by the quality
engineers as a defect.

Open The defect is logged and acknowledged, although nobody has taken any action. It is
not assigned to anyone and, so far, has no investigation on it.

Assigned After the initial screening, the defect is assigned to the appropriate team for fixing.

Reject The developer can reject the defect if it is as per the design.

Fixed The developer makes the appropriate code or configuration changes, ensures the
issue is resolved, and then marks the defect as fixed so that the testing team can
verify the defect fix.

Test The testing team picks the defect with status as fixed for the verification.

Re-open If the testing team finds that the fix is not functioning as expected, they can re-open
the defect by updating the comments and marking it as Opened.

Close If the testing team finds that the code is working as expected, they can mark the
defect as verified and close the defect.
Table 4
PIOC (Population, Intervention, Outcome, Context) criteria.

Parameter Meaning Keywords Used

Population It is a field of application. ‘‘Software defect prediction’’ OR
‘‘software fault prediction’’ OR
‘‘Software bug prediction’’ OR
’’software defect forecasting’’

Intervention It is a software methodology or approach for dealing with a certain
problem.

‘‘Artificial Intelligence’’ OR
‘‘Machine Learning’’

Outcome It should address issues that matter to practitioners, such as increased
reliability, lower production costs, and shorter time to market.

‘‘Reduce cost’’ OR ‘‘Reduce time
to market.’’

Context It is the setting in which the intervention takes place. ‘‘Software Defect Prediction’’ OR
‘‘Code references’’
Table 5
Search queries on various databases with parameters.

Scopus (TITLE-ABS-KEY (‘‘software defect prediction’’) OR TITLE-ABS-KEY (‘‘software
fault prediction’’) OR TITLE-ABS-KEY (‘‘software bug prediction’’) OR
TITLE-ABS-KEY (‘‘software defect forecasting.’’
)) AND ((‘‘artificial intelligence’’)) AND (‘‘machine learning’’) AND (LIMIT-TO
(PUBYEAR , 2010) OR LIMIT-TO (PUBYEAR
, 2011) OR LIMIT-TO (PUBYEAR, 2012) OR LIMIT-TO (PUBYEAR, 2013) OR
LIMIT-TO (PUBYEAR, 2014) OR LIMIT- TO (PUBYEAR, 2015) OR LIMIT-TO
(PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO (PUBYEAR,
2018
) OR LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO
(PUBYEAR, 2021)) AND (LIMIT-TO (LANGUAGE, ’’English’’))

630

Science Direct ‘‘software defect prediction’’ OR ‘‘software fault prediction’’ OR ‘‘soft-ware bug
prediction’’ OR ‘‘software defect forecasting’’ AND ‘‘artificial intelligence’’ AND
‘‘machine learning’’ Year: 2010–2021 ’’

360

IEEE (‘‘All Metadata’’: ‘‘software defect prediction’’) OR (‘‘All Meta-data’’: ‘‘software
fault prediction’’) OR (‘‘All Metadata’’: ‘‘software bug prediction’’) OR (‘‘All
Metadata’’: ‘‘ software defect forecasting’’) AND (‘‘All Metadata’’: ‘‘artificial
intelligence’’) AND (‘‘All Meta-data’’: ‘‘ machine learning’’)’’) Filters Applied:
Conferences Journals 2010–2021’’

434

ACM Journal [[All: ‘‘software defect prediction’’] OR [All: ‘‘software fault prediction’’] OR [All:
‘‘software bug prediction’’] OR [All: ‘‘software defect forecasting’’]] AND [All:
‘‘artificial intelligence’’] AND [All: ‘‘machine learning’’] AND [Publication Date:
(01/01/2010 TO 12/31/2021)]

90
T

o
i
p
t
i
t
W

5.1. Various approaches for finding defects

Once the development phase is over, every newly developed soft-
ware product gets tested. The purpose of testing is to ensure bug-free
delivery to the end-users. The more the code changes, testing efforts
are higher. Based on the historical training dataset, we can classify
the approaches into two broad categories at a high level, detecting the
actual defect and predicting the possible defect with some confidence.
Two approaches are:

1. Defect finding using Legacy approaches
 o

10
2. Defect finding using Prediction approaches

able 8 shows the high-level difference across various approaches.
We termed defect detection as the Legacy Approach. The literature

utcome also discusses the evaluation parameters, which generally
ndicate the classifier’s performance. In this SLR, we explore the various
ublicly available dataset. We try to identify the challenges inherent in
he dataset and what kind of data validation methods have been used
n earlier research? We have also analyzed the existing tools dedicated
o Software Defect Prediction; their comparative analysis is presented.

e have proposed a futuristic direction at the end of this literature
utcome, considering the gaps identified in the earlier research.

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Table 6
Criteria for inclusion and exclusion of research studies for Defect Prediction.

Criteria Topic Inclusion criteria Exclusion criteria

1 Defect prediction dataset Standard dataset, Or Custom dataset using
open-source projects

Paper with no references to the dataset is filtered.

2 Artificial Intelligence,
Machine Learning

Selected papers based on Machine Learning and
Artificial Intelligence

Static analysis, Manual defect testing, and other
unit testing automation are filtered.

3 Tools and framework-
work used

The study employed conventional tools such as
WEKA and others for feature selection and data
modeling.

Paper was filtered, not mentioning the references
for features used to build the classifiers.

4 Class Imbalance Treatment,
Feature Selection, Usage of
Software Metrics

Papers addressing Class Imbalance, Feature
Selection, Dataset Validation, Software Metrics,
Machine Learning, Deep Learning included.

Paper was filtered, which did not match the
formulated research questions mentioned in
Table 2.
Table 7
Search results from various databases.

Database Search Result Selected for review

ACM 251 67
Science Direct 360 23
Scopus 630 139
IEEE 434 48
Miscellaneous 8 6
Total 1681 283

146 out of 283 selected after removing duplicates from the above-selected papers across sources.
Table 8
Comparison between traditional and predictive approaches.

Method Approach Process Initial
Cost

Error Scope of Finding
Defects

Extra
Setup

Time Historical Data
Need

Manual Testing Detection Manual Low Possible Human
Error

Limited No Take lots of
time

No

Automation Detection Programmatic
Execution

Medium Coding errors
possible

Scale well Yes Moderate
time

No

Static analysis Detection Rule-based
execution

Low Mostly accurate Limited Yes Less time No

Peer Code
review

Detection Manual Process Low Mostly accurate Limited No Take a lot of
time

No

AI Approaches Prediction High computing
process

High Mostly Accurate,
Depends on the
data quality and
techniques used

Wide possibility
of Predictions

Yes Moderate Yes
Fig. 10. Criteria for choosing a research article.
5.1.1. Defect detection using legacy approaches
These are the legacy approaches used for more than decades and are

still quite popular in finding software defects. Detection approaches can
be further classified: Manual test case execution (Jayanthi and Florence,
11
2019), automation for defect detection (Shen and Chen, 2020), running
static code analyzers (Dong et al., 2018), manual code review, or peer
review (Wahono et al., 2014). Fig. 12 shows various approaches for
finding defects.

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Fig. 11. Topic distribution across the selected studies for review.
Fig. 12. Various methods for detecting defects.
1. Manual testing The software industry has adopted Manual test-
ing (Jayanthi and Florence, 2019), where the Quality Assurance en-
gineer executes business use cases designed based on the customer’s
business requirements and tries to figure out any defects in the software
while executing those cases. The major bottleneck in this approach
12
is it is a very time-consuming process, limiting how much testing
can be done before releasing the product. As per the study (Jayanthi
and Florence, 2019), manual testing required 27% of the total soft-
ware development time. Particularly, in the product-based software
companies, products are quite old and contain a huge code base with so

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
many product features that cannot be manually tested. Limited manual
testing leads to hidden defects, which are not caught in manual testing.
Manual testing can be further divided into various categories like:

Black-box testing
The tester does not know the code implementation in Black-Box

testing, and his focus is to ensure that the desired functionality works
as expected. Integration testing is an example of Black-Box testing.

White-box testing
In white-Box testing, the tester is aware of the inner workings of

the code and has prior knowledge of how it is implemented. White-Box
testing includes unit testing as an example.

Smoke testing
The purpose of the Smoke test is to check the sanity of the software

product before moving it to production. It is the last test before putting
the code in the production system.

User acceptance testing
User acceptance testing is done by the limited set of the actual user

to check if they can use the software and see no issues.

Usability testing
Usability testing checks the ease of software usage, look and feel,

and user interaction to ensure users have a smooth experience using
the software product.

Performance testing
It is a kind of load test done to ensure the scalability of the

software to the defined peak load, which is possible in the actual user
environment.

2. Using automation
As manual testing needs Quality Assurance resources, it is costly

and time-consuming. Automation testing technologies (Shen and Chen,
2020) are considered an important component for finding defects to
reduce time and cost. Survey (Shen and Chen, 2020) referred to similar
concepts for finding security defects using Automation techniques.
Such tools execute the various test cases similar to manual execution
but driven via software frameworks like Selenium. Those are fast in
executions and give satisfactory results.

3. Static code analysis for finding issues
Static code analysis (Dong et al., 2018) analyzes the source code

and checks against the predefined rules, mostly written in the XML
documents. According to the rule, if the parser identifies a code pattern
that matches the pre-defined rule, the code is marked as Buggy. Various
tools like Check Style, PMD, FindBug, Sonarqube, and Coverity are ex-
amples of tools available for detecting the issues by statically analyzing
the code for the software written in JAVA and C++ languages.

4.Manual code review
Manual code review is a manual process where one developer

reviews the code written by another developer before committing the
changes to the repository. Peer code review is a very commonly used
technique for detecting issues in the code. Generally, code is getting
reviewed by two other developers, and their approval is required before
committing the changes.

5.1.2. Defect finding using prediction approaches
Defect prediction using Artificial Intelligence techniques has gained

good focus, and many researchers have conducted their research for
predicting software defects using Artificial Intelligence techniques. De-
fect prediction approaches can be classified as below:

(i) Classification based on the software project.
(ii) Classification based on the metrics used for defect prediction

(Yu et al., 2020)
(iii) Statistical classification approach (Ma et al., 2014; Jing et al.,
2016; Zhang et al., 2015; Gao et al., 2015b)

13
(iv) Classification based on the Artificial Intelligence techniques used
for prediction

(i) Choosing software project for prediction
There are various forms of software development. It might be a

new fresh development or an incremental release. Do we have previous
versions of the software? We can divide the software project into four
categories that are relevant for Software Defect Prediction:

1. Within Project Defect Prediction (WPDP)
2. Cross-Project Defect Prediction (CPDP)
3. Cross Version Defect Prediction (CVDP)
4. Heterogeneous Defect Prediction (HDP)

Within project defect prediction
WPDP has historical data available from the same project, so we

can use the defect dataset of the earlier release to foresee defects in
the new code. Using Artificial Intelligence techniques, we can predict
if the code changes in a specific class will lead to a defect. The historical
dataset could train the Machine Learning model to predict the defect if
the modified class had any defect reported in an earlier release.

Cross-project defect prediction
When we do not have the previous release of the software for

reference, we can take the defect prediction across projects. This ap-
proach uses the other completed project’s historical dataset to predict
the defect in the new project. Automated parameter optimization (Li
et al., 2020) can significantly improve the prediction performance
for cross-project defect prediction. Using Combined Approach CPDP +
WPDP (Tabassum et al., 2020), where using Cross project data and then
gradually adding the Within Project data, as and when code is available
from the same project, improves the G-Mean by 53.90 percent.

Cross version defect prediction
In CVDP, earlier versions of the products are available and can be

leveraged to predict the defects in the current or future version of the
product. Study (Xu et al., 2018a) mentions using the Sparse Subset
Selection to map the early version modules to represent the current
version of the modules to predict the defects.

Heterogeneous defect prediction
Heterogeneous Defect Prediction uses multiple projects to train the

classifier to predict defects in the new sample. HDP uses metrics from
various projects and generally involves large data samples for training.

(ii) Metrics classification
One of the classifications of Defect Prediction is based on the se-

lected metrics for training the classification model. It could be process-
related metrics that depend on which process is followed for software
development defect metrics or source code metrics. Software Metrics
with strong discrimination ability can improve the classifier’s effi-
ciency. As a result, selecting the appropriate software metrics for
Software Defect Prediction is critical. A few academics attempted to
map defects directly to source code, utilizing existing source code
metrics. They also incorporated their novel metrics to do static analysis
for predicting the flaw in a fresh sample. On NASA, PROMISE, and
Eclipse Repository datasets, the use of these metrics resulted in higher
prediction in terms of Recall, F-Measure, and Precision. Response for
class (RFC), lines of code (LOC), and lack of coding quality (LOCQ) are
the most effective metrics, according to a study (Okutan and Yıldız,
2014) conducted on the PROMISE repository with nine open-source
datasets.

In contrast, the number of children (NOC) and depth of inheri-
tance tree (DIT) have very limited impact and are untrustworthy. Gray
et al. (Gray et al., 2009) used static code metrics to investigate the
classification’s performance. Zang et al. (Zhang et al., 2010) employ
static code metrics and training samples with incorrect class labels.

The study discovered that while training a classifier, a dense defect

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773

t
c
i
f
t
a
S

(

D
a
t

t
f
A
r

Table 9
Various metrics.

Process Metrics Hosseini et al.
(2017)

Loc Punitha and Latha (2016),
Ren et al. (2014), Chen
et al. (2019c)

Product metrics Hosseini et al. (2017)

Static code metrics Bashir et al.
(2018)

McCabe Punitha and Latha (2016),
Yousef (2015), Ren et al.
(2014)

Object Oriented
Metrics

Bashir et al. (2018),
Rodriguez et al. (2013),
Hosseini et al. (2017)

Micro Interaction
Metrics (MIMs)

Taek et al.
(2016)

Combined
Metrics

Bashir et al. (2018) Halstead Punitha and Latha
(2016), Yousef (2015),
Ren et al. (2014)
dataset outperformed a normal dataset. D’Ambros et al. (D’Ambros
et al., 2012) used source code metrics and change metrics to benchmark
the performance of classifiers. Several software metrics in various com-
binations can be applied for classification, but no formal guidance was
established. Because a training model that includes all metrics is com-
putationally expensive, a guideline for selecting software metrics was
needed. To pick the suitable software metrics, H. Bahadur et al. (Yadav
and Yadav, 2015) created a membership function. To improve the
accuracy of software failure prediction, Prasad et al. (Prasad et al.,
2015) used software metrics with a variety of data mining approaches.
Table 9 shows important metrics.

Process metrics usually define the attributes related to prediction
and part of the process. For example, those could be Code changes,
the number of developers, and the number of revisions in the same
file for Software Defect Prediction. Some examples of Code Metrics are
— McCabe, Halstead, and Object-oriented metrics (Yu et al., 2020).
Source code metrics are usually based on the software development
language with standard criteria to check the possibly defective code.
For example, in JAVA, Object-Oriented source code metrics can help
see the possible Buggy code. Some of the significant attributes for
Object-Oriented metrics are Class associations or coupling, Depth of
inheritance, number of classes, and number of public methods. Other
than these standard metrics, a few more metrics are based on the com-
plexity of the changes (D’Ambros et al., 2012), which try to measure
the distribution of code changes. The higher distribution of the code
changes indicates the higher possibility of the defect. Apart from the
complexity, another attribute named Code Churn (D’Ambros et al.,
2012) also indicates the quality or stability of the code. The higher the
Code Churn, the more defects and need more testing and verification,
whereas low code churn indicates the stable production-ready source
code. Previous defect metrics can be captured from the defect dataset
with information like the number of defects per line of code, defect
density, severity, etc. For predicting defects, metrics related to defects
are quite useful. Generally, defect metrics are used along with the other
software metrics to boost the accuracy of the prediction.

(iii) Statistical classification approach for defect prediction
Discriminant analysis is a statistical approach that tries to classify

he dataset into non-overlapping groups, which can be further used to
lassify the data into well-known categories. The Discriminant analysis
s used in very few studies to separate the non-overlapping samples
rom a given dataset. Discrimination is usually performed based on
he score of the quantitative predictor variable. Types of Discriminant
nalysis used in early research are Linear Discriminant Analysis and
ubclass Discriminant Analysis.

iv) Artificial intelligence based approaches
Artificial Intelligence techniques such as Machine Learning and

eep Learning in Software Defect Prediction have increased consider-
bly in the last ten years. Fig. 13 shows major Artificial Intelligence
echniques used for Software Defect Prediction.

Many researchers did their analysis based on Artificial Intelligence
echniques with the different combinations of algorithms, datasets,
eatures, and evaluation parameters to explore the usefulness of the
rtificial Intelligence techniques for Software Defect Prediction. Early
esearch has attempted to use many prominent algorithms for software
14
defect classification. On a broad level, these algorithms can be catego-
rized into three major types based on the learning style: Supervised,
Unsupervised, Semi-Supervised. As per the survey, supervised learning
algorithms are mostly used for building the classification model for
Software Defect Prediction. Semi-Supervised learning is not used much
in early research. Modified Co Forest (Punitha and Latha, 2016) solves
the class imbalance issue, although it does not have a significant foot-
print. Unsupervised learning (Gong et al., 2019; Wenjie, 2019; Ali et al.,
2020; Abdulshaheed et al., 2019a) is used less in previous research. The
algorithms used are K-Means and KNN, which do not need labeled data
for training and are very useful for the new projects where we do not
have a historical dataset available for training. Artificial Intelligence-
based learning algorithms can also be classified as Machine Learning
and Deep Learning. Table 10 shows the comprehensive analysis of the
various approaches.

a. Machine learning
One of the essential artificial intelligence approaches is Machine

Learning. The training dataset is utilized in Machine Learning to build
the classification model, which predicts future outcomes for the un-
known samples. Some common examples are:

1. Linear Regression
2. Naive Bayes
3. Logistic Regression
4. Decision Tree
5. SVM
6. KNN
7. K-Means
8. Random Forest etc.

Various research utilizing Machine Learning and Deep Learning
methodologies has been undertaken to measure the efficacy of clas-
sifiers and investigate the effects of data quality, feature selection,
sampling strategy, and the usage of various Software Metrics. Exhaus-
tive and heuristic search approaches for Software Defect Prediction
were studied in Di Mario et al. (2021) for intrusion detection with
excellent classification skills. Machine Learning approaches were used
in Khamis and Gomaa (2015) to develop various score functions for
drug design, while in Elmishali et al. (2018) Machine Learning was
employed for automated planning and diagnosis in troubleshooting
bugs (Elmishali et al., 2018). One of the most often used classifiers
in Software Defect Prediction is the Naive Bayes classifier. The NB
classifier outperforms more complex classification models despite its
simplicity. Many researchers have utilized NB as a benchmark classifi-
cation method to compare their proposals to the NB classifier. Transfer
Naive Bayes (Ma et al., 2012) utilizes weighted NB mode for CPDP
utilizing NASA datasets, resulting in a higher AUC and lower runtime
cost. The prediction performance is improved when NB is combined
with sampling (He et al., 2015). An association mining-based technique
combined with the NB classifier (Rana et al., 2015) enhanced Recall on
the PROMISE dataset. The K-Means (Wenjie, 2019) algorithm identifies
negative class samples to determine their centroid, and it is combined
with SMOTE to solve the class imbalance. The simple regression-
based classification algorithm Logistic Regression (Hall et al., 2011; Xia
et al., 2016; Zhang et al., 2018b; Cruz and Ochimizu, 2009) performs

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Fig. 13. Artificial Intelligence techniques for Software Defect Prediction.
better with Feature Selection. The use of LR techniques has been
established in CPDP investigations. KNN (Okutan and Yildiz, 2016;
Yu et al., 2017b; Zheng et al., 2020; Abdulshaheed et al., 2019a)
improves the classifier’s performance when used in conjunction with
Feature selection. Precomputed Kernel produces superior performance.
According to the study (Abdulshaheed et al., 2019a), KNN outperforms
RF and MLP on the NASA dataset. For identifying software metrics,
SVM (Peng et al., 2009; Catal, 2014; Huda et al., 2017; Okutan and
Yildiz, 2016; Choeikiwong and Vateekul, 2016) is utilized in a semi-
supervised learning approach in conjunction with ANN. According to a
study (Peng et al., 2009), SVM is one of the top three ranked classifiers
for predicting software defects. The notion of threshold adjustment
is used in R-SVM (Choeikiwong and Vateekul, 2016) to mitigate a
majority class bias. One of the best-performing ensemble approaches
is Random Forest. It is not overly affected by optimization parameters.
The Random Forest performs better than other classifiers in perfor-
mance stability with an imbalanced dataset. Random Forest (Naseem
et al., 2020; Tantithamthavorn et al., 2018; Wenjie, 2019; Laradji et al.,
2015; Akour et al., 2017; Yu et al., 2017a) is an algorithm for ensemble
learning. Random Forest improves when the class imbalance is cor-
rected. Random Forest performs well for classification and regression.
Random Forest performs better than other classifiers when the class
imbalance is not addressed. According to the survey, most studies used
Logistic Regression, Support Vector Machine, Decision Tree algorithm
C4.5, C5.0, Naive Bayes, k-Means. These algorithms can be classified
as the most widely used learning algorithms across various studies.
Table 11 highlights the use of various Machine Learning approaches
in early studies and the results of those studies.

b. Deep learning
Deep Learning is a more advanced technique that tries to imitate

the working style of the human brain. Artificial neural networks are
algorithms inspired by the structure and function of the brain, and
deep learning is a branch of Machine Learning that deals with them.
Data is analyzed with many layers, with every layer generating more
simplified data, which the other layer can process, and the outcome can
be produced more accurately. Some common examples are:

1. Convolutional Neural Networks (CNNs)
2. Recurrent Neural Networks (RNNs)
3. Multilayer Perceptron’s (MLPs)
15
4. Deep Belief Networks (DBNs)
5. Long Short-Term Memory Networks (LSTMs) (Hoa et al., 2019).

Table 12 highlights the use of various Deep Learning approaches with
the results of those studies.

The neural networks, particularly CNN and DNN, and their variants
like RNN, were the most common deep learning algorithms employed
in previous studies. Before implementing deep learning classification,
most studies applied automatic feature extraction. As a result, Feature
Selection is automatic with Deep Learning approach. AUC is the most
used method of evaluation for Deep Learning. In a study (Hoang
et al., 2019), CNN was used to forecast time for OpenStack projects
and showed a 13.69% improvement over traditional Machine Learning
algorithms. DNN was employed in a study (Dong et al., 2018) for
Android applications, and it outperformed SVM and Naive Bayes. For
decompiled Android apps, the AUC is .85. Attention-based Recurrent
Neural Network was used in the study (Fan et al., 2019). It parses
the code’s AST to extract syntactical and semantic properties, which
are then used in the ARNN-based second stage of classification. The
data reveals a 14 percent increase in F-Measure and a 7% increase in
AUC. Probabilistic Neural Network (PNN) (Pendharkar, 2010) was used
with a hybrid approach to solve the classification problem for Software
Defect Prediction. The most utilized deep learning algorithms across
multiple studies are Perceptron, Multilayer Perceptron, Convolutional
Neural Networks, and Recurrent Neural Networks. Table 13 shows
a brief comparison of the few significant Non-Supervised Machine
Learning approaches.

Table 14 shows a brief comparison of the significant Supervised
Machine Learning approaches.

Table 15 shows a brief comparison of significant Deep Learning
techniques.

Table 16 lists a few of the high-quality papers cited in this SLR that
cover various areas of Software Defect Prediction.

c. Evaluation parameters
Most research has used evaluation parameters like Precision, Recall,

F-Measure, and Probability of False Alarm to assess the quality of a
classifier. Peng et al. (Peng et al., 2009) investigated and produced
performance metrics for assessing the classifier’s quality. AUC, PF, F-
Measure, Recall, and Precision are the most commonly used CPDP
evaluation criteria. Rathore and Kumar (Rathore and Kumar, 2019)

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Table 10
Various defect identification and prediction approaches for finding defects.

Paper Method Approach Advantages Disadvantages

Jayanthi and Florence (2019) Manual Testing Legacy
(Detection
based)

1. No extra setup is needed
2. Quick feedback to the developer
3. No need for historical data

1. Human factor-error prone
2. Less number of defects
3. Costly
4. Time-consuming

Wahono et al. (2014) Peer Code
review

Legacy
(Detection
based)

1. It is mostly accurate, as reviews are
done with the experts.
2. No need for historical data

1. Time-consuming
2. Find limited defects
3. Human factors.

Shen and Chen (2020) Automation
Testing

Legacy
(Detection
based)

1. It is fast than manual testing.
2. No human error, although the test
code itself may have an error.
3. It can be linked with the code
changes and the build process to quickly
update developers.
4. No need for historical data

1. The initial cost is high
2. Need Extra setup
3. Find limited defects as per the
automated test cases.

Dong et al. (2018) Static code
analysis

Legacy
(Detection
based)

1. It can be integrated into the
developer’s environment, quickly
updating on defects.
2. No need for historical data

1. Based on predefined rules
(code metrics)
2. Find only generic code defects
3. Cannot find the functional
defects
4. Tied with the programming
language

Felix and Lee (2017),
Manivasagam and
Gunasundari (2018),
Zhang et al. (2018b), Gong
et al. (2019), Wenjie (2019),
Li et al. (2012), Laradji et al.
(2015), Ali et al. (2020),
Abdulshaheed et al. (2019a),
Naseem et al. (2020),
Choeikiwong and Vateekul
(2016), Tantithamthavorn
et al. (2018)

Machine
Learning

Prediction based 1. Can predict many defects with higher
confidence.
2. It can be useful to provide direction
to utilize the resource in the area with
the maximum likelihood of getting
defects.
3. Easy to interpret

1. Defect prediction is possible to
have a defect and not necessarily
a defect.
2. Need a historical dataset
3. Need Extra setup
4. The initial cost is high
5. Feature selection is critical

Phan et al. (2018), Shen and
Chen (2020), Liang et al.
(2019), Gao et al. (2014), Ali
et al. (2020), Abdulshaheed
et al. (2019a), Fan et al.
(2019), Qiu et al. (2019)

Deep Learning Prediction based 1. Deep Learning can provide more
accurate predictions for complex, big
projects.
2. Less dependency on the feature
selection.

1. Complex to understand the
inner working of internal layers.
2. It is expensive computationally.

Ma et al. (2014), Jing et al.
(2016), Zhang et al. (2015),
Gao et al. (2015b)

Discriminant
analysis
(Statistical)

Prediction based 1. Less complex
2. Easy to implement
3. Works the best when data is
separable.

1. Not effective when data is not
separable.
2. Performance is not as good as
other ML/DL techniques.
looked into the relationship between product metrics and fault prone-
ness, which could be important information for improving forecast
accuracy in the context of a project. Table 17 shows the evaluation
parameters referred to in previous research.

5.2. Available datasets, are they good enough for multi-label predictions?

Earlier research publications are examined in this section to com-
pare the use of publicly available datasets and the challenges faced
for predicting software defects. It is also analyzed if these datasets
can predict defect estimates, resource allocations, and the code to be
fixed for the predicted defects. Most of the early researchers referred to
NASA, PROMISE, and AEEEM datasets in their studies. KC3, PC4, CM1,
PC3, KC1, and PC1 are the most used datasets in the early research.
Apart from these, JIRA is a popular bug tracking system utilized as a
bug repository by many open-source software. Yatish, Suraj, et al. (Li
et al., 2020) created the bug dataset using the JIRA Bug repository.
Fig. 14 shows the commonly used datasets from NASA, PROMISE, and
AEEEM Repository.

Table 18 shows the various attributes of the dataset available pub-
licly.

Table 19 shows the attributes of the JIRA dataset created by Yatish,
Suraj, et al. (Yatish et al., 2019) for Software Defect Prediction. Ta-
ble 21 lists the literature review references for the datasets.
16
5.2.1. Datasets challenges
Most of the datasets have the class imbalance issue, except a few

datasets that are better in class imbalance, like JDT.Core, KC4, Eclipse
3.0, Xalan, whereas the most imbalanced datasets are CM1, JM1, PC5,
LC, KC3, MC1, PC1, PC2, 90% or more datasets is skewed either
towards defective or non-defective. Besides this, high dimensionality
is another concern that impacts the learning algorithm’s performance.
Most of the datasets are good for binary classification but lack the ade-
quate features for defect estimation, severity, resource allocations, code
changes required to predict the defects. Fig. 15 shows the challenges in
the available Software Defect Prediction datasets.

(i) Class imbalance
For Machine Learning classification, the training dataset should

have an approximate equal positive and negative label, but that is
seldom in any real-life business applications. Class Imbalance is a
serious challenge that harms the prediction. The survey shows the
attempts done in early research to develop a good Machine Learn-
ing classifier and mitigate the Class Imbalance. The techniques used
for solving Class Imbalance are Bagging, Over Sampling, Under Sam-
pling, Synthetic Minority Over-sampling Technique SMOTE, Two-Stage
Cost-Sensitive Learning. The term ‘‘Class Imbalance’’ refers to a Ma-
chine Learning situation where the total number of positive data classes
is significantly less than the total number of negative data classes.

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Table 11
Machine Learning approach used in earlier research.

Paper Year Learning Dataset Evaluation
Parameters

Algorithm Result with the best
performance

Yu et al. (2020) 2020 ML Open Source
Java projects.

AUC KNN, LR, NB LR performs the best with PPM with
AUC 0.88 for the Jedit project.

Wu et al. (2020) 2020 ML PROMISE NASA RECALL, AUC AdaBoost,
DecisionTree

AdaBoost and Decision Tree performs
better for the synapse-1.2 dataset with
recall value as –
0.55 and 0.554.

Naseem et al. (2020) 2020 ML NASA F-MEASURE,
PRECISION, RECALL

NB, RF, KNN, MLP
SVM, J48

RF generates better results with 0.99 on
the PC2 dataset.

Ali et al. (2020) 2020 ML NASA F-MEASURE
ACCURACY MCC

Ensemble learning,
NB, MLP, RBF,
SVM, KNN, DT, RF

Ensemble approach outperform with
F-Measure = 0.75 Accuracy
= .87, MCC = 0.669.

Saifan and Abu-wardih (2020) 2020 ML PROMISE AUC KNN
(Bagging based)

KNN with Bagging with Feature
selection using PCA performs the best
with AUC=0.726 for the CM1 dataset.

Abdulshaheed et al. (2019a) 2019 ML NASA MAE, RMSE, RAE,
RRSE,
R Square

KNN RF MLP The result indicated the KNN performs
better with R square value = 0.9969.

Wenjie (2019) 2019 ML UCI Machine
Learning

F-Measure,
G- Mean

K-Means With
SMOTE

KMS-SMOTE has a better F- Measure of
0.9127 with the Ionosphere dataset.

Ji et al. (2019) 2019 ML PROMISE F-Measure Weighted Naive
Bayes (WNB-ID)

Results are better with WNB-ID with
F-Measure = 0.8669 for the POI-2.5
dataset.

Chen et al. (2019a) 2019 ML ALEEM NASA
ECLIPSE

Wilcoxon sign-rank,
AUC

J48, Random Forest With Multiple view transfer learning,
a 𝑝-value of RF =0.8964 for the eclipse
dataset.

Tantithamthavorn et al. (2018) 2019 ML NASA PROMISE Precision, Recall,
F- Measure
AUC

C5.0,
xGBTree,
and GBM)

For Optimized xGBTree, the average
rank is 2.39, whereas for C5.0, it is
2.56, and for GBM, it is 2.94.

Ji et al. (2018) 2018 ML NASA Precision,
Recall,
F- Measure,
AUC

Two Stage Naive
Bayes (TSWNB)

TSWNB performs better with AUC
value=0.7835 for the PC4 dataset.

Xu et al. (2018b) 2018 ML NASA AEEEM F-Measure
AUC,
Balance

LR, NB, KNN, RF Naive Bayes with Kernel distribution
achieves better results. F- Measure
=0.907 for WPDP.

Ghosh et al. (2018) 2018 ML Open-Source
Repository

AUC,
Accuracy, F-
measure, Percentage

BBN NB J48 For nonlinear MDTs, model performance
is better. The accuracy of the J48 for
the Apache dataset is 74.2268 percent.

Zhang et al. (2018b) 2018 ML PROMISE F-Measure Max, Boosting J48,
RF, LR Boosting
Naive CODEP
(Logistic)

RF, BoostingJ48, and Max have better
F-scores than the F-measure of the
CODEP(Logistic) by 2.33%, 0.33%, and
36.88%, respectively.

Bowes et al. (2018) 2018 ML NASA Precision,
Recall,
F- Measure

RF, NB,
RPart, SVM

Classifier ensembles with
decision-making strategies perform best
in defect prediction.
Fig. 14. Commonly used Datasets from NASA, PROMISE, AEEEM repositories.
Fig. 16 shows the percentage of defective instances in various datasets
from NASA, PROMISE, AEEEM, and JIRA repository.
17
The Class Imbalance is addressed in a variety of ways by re-
searchers. Resampling approaches that combined Threshold Moving

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Table 12
Deep Learning approach used in earlier research.

Paper Year Learning Dataset Evaluation
Parameters

Algorithm Result with the best performance

Qiu et al. (2019) 2019 DL PROMISE Precision
Recall
F-Measure

TCNN DBN TCNN performs better. F-Measure for
Log4j dataset is 0.702.

Liang et al. (2019) 2019 DL PROMISE
GitHub

Recall,
Precision, F-
Measure

LSTM Network The proposed LSTM approach improves
DBN ISDA approaches by 8.2

Fan et al. (2019) 2019 DL Open Source
Apache

F-Measure AUC DP-ARNN F1 measure is increased by 14% using
DP-ARNN, whereas a 7% increase is
observed in the AUC compared to the
other standard methods.

Gao et al. (2014) 2014 DL PROMISE
Eclipse

AUC MLP MLP performs better with boosting on
all the studied datasets.

Dong et al. (2018) 2018 DL Open Source
GitHub

AUC DNN 85.98

Gao and Khoshgoftaar (2015) 2015 DL Eclipses Precision, Recall,
F-Measure, AUC

MLP with Feature
Selection Sampling

MLP performs the best with an AUC
value of 0.8501 for the SMO35 sampling
technique.
Table 13
A brief comparison of unsupervised Machine Learning algorithms.

Papers Algorithms Advantage Disadvantage

Gong et al. (2019),
Wenjie (2019)

K-Means 1. Easy implementation
2. Suitable for large datasets.

1. Do not perform well with high
Dimensionality.

Ali et al. (2020),
Abdulshaheed et al.
(2019a)

K-NN
(k-Nearest
Neighbors)

1. Well suited for Multiclass classification.
2. Simple and easy implementation.

1. Slow when the dataset grows.
2. Better performance with fewer
features.
Table 14
A brief comparison of supervised Machine Learning algorithms.

Papers Algorithms Advantage Disadvantage

Felix and Lee
(2017),
Manivasagam
and Gunasundari
(2018)

Linear Regression 1. Simple and Effective
2. Tuning hyperparameters is not
required

1. Poor results for non-linear data
2. Comparative performance is not as good as
other algorithms

Zhang et al.
(2018b)

Logistic
Regression

1. Simple and Effective
2. Tuning hyperparameters is not
required

1. Poor results for non-linear data
2. Comparative performance is not as good as
other algorithms

Naseem et al.
(2020), Li et al.
(2012)

Decision Tree 1. No impact of missing values
2. Automatic Feature Selection

1. Over fitting issues
2. Data sensitivity
3. Take more time

Laradji et al.
(2015),
Choeikiwong and
Vateekul (2016)

Support Vector
Machine

1. No major impact of high
dimensionality.
2. Best performance, when classes are
separable

1. Slow if the dataset is large
2. Hyper parameter tuning required
3. A poor result in case of class overlap

Laradji et al.
(2015), Tan-
tithamthavorn
et al. (2018)

Random Forest 1. Works well with an imbalance dataset

2. No over fitting
3. Well handling of missing values

1. The feature should be capable of prediction
2. Choosing the right parameter is important for
good results
Table 15
A brief comparison of Deep Learning approaches.

Papers Algorithms Advantage Disadvantage

Phan et al. (2018), Shen and
Chen (2020), Qiu et al. (2019)

Convolutional Neural
Network (CNN)

1. Efficient computation.
2. Auto Feature selection.

1. Need lots of training data.

Shen and Chen (2020), Fan
et al. (2019)

RNN 1. Good for time series prediction 1. It is complex.
2. Training is difficult.

Liang et al. (2019), Cui et al.
(2019), Fan et al. (2019), Hoa
et al. (2019)

LSTM 1. Can predict time series with a time lag of
unknown duration.

1. Require more time to train.
2. It needs more memory.

Gao et al. (2014), Ali et al.
(2020), Abdulshaheed et al.
(2019a)

MLP 1. Works well with noisy data.
2. It can also work with non-linear data.

1. It needs many parameters as it
is fully connected.
18

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Table 16
High-ranked papers for specific aspects of Software Defect Prediction.

Topic Paper Title Name of journal Cited By Cite Score Algorithm/Techniques Dataset

Class Imbalance An Improved SDA Based Defect
Prediction Framework for Both
Within-Project and Cross-Project
Class-Imbalance Problems (Jing
et al., 2016)

IEEE Transactions on
Software Engineering

100 14.9 Subclass discriminant
analysis

PROMISE
NASA
ALEEM

Selecting a
sample

Sample-based Software Defect
Prediction with active and
semi-supervised learning (Li
et al., 2012)

Automated Software
Engineering

127 6.2 Active and semi-supervised
learning
ACoForest

PROMISE

Feature Ranking A feature selection approach
based on a similarity measure for
Software Defect Prediction (Yu
et al., 2017b)

Frontiers of Information
Technology and Electronic
Engineering

15 4.3 KNN NASA

Feature Selection Software Defect Prediction using
ensemble learning on selected
features (Laradji et al., 2015)

Information and Software
Technology

196 8.6 Ensemble learning
algorithm

NASA

Data Pre
Processing

Is ‘‘better data’’ better than
‘‘better data miners’’?: On the
benefits of tuning SMOTE for
defect prediction (Agrawal and
Menzies, 2018)

International Conference on
Software Engineering

75 4.6 SMOTE and SMOTUNED SEACRAFT

Deep Learning -
LSTM

Seml: A Semantic LSTM Model
for Software Defect Prediction
(Liang et al., 2019)

IEEE Access 18 4.8 LSTM GitHub

Artificial Neural
Networks

Transfer learning using
computational intelligence: A
survey (Lu et al., 2015)

Knowledge-Based Systems 403 11.3 Neural network-based
transfer learning

Convolutional
neural network

DGCNN: A convolutional neural
network over large-scale labeled
graphs (Phan et al., 2018)

Neural Networks 21 10.9 CNN GitHub

Unsupervised
Learning

Software defect number
prediction: Unsupervised vs.
supervised methods (Chen et al.,
2019c)

Information and Software
Technology

44 8.6 LOC metric Open-source
projects

Logistic
Regression

A systematic literature review on
fault prediction performance in
software engineering (Hall et al.,
2011)

IEEE Transactions on
Software Engineering

642 14.9 Naive Bayes NASA
PROMISE

Principal
Component
Analysis

Software Defect Prediction based
on kernel PCA and weighted
extreme learning machine (Xu
et al., 2019)

Information and Software
Technology

50 8.6 Kernel Principal
Component Analysis
(KPCA) and Weighted
Extreme Learning Machine
(WELM)

NASA

Metrics An empirical study on Software
Defect Prediction with a
simplified metric set (He et al.,
2015)

Information and Software
Technology

127 8.6 One-way ANOVA, Naive
Bayes

PROMISE

Cross Project
Defect Prediction

HYDRA: A massively
compositional model for
cross-project defect prediction
(Xia et al., 2016)

IEEE Transactions on
Software Engineering

162 14.9 Genetic algorithm
Ensemble learning

PROMISE

Support Vector
Machine

Empirical evaluation of classifiers
for software risk management
(Peng et al., 2009)

International Journal of
Information Technology and
Decision Making

65 4.0 SVM NASA

Ensemble
Learning

Multiple kernel ensemble learning
for Software Defect Prediction
(Wang et al., 2016)

Automated Software
Engineering

69 6.2 Multiple kernel ensemble
learning (MKEL)

NASA MDP
(Wang and Yao, 2013) with a dynamic variant of the AdaBoost En-
sembling algorithm known as AdaBoost-NC outperformed regular Ad-
aBoost. Experiments also showed that Random Forest and Naive Bayes
performed better. The KPWE framework (Xu et al., 2019), which
combines the KPCA and WELM, outperformed traditional algorithms in
terms of F-Measure, MCC, and AUC for NASA and PROMISE datasets.
Normalizing the data distribution is commonly used to tackle Class
Imbalance, but another feature called Discriminant ability (Zhang et al.,
2015) can also be employed to fix the problem. It employs EDBC’s
19
Dissimilarity-based classification. EDBC enhanced classification perfor-
mance for Naive Bayes by 5 to 9.09 percent, Random Forest by 1.2 to
6.33 percent, IB1 by 9.21 to 18.57 percent, Multilayer Perceptron by
4.88 to 10.26 percent, and Logistic Regression by 8.86 to 13.16 percent.
Random Under-Sampling, Random Over-Sampling, SMOTE, Bagging,
and Boosting have been demonstrated to be less successful than EDBC.
Model ASRA (Zhou et al., 2018b), which employs attribute selection,
sampling, and ensemble approaches at various stages, produced a
higher F-Measure for the UCI dataset when compared to a set of classi-
fiers that did not use the ASRA model. Class imbalance is also decreased

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Table 17
Various evaluation parameters for Software Defect Prediction quality.

Precision The ratio of correctly categorized positive samples to the total
number of samples categorized positively, including both correctly
and mistakenly classified positive samples, is known as precision.

𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒

Recall The recall is calculated as the proportion of correctly categorized
positive samples to the sum of correctly categorized true and
false-negative samples.

𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Accuracy Accuracy is the ratio between the sum of True classified Positive
and Negative versus the total number of Samples

𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇 𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑇 𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

F-Measure F-Measure, a Harmonic Mean of Precision and Recall, is used to
define the accuracy of Machine Learning categorization.

2 ×
√

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

G-Mean G-Mean (Geometric Mean) is a metric for comparing the
categorization balance of majority and minority datasets. Low
G-Mean denotes the weaker classification performance for the
positive cases, although the negative cases are classified correctly.

√

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦

AUC The Area Under the Curve can measure the classification model’s
performance, distinguishing between Positive and Negative classes.
The performance of the classification algorithm will be higher if the
AUC value is higher.

Probability of
False Alarm (pf)

False Alarm in Software Defect Prediction means that the
classification output predicts that the code is buggy even when not.
As a result, the Probability of False Alarm can be used to assess the
quality of a defect prediction model.

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇 𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
Table 18
Various attributes of the publicly available dataset.

Dataset Source Language LOC Attributes Number of rows Defective rows Defective (%) Imbalance ratio

CM1 NASA C 17K 22 498 49 9.84% 10
JM1 NASA C 457K 22 10885 8779 80.65% 1
KC1 NASA C++ 43K 22 2109 326 15.46% 6
KC2 NASA C++ 19K 22 522 105 20.11% 5
KC3 NASA Java 8K 40 458 43 9.39% 11
KC4 NASA Perl 25K 40 125 61 48.80% 2
MC1 NASA C++ 66K 39 9466 68 0.72% 139
MC2 NASA C++ 6K 40 161 52 32.30% 3
MW1 NASA C 8K 40 403 61 15.14% 7
PC1 NASA C 26K 40 1107 76 6.87% 15
PC2 NASA C 25K 40 5589 23 0.41% 243
PC3 NASA C 36K 40 1563 160 10.24% 10
PC4 NASA C 30K 40 1458 178 12.21% 8
PC5 NASA C++ 162K 39 17186 516 3.00% 33
Eclipse 3.0 PROMISE Java 1306K 198 661 415 62.78% 2
Eclipse 2.0 PROMISE Java 797K 198 6729 2611 38.80% 3
JDT.Core PROMISE Java 181K 198 939 502 53.46% 2
SWT PROMISE Java 194K 198 843 208 24.67% 4
Xalan PROMISE Java 57K 20 886 411 46.39% 2
EQ AEEEM Java 70.4K 62 324 129 39.81% 3
JDT AEEEM Java 239.4K 62 997 206 20.66% 5
LC AEEEM Java 149.1K 62 691 64 9.26% 11
ML AEEEM Java 381.6K 62 1862 245 13.16% 8
PDE AEEEM Java 345.6K 62 1497 209 13.96% 7
Table 19
JIRA dataset created by Yatish, Suraj, et al. (Yatish et al., 2019) for defect prediction.

Dataset Source Language LOC Attributes Number of rows Defective rate%

ActiveMQ JIRA JAVA 142-299K 66 1884 6%–15%
Derby JIRA JAVA 412-533K 66 2705 14%–33%
Groovy JIRA JAVA 74-90K 66 821 3%–8%
HBase JIRA JAVA 246-534K 66 1059 20%–26%
Hive JIRA JAVA 287-563K 66 1416 8%–19%
JRuby JIRA JAVA 105-238K 66 731 5%–18%
Wicket JIRA JAVA 109-165K 66 1763 4%–7%
by employing the Decision Forest approach for cost-sensitive (Siers and
Islam, 2018) prediction. The Cost-Sensitive Framework results reveal
that Decision Forest has the lowest average cost for the NASA dataset.
Omni-Ensemble Learning (OEL) (Mousavi et al., 2018) is an Ensemble
Learning (OEL) approach that leverages the Over-Bagging approach to
improve classification performance for an imbalanced dataset. Experi-
ments demonstrate that applying OEL improves G-Mean, Balance, and
20
AUC metrics. For OEL, the PF Measure yielded poor results. The EMR
SD algorithm (He et al., 2019), a RIPPER-based Ensemble MultiBoost
algorithm, employs a combination of Feature Selection and Sampling
techniques. It aids in the decrease of variance. Results on the NASA
MDP dataset reveal that EMR SD outperforms DNC and CEL in terms
of Accuracy, F-Measure, AUC, and Balance. KMFOS (Gong et al., 2019)
is a clustering-based oversampling with noise filtering strategy that uses

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773

t
p
O
T
i
s
T
n
F
T
I
(
i
u
W
c
t

(

a
v
t

(

t
a
p
D
u
m
a

(

t
t

Fig. 15. Dataset challenges for Software Defect Prediction.
Fig. 16. Class imbalance: % defective class in the NASA, PROMISE, AEEEM, and JIRA databases.
S
L
s
n
o
p
a
m
a
I
l
(

g
2
s
f
t
r
F

(

he K-means algorithm to improve Imbalanced dataset classification
erformance. When KMFOS is compared with approaches such as
ver Sampling, SMOTE, Balance Bagging classifier, Instance Hardness
hreshold, and Cost Sensitive methods, experimental findings are better

n Recall and Balance. Tree family algorithms (Naseem et al., 2020)
uch as the Hoeffding Tree (HT), Random Tree (RT), Credal Decision
ree (CDT), Cost-Sensitive Decision Forest (CS-Forest), Forest by Pe-
alizing Attributes (Forest-PA), Logistic Model Tree (LMT), Random
orest (RF), Decision Stump (DS), REP-Tree (REP-T), and Decision
ree (J48) have also been found to be useful in resolving the Class
mbalance issue in the Software Defect Prediction dataset. Sun et al.
2012) focused on a new strategy for turning an unbalanced dataset
nto a multi-class dataset and then performing software fault prediction
sing the ensemble learning method, which produced improved results.
ang and Yao (2013) investigated numerous approaches for learning

lass imbalance and compared the results of the various methods. Few
echniques to handle Class Imbalance are:

ii) Bagging
Bagging (Wahono et al., 2014; Saifan and Abu-wardih, 2020),

nd (Punitha and Latha, 2016) is a kind of ensemble algorithm that uses
arious subsets of the training dataset and tries to fit multiple models,
hen combines the prediction from all the created models.

iii) Oversampling
The characteristics and sample methods also influence the quality of

he prediction. Data sampling helps resolve Class Imbalance concerns
nd has been demonstrated to improve prediction efficiency. Oversam-
ling uses the minority classes and duplicates the records to balance the
efective versus Non-Defective rows from the dataset. Oversampling is
sually combined with other techniques to avoid the over-fitting of the
odel. When training data are scarce, Random Over Sampling (Gao

nd Khoshgoftaar, 2015; Chen et al., 2019b) method is appropriate.

iv) Under-sampling
Under-sampling is the exact opposite of over-sampling. To address

he issue of class imbalance, rows from the majority classes are removed

o equalize the majority and minority classes with in-training samples.

21
ampling techniques (Huda et al., 2018; Gao et al., 2015a; Khuat and
e, 2019; Wang and Yao, 2013) were adapted to reduce the number of
amples that are not significant and sort of noise. Such reduction in the
on-significant data also helps to reduce the class imbalance issue that
therwise negatively impacts the classification. Random Under Sam-
ling (RUS) (Khoshgoftaar and Gao, 2009; Gao et al., 2014, 2015a; Gao
nd Khoshgoftaar, 2015; Khuat and Le, 2019; Gao et al., 2015b) is the
ost commonly used sampling method for Software Defect Prediction,

nd according to a study (Gao et al., 2014), it outperforms SMOTE.
t is primarily implied to bring the class balance into equilibrium by
owering the majority.
v) SMOTE

SMOTE (Bashir et al., 2018; Gao and Khoshgoftaar, 2015; Khosh-
oftaar et al., 2015; Wenjie, 2019; Gong et al., 2019; Gao et al.,
015b; Choeikiwong and Vateekul, 2016; Chen et al., 2019b) is a more
ophisticated technique based on random minority over sampling and
urther customized by combining with the K-Means algorithm to solve
he marginalization problem (Wenjie, 2019). SMOTE produced superior
esults when combined with under-sampling. It is highly advised to use
eature Selection in conjunction with oversampling or SMOTE.

vi) Two Stage Cost Sensitive Learning
A Two-Stage Cost-Sensitive Learning (TSCS) method, according to

a study (Liu et al., 2014b), helps the resolution of Class Imbalance
and High-Dimensional Data issues. Not only is cost information em-
ployed in the categorization stage, but it is also used in the feature
selection stage. Three cost-sensitive feature selection methods, CSVS,
CSLS, and CSCS, are developed by including cost information into
standard feature selection algorithms. According to experimental data,
the proposed TSCS approaches outperform single-stage cost-sensitive
learning methods, whereas the proposed cost-sensitive feature selection
methods exceed typical cost-sensitive Feature Selection methods.

(vii) High dimensionality
High dimensionality in the dataset indicates that the number of

dimensions or features is quite high, making an inefficient calculation.

The performance of the Machine Learning algorithm reduces due to

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
high dimensionality. It is important to consider dimensionality reduc-
tion as part of data pre-processing before applying Machine Learning
algorithms. The majority of the research focused on selecting the
appropriate features and avoiding the insignificant features using the
feature selection techniques.

(viii) Inadequate features for prediction
Predicting actionable items for the software development team is

more valuable than simply addressing the binary classification problem
of determining whether a piece of code, often a class, is defective.
According to the survey dataset used in the early research, it is critical
to examine if the training dataset has enough features that can be used
in Multi-Label predictions such as estimations or story points, severity,
resource allocation, possible remedy, and so on. The majority of the
public datasets utilized in the early studies are only capable of binary
classification and cannot make Multi-Label predictions.

(ix) Inadequate class labeling
According to the survey, most previous research focused on binary

classification, which means predicting whether code is buggy or not. As
a result, early studies did not focus on the significant features needed
to predict additional information about the software defect. Although
we can meet this requirement by selecting the relevant feature from
the open-source dataset, there will still be another challenge due to
the lack of labeled classes. Labeled classes are required to train the
learning algorithm to predict the additional defect-related information,
specifically for Multi-Label prediction. Existing studies are lacking in
adequate class labels for Multi-Label prediction.

5.2.2. Feature selection/reduction
The essential characteristics in the training dataset capable of

good classification are determined through Feature Selection. Using
the proper features can improve the classification model’s efficiency.
It also reduces the amount of time it takes to generate the results.
Feature selection is a technique for picking the most relevant feature
while disregarding those not. Features in a software dataset must
be carefully chosen to successfully identify problematic components.
Feature selection excludes features that do not help categorize data
and cause poor performance. For feature selection, early studies used a
variety of strategies, like as-

1. Correlation-based Feature Selection (CFS) (Bashir et al., 2018;
Zhang et al., 2015; Saifan and Abu-wardih, 2020; Laradji et al.,
2015; Ali et al., 2020; Jakhar and Rajnish, 2018)

2. Correlation-based filter solution (FCBFS) (Zhang et al., 2015)
3. Clustering-based feature subset selection FAST algorithm (Zhang

et al., 2015)
4. Forward Selection (Laradji et al., 2015)
5. Greedy Forward Selection (Laradji et al., 2015; Saifan and Abu-

wardih, 2020)
6. Genetic Ant Colony Optimization (GACO) (Punitha and Latha,

2016)
7. Similarity Measures (Yu et al., 2017b)
8. Dynamic model based on Nonlinear Manifold Detection Tech-

niques (Nonlinear MDTs) (Ghosh et al., 2018)
9. Chi-square (Bashir et al., 2018)

10. Information Gain Bashir et al. (2018), Cabral et al. (2019), Saifan
and Abu-wardih (2020), Catolino et al. (2019)

11. Principal components analysis (PCA) (Bashir et al., 2018; Jayan-
thi and Florence, 2019; Saifan and Abu-wardih, 2020; Jakhar
and Rajnish, 2018)

12. Kernel Principal Component Analysis (KPCA) (Xu et al., 2019)

AUC, Precision, Recall, F-Measure, Accuracy, PF, Sensitivity, and MCC
are used to evaluate the performance of various classifiers with and
without these Feature Selection strategies. In the research for Fea-
ture Selection studies, NASA and PROMISE databases are mostly ex-

plored. FAST (Zhang et al., 2015) outperforms other feature selection

22
strategies, while correlation-based algorithms show only a modest im-
provement. Study (Agrawal and Menzies, 2018) concluded that it is
more important to do the data pre-processing than choosing the classi-
fier. Earlier research has seen a significant improvement in prediction
accuracy by adopting Feature Selection techniques. According to a
study (Laradji et al., 2015), the Greedy Forward selection performed
best for NASA dataset PC2, PC4, MC1 with an AUC of around 1. GACO
was recommended for the NASA MDP dataset in a study (Punitha
and Latha, 2016), with greater Precision, Recall, and F-Measure than
other approaches. In a study (Yu et al., 2017b), Feature Weights and
Feature Ranking were utilized to choose features, and the KNN classifier
produced a superior AUC for prediction. The accuracy of a dynamic
model, based on Nonlinear Manifold Detection Techniques (Nonlinear
MDTs) (Ghosh et al., 2018) proved higher, and the F-Measure using J48
was statistically significant. When paired with data balance and noise
filtering, the Chi-Square test, Information Gain, and ReliefF (Bashir
et al., 2018) yield better results. Principal Component Analysis (Jayan-
thi and Florence, 2019) revealed a higher AUC of 97.2 percent, while
KPCA (Xu et al., 2019) revealed a higher MCC and F-Measure. On
the NASA dataset, T. Khoshgoftaar et al. (Khoshgoftaar et al., 2010)
investigated Feature Selection and Sampling. Wang et al. (Wang et al.,
2010) investigated Ensemble Feature selection and analyzed Ensemble
Feature selection effectiveness. The study compared approaches that
select a single feature vs. methods that select multiple features. Khosh-
goftaar et al. (2015) investigated several Feature Selection procedures
and showed how they affect the prediction model. To manage a highly
imbalanced Software Defect Prediction dataset, Gao and Khoshgoftaar
(2015) coupled sampling strategies with Feature Selection methods.
They evaluated several Sampling methods in combination with Feature
Selection methods in their research work. Yu et al. used Feature Se-
lection and Feature Ranking with Feature weight (Yu et al., 2017b)
to eliminate the redundant features and enhance the prediction’s ef-
ficiency and quality. Saifan et al. (Zheng et al., 2020) used ensemble
methods to investigate class Imbalance and Feature Selection and as-
sessed several Feature Selection techniques to improve the prediction
model’s performance. According to a study (Chen et al., 2020), apply-
ing Software Visualization, Deep Learning can eliminate the necessity
for Feature extraction for Software Defect Prediction. Feature Reduc-
tion (Tiwari et al., 2017) significantly improved classification accuracy
and processing time by reducing dimensionality. Dimensionality re-
duction can also be handled using Neural Networks (Lu et al., 2015).
Principal Component Analysis (He et al., 2019; Zhang et al., 2018a) can
help extract the relevant feature and drop the insignificant ones. Chi-
square (Jakhar and Rajnish, 2018) is a statistical test, which can be used
to see the association of the categorical value among the given dataset
and can help select the appropriate features for the construction model.
Principal Component Analysis (Xu et al., 2019; Jayanthi and Florence,
2019; Ren et al., 2014; Saifan and Abu-wardih, 2020; Ji and Huang,
2018) is a technique for reducing the dimensionality of a dataset to
improve classification performance. Information Gain Saifan and Abu-
wardih (2020), Siers and Islam (2015), Gao et al. (2014), Ji et al.
(2019) helps decrease the uncertainty of the result and enhances the
accuracy of the prediction by selecting the features that offer better gain
than others. Gain is evaluated for each variable, and those variables
are picked, which maximizes the information gain and improves the
quality of the classification algorithm. The Correlation Coefficient can
find the worth of the features using Pearson’s Correlation (Saifan and
Abu-wardih, 2020; Yu et al., 2017b; Laradji et al., 2015). It helps
identify an optimized set of features that can train a classification
model. It is difficult to determine which feature selection technique
is the best because several researchers have found that a combination
of different classifiers and datasets performs differently. However, the
most commonly used Feature Selection strategies are Correlation-based
and Principal Component Analysis. Good quality data is significant
for getting a high-quality prediction. It is important to have good
quality data, balanced and noise-free. There is no doubt that data
pre-processing is a significant step in Machine Learning or Artificial

Intelligence-related tasks.

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
5.3. Data validation techniques for software defect prediction modeling?

Dataset validation is critical since it assures that the data used
for the prediction can accurately forecast the outcome. This section
explores the data validation methods used in the earlier research.
Artificial Intelligence techniques especially Supervised Learning, need
labeled training datasets to train the classification model. The quality
of the labeled dataset significantly impacts the classification model’s
performance. If we have incorrect labels or missing labels, the predicted
result may be inaccurate. K Fold Cross-Validation is used for validating
the appropriateness of the dataset samples.

5.3.1. K fold cross-validation
K Fold cross-validation is a technique for dividing datasets into K

samples at random. From the K subsamples, one of the samples is
used for validating the results, and the rest, K-1 samples, are used
for building the classification model or used as a training dataset.
K Fold Cross-Validation is usually used with values K=5 or K=10.
The K-fold Cross-Validation technique can achieve the best prediction
results by optimizing the selection of samples from the available dataset
for training and validation. Apart from the other issues, having a
generic sanity check on the dataset is recommended to detect the
redundant rows, missing values before using the dataset or selecting
samples for the model training. The survey outcome suggests that few
research papers conducted data quality checks before classification
steps. Although dataset validation is a significant task, it is lacking in
early research. As an essential step in predicting software defects, it is
advised to incorporate dataset validation to validate its applicability.
It is suggested that increased emphasis be placed on data quality.
If required, the necessary modification should be made to the used
dataset. It should be customized as per the project’s need or create a
fresh dataset if the existing public dataset does not meet the quality
criteria. Existing literature severely lacks dataset validation, where the
appropriateness of the data sample should have been checked before
using them to train the classification model.

5.4. Various tools/frameworks available for software defect prediction

This section explores the tools and the frameworks created in early
research. Tools and frameworks are very useful as they speed up adopt-
ing the techniques proposed in the research in the real field. As per
our findings, we have found fewer tools available for defect prediction.
None of the existing Software Defect Prediction tools can predict defect
severity, defect estimates, code references, resource allocation, and
defect types. UI-based Neural Network tool (Singh and Salaria, 2013) is
prepared using Levenberg–Marquardt (LM) algorithm, which takes in-
put as various parameters with user interaction and trains the model for
defect prediction. Levenberg–Marquardt (LM) algorithm is a network
training function. The tool contains the appropriate buttons to perform
the prediction activity. It also claims that the developed tool has high
prediction accuracy. Object-Oriented metrics are used by the tool. The
PROMISE repository provided the data for the dataset. Metrics used
for prediction at various levels are File, Class, Component, Method,
and Quantitative. The user interface for graphical representation is
developed using MATLABR2011. Data is converted to numeric values
from text values as a Neural Network does not work on textual values.
The tool can be extended to use a different algorithm as per the work.
The tool uses 13 Neurons Feed-Forward Neural Network, containing
the 3-hidden layers for defect prediction. Another tool named Defect
Prediction in the Software System (DePress) (Hryszko and Madeyski,
2018) is an Open-Source framework. Wroclaw University of Science
and Technology worked with Capgemini and developed the tool jointly.
DePress is a framework developed on top of the KNIME, an open-source
data analytics platform written in JAVA. KNIME is the integration back-
bone for the DePress framework. The DePress framework’s principal
goal is to assist empirical software analysis. DePress has been built
23
to communicate with JIRA, a Bugzilla defect tracking system with a
simple configuration without writing the custom code. DePress can
also connect to versioning repositories like GIT and SVN. DePress is
an Open-Source project and is available on GitHub. It is open for
extension and can be used for futuristic research. DePress framework
is extensible and independent of language or technology. It can be
deployed standalone. It is available with clear licensing rules if some-
one wants to use it for commercial purposes. It can also be integrated
with the metrics reader like Findbug, Checkstyle, and PMD, which
are static code analysis tools that can generate defect warnings in
the code based on the predefined rule sets. At last, we found a GUI-
based framework for better industrial adoption research (Singh and
Salaria, 2013) based on Neural Networks. This work proposes to use the
framework across various phases of the software development process
to detect the defects. The framework is tested with the 50 real-world
applications and effectively predicts the defects in a range with mini-
mum to maximum defects. This work proposes a model specifically for
the software enhancement requirements, which is generally carried out
with requirement gathering, impact analysis, development, testing, user
acceptance testing, and production support. A Feed-Forward Neural
Network with a Sigmoid function is used to create this framework. The
GUI-based tool provides easy interaction for the project managers, and
this framework is implemented using a GUI-based tool developed using
Matlab R2013b. Input to the frameworks are phase-wise efforts are
Production efforts, Planned review efforts, Planned prevention efforts,
Planned rework efforts. Based on these inputs, the tool will predict the
defects in the range from minimum to maximum. The tool does not
predict the discrete figure, as it can deviate more than the actual figure.
Having a range of numbers for possible defects, the project manager
can better plan and optimize the efforts. Table 20 shows the various
Software Defect Prediction tools with their features.

5.5. Futuristic direction for software defect prediction?

Traditional methods for finding software defects can identify the
limited set of defects based on executed use cases. It is possible that
a few edge conditions get missed in testing and may lead to production
issues. It is good to start adopting AI-based prediction tools to iden-
tify more defects based on historical data. It will surely increase the
chances of figuring out more possible defects and help the software
development team plan well. We have seen many researchers focus on
the prediction and discuss a binary classification where the modified
code is categorized into either erroneous or bug-free. This is helpful.
However, more can be achieved, which generates the actionable item
for the software development team to consume the predicted informa-
tion and start acting on it. Knowing a particular piece of code having
a defect does not give much information to the development team
on what next action should be taken. Industry adoption of Software
Defect Prediction approaches is quite low. Not many companies use any
prediction other than static code reviews, a rule-driven framework that
tries to identify the possible defects in the source code. More useful
information can be predicted based on the historical datasets, which
can help software development teams to improve the reliability of the
produced software by predicting the defect, and also providing the
information about the source code changes required, which tells what
code to be modified to fix the defect, which resource can be allocated
for fixing the defect, how much time it takes to fix the defect or what is
the severity of the defect? Such information is also helpful information
that can help better planning for the software development team and
put their energy at the right place. Predicting more useful information
using Artificial Intelligence techniques for the software development
team can help plan and allocate resources more efficiently, detect and
fix more defects, and make the delivered code bug-free. Fig. 17 depicts
probable predictions.

This section explores the possible futuristic recommendations and
the proposed architecture to predict the defect severity, defect esti-
mates, code references, resource allocation, and defect types. These

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773

f
d
i
b
n
m
t
i
o
i
H
f
a
t
r

Table 20
Software Defect Prediction tools/framework.

Name Paper Based on User
In interface

Advantage Disadvantage Remarks

Neural Network
tool

Singh and
Salaria (2013)

Levenberg–
Marquardt (LM)
algorithm

Matlab
R2011

Using the Neural Network technique
and LM algorithm gives better
accuracy than a Polynomial-based
Neural Network.

It supports only a single
algorithm as of now.

This tool can be extended
to use a different
algorithm.

Defect prediction
(De-Press)

Hryszko and
Madeyski (2018)

KNIME, an
Open-source
data analytics
platform

JAVA The overall cost of the Quality
Assurance work can be reduced
significantly using the tool.

It supports multiple Machine
Learning algorithms. Lacks
sophisticated prediction models
which use software process
metrics, which could enhance
results.

The source code is
available on GitHub.
https://github.com/
ImpressiveCode/ic-depress

Neural Network
(Feed Forward)

Vashisht et al.
(2016)

Neural Network
(Feed Forward)
with Sigmoid
function

Matlab
R2013b

SDLC phases like Requirement
gathering, construction, and testing
showed significant improvements in
early defect prediction and accuracy
using this tool.

The proposed tool is unsuitable
for ERP, Agile, and Production
Support and needs additional
efforts.

The effectiveness of the
tool is tested with 50
real-world applications and
found effective.
Fig. 17. Predictions for software defects.
eatures should be included in a user-interactive tool that the software
evelopment team can use to generate predictions. As per the survey,
t is found that most of the early research is merely dealing with the
inary classification of the Software Defect Prediction, which is also
ot easily usable in real software development work unless we provide
ore concrete actionable information to the software development

eam. It is like telling code X can have a bug that cannot be acted upon
mmediately. However, it is certainly helpful to focus on such priority
bservation. Still, this leads to quite a manual work for analysis and
dentification of how to consume the information and the next step?
ere is a possible approach that can certainly boost the actionable task

or the development team to overcome this issue. Below are the details
bout the proposed framework, which contains various steps required
o develop a tool and predict the defect severity, defect estimates, code
eferences, resource allocation, and defect types.
24
5.5.1. High-level architecture
Fig. 18 shows a high-level architecture flow diagram for the pro-

posed architecture.

Step 1: Collecting dataset

Create a dataset capable of Software Defect Prediction and predict
more meaningful information around defects like defect estimates,
resource allocation, and references to the code for fixing the defect.
Dataset can be a custom dataset or any publicly available dataset
that can be further enriched to add additional features that can help
predict the defect estimates, resource allocation, and the references to
code for fixing the defects. Most of the public datasets used in early
research do not contain the information to predict the additional defect-
related details. Hence, enhancing or creating a custom dataset with all
the required features is recommended. The existing public dataset is

designed for binary classification and cannot be used for additional

https://github.com/ImpressiveCode/ic-depress
https://github.com/ImpressiveCode/ic-depress

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Fig. 18. High-level architectural flow.
predictions like Defect Estimates, References to the code for fixing the
defect, Defect Severity, Resource Allocation, and Defect types. It is
recommended to create the fresh dataset using the bug repository or
enhance the existing dataset to add the relevant features for Multi-Label
prediction, predicting the estimates, resource allocations, and code fix
for the defects. Data can be collected from a publicly available repos-
itory like GitHub. This proposal recommends using an Open-Source
repository like GitHub because they have their source code repository
attached with the defect dataset. At the same time, information is
available on which resource is worked on which file, the time is taken
to fix the defect, and the severity of the defect. These all need to be
extracted from the defect dataset and the updated reference of the code
to fix the defect. Fig. 19 represents the internal service level details of
the proposed architecture.

Step 2: Data enrichment

Possible ways to collect the dataset information are getting the
details from a public repository like GitHub, which contains various
projects with their source code. They also contain the various defects
raised in different releases of those products. Having such information
is very useful for dataset creation and defect prediction, estimating the
time, and coming up with resource allocation and code fixes, as it is
linked with the actual source code. We can also point out which source
code needs to be modified to fix the defect.

Step 3: Data validation

Once the dataset has been collected, it is necessary to clean it up
and remove redundant information. Once the dataset is cleaned, it
is critical to know whether the collected data can predict software
defects, defect estimates, resource allocation, and generate the code

reference pointers for fixing the predicted defects. This step is required

25
to perform appropriate data validations, ensuring that the collected
dataset is good enough for prediction. At this stage, it is recommended
to use an appropriate data validation method to check the features’
relevance and predict the desired outcomes. Now we have the dataset
ready. Once it is validated that this dataset is good, we can do further
optimization by selecting the optimum features using features selection
methods and developing the significant features that can generate a
good quality learning model. Ensuring data validation helps us speed
up the performance for the classification and the accuracy of the
predicted results. The software defect dataset usually has the class
imbalance issue, where the defect class labels are less than the class
with no defects. It is recommended to pay attention to the issue of class
imbalance in the newly created dataset.

Step 4: Building multi-label prediction model

Now is the time to make the actual prediction, which will require
training of the classification model. Here, we can leverage the various
available Artificial Intelligence techniques, specifically Deep Learning
and Machine Learning algorithms, to predict defect severity, defect
estimates, code references, resource allocation, and defect types. The
tool can be built to support various Artificial Intelligence algorithms
where users can choose the classification algorithms from a set of
supported algorithms and predict the Multi-Label classification. In this
case, each row of the dataset belongs to multiple labels. For example,
the first label can tell it is a software defect, and the second label says
this defect is of medium severity defect. Another label can predict the
estimate like a high, low, medium. It can also predict the resources
that can work on this particular defect. Most importantly, the code
changes required can also be predicted, for example, which module
or particular source class file must be modified to fix this defect.
Now that defect classification and other predictions are completed,

it is time to evaluate. Here we can come up with various evaluation

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773

s
t
t
b
p
i
t
I
a

S

s
f
e
i
s

5

a
t
f
P
o
v
a
e
o
p
i
p

P

d
c
p

Fig. 19. Proposed high-level architecture.
trategies, and based on the Precision, Recall, F-Measure, we can check
he algorithm’s performance chosen for classification. The development
eam can choose the appropriate algorithm they would like to go with
ased on their context. The performance of the prediction varies as
er the project, dataset, class imbalance, feature selection, etc., and
t is hard to generalize which algorithm will perform better in all
he possible scenarios. Hence, the tool must support multiple Artificial
ntelligence algorithms that can be chosen for Multi-Label classification
s per the requirement of the software development team.

tep 5: Predicting the new code

All of the steps mentioned above are aggregated into a common
ingle-user interactive tool that can generate multi-label predictions
or the newly developed software code like defect severity, defect
stimates, code references, resource allocation, defect types, etc. The
nteractive user interface should display various predictions related to
oftware defects.

.5.2. Additional metrics
According to the survey, most researchers preferred to use publicly

vailable datasets. Most of the studies employed the metrics to train
he model: Process related metrics, Attributes taken from the previously
iled defects, Source code metrics in general, Object-oriented metrics.
rocess-related metrics are about the process attributes like the number
f developers involved, the number of code lines changed, the file’s
ersion number, file refactoring, etc. Apart from this, another set of
ttributes available in the datasets is source code metrics. In this cat-
gory, most researchers have used Object-Oriented metrics like depth
f inheritance, class coupling, nested looping, if-else-ladder, number of
ublic methods, etc. These are the appropriate indicators that usually
ndicate the complexity of the code. If code is complex, it has a high
robability of having defects.

roposed additional metrics from previously filed defects

Previous defects are the key data element in Software Defect Pre-
iction considering Supervised Machine Learning. Usually, this data
an predict the defects in the same project or the cross projects. Many
ublic dataset repositories like NASA and PROMISE are available,
26
which are used for binary defect classification. However, additional
metrics will be required to help us predict the defect severity, defect
estimates, code references, resource allocation, and defect types, which
is vital for the software development team. Additional attributes used
from the previous defects can significantly improve the classification
and develop a more actionable outcome than mere classification. Some
of the significant attributes are:

1. What resources have worked on the defects?
2. Which use case impacted?
3. How much time did it take to fix and test the defects?
4. Did it cause regression?
5. What was the severity of the defect?
6. What code changes have fixed the defects?
7. What is the method’s name where the code needs to be fixed?
8. What is the number of parameters passed to the method?
9. What is the length of the method where the code changes are

done to fix the defect?
10. What is the type of defect?
11. Are there any side effects or regression?

Some of the finest questions can be answered using the data avail-
able from the previous defects. Such rich data can help predict more
valuable information of correlated defects, which probably need to
be manually investigated if Artificial Intelligence techniques are not
leveraged. Although the features mentioned in the additional metrics
list are critically important, none of the public datasets covers such a
rich set of features. The reason for the creation of the available public
dataset was performing the binary classification to predict if the code is
defective or not? Hence it is not fair to expect the existing public dataset
to have a rich feature set for predicting additional information, which
was not intended at the time of dataset creation. If we need to provide
additional details like defect severity, defect estimates, code references,
resource allocation, and defect types, we need to dig down the defect
data source. Open-Source projects can be explored to precisely bring
out such significant attributes for every defect. Lack of features in the
existing dataset suggests we should create a custom dataset with a rich
feature set to produce more actionable outcomes.

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
6. Discussion

This section discusses the outcome of the Systematic Literature
Review, which is conducted by selecting 146 research studies. We
have explored relevant literature related to the formulated research
questions, and based on the review and observations, we can get the
answers to the formulated research questions.

RQ1: What are the various approaches for finding defects in the
newly developed code?

As per the survey, there are two observations, and we have cate-
gorized those observations into two categories: Defect detection and
Prediction techniques. The popular way of identifying and fixing de-
fects in the industry is using defect detection. Once the code is ready,
or the development phases are over, the Quality Assurance engineer
starts manual testing. Few tests can be automated and run with every
build using the continuous build system. Continuous integration (Philip
et al., 2019; Bertolino et al., 2020) and building system keep identifying
the defects after new code development. Similarly, if different teams
integrate different parts of the code, the Quality Assurance engineer
does manual integration testing. The main drawback of the detection
approach is that it is time-consuming, and more effort is required to
identify defects. Because of the short release cycle and time to the
market requirement, it is nearly impossible to spend a lot of time in
defect identification and fixing those defects. There is a huge require-
ment in the software industry to identify the priority areas that the
Quality Assurance team should focus on to identify defects and ensure
that the product can be released in minimum time, considering the
market situation or the peer pressure. As per the survey, we have
identified that manual testing, automation testing, and unit testing do
not identify many defects as executing the static steps or the pre-defined
automated test scripts. They follow certain test steps and do not deviate
much with predefined steps, which have already been identified as a
test case. There may be many edge conditions that might get ignored
while doing detection-based testing. It also does not consider historical
information like integrating two components. For example, Component
C1 is integrated with Component C2., There may be different kinds of
issues in the production environment that did not get covered in Unit
testing or manual testing, so this kind of information may get ignored.
Leveraging historical data of the previous release or the historical data
from similar projects can help predict more defects. This SLR does
not recommend removing the detection-based techniques. However,
it is recommended to include the prediction-based techniques using
the Artificial Intelligence approach, specifically Machine Learning and
Deep Learning to predict more defects, so it can figure out the area
which needs the focus and accordingly the resources can be distributed
for the priority use cases with high significance or high severity. This
approach will ensure very good utilization of the resources, and it
helps develop a product with fewer defects in the critical use cases.
Defect prediction saves time and money and provides an optimum
quality product. The early researchers have used Machine Learning
and Deep Learning techniques. They have identified algorithms that
work great with different datasets in different scenarios. However, it is
difficult to generalize the best algorithm as the context of the software
project is an important factor to be considered. As per the survey,
Machine Learning and Deep Learning algorithms have proven that these
techniques are suitable for predicting defects. This SLR proposes to
extend this binary classification capability to Multi-Label classification,
using the Machine Learning and Deep Learning techniques, with dataset
customization having extra features extracted from the defect dataset
version management system, to provide more meaningful information
to the software development team to make the product more robust
with a smaller number of defects.

RQ2: What are the available datasets, and are they good enough
for predicting various actionable tasks related to defects?

The majority of the researchers have used the standard dataset

NASA, PROMISE, AEEEM datasets. Few researchers have created their

27
datasets using Open-Source projects like GitHub source code repository
to generate the high-quality dataset for binary classification. According
to the survey, most of the existing datasets have class imbalance
issues and high dimensionality issues. Data pre-processing is important
and must be included to make the prediction more accurate. Few
researchers considered datasets-related issues like high dimensional-
ity class imbalance before training the model using the dataset. The
existing standard dataset is good enough for binary classification, con-
sidering if the class imbalance issue is taken care of before usage.
Although the existing datasets are suitable for binary classification,
they do not contain enough features for predicting the Defect estimates,
Resources that can work on the defect, Code that needs to be updated
for fixing the defect, Type of the defects, and the severity of the defect.
Hence, if we want to predict more information related to software
defects, it is recommended to create a new dataset or a customized
dataset with enough features to predict the additional information
related to software defects. Open GitHub repository is one of the
significant resources which could be utilized for creating the training
dataset as it contains:

1. Updated source code with Version management, whether new or
existing code

2. Historical defects
3. Resources worked on the defects
4. The severity of the defects
5. References to the code which is modified to fix the defects
6. Time took for fixing the defects

The information mentioned above is significant. Utilizing this infor-
mation for planning and execution in software development projects
will make a big difference in the software delivery quality. It is rec-
ommended to extract this information from the publicly available
Open-Source project and develop a customized dataset that is good
enough to predict the additional defect-related useful information for
the software defects. Considering the research questions, it is evident
that if we need to predict defect severity, defect estimates, code refer-
ences, resource allocation, and defect types, we need to have a dataset
trained for Multi-Label classification with the mentioned additional
features.

RQ3: What are the available data validation techniques to ensure
that training data is appropriate for Software Defect Prediction
modeling?

The suitability of the sample for building the classification model
is assessed by dataset validation. If the selected samples are not good
quality, whatever algorithm is used does not provide good results. As
per the survey, one of the methods which can be used to check the
appropriateness of the dataset is Cross Fold Validation (Taek et al.,
2016; Yu et al., 2018). Cross-Fold Validation, also known as K-Fold
Cross-Validation, is a valuable approach for removing overfitting from
training dataset results. Overfitting (Dong et al., 2018) is handled
with Cross-Fold validation with a K value of 5. When the dataset is
small, over-fitting is also caused by choosing too many parameters.
Appropriate feature selection and careful selection of the Cross-Fold
Validation are a few of the significant validation steps that can im-
prove the prediction quality of the classification model. Although many
non-parametric tests were conducted to validate the difference in clas-
sification results, the statistical test for sample validation is entirely
missing. The quality of the dataset is very important because it defines
the quality of the prediction. As per the findings, very few studies
included the data validation steps before using the dataset for Software
Defect Prediction. Suppose we want to predict additional attributes for
the software defects, like resource allocation, code references for fixing
the defect, or estimating the defect. In that case, we need to ensure
that the collected data is of good quality. Data validation is essential as
all the defect-related information might not have been captured by the

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Quality Assurance engineer, and missing data or unrelated data used
for training may lead to a poor prediction model.

RQ4: What are the various tools/frameworks available for Soft-
ware Defect Prediction?

As per the survey, very few tools are designed explicitly for Software
Defect Prediction. Two tools are Neural Network-based, and another
tool named De-Press is based on the KNIME framework. De-Press is
jointly developed by Wroclaw University of Science and Technology
and Cap Gemini. The user interfaces for the DePress are designed
using JAVA language, whereas the Neural Network-based user interface
is designed using MATLAB. These tools can do the Software Defect
Prediction using binary classification by predicting whether the newly
developed code has a bug or not. DePress tool is internally using the
KNIME framework, an Open-Source platform for data analytics. It has
a lot of built-in algorithms for Machine Learning and Deep Learning.
These tools can also be extended for further improvements as per the
study. Tools based on the Neural Networks have little difference in
their implementation. One is based on the LM algorithm, and another
uses the Feed-Forward Neural Network with Sigmoid function. A de-
tailed comparison is provided in Table 20. Apart from the dedicated
tools for Software Defect Prediction, other Open-Source tools named
WEKA are used by many researchers to do various analyzes related
to datasets, sample selection, Cross-Validation, and classification using
various inbuilt supported Machines and Deep Learning algorithms. Con-
sidering the limited availability of the dedicated software prediction
tools, specifically the one which can predict more information about
software defects like defect severity, defect estimates, code references,
resource allocation, and defect types, it is recommended to build the
tool capable of predicting such additional details. It should provide
the proper user interface for performing various operations that take
the user’s input and perform multiple steps as recommended in the
proposed architecture in Fig. 19. Such tools can help the industry
to adopt and use the prediction capabilities of Artificial Intelligence
techniques. It eases the software development work by smoothing out
various complex steps to set up the prediction environment.

RQ5: What is the possible futuristic direction for Software Defect
Prediction, and what can be predicted for software defects to
enhance the standard of the delivered software product?

Based on the gap identified in various research studies and the
current trend used in the software industry to find defects, it is required
to pay attention to some of the important areas of Software Defect
Predictions given below:

Usage of artificial intelligence techniques. As per the survey, it is found
that selecting the legacy approach, which is detection-based, can only
detect a few defects. In contrast, prediction approaches can be bene-
ficial in predicting many possible defects using the historical dataset.
Hence one of the recommendations for a futuristic approach is to use
Artificial Intelligence techniques, specifically Deep Learning techniques
that can very well scale with large datasets and generate prediction
results for the software defects with better confidence.

Need for rich feature prediction dataset. It is also recommended that
instead of using the available dataset, which lacks the adequate features
required to predict defect severity, defect estimates, code references,
resource allocation, and defect types, we can build a custom dataset.
Developing a dataset with adequate features is good if we need to
predict these details. As per the survey, it is found that a public
repository like GitHub is quite helpful for such an approach because it
has linked the defect dataset with the source code version repository,
which maintains the code changes. It also has information about the
resources, who has worked on the defects and the time taken to fix the
defects, and several other details available in the defect dataset. So it is
a good idea to choose an Open-Source project and develop a customized
dataset as per the project’s need for futuristic recommendations.

Data validation. It is observed that early researchers have not taken
enough care of the data validation before using the dataset for training
28
the model, as there are very few studies that discuss the data validation
on the dataset. It is critical to ensure the quality of the dataset, ensuring
prediction quality. It is required to validate the data, specifically the
interrelationship of the data, whether the attributes and features can
predict the defects, or the dataset has adequate features for predictions.
One must verify the dataset before using them in the training samples.
As per the survey, we have seen very few techniques referred for the
data validations like k-Fold Cross-Validation. Hence, it is recommended
to explore more data validation to ensure that we have very good
quality data.

Software prediction tools. As per the survey, it is observed that there
are very few tools available for predicting software defects. Less in-
dustry adoption could be due to the inherent complexity and difficulty
of executing various required steps for Software Defect Prediction.
Setting up the prediction environment for the newly developed code
is time-consuming and requires Machine Learning or Deep Learning
knowledge. Many steps are involved in developing a sound Software
Defect Prediction system, like selecting the samples and data vali-
dation. Existing tools are capable of only defect prediction. Hence,
it is recommended to develop a tool that automates various steps
and can contribute more to planning and execution for the software
development team by predicting defect severity, defect estimates, code
references, resource allocation, and defect types. It is recommended
to develop a dedicated tool that performs most of the steps in a user
interactive way and performs by taking the input from the user, finally
providing the prediction results on various aspects of the software
defects. This SLR proposes the high-level architecture with various steps
for creating a tool dedicated to predicting software defects and other
attributes related to defects, as shown in Fig. 19.

7. Limitations of the study

The presented Systematic Literature Review critically analyzed the
recent trends in Software Defect Prediction and performed the Compar-
ative analysis across the multiple approaches. The SLR examines the
available techniques and the challenges of exploiting existing datasets,
data validation methods utilized by early researchers, and existing
Software Defect Prediction systems. According to the research, ex-
tending Software Defect Prediction from Binary classification to Multi-
Label classification is a futuristic trend for enhancing software product
quality. Here are the possible limitations in the presented SLR:

1. Systematic Literature Review is conducted by a well-defined
search query executed on good quality research databases. How-
ever, there is a possibility of missing a few of the research that
might not be retrieved with the defined criteria.

2. Retrieved articles are further scrutinized to focus on the quality
research papers having accurate references and the relevance
to the desired research goals, which might cause losing some
relevant information.

3. Most early research centered on using binary classification to
solve the prediction quality, performance, and reliability for
predicting software defects. Early research did not focus on
prediction for defect severity, defect estimates, code references,
resource allocation, and defect types. Hence, adequate informa-
tion is not available in the existing literature for Multi-Label pre-
dictions and needs more investigation for Multi-Label prediction
for software defects.

4. Because different studies used diverse sets of algorithms and
datasets, it is difficult to generalize the best Machine Learning
or Deep Learning techniques.

The proposed architecture for developing a dedicated Software Defect
Prediction tool is still in the planning stage. As a result, experimental
results are beyond the scope of the presented literature, but they
still provide a clear, futuristic direction and approach for developing
various Software Defect Predictions.

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Table 21
Public datasets referred in earlier research.

Database Papers

CM1 (Catal, 2014; Wahono and Herman, 2014)
JM1 (Catal, 2014; Peng et al., 2009)
KC1 (Catal, 2014; Wahono and Herman, 2014)
KC2 (Catal, 2014; Zhang et al., 2010)
KC3 (Gray et al., 2009; Peng et al., 2009)
KC4 (Gray et al., 2009; Peng et al., 2009)
MC1 (Gray et al., 2009; Peng et al., 2009)
MC2 (Gray et al., 2009; Wahono and Herman, 2014)
MW1 (Peng et al., 2009; Wahono and Herman, 2014)
PC1 (Catal, 2014; Wahono and Herman, 2014)
PC2 (Hall et al., 2011; Wahono and Herman, 2014)
PC3 (Peng et al., 2009; Wahono and Herman, 2014)
PC4 (Peng et al., 2009; Wahono and Herman, 2014)
PC5 (Gray et al., 2009; Sun et al., 2012)
ECLIPSE 3.0 (Li et al., 2012; Zhang et al., 2010)
Eclipse 2.0 (Li et al., 2012)
JDT.Core (Li et al., 2012)
SWT (Li et al., 2012, 2018)
Xalan (He et al., 2015; Qiu et al., 2019)
EQ (Jing et al., 2016; Qiu et al., 2019)
JDT (Jing et al., 2016; Taek et al., 2016)
LC (Jing et al., 2016; Qiu et al., 2019)
JIRA DB Derby,
Groovy, HBase, Hive,
JRuby, ActiveMQ

(Yatish et al., 2019)
Table 22
Algorithms grouped based on similarity.

Algorithms Type References

Bayesian Algorithms Bayesian Network (Zhou et al., 2014; Okutan and Yıldız, 2014)
Naive Bayes (Ji et al., 2019; Zhang et al., 2015)

Artificial Neural Network

Radial Basis Function (Ali et al., 2020; Raghava et al., 2019)
Label propagation (Zhang et al., 2017)
Nonnegative sparse graph-based label propagation (NSGLP) (Zhang et al., 2017)
Multilayer perceptron (Gao et al., 2015b; Zhang et al., 2015)

Clustering Algorithms K-means (Yadav and Yadav, 2015; Raghava et al., 2019)

Decision Tree Algorithms
C4.5 (Zhang et al., 2015; Peng et al., 2009)
Decision forest (Naseem et al., 2020; Siers and Islam, 2018b)
CART (Chen et al., 2019b)

Deep Learning Algorithms

Deep Belief Network (Hoang et al., 2019; Liang et al., 2019)
Convolutional Neural Networks (Phan et al., 2018; Qiu et al., 2019)
Tree-based Convolutional Neural Networks (TBCNN) (Qiu et al., 2019)
Recurrent Neural Networks (Fan et al., 2019)
Long Short Term Memory Network (Hoa et al., 2019; Liang et al., 2019)

Dimensionality Reduction
Principal Component Analysis (He et al., 2019; Ji and Huang, 2018)
Kernel Principal Component (Ren et al., 2014; Xu et al., 2019)
Linear Discriminant Analysis (Ma et al., 2014)

Instance-based
Support vector machines (Catal, 2014; Zhang et al., 2015)
K-Nearest Neighborhood (Okutan and Yildiz, 2016; Yu et al., 2017b)
Weighted Extreme Learning Machine (Xu et al., 2019; Zheng et al., 2020)

Regression Algorithms Linear regression (Kakkar et al., 2021)
Logistic Regression (Hall et al., 2011; Zhang et al., 2015)

Ensemble Algorithms

Adaboost (He et al., 2019; Khoshgoftaar et al., 2015)
Boosting (Zhang et al., 2015, 2018b)
Bagging (Zhang et al., 2015; Raghava et al., 2019)
Random Forest (RF) (Catolino et al., 2019; Zhang et al., 2015)
Stacking (Akour et al., 2017; Saifan and Abu-wardih, 2020)
Over-bagging (Mousavi et al., 2018)
8. Conclusion

This systematic literature review explores the recent trends in Soft-
ware Defect Prediction using Artificial Intelligence techniques and tries
to identify the research gaps and further enhance Software Defect
Prediction opportunities. The SLR adheres to the guidelines proposed
by Kitchenham and Charters (Kitchenham et al., 2009) while con-
ducting the literature search. To choose high-quality research papers
for a literature review, inclusion and exclusion criteria and quality
assessment criteria are clearly stated. 146 publications were identified
29
and selected for analysis to address the formulated research questions.
The majority of the selected studies are from the previous ten years. The
SLR does the critical analysis for Software Defect Prediction research as
stated below:

1. Identified the various approaches for finding the software defects
and any additional information related to the software defects
that the software development team can utilize.

2. Identified dataset problems for Software Defect Prediction, such
as class imbalance and insufficient features, limit prediction to
binary classification.

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Table 23
Significant conferences and journals that were referred to in this SLR.

No. Journals/Conferences No Journals/Conferences

1. IEEE Transactions on Software Engineering 11 Information and Software Technology

2. IEEE Access 12 IET Software

3. IEEE Transactions on Reliability 13 International Conference on Software Engineering
International Workshop on Machine-Learning Techniques for
Software-Quality Evaluation, Co-located with ESEC/FSE 2020

4. IEEE Transactions on Systems, Man and
Cybernetics-Part C: Applications and Reviews

14 ESEC/FSE ACM Joint Meeting European Software
Engineering Conference and Symposium on the Foundations
of Software Engineering

5. ACM Transactions on Software Engineering and
Methodology (TOSEM)

15 International Conference on Machine Learning and
Applications, ICMLA

6. International Journal of Software Engineering
and Knowledge Engineering

16 International Conference on Machine Learning and
Applications, ICMLA 2010

7. International Journal of Open Source Software
and Processes

17 International Conference on Tools with Artificial Intelligence,
ICTAI

8. Journal of Systems and Software 18 International Symposium on Empirical Software Engineering
and Measurement, ESEM

9. Automated Software Engineering 19 Software Quality Journal

10. Empirical Software Engineering 20 Engineering Applications of Artificial Intelligence (EAAI)
Table 24
Abbreviation of the terms referred to in this SLR.

PCA Principal Component Analysis DT Decision Tree KNN K-Nearest Neighbors
RF Random Forest ANN Artificial Neural Network LR Logistic Regression
NB Naive Bayes LSTM Long Short-Term Memory CPDP Cross Project Defect Prediction
SVM Support Vector Machine PPM Proposed Process Metrics WPDP Within Project Defect Prediction
NN Neural Network xGBTree Optimized Extreme Gradient Boosting Trees MLP Multilayer Perceptron
DBN Deep Belief Network GBM Gradient Boosting Machine DL Deep Learning
CNN Convolutional Neural Network MDT Manifold Detection DePress Defect Prediction in the Software System
SLR Systematic Literature Review TCNN Transfer Convolutional Neural Network ML Machine Learning
RNN Recurrent Neural Network ISDA Improved Subclass Discriminant Analysis UI User Interface
GUI Graphical User Interface
3. The necessity to investigate various data validation strategies
used to verify the dataset quality for defect prediction was iden-
tified, as it had not received enough attention in the previous
research.

4. It is identified that it is required to enhance the existing dataset
or create a dataset from scratch, including the additional fea-
ture set that can help us determine the defect severity, defect
estimates, code references, resource allocation, and defect types.

5. Identify the need to develop a dedicated tool for Software De-
fect Prediction and predict more information related to de-
fects. There are very few tools available and limited to only
defect prediction using binary classification. The creation of
user interface-based tools enhances the industry adoption of the
prediction-based approaches.

According to the survey’s findings, several sorts of studies focus on
Artificial Intelligence-based techniques such as Machine Learning and
Deep Learning for predicting software defects because of their effec-
tiveness in delivering correct results with high confidence. This SLR
recommended a futuristic direction for Software Defect Prediction and
presented a high-level architecture diagram that can be used to develop
a framework or the tool, which is capable of not only Software Defect
Prediction but also able to predict the defect severity, defect estimates,
code references, resource allocation, and defect types. This information
is significant for any software development team to fix the defects
quickly with great confidence and allocate the Quality Assurance en-
gineer on the priority task rather than focusing on the area where we
may see fewer defects. The findings of this study can help improve
the quality of software products that incur financial losses, increased
time to market, and customer unhappiness due to a high number of
defects in the final product. A prediction-based system can predict
more defects than the traditional approach. The predicted defect can be

fixed before delivery, which otherwise occurs in the actual production

30
environment. Hence, it reduces the cost and the time of software
development by getting the proper visibility and priority on various
development-related tasks and helps deliver robust software products
by minimizing defects.

9. Future work and opportunities

In the discipline of software development, specifically finding and
fixing software defects, there is a lot of potentials. As shown in Fig. 17,
we can see that we can predict more useful information related to
software defects rather than just a binary prediction for Defective
versus Non-Defective code. The adequate focus needs to be given on
predicting defect severity like high, medium, or low, and estimation
can also be predicted for the specific defect using the Fibonacci Series
in terms of story points or high, low, medium. From the historical
defect dataset and the Code Version management system, possible
code changes can be predicted for the specific defects by classifying
the defect to a particular module, packages. Similarly, based on the
historical data, resource allocation for the defect can also be predicted
based on the attributes like for similar defects which resource from
the team had worked in the past and have good experience on the
specific codebase. We may also forecast or classify the defect’s category,
whether functional or Non-Functional issue. Is this a security flaw? Or
is there a problem as a result of a regression? These are the significant
pieces of information that will be very helpful to the software develop-
ment team to plan their work for the appropriate stories. Accordingly,
resource allocation can be done in a more optimized way. Prediction-
based techniques can identify more defects than actual manual testing,
which is always limited due to cost issues, which will help reduce the
number of unidentified defects in the production environment. This
SLR does not recommend replacing the traditional approaches of defect
fixing with Prediction-based. Prediction-based approaches can add a

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
lot of value if used with hybrid implementation and having reliable
prediction knowledge can be very helpful in better planning. Here are
some of the recommendations made by this study:

1. Identify appropriate datasets or create a custom dataset with
adequate features to leverage for prediction for more helpful
information other than just defects.

2. Ensure that the collected dataset should have proper labels for
the new prediction classes. This will be required for training the
classification model.

3. Appropriate data validation procedures must be applied to en-
sure that the data is of acceptable quality and can produce
credible predictions for the various categories of Software Defect
Prediction.

4. The collected dataset should have rich features and should be
helpful to predict more information about the software defect.
We need to explore the appropriate Artificial Intelligence tech-
niques useful for Multi-Label classification.

Industry adoption of Software Defect Prediction is relatively low as it
needs a complex setup and efforts to execute the prediction. Various
predictions can be aggregated in a dedicated Software Defect Prediction
tool, which can also predict the most helpful information about the
software defect. This tool should be an interactive user tool and allow
the user to complete various steps required for the defect prediction.

Miscellaneous

Table 21 lists the literature review references for the datasets.
Based on their functioning and similarity of their operations, algorithms
grouped are shown in Table 22. Table 23 presents some of the signif-
icant conferences and journals referred to in this SLR. Abbreviations
that are used in this SLR are listed in Table 24.

CRediT authorship contribution statement

Jalaj Pachouly: Conceptualization, Methodology, Writing – first
and second draft, Formal analysis, Investigation, Visualization. Swati
Ahirrao: Conceptualization, Methodology, Data curation, Writing –
first and second draft, Formal analysis, Investigation, Supervision. Ke-
tan Kotecha: Resources, Formal analysis, Validation, Funding acqui-
sition, Project administration, Supervision. Ganeshsree Selvachan-
dran: Writing – review & editing, Formal analysis, Validation, Soft-
ware. Ajith Abraham: Writing – review & editing; Validation, Project
administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors would like to thank the Editors and the anonymous
reviewers for their valuable comments and suggestions. The authors
would like to gratefully acknowledge the financial assistance received
from the Ministry of Higher Education, Malaysia under grant no.
FRGS/1/2020/STG06/UCSI/02/1.

Ethical approval

This article does not contain any studies with human participants
or animals performed by any of the authors.
31
References

Abdulshaheed, Mohamed, et al., 2019a. Mining historical software testing outcomes to
predict future results. Compusoft 8 (12), 3525–3529.

Agrawal, Amritanshu, Menzies, Tim, 2018. Is better data better than better data min-
ers? In: 2018 IEEE/ACM 40th International Conference on Software Engineering.
ICSE, IEEE.

Akour, Mohammed, Alsmadi, Izzat, Alazzam, Iyad, 2017. Software fault proneness
prediction: a comparative study between bagging, boosting, and stacking ensemble
and base learner methods. Int. J. Data Anal. Tech. Strateg. 9 (1), 1–16.

Ali, Umair, et al., 2020. Software defect prediction using variant based ensemble
learning and feature selection techniques. Int. J. Modern Educ. Comput. Sci. 12
(5).

Anon, 2013. Cambridge university study states software bugs cost economy dollar 312
billion per year. Retrieved from Financial Content: Cambridge University study
states software bugs cost economy dollar 312 billion per year.

Anon, 2018a. Software fail watch 5th edition. Retrieved from https://www.tricentis.
com/resources/software-fail-watch-5th-edition/.

Anon, 2018b. The cost of poor-quality software in the us: a 2018 report (2018,
september 26). Retrieved from: https://www.it-cisq.org/the-cost-of-poor-quality-
software-in-the-us-a-2018-report/The-Cost-of-Poor-Quality-Software-in-the-US-
2018-Report.pdf.

Bashir, Kamal, Li, Tianrui, Yohannese, Chubato Wondaferaw, 2018. An empirical study
for enhanced software defect prediction using a learning-based framework. Int. J.
Comput. Intell. Syst. 12 (1), 282.

Bertolino, Antonia, et al., 2020. Learning-to-rank vs ranking-to-learn: strategies for
regression testing in continuous integration. In: Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering.

Bowes, David, Hall, Tracy, Petrić, Jean, 2018. Software defect prediction: do different
classifiers find the same defects? Softw. Qual. J. 26 (2), 525–552.

Cabral, George G., et al., 2019. Class imbalance evolution and verification latency
in just-in-time software defect prediction. In: 2019 IEEE/ACM 41st International
Conference on Software Engineering. ICSE, IEEE.

Catal, Cagatay, 2014. A comparison of semi-supervised classification approaches for
software defect prediction. J. Intell. Syst. 23 (1), 75–82.

Catal, Cagatay, Diri, Banu, 2009. A systematic review of software fault prediction
studies. Expert Syst. Appl. 36 (4), 7346–7354.

Catolino, Gemma, Nucci, Dario Di, Ferrucci, Filomena, 2019. Cross-project just-
in-time bug prediction for mobile apps: An empirical assessment. In: 2019
IEEE/ACM 6th International Conference on Mobile Software Engineering and
Systems. MOBILESoft, IEEE.

Caulo, Maria, Scanniello, Giuseppe, 2020. A taxonomy of metrics for software fault
prediction. In: 2020 46th Euromicro Conference on Software Engineering and
Advanced Applications. SEAA, IEEE.

Chen, Jinyin, et al., 2019a. Multiview transfer learning for software defect prediction.
IEEE Access 7, 8901–8916.

Chen, Jianfeng, et al., 2019b. Predicting breakdowns in cloud services (with SPIKE).
In: Proceedings of the 2019 27th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering.

Chen, Xiang, et al., 2019c. Software defect number prediction: Unsupervised vs
supervised methods. Inf. Softw. Technol. 106, 161–181.

Chen, Jinyin, et al., 2020. Software visualization and deep transfer learning for effective
software defect prediction. In: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering.

Choeikiwong, Teerawit, Vateekul, Peerapon, 2016. Two stage model to detect and rank
software defects on imbalanced and scarcity data sets. IAENG Int. J. Comput. Sci.
43 (3).

Cruz, Ana Erika Camargo, Ochimizu, Koichiro, 2009. Towards logistic regression models
for predicting fault-prone code across software projects. In: 2009 3rd International
Symposium on Empirical Software Engineering and Measurement. IEEE.

Cui, Di, et al., 2019. Investigating the impact of multiple dependency structures on
software defects. In: 2019 IEEE/ACM 41st International Conference on Software
Engineering. ICSE, IEEE.

D’Ambros, Marco, Lanza, Michele, Robbes, Romain, 2012. Evaluating defect prediction
approaches: a benchmark and an extensive comparison. Empir. Softw. Eng. 17 (4),
531–577.

Di Mario, Mauro, et al., 2021. Supervised feature selection techniques in network
intrusion detection: A critical review. Eng. Appl. Artif. Intell. 101, 104216.

Dong, Feng, et al., 2018. Defect prediction in android binary executables using deep
neural network. Wirel. Pers. Commun. 102 (3), 2261–2285.

Elmishali, Amir, Stern, Roni, Kalech, Meir, 2018. An artificial intelligence paradigm for
troubleshooting software bugs. Eng. Appl. Artif. Intell. 69, 147–156.

Fan, Guisheng, et al., 2019. Software defect prediction via attention-based recurrent
neural network. Sci. Program. 2019.

Felix, Ebubeogu Amarachukwu, Lee, Sai Peck, 2017. Integrated approach to software
defect prediction. IEEE Access 5, 21524–21547.

Gao, Kehan, Khoshgoftaar, Taghi M., 2015. Assessments of feature selection techniques
with respect to data sampling for highly imbalanced software measurement data.
Int. J. Reliab. Qual. Saf. Eng. 22 (02), 1550010.

http://refhub.elsevier.com/S0952-1976(22)00061-6/sb1
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb1
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb1
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb2
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb2
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb2
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb2
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb2
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb3
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb3
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb3
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb3
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb3
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb4
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb4
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb4
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb4
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb4
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb5
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb5
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb5
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb5
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb5
https://www.tricentis.com/resources/software-fail-watch-5th-edition/
https://www.tricentis.com/resources/software-fail-watch-5th-edition/
https://www.tricentis.com/resources/software-fail-watch-5th-edition/
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/The-Cost-of-Poor-Quality-Software-in-the-US-2018-Report.pdf
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb8
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb8
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb8
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb8
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb8
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb9
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb9
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb9
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb9
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb9
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb10
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb10
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb10
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb11
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb11
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb11
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb11
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb11
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb12
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb12
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb12
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb13
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb13
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb13
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb14
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb14
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb14
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb14
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb14
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb14
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb14
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb15
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb15
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb15
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb15
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb15
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb16
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb16
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb16
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb17
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb17
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb17
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb17
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb17
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb17
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb17
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb18
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb18
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb18
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb19
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb19
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb19
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb19
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb19
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb20
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb20
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb20
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb20
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb20
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb21
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb21
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb21
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb21
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb21
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb22
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb22
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb22
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb22
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb22
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb23
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb23
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb23
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb23
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb23
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb24
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb24
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb24
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb25
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb25
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb25
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb26
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb26
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb26
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb27
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb27
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb27
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb28
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb28
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb28
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb29
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb29
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb29
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb29
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb29

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Gao, Kehan, Khoshgoftaar, Taghi M., Napolitano, Amri, 2015a. Aggregating data
sampling with feature subset selection to address skewed software defect data.
Int. J. Softw. Eng. Knowl. Eng. 25 (09n10), 1531–1550.

Gao, Kehan, Khoshgoftaar, Taghi M., Napolitano, Amri, 2015b. Investigating two
approaches for adding feature ranking to sampled ensemble learning for software
quality estimation. Int. J. Softw. Eng. Knowl. Eng. 25 (01), 115–146.

Gao, Kehan, Khoshgoftaar, Taghi M., Wald, Randall, 2014. The use of under-and
oversampling within ensemble feature selection and classification for software
quality prediction. Int. J. Reliab. Qual. Saf. Eng. 21 (01), 1450004.

Ghosh, Soumi, Rana, Ajay, Kansal, Vineet, 2018. A nonlinear manifold detection based
model for software defect prediction. Procedia Comput. Sci. 132, 581–594.

Gong, Lina, Jiang, Shujuan, Jiang, Li, 2019. Tackling class imbalance problem in
software defect prediction through cluster-based over-sampling with filtering. IEEE
Access 7, 145725-145737.

Gray, David, et al., 2009. Using the support vector machine as a classification method
for software defect prediction with static code metrics. In: International Conference
on Engineering Applications of Neural Networks. Springer, Berlin, Heidelberg.

Hall, Tracy, et al., 2011. A systematic literature review on fault prediction performance
in software engineering. IEEE Trans. Softw. Eng. 38 (6), 1276–1304.

He, Peng, et al., 2015. An empirical study on software defect prediction with a
simplified metric set. Inf. Softw. Technol. 59, 170–190.

He, Haitao, et al., 2019. Ensemble multiboost based on ripper classifier for prediction
of imbalanced software defect data. IEEE Access 7, 110333-110343.

Hoa, Khanh Dam, et al., 2019. Lessons learned from using a deep tree-based model
for software defect prediction in practice. In: 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories. MSR, IEEE.

Hoang, Thong, et al., 2019. DeepJIT: An end-to-end deep learning framework for just-
in-time defect prediction. In: 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories. MSR, IEEE.

Hosseini, Seyedrebvar, Turhan, Burak, Gunarathna, Dimuthu, 2017. A systematic
literature review and meta-analysis on cross project defect prediction. IEEE Trans.
Softw. Eng. 45 (2), 111–147.

Hryszko, Jaroslaw, Madeyski, Lech, 2018. Cost effectiveness of software defect
prediction in an industrial project. Found. Comput. Decis. Sci. 43 (1), 7–35.

Huda, Shamsul, et al., 2017. A framework for software defect prediction and metric
selection. IEEE Access 6, 2844–2858.

Huda, Shamsul, et al., 2018. An ensemble oversampling model for class imbalance
problem in software defect prediction. IEEE Access 6, 24184–24195.

Jakhar, Amit Kumar, Rajnish, Kumar, 2018. Software fault prediction with data mining
techniques by using feature selection based models. Int. J. Electr. Eng. Inf. 10 (3).

Jayanthi, R., Florence, Lilly, 2019. Software defect prediction techniques using metrics
based on neural network classifier. Cluster Comput. 22 (1), 77–88.

Ji, Haijin, Huang, Song, 2018. Kernel entropy component analysis with nongreedy
L1-norm maximization. Comput. Intell. Neurosci. 2018.

Ji, Haijin, et al., 2018. A two-stage feature weighting method for naive Bayes and its
application in software defect prediction. Int. J. Perform. Eng. 14 (7), 1468.

Ji, Haijin, et al., 2019. A new weighted naive Bayes method based on information
diffusion for software defect prediction. Softw. Qual. J. 27 (3), 923–968.

Jing, Xiao-Yuan, et al., 2016. An improved SDA based defect prediction framework for
both within-project and cross-project class-imbalance problems. IEEE Trans. Softw.
Eng. 43 (4), 321–339.

Kakkar, Misha, et al., 2021. Combining data preprocessing methods with imputation
techniques for software defect prediction. In: Research Anthology on Recent Trends,
Tools, and Implications of Computer Programming. IGI Global, pp. 1792–1811.

Khamis, Mohamed A., Gomaa, Walid, 2015. Comparative assessment of machine-
learning scoring functions on PDBbind 2013. Eng. Appl. Artif. Intell. 45,
136–151.

Khoshgoftaar, Taghi M., Gao, Kehan, 2009. Feature selection with imbalanced data for
software defect prediction. In: 2009 International Conference on Machine Learning
and Applications. IEEE.

Khoshgoftaar, Taghi M., Gao, Kehan, Seliya, Naeem, 2010. Attribute selection and
imbalanced data: Problems in software defect prediction. In: 2010 22nd IEEE
International Conference on Tools with Artificial Intelligence, Vol. 1. IEEE.

Khoshgoftaar, Taghi M., et al., 2015. Comparing feature selection techniques for
software quality estimation using data-sampling-based boosting algorithms. Int. J.
Reliab. Qual. Saf. Eng. 22 (03), 1550013.

Khuat, Thanh Tung, Le, My Hanh, 2019. Ensemble learning for software fault prediction
problem with imbalanced data. Int. J. Electr. Comput. Eng. 9 (4), 3241.

Kitchenham, Barbara, et al., 2009. Systematic literature reviews in software
engineering–a systematic literature review. Inf. Softw. Technol. 51 (1), 7–15.

Laradji, Issam H., Alshayeb, Mohammad, Ghouti, Lahouari, 2015. Software defect
prediction using ensemble learning on selected features. Inf. Softw. Technol. 58,
388–402.

Li, Zhiqiang, Jing, Xiao-Yuan, Zhu, Xiaoke, 2018. Progress on approaches to software
defect prediction. Iet Softw. 12 (3), 161–175.

Li, Ming, et al., 2012. Sample-based software defect prediction with active and
semi-supervised learning. Autom. Softw. Eng. 19 (2), 201–230.

Li, Ke, et al., 2020. Understanding the automated parameter optimization on transfer
learning for cross-project defect prediction: an empirical study. In: Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering.
32
Liang, Hongliang, et al., 2019. Seml: A semantic LSTM model for software defect
prediction. IEEE Access 7, 83812–83824.

Liu, Mingxia, Miao, Linsong, Zhang, Daoqiang, 2014b. Two-stage cost-sensitive learning
for software defect prediction. IEEE Trans. Reliab. 63 (2), 676–686.

Lu, Jie, et al., 2015. Transfer learning using computational intelligence: A survey.
Knowl.-Based Syst. 80, 14–23.

Ma, Ying, Qin, Ke, Zhu, Shunzhi, 2014. Discrimination analysis for predicting
defect-prone software modules. J. Appl. Math. 2014.

Ma, Ying, et al., 2012. Transfer learning for cross-company software defect prediction.
Inf. Softw. Technol. 54 (3), 248–256.

Manivasagam, G., Gunasundari, R., 2018. An optimized feature selection using fuzzy
mutual information based ant colony optimization for software defect prediction.
Int. J. Eng. Technol. 7 (1.1), 456–460.

Mousavi, Reza, Eftekhari, Mahdi, Rahdari, Farhad, 2018. Omni-ensemble learning
(OEL): utilizing over-bagging, static and dynamic ensemble selection approaches
for software defect prediction. Int. J. Artif. Intell. Tools 27 (06), 1850024.

Naseem, Rashid, et al., 2020. Investigating tree family machine learning techniques for
a predictive system to unveil software defects. Complexity 2020.

Okutan, Ahmet, Yıldız, Olcay Taner, 2014. Software defect prediction using Bayesian
networks. Empir. Softw. Eng. 19 (1), 154–181.

Okutan, Ahmet, Yildiz, Olcay Taner, 2016. A novel kernel to predict software
defectiveness. J. Syst. Softw. 119, 109–121.

Pachouly, Jalaj, Ahirrao, Swati, Kotecha, Ketan, 2020. A bibliometric survey on the
reliable software delivery using predictive analysis. Libr. Philos. Pract. 1–27.

Pendharkar, Parag C., 2010. Exhaustive and heuristic search approaches for learning a
software defect prediction model. Eng. Appl. Artif. Intell. 23 (1), 34–40.

Peng, Yi, et al., 2009. Empirical evaluation of classifiers for software risk management.
Int. J. Inf. Technol. Decis. Mak. 8 (04), 749–767.

Phan, Anh Viet, et al., 2018. Dgcnn: A convolutional neural network over large-scale
labeled graphs. Neural Netw. 108, 533–543.

Philip, Adithya Abraham, et al., 2019. FastLane: Test minimization for rapidly deployed
large-scale online services. In: 2019 IEEE/ACM 41st International Conference on
Software Engineering. ICSE, IEEE.

Prasad, M.C., Florence, Lilly, Arya, Arti, 2015. A study on software metrics based
software defect prediction using data mining and machine learning techniques.
Int. J. Database Theory Appl. 8 (3), 179–190.

Punitha, K., Latha, B., 2016. Sampling imbalance dataset for software defect prediction
using hybrid neuro-fuzzy systems with naive Bayes classifier. Teh. Vjesnik 23 (6),
1795–1804.

Qiu, Shaojian, et al., 2019. Transfer convolutional neural network for cross-project
defect prediction. Appl. Sci. 9 (13), 2660.

Raghava, Y. Venkata, Rao, Rama Devi Burri, Prasad, V.B.V.N., 2019. Machine learning
methods for software defect prediction a revisit.

Rana, Zeeshan Ali, Awais Mian, M., Shamail, Shafay, 2015. Improving recall of software
defect prediction models using association mining. Knowl.-Based Syst. 90, 1–13.

Rathore, Santosh S., Kumar, Sandeep, 2019. A study on software fault prediction
techniques. Artif. Intell. Rev. 51 (2), 255–327.

Ren, Jinsheng, et al., 2014. On software defect prediction using machine learning. J.
Appl. Math. 2014.

Rodriguez, Daniel, et al., 2013. A study of subgroup discovery approaches for defect
prediction. Inf. Softw. Technol. 55 (10), 1810–1822.

Saifan, Ahmad A., Abu-wardih, Lina, 2020. Software defect prediction based on feature
subset selection and ensemble classification. ECTI Trans. Comput. Inf. Technol.
(ECTI-CIT) 14 (2), 213–228.

Shen, Zhidong, Chen, Si, 2020. A survey of automatic software vulnerability detection,
program repair, and defect prediction techniques. Secur. Commun. Netw. 2020.

Siers, Michael J., Islam, Md Zahidul, 2015. Software defect prediction using a cost
sensitive decision forest and voting, and a potential solution to the class imbalance
problem. Inf. Syst. 51, 62–71.

Siers, Michael J., Islam, Md Zahidul, 2018. Novel algorithms for cost-sensitive classifi-
cation and knowledge discovery in class imbalanced datasets with an application
to NASA software defects. Inform. Sci. 459, 53–70.

Siers, Michael J., Islam, Md Zahidul, 2018b. Novel algorithms for cost-sensitive classi-
fication and knowledge discovery in class imbalanced datasets with an application
to NASA software defects. Inform. Sci. 459, 53–70.

Singh, Malkit, Salaria, Dalwinder Singh, 2013. Software defect prediction tool based
on neural network. Int. J. Comput. Appl. 70 (22).

Sobrinho, de Paulo, Vicente, Elder, Lucia, Andrea De, Maia, Marcelo de Almeida, 2018.
A systematic literature review on bad smells—5 W’s: which, when, what, who,
where. IEEE Trans. Softw. Eng..

Sun, Zhongbin, Song, Qinbao, Zhu, Xiaoyan, 2012. Using coding-based ensemble
learning to improve software defect prediction. IEEE Trans. Syst. Man Cybern. C
42 (6), 1806–1817.

Tabassum, Sadia, et al., 2020. An investigation of cross-project learning in online
just-in-time software defect prediction. In: 2020 IEEE/ACM 42nd International
Conference on Software Engineering. ICSE, IEEE.

Taek, Lee., et al., 2016. Developer micro interaction metrics for software defect
prediction. IEEE Trans. Softw. Eng. 42 (11), 1015–1035.

Tantithamthavorn, Chakkrit, et al., 2018. The impact of automated parameter
optimization on defect prediction models. IEEE Trans. Softw. Eng. 45 (7), 683–711.

http://refhub.elsevier.com/S0952-1976(22)00061-6/sb30
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb30
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb30
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb30
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb30
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb31
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb31
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb31
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb31
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb31
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb32
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb32
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb32
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb32
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb32
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb33
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb33
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb33
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb34
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb34
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb34
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb34
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb34
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb35
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb35
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb35
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb35
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb35
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb36
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb36
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb36
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb37
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb37
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb37
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb38
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb38
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb38
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb39
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb39
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb39
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb39
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb39
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb40
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb40
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb40
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb40
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb40
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb41
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb41
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb41
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb41
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb41
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb42
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb42
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb42
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb43
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb43
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb43
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb44
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb44
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb44
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb45
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb45
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb45
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb46
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb46
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb46
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb47
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb47
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb47
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb48
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb48
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb48
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb49
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb49
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb49
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb50
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb50
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb50
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb50
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb50
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb51
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb51
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb51
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb51
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb51
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb52
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb52
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb52
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb52
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb52
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb53
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb53
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb53
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb53
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb53
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb54
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb54
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb54
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb54
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb54
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb55
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb55
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb55
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb55
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb55
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb56
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb56
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb56
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb57
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb57
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb57
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb58
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb58
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb58
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb58
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb58
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb59
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb59
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb59
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb60
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb60
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb60
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb61
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb61
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb61
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb61
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb61
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb62
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb62
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb62
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb63
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb63
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb63
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb64
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb64
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb64
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb65
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb65
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb65
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb66
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb66
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb66
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb67
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb67
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb67
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb67
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb67
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb68
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb68
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb68
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb68
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb68
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb69
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb69
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb69
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb70
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb70
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb70
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb71
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb71
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb71
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb72
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb72
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb72
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb73
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb73
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb73
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb74
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb74
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb74
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb75
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb75
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb75
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb76
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb76
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb76
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb76
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb76
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb77
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb77
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb77
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb77
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb77
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb78
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb78
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb78
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb78
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb78
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb79
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb79
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb79
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb81
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb81
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb81
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb82
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb82
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb82
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb83
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb83
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb83
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb84
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb84
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb84
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb85
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb85
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb85
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb85
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb85
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb86
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb86
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb86
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb87
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb87
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb87
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb87
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb87
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb88
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb88
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb88
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb88
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb88
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb89
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb89
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb89
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb89
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb89
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb90
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb90
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb90
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb91
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb91
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb91
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb91
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb91
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb92
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb92
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb92
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb92
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb92
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb93
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb93
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb93
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb93
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb93
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb94
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb94
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb94
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb95
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb95
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb95

J. Pachouly, S. Ahirrao, K. Kotecha et al. Engineering Applications of Artificial Intelligence 111 (2022) 104773
Tiwari, Sadhana, Singh, Birmohan, Kaur, Manpreet, 2017. An approach for feature
selection using local searching and global optimization techniques. Neural Comput.
Appl. 28 (10), 2915–2930.

Vashisht, Vipul, Lal, Manohar, Sureshchandar, G.S., 2016. Defect prediction framework
using neural networks for software enhancement projects. J. Adv. Math. Comput.
Sci. 1–12.

Wahono, Romi Satria, Herman, Nanna Suryana, 2014. Genetic feature selection for
software defect prediction. Adv. Sci. Lett. 20 (1), 239–244.

Wahono, Romi Satria, Herman, Nanna Suryana, Ahmad, Sabrina, 2014. Neural network
parameter optimization based on genetic algorithm for software defect prediction.
Adv. Sci. Lett. 20 (10–11), 1951–1955.

Wang, Huanjing, Khoshgoftaar, Taghi M., Napolitano, Amri, 2010. A comparative study
of ensemble feature selection techniques for software defect prediction. In: 2010
Ninth International Conference on Machine Learning and Applications. IEEE.

Wang, Shuo, Yao, Xin, 2013. Using class imbalance learning for software defect
prediction. IEEE Trans. Reliab. 62 (2), 434–443.

Wang, Tiejian, et al., 2016. Multiple kernel ensemble learning for software defect
prediction. Autom. Softw. Eng. 23 (4), 569–590.

Wenjie, Li, 2019. Imbalanced data optimization combining K-means and SMOTE. Int.
J. Perform. Eng. 15 (8), 2173.

Wu, Yumei, et al., 2020. LIMCR: Less-informative majorities cleaning rule based on
Naïve Bayes for imbalance learning in software defect prediction. Appl. Sci. 10
(23), 8324.

Xia, Xin, et al., 2016. Hydra: Massively compositional model for cross-project defect
prediction. IEEE Trans. Softw. Eng. 42 (10), 977–998.

Xu, Zhou, et al., 2018a. Cross version defect prediction with representative data via
sparse subset selection. In: 2018 IEEE/ACM 26th International Conference on
Program Comprehension. ICPC, IEEE.

Xu, Zhou, et al., 2018b. HDA: Cross-project defect prediction via heterogeneous domain
adaptation with dictionary learning. IEEE Access 6, 57597–57613.

Xu, Zhou, et al., 2019. Software defect prediction based on kernel PCA and weighted
extreme learning machine. Inf. Softw. Technol. 106, 182–200.

Yadav, Harikesh Bahadur, Yadav, Dilip Kumar, 2015. Construction of membership
function for software metrics. Procedia Comput. Sci. 46, 933–940.
33
Yatish, Suraj, et al., 2019. Mining software defects: should we consider affected re-
leases? In: 2019 IEEE/ACM 41st International Conference on Software Engineering.
ICSE, IEEE.

Yousef, Ahmed H., 2015. Extracting software static defect models using data mining.
Ain Shams Eng. J. 6 (1), 133–144.

Yu, Qiao, Jiang, Shujuan, Zhang, Yanmei, 2017a. The performance stability of defect
prediction models with class imbalance: An empirical study. IEICE Trans. Inf. Syst.
100 (2), 265–272.

Yu, Qiao, et al., 2017b. A feature selection approach based on a similarity measure for
software defect prediction. Front. Inf. Technol. Electron. Eng. 18 (11), 1744–1753.

Yu, Tingting, et al., 2018. Conpredictor: Concurrency defect prediction in real-world
applications. IEEE Trans. Softw. Eng. 45 (6), 558–575.

Yu, Qiao, et al., 2020. Process metrics for software defect prediction in object-oriented
programs. IET Softw. 14 (3), 283–292.

Zhang, Zhi-Wu, Jing, Xiao-Yuan, Wang, Tie-Jian, 2017. Label propagation based semi-
supervised learning for software defect prediction. Autom. Softw. Eng. 24 (1),
47–69.

Zhang, Zhi-Wu, Jing, Xiao-Yuan, Wu, Fei, 2018a. Low-rank representation for
semi-supervised software defect prediction. IET Softw. 12 (6), 527–535.

Zhang, Hongyu, Nelson, Adam, Menzies, Tim, 2010. On the value of learning from
defect dense components for software defect prediction. In: Proceedings of the 6th
International Conference on Predictive Models in Software Engineering.

Zhang, Xueying, et al., 2015. A dissimilarity-based imbalance data classification
algorithm. Appl. Intell. 42 (3), 544–565.

Zhang, Yun, et al., 2018b. Combined classifier for cross-project defect prediction: an
extended empirical study. Front. Comput. Sci. 12 (2), 280.

Zheng, Shang, et al., 2020. Software defect prediction based on fuzzy weighted extreme
learning machine with relative density information. Sci. Program. 2020.

Zhou, Yun, Fenton, Norman, Neil, Martin, 2014. BayesIan network approach to
multinomial parameter learning using data and expert judgments. Internat. J.
Approx. Reason. 55 (5), 1252–1268.

Zhou, Lijuan, et al., 2018b. Imbalanced data processing model for software defect
prediction. Wirel. Pers. Commun. 102 (2), 937–950.

http://refhub.elsevier.com/S0952-1976(22)00061-6/sb96
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb96
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb96
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb96
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb96
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb97
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb97
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb97
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb97
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb97
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb98
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb98
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb98
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb99
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb99
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb99
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb99
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb99
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb100
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb100
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb100
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb100
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb100
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb101
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb101
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb101
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb102
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb102
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb102
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb103
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb103
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb103
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb104
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb104
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb104
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb104
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb104
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb105
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb105
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb105
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb106
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb106
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb106
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb106
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb106
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb107
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb107
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb107
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb108
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb108
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb108
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb109
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb109
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb109
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb110
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb110
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb110
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb110
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb110
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb111
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb111
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb111
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb112
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb112
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb112
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb112
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb112
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb113
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb113
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb113
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb114
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb114
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb114
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb115
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb115
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb115
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb116
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb116
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb116
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb116
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb116
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb117
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb117
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb117
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb118
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb118
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb118
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb118
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb118
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb119
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb119
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb119
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb120
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb120
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb120
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb121
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb121
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb121
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb122
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb122
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb122
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb122
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb122
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb123
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb123
http://refhub.elsevier.com/S0952-1976(22)00061-6/sb123

	A systematic literature review on software defect prediction using artificial intelligence: Datasets, Data Validation Methods, Approaches, and Tools
	Introduction
	Outline of the paper
	Significance and relevance
	Evolution timeline
	Motivation
	Background

	Prior research
	Research goals
	Contributions of the study

	Terminology
	Software defect
	Defect prediction
	Agile methodology
	Confluence
	Resource allocation
	Story point
	Code references
	Defect life cycle
	Defect states

	Research methodology
	Search keywords
	Selection criterion
	Inclusion and exclusion criteria
	Quality assessment criteria

	Literature outcome
	Various approaches for finding defects
	Defect detection using legacy approaches
	Defect finding using prediction approaches

	Available datasets, are they good enough for multi-label predictions?
	Datasets challenges
	Feature selection/reduction

	Data validation techniques for software defect prediction modeling?
	K fold cross-validation

	Various tools/frameworks available for software defect prediction
	Futuristic direction for software defect prediction?
	High-level architecture

	STEP 1: COLLECTING DATASET
	STEP 2: DATA ENRICHMENT
	STEP 3: DATA VALIDATION
	STEP 4: BUILDING MULTI-LABEL PREDICTION MODEL
	STEP 5: PREDICTING THE NEW CODE
	Additional metrics

	PROPOSED ADDITIONAL METRICS FROM PREVIOUSLY FILED DEFECTS

	Discussion
	Limitations of the study
	Conclusion
	Future work and opportunities
	MISCELLANEOUS
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Ethical approval

	References

