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A B S T R A C T   

Background: One of the challenging and the primary stages of medical image examination is the identification of 
the source of any disease, which may be the aberrant damage or change in tissue or organ caused by infections, 
injury, and a variety of other factors. Any such condition related to skin or brain sometimes advances in cancer 
and becomes a life-threatening disease. So, an efficient automatic image segmentation approach is required at the 
initial stage of medical image analysis. 
Purpose: To make a segmentation process efficient and reliable, it is essential to use an appropriate objective 
function and an efficient optimization algorithm to produce optimal results. 
Method: The above problem is resolved in this paper by introducing a new minimum generalized cross entropy 
(MGCE) as an objective function, with the inclusion of the degree of divergence. Another key contribution is the 
development of a new optimizer called opposition African vulture optimization algorithm (OAVOA). The pro-
posed optimizer boosted the exploration, skill by inheriting the opposition-based learning. 
The results: The experimental work in this study starts with a performance evaluation of the optimizer over a set 
of standards (23 numbers) and IEEE CEC14 (8 numbers) Benchmark functions. The comparative analysis of test 
results shows that the OAVOA outperforms different state-of-the-art optimizers. The suggested OAVOA-MGCE 
based multilevel thresholding approach is carried out on two different types of medical images – Brain MRI 
Images (AANLIB dataset), and dermoscopic images (ISIC 2016 dataset) and found superior than other entropy- 
based thresholding methods.   

1. Introduction 

In the field of medical science, computers are being used extensively 
to perform different tasks [1–10]. Image segmentation is a fascinating 
and challenging problem in computer vision, especially in the medical 
imaging applications. In general, the majority of the region of the 
biomedical image is devoid of useful information. In this case, seg-
mentation techniques are useful to separate an image region into 
non-overlapping parts. Radiologists use medical image segmentation to 
visualize and study the anatomy of human body structures [11], mimic 
biological processes [12], localize diseases [13], follow illness devel-
opment, and determine the necessity for radiotherapy or surgery. As a 

result, automated and computerized methods for analyzing biomedical 
images are becoming more popular. These methods have the ability to 
accurately process large numbers of image samples in an allotted time. 
Further, automated systems can help to eliminate some of the inherent 
inaccuracies that come with manual inquiries. However, noisy, poor 
correlation, unclear regions, weak edges, overlapping, and a variety of 
other difficulties plague medical images and significantly alter the final 
segmentation outcomes. 

During diagnosis, hard tissue evaluations are conducted using com-
puter tomography and magnetic resonance imaging. In this paper, the 
proposed thresholding method is applied to brain magnetic resonance 
imagining (MRI) images and skin images. Brain MRI images are used by 
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the physician to diagnose different types of brain related diseases like 
Cerebrovascular Diseaseh Neoplastic Disease, Degenerative Disease, 
Inflammatory, Infectious Disease [13], etc. Dermoscopic is currently the 
most prevalent imaging tool used to assist dermatologists to extract 
meaningful information. It enables the detection of the region of 
diseased skin [14] that can’t be seen with the naked eye. The most 
challenging job in skin image segmentation is to identify the desired 
region in the presence of some unpredictable factors like skin hair, un-
clear edges, and borders, lines on the skin surface, ruler marks, etc. 

Thresholding is a prominent method of image segmentation. It di-
vides an image into constituent parts, depending on specific threshold 
values. To segment an image using intensity as a criterion, global 
thresholding techniques are commonly employed. Some of the popular 
and widely used thresholding-based image segmentation methods are – 
Kapur’s [15], Reniy’s [16], Tsallis [17], Otsu’s inter-class variance [18], 
Masi [19], cross-entropy [20], Kaniadakis [21], Shannon [21], and other 
entropy-based objective functions, which needs to be maximized or 
minimized for obtaining optimal threshold values. Among the different 
entropy-based methods, the minimum cross-entropy based method is 
founded popular. However, the maximum entropy and minimum cross 
entropy yield the same results while the prior distribution is uniform 
[22]. This happens due to the reason that, in some instances, the higher 
values of the entropy correspond to the lower values of the cross en-
tropy. This may not also be efficient, when the prior distribution is not 
uniform. Further, the minimum cross entropy ignores the degree of 
divergence between the original and segmented images. This leads to a 
lower segmentation accuracy. This has motivated the authors to intro-
duce a new minimum generalized cross entropy (MGCE) objective 
function. It warrants us to include the degree of divergence. Neverthe-
less, multilevel image thresholding requires a thorough search for the 
ideal threshold values as well as higher computation costs due to the 
growing number of thresholds. By structuring this as an optimization 

Table 1 
Abbreviation/Symbols with their description.  

Abbreviations/ 
Symbols 

Description Abbreviations/ 
Symbols 

Description 

MRI Magnetic resonance 
imaging 

CEC Congress on 
evolutionary 
computation 

ISIC International Skin 
Imaging 
Collaboration 

ANN Artificial Neural 
Network 

OF Objective function KNN K-nearest 
neighbours 

AVOA African vulture 
optimization 
algorithm 

ANOVA Analysis of variance 

OAVOA Opposition African 
vulture optimization 
algorithm 

PSNR Peak signal-to-noise 
ratio 

MCE Minimum cross 
entropy 

SSIM Structural similarity 
index measure 

MGCE Minimum 
generalized cross 
entropy 

FSIM Feature Similarity 
Index measure 

EO Equilibrium 
Optimizer 

PSO-IW Particle swarm 
optimization with 
linearly varying 
inertia weight 

HHO Harris Hawk 
Optimization 

HKSVM Hybrid kernel-based 
support vector 
machine 

TLBO Teaching learning- 
based optimization 

M× N Size of the input 
image 

GSA Gravitational search 
algorithm 

L No. of graylevel 

DE Differential 
algorithm 

k No. of thresholds 

ABC Artificial bee colony 
algorithm 

Rj jth segmented region 

WOA Whale Optimization 
Algorithm 

ν Pixel intensity 

KH Krill herd 
optimization 

thk kth threshold 

PSO Particle swarm 
optimization 

hi Normalized 
histogram 

OBL Opposition-based 
learning 

Pi Region probability 
(ith region) 

MBO Monarch butterfly 
optimization 

α Reniys Entropy 
order 

SMA Slime mould 
algorithm 

r Masi entropy 
parameter 

HGS Hunger Games 
Search 

q Tsallis parameter 

MSA Moth search 
algorithm 

ξ and η Random variables 

RUN Runge Kutta 
optimizer 

φ and ψ Probability 
distribution 

CPA Colony predation 
algorithm 

p degree of 
divergence index. 

INFO weIghted meaN oF 
vectOrs 

G Population matrix 
of the optimization 
algorithm 

HSMA-WOA Hybrid novel Slime 
mould algorithm 
with whale 
optimization 
algorithm 

ub and lb Upper and lower 
bound of the search 
space 

IGWO Improved grey wolf 
optimizer 

N No. of population 

BLPSO Biogeography-based 
learning particle 
swarm optimization 

dim Dimension of the 
problem 

ESA hybrid Emperor 
penguin and Salp 
swarm Algorithm 

L1 and L2 Random numbers in 
the range [0,1]

IGOA Improved 
grasshopper 

Vt Best Vulture at tth 

iteration  

Table 1 (continued ) 

Abbreviations/ 
Symbols 

Description Abbreviations/ 
Symbols 

Description 

optimization 
algorithm 

CLSGMFO Chaotic local search 
and Gaussian 
mutation-enhanced 
Moth-flame 
optimization 

prt
i Probability of 

selection among 
best two vultures 

IMEHO Improved elephant 
herding 
optimization 

Ft Hunger degree 

EHO elephant herding 
optimization 

T Maximum no. of 
iteration 

HGWOP Hybrid particle 
Swarm and grey wolf 
optimizer 

r1 to r8 Random numbers 
generated uniformly 
in the interval [0, 
1]. 

FFA Firefly algorithm p1 likelihood of 
selection of 
updating 
mechanism in 
exploration phase 

SVM Support vector 
machine 

p2 and p3 likelihood of 
selection of 
updating 
mechanism in 
exploitation phase 

OCE-NGC Optimal Estimation 
of clustering using a 
neutrosophic graph- 
cut 

Gopp
j Opposite solution of 

Gj 

TAVOA Time-varying 
mechanism based 
African vulture 
optimization 
algorithm 

ω a factor that impacts 
how much the 
exploration and 
exploitation stages 
are disrupted  
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problem, one can overcome the difficulties in choosing the best 
threshold values. Some of the Nature-inspired optimization algorithms 
which are successfully applied to multilevel thresholding in the past few 
years by are – Particle swarm optimization (PSO) [23], Differential al-
gorithm (DE) [24], Teaching learning based optimization (TLBO) [25], 
Whale optimization algorithm (WOA) [26], Harris Hawk Optimization 
(HHO) [27], Equilibrium Optimizer (EO) [28]. 

In this study, we have examined a new recently developed African 
vulture optimization algorithm (AVOA) [29]. The AVOA is inspired by 
the navigation and foraging behaviour of African vultures. It offers a 
more extensive exploration and exploitation mechanism compared to 
other standard metaheuristic algorithms. Its adopted random strategy 
(during the search for optimal values) makes it efficient. It is also suit-
able to solve various real-world optimization based engineering prob-
lems [30,31]. The effective foraging technique of AVOA together with 
its capacity to resolve challenging technical issues drive us to thoroughly 
examine the algorithm. It encourages us to apply it to the image seg-
mentation problem. Despite the fact that its design takes into account 
the balance of exploration and exploitation capabilities, it exhibits two 
flaws. Firstly, in the exploration stage, it only uses the best two solutions 
of the population selected using the Roulette Wheel selection method. 
This affects the exploration capability to some extent. Secondly, the 
tactic of using an exploitation mechanism early in the exploration (to 
boost the convergence rate) is also a constraint on exposing the 
maximum solution space. Taking above flaws into consideration, Fan 
et al. [32] introduced an improved tent chaotic mapping and 
time-varying mechanism based African vulture optimization algorithm 
(TAVOA). In this algorithm, a tent chaotic map is first created for pop-
ulation initialization. Secondly, the person’s previous ideal position is 
noted and taken into account when updating their location. Thirdly, a 
time-varying method is created to balance the capacity for exploration 
and exploitation. Although TAVOA is a powerful optimizer, the chaotic 
map used may affect its performances. For a specific application that 
called for expertise or experimentation, the selective chaotic map is al-
ways necessary. To resolve the shortfall of AVOA, an opposition African 
vulture optimization algorithm (OAVOA) is proposed in this paper by 
integrating the opposition-based learning (OBL) [33] with the AVOA 
algorithm. The use of the OBL is an effort to boost the exploration skill 
by providing the required diversity and escaping strategy which ensures 
a better exploration mechanism. In order to make the paper more 
readable, the abbreviations and symbols used here are listed in Table 1. 

In summary, the key contributions of the proposed work are: 

i. A generalized cross-entropy (MGCE) based multilevel thresh-
olding methodology is proposed for the first time by considering 
the degree of divergence during thresholding. 

ii. By incorporating opposition-based learning into the current Af-
rican vulture optimization algorithm (AVOA), an opposition Af-
rican vulture optimization algorithm (OAVOA) is proposed. 
Before using it to solve the multilevel thresholding problem, 
OAVOA’s performance is assessed using the standard benchmark 
functions. For a collection of 31 benchmark functions, including 
23 classical test functions and 8 composite modern test functions 
from the CEC 2014 test suit, the OAVOA exhibits enhanced 
convergence with good optimizing performance as compared to 
the state-of-the-art methods. 

iii. The MGCE based multilevel thresholding using OAVOA is vali-
dated by applying it to two different types of medical image 
datasets. The method provides superior segmented outputs when 
compared with other popular entropy-based methods. 

The remainder of this work is as follows: A brief review of the related 
works is discussed in Section 2. An overview of the multilevel thresh-
olding, entropy-based multilevel thresholding, generalized cross- 
entropy, African vulture optimization algorithm (AVOA), and 
opposition-based learning is presented in Section 3. Section 4 deals with 
the proposed methodology related to develop a new multilevel thresh-
olding approach. Section 5 discussed experimental finding of the pro-
posed method. At last, the paper ended with concluding comments in 
Section 6. 

2. Related works 

As the multilevel thresholding task is considered as an optimization 
problem, the thresholding accuracy is significantly influenced by the 
capability of the chosen optimization method to optimize a given 
entropy-based objective function. Therefore, the primary objective of 
any entropy-based multilevel thresholding process is selecting an 
appropriate algorithm for optimization. The literature has reported a 
number of recently developed nature-inspired algorithms and various 
segmentation methods for brain MRI and dermoscopic images. 

In the past few years, a number of highly efficient Nature-inspired 
metaheuristic algorithms have been developed by many researchers. 
Artificial bee colony (ABC) [34]optimization which is based on how a 
colony of honey bees searches for food sources in the nature is a popular 
algorithm and applied to many optimization problems including 
multilevel thresholding. Due to improper trade-off between exploration 

Table 2 
Objective function (OF) used for different entropy-based thresholding.  

OF Expression Reference 

Minimum Cross entropy 
(MCE) OFMCE=

∑k+1
i=1

Si 
where Si =

∑thi
i=thi− 1

(
i.hi .log

(
i/μi

))

and μi =
∑thi

i=thi− 1
i.hi

/
∑thi

i=thi− 1
hi 

[20] 

Kaniadakis entropy 
OFKaniadakis = SR1

κ KR′

1 + SR2
κ KR′

2 + …SRk+1
κ KR′

k+1 where SRk
κ = −

1
2κ

{
∑thk − 1

i=thk− 1

((
Hi

ηRk

)1+κ

−
(Hi

ηRk

)1− κ)
}

KR′

k =
1
2

⎧
⎨

⎩

∑(thk− 1)− 1
i=0

⎛

⎝

(
Hi

ηR′

k

)1+κ

+

(
Hi

ηR′

k

)1− κ)}

+
1
2

⎧
⎨

⎩

∑255
i=k

⎛

⎝

(
Hi

ηR′

k

)1+κ

+

(
Hi

ηR′

k

)1− κ)}

where, ηR′

k
=
∑(thk− 1)− 1

i=0 Hi +
∑255

l=thk

i
H and 

Hi =
(Pr(i)

Pi

)

[21] 

Masi Entropy OFMasi =
∑k+1

i=1 Sr(Ri) where Sr(Ri) =
1

r − 1
(log(1 − (1 − r)

∑thi
i=thi− 1

(Hi).ln(Hi)))
[19] 

Tsallis Entropy 
OFTsallis =

∑k+1
i=1 SRi

q + (1 − q)
∏k+1

i=0
SRi

q where, SRi
q =

1 −
∑thk

i=thi− 1
(Hi)

q

q − 1 
and q is the Tsallis parameter indicates degree of non-extensivity of the 

system 

[17] 

Reniys Entropy OFReniys =
∑k+1

i=1 Rni
α where, Rni

α =
1

1 − α ln
∑thi

i=thi− 1
(Hi)

α [16] 

Kapurs Entropy OFKapur = −
∑k+1

i=1 Hiln Hi [15] 
Shannon Entropy OFShannon = −

∑k+1
i=1 Pr(i) .ln(Pr(i)) [21]  
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and exploitation search behavior the convergence speed is affected by 
change of the population and sometimes trapped in local minima. 
Gandomi et al. [35] developed a Krill herd optimizer (KH) algorithm 
inspired by using a simulation of krill herding behaviour. Even though 
KH is a powerful algorithm for local search, it occasionally becomes 
stuck in some local optima and cannot effectively execute global search. 
One of the popular physics based algorithm is a Gravitational search 
algorithm (GSA) [36]. The algorithm uses the laws of motion and gravity 
of masses to describe how the agents interact. Because the fitness 
function depends on the masses of the agents, it has the drawback of 
being a sluggish process. As a result, the masses become heavier with 
each cycle, which limits their ability to move. Inspired from the ele-
phants’ herding behaviour, an algorithm Elephant herding optimization 
(EHO) [37] was also developed. Though the algorithm is well suited for 
some algorithm, but suffers from premature convergence, which 
degrade its performance. 

To overcome problems in above mentioned standard algorithm, a 
number of advanced algorithms are introduced. One of them is 

Fig. 1. Flow chart of the proposed OAVOA-MGCE based multilevel thresholding.  

Table 3 
Parameter settings.  

Algorithm Parameters 

OAVOA L1 = 0.8,L2 = 0.2,w = 2.5, p1 = 0.6, p2 = 0.4, p3 = 0.6 
AVOA L1 = 0.8,L2 = 0.2,w = 2.5, p1 = 0.6, p2 = 0.4, p3 = 0.6 
EO Constant [a1, a2] = [2,1] and Generation probability (GP) = 0.5 
HHO Scale factor (β) = 1.5 
GSA Alpha = 20, Rnorm = 2, Rpower = 1 and G0 = 100 
TLBO Teaching factor = [1,2]
DE Crossover probability = 0.5 and Scaling factor = 0.5 
TAVOA L1 = 0.8,L2 = 0.2,w = 2.5, p1 = 0.6, p2 = 0.4, p3 = 0.6 
IGWO  
BLPSO c = 1, I = 1,E = 1, and ω = 0.9–0.2 (linearly decrease) 
HGWOP amax = 2, amin = 0, Crmax = 1 and Crmin = 0  
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Fig. 2. Qualitative result of unimodal and multimodal test functions(F1, F7, F10, F13, F15 and F20).  
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Earthworm optimizer [38], which is inspired from the unique repro-
duction system of earthworm was also proposed by the researchers 
along with its different variants. In Monarch butterfly optimization 
(MBO) [39], the authors introduced a new optimization algorithm by 
mathematically modelling the migration behaviour of monarch butter-
flies. The algorithm compared with some of standard algorithms and 
found superior in optimizing both low as well as high dimensional 
problems. Another recently developed algorithm has been Slime mould 
algorithm (SMA) [40]. This optimization approach is motivated by the 
spreading and foraging behaviour of slime mould. With a number of 
novel features and a special mathematical model that simulates the 
production of positive and negative feedback of the slime mould prop-
agation wave based on bio-oscillator, the SMA is able to find the best 
route to connect food source. Gai-Ge Wang et al. [41] developed a Moth 
search algorithm (MSA) where the two primary stages of the algorithm: 
exploitation (intensification) and exploration, were modelled using 
phototaxis and Levy flights from moths in nature. Based on how animals 
behave and what drives them when they are hungry, a new 
population-based optimization algorithm, Hunger Games Search (HGS) 
[42] is developed. To replicate the impact of hunger on each search step 
in this algorithm, an adaptive weight based on the idea of hunger is 
devised and used in the algorithm. The key advantages of this approach 
over existing optimization techniques are its dynamic nature, straight-
forward structure, excellent performance in terms of convergence, and 
acceptable quality of solutions. 

Runge Kutta optimizer (RUN) [43] is a recently presented searching 
mechanism and used the concept of slope variations calculated using the 
Runge Kutta method of mathematics to reach optimal solution. Jiaze Tu 
et al. [44] presented the Colony predation algorithm (CPA), inspired 
from colony predation performed by animals to keep away from pred-
ators and improve their chances of success when hunting. The CPA 
method was evaluated against both traditional and CEC 2014 bench-
mark functions to demonstrate its superiority to other well-known al-
gorithms. Based on weighted mean of vectors, Ahmadianfar et al. [45] 
designed a new Innovative optimizer named weighted mean of vectors 
(INFO). It is a modified weight mean approach that updates the positions 
of the vectors through three key procedures: an updating rule, vector 
combining, and a local search. Though the above algorithms have 
addressed the issues of a mechanism for boosting diversity with proper 
balance between exploration and exploitation process is still required. 
Additionally, it has been noted that some algorithms are modified or 

combined with other algorithms by researchers to enhance their utility 
than their initial forms. 

Some of these algorithms which well-known and developed in last 
few years are Hybrid novel Slime mould algorithm with whale optimi-
zation algorithm (HSMA-WOA) [46], Improved grey wolf optimizer 
(IGWO) [47], Biogeography-based learning particle swarm optimization 
(BLPSO) [48], Hybrid emperor penguin and Salp swarm algorithm (ESA) 
[49], Improved grasshopper optimization algorithm (IGOA) [50], 
chaotic local search and Gaussian mutation-enhanced Moth-flame 
optimization (CLSGMFO) [51]. Integrating a learning-based intelligent 
strategy [52,53] with an evolution algorithm is one of the effective ways 
to improve its optimization behaviour. Gai-GeWang et al. recently 
developed an Improved elephant herding optimization (IMEHO) [54] 
that uses a novel learning mechanism and a global velocity approach to 
update the individuals’ position and velocity in the elephant herding 
optimization (EHO) [37]. Inspired from the search mechanism of par-
ticle swarm optimization (PSO) and grey wolf optimizer (GWO), Zhang 
et al. [55] presented a Hybrid particle Swarm and grey wolf optimizer 
(HGWOP). The HGWOP is formed by combining a Simplified GWO with 
differential perturbation algorithm with mean example learning PSO. 
The algorithm was tested on a set of complex function taken from CEC 
2013 and CEC 2015 test suit to prove its efficacy. Crisscross artificial bee 
colony algorithm (CCABC) [56] is another recently proposed algorithm 
which used horizontal and vertical search mechanism to improve the 
searching capability of ABC algorithm. The algorithm then employed to 
perform multilevel thresholding on COVID-19×-ray images by opti-
mizing an objective function. 

Segmentation methods differ greatly depending on the application, 
imaging modality, and other aspects. Brain tissue segmentation, for 
example, differs from skin cancer segmentation in terms of re-
quirements. Noise, partial volume effects, and motion are all common 
image aberrations that can have a big impact on the segmentation al-
gorithm’s effectiveness. In addition, each imaging modality has its 
quirks to deal with. However, by taking into account existing informa-
tion, approaches that are customized to specific applications can typi-
cally achieve superior performance. As a result, deciding on a suitable 
method for a segmentation challenge might be a tough decision. The 
challenges are more in the medical image segmentation. Therefore, the 
incorrect results can lead to ineffective therapies, which can raise 
mortality rates. Many segmentation techniques are developed and 
documented in the literature over the years to make the automatic 

Fig. 3. Qualitative result of composite test functions F2 and F27 taken from CEC2014 testsuit.  
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Table 4 
Statistical results and comparison of OAVOA with another optimization algorithm such as AVOA, EO, HHO, TLBO, GSA, DE, TAVOA, IGWO, BLPSO and HGWOP on 
unimodal functions (G1).  

Function  OAVOA AVOA EO HHO TLBO GSA DE TAVOA IGWO BLPSO HGWOP 

F1 Average 0 9.046E- 
217 

6.492E-41 3.329E- 
99 

3.986E-89 3.048E-16 8.334E+00 0 2.395E-28 1.381E-04 2.062E-02 

Best 0 2.796E- 
306 

2.059E-43 2.121E- 
116 

5.490E-91 7.529E-17 1.439E-04 0 1.290E-30 2.147E-05 1.316E-03 

Median 0 4.085E- 
257 

4.631E-42 2.032E- 
103 

1.529E-89 2.844E-16 9.145E-02 0 5.257E-29 6.736E-05 1.105E-02 

Worst 0 2.804E- 
215 

1.201E-39 5.502E- 
98 

2.364E-88 9.716E-16 1.762E+02 0 3.698E-27 1.898E-03 9.088E-02 

Std. 
Dev. 

0 0 2.276E-40 1.187E- 
98 

5.931E-89 1.765E-16 3.229E+01 0 6.652E-28 3.299E-04 2.136E-02 

F2 Average 1.161E- 
217 

1.092E- 
133 

4.976E-24 4.161E- 
50 

3.651E-45 1.873E-01 1.274E-01 4.281E- 
259 

7.704E-18 9.116E-04 3.783E-02 

Best 2.273E- 
244 

1.476E- 
161 

6.304E-25 5.275E- 
59 

4.136E-46 5.087E-08 2.853E-04 8.544E- 
301 

1.224E-18 4.750E-04 9.260E-03 

Median 7.112E- 
230 

3.311E- 
146 

3.005E-24 1.056E- 
53 

2.508E-45 8.344E-08 6.273E-03 2.927E- 
278 

6.161E-18 7.457E-04 3.361E-02 

Worst 3.598E- 
216 

2.418E- 
132 

2.627E-23 9.556E- 
49 

1.973E-44 1.653E+00 1.588E+00 1.324E- 
257 

2.147E-17 1.911E-03 1.278E-01 

Std. 
Dev. 

0 4.416E- 
133 

5.530E-24 1.748E- 
49 

4.014E-45 4.602E-01 3.535E-01 0 5.063E-18 3.461E-04 2.464E-02 

F3 Average 0 2.806E- 
175 

8.275E-10 2.139E- 
64 

2.046E-18 1.027E+03 6.309E+02 0 1.255E-03 2.784E+03 2.555E+02 

Best 0 1.034E- 
268 

1.820E-14 1.652E- 
99 

3.637E-20 3.931E+02 1.370E+02 0 2.564E-06 1.718E+03 6.504E+01 

Median 0 5.821E- 
216 

2.401E-11 4.375E- 
86 

6.832E-19 9.703E+02 5.865E+02 0 4.141E-04 2.758E+03 2.490E+02 

Worst 0 8.700E- 
174 

1.200E-08 6.630E- 
63 

1.523E-17 1.808E+03 1.884E+03 0 9.866E-03 3.978E+03 6.144E+02 

Std. 
Dev. 

0 0 2.366E-09 1.191E- 
63 

3.387E-18 3.233E+02 3.781E+02 0 1.967E-03 6.418E+02 1.163E+02 

F4 Average 1.407E- 
196 

9.536E- 
117 

5.588E-10 1.855E- 
47 

1.109E-36 7.293E+00 2.506E+01 9.293E- 
250 

1.588E-05 5.266E+00 6.619E-01 

Best 1.445E- 
237 

9.361E- 
148 

1.160E-11 1.612E- 
57 

2.378E-37 4.389E+00 1.435E+01 1.702E- 
289 

3.198E-06 2.893E+00 2.763E-01 

Median 2.250E- 
218 

9.590E- 
133 

1.322E-10 2.465E- 
52 

9.775E-37 7.262E+00 2.372E+01 4.633E- 
268 

1.035E-05 5.297E+00 6.040E-01 

Worst 4.362E- 
195 

2.956E- 
115 

4.599E-09 5.730E- 
46 

2.633E-36 1.065E+01 4.477E+01 2.881E- 
248 

5.351E-05 9.499E+00 1.322E+00 

Std. 
Dev. 

0 5.309E- 
116 

9.499E-10 1.029E- 
46 

6.575E-37 1.445E+00 7.619E+00 0 1.394E-05 1.531E+00 3.029E-01 

F5 Average 6.863E- 
04 

1.989E- 
03 

2.547E+01 6.925E- 
03 

2.518E+01 4.868E+01 3.222E+03 5.451E- 
03 

2.421E+01 5.892E+01 5.351E+01 

Best 4.597E- 
06 

3.917E- 
05 

2.503E+01 1.260E- 
05 

2.390E+01 2.530E+01 3.863E+01 3.560E- 
05 

2.316E+01 2.291E+01 2.503E+01 

Median 3.465E- 
04 

1.389E- 
03 

2.546E+01 4.476E- 
03 

2.520E+01 2.913E+01 5.419E+02 3.148E- 
03 

2.422E+01 5.131E+01 3.017E+01 

Worst 3.398E- 
03 

1.120E- 
02 

2.603E+01 3.338E- 
02 

2.647E+01 1.256E+02 4.305E+04 1.849E- 
02 

2.505E+01 2.080E+02 2.579E+02 

Std. 
Dev. 

9.400E- 
04 

2.167E- 
03 

2.420E-01 7.948E- 
03 

5.375E-01 3.189E+01 8.384E+03 5.359E- 
03 

4.052E-01 3.840E+01 5.155E+01 

F6 Average 1.460E- 
06 

7.716E- 
06 

9.112E-06 9.605E- 
05 

1.570E-05 4.079E-03 3.587E+00 5.778E- 
06 

2.879E-02 1.239E-04 4.181E-02 

Best 1.171E- 
08 

2.321E- 
07 

1.324E-06 6.291E- 
08 

2.211E-07 8.700E-17 1.952E-04 1.269E- 
07 

2.605E-05 1.575E-05 4.343E-03 

Median 3.293E- 
07 

5.162E- 
06 

6.425E-06 4.822E- 
05 

4.060E-06 2.195E-16 1.784E-01 4.695E- 
06 

8.148E-05 9.997E-05 3.308E-02 

Worst 1.216E- 
05 

2.688E- 
05 

4.072E-05 6.683E- 
04 

2.340E-04 1.265E-01 7.132E+01 2.800E- 
05 

2.463E-01 4.195E-04 1.263E-01 

Std. 
Dev. 

2.806E- 
06 

6.386E- 
06 

8.548E-06 1.471E- 
04 

4.555E-05 2.271E-02 1.296E+01 5.639E- 
06 

7.573E-02 8.931E-05 3.432E-02 

F7 Average 2.159E- 
04 

3.796E- 
04 

1.249E-03 1.788E- 
04 

1.031E-03 8.280E-02 6.278E-02 2.315E- 
04 

2.630E-03 2.894E-02 8.730E-03 

Best 9.020E- 
06 

5.027E- 
06 

1.798E-04 3.248E- 
06 

4.213E-04 2.865E-02 3.612E-02 1.181E- 
05 

6.049E-04 1.389E-02 2.056E-03 

Median 1.345E- 
04 

2.534E- 
04 

1.195E-03 1.665E- 
04 

1.074E-03 7.749E-02 5.969E-02 9.279E- 
05 

2.503E-03 2.502E-02 7.701E-03 

Worst 1.611E- 
03 

2.075E- 
03 

2.792E-03 9.091E- 
04 

1.708E-03 1.880E-01 1.098E-01 4.251E- 
04 

6.147E-03 5.628E-02 2.073E-02 

Std. 
Dev. 

2.994E- 
04 

4.120E- 
04 

6.643E-04 1.771E- 
04 

3.257E-04 3.628E-02 1.851E-02 2.103E- 
04 

1.200E-03 1.082E-02 3.981E-03  
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detection of disease more operative and reliable. Most of the common 
approaches are based on soft computing and machine learning 
techniques. 

Currently, MRI is the most widely used clinical diagnostic tool for 
identifying any type of brain problem, because it is a completely non- 
invasive treatment. Further, the sensitivity of MR techniques over 
different neurological tissues is helpful in the diagnosis of various types 
of neurological diseases. The MR image segmentation process makes the 
diagnosis procedure much easier by separating out various brain struc-
tures, including cerebrospinal fluid, and grey matter, white matter. 
Maitra et al. [57] proposed Kapur’s entropy-based multilevel thresh-
olding method using Bacteria foraging Optimization (BFO) for brain MR 
image segmentation. The method is tested over nine axial, T2 weighted 
MRI images. The authors claimed that the suggested BFO based 
approach outperformed the Particle swarm optimization with linearly 
varying inertia weight (PSO-IW) based thresholding. An adaptive Bac-
teria foraging(ABF) based brain MR image segmentation is proposed in 
[58]. The authors compared Kapur’s entropy-based approach with Otsu 
between class variance-based method with three different optimization 

algorithms. They found that Otsu-ABF is the best and most cost-effective 
one. Bhuvaneswari et al. [59] suggested a brain MR image segmentation 
as well as classification using the firefly algorithm (FFA) and Hybrid 
kernel-based support vector machine (HKSVM). The segmentation pro-
cess comprises three phases: a dynamic region growing step for 
threshold selection, generation of texture features, and region merging. 
The thresholds in the modified region growing are optimized by the 
firefly method. After locating the aberrant tissues, hybrid kernel-based 
SVM has been used to classify the data. Social Group Optimization 
based multilevel thresholding [60] is another soft computing approach 
for brain tumor segmentation, where the Kapur’s entropy based 
thresholded image is further processed by Watershed algorithm to 
extract the desired region from the scene. 

Ganesh et al. [61], introduced an enhanced adaptive fuzzy K-means 
clustering method to distinguish different regions in Brain MR images. In 
this case, the result of the k-mean clustering algorithm is subjected to the 
morphological opening-by-reconstruction procedure to enhance the 
clustering performance. Researchers also investigated 2D/3D 
histogram-based multilevel thresholding to further improve the 

Fig. 4. Box plot of four unimodal functions.  
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performance of segmentation by including spatial correlation among 
pixels into consideration. Sarkar et al. [62]proposed a new objective 
function by deriving Tsallis entropy from the 2D histogram of the image. 
The objective function is maximized by Differential Evolution (DE) al-
gorithm and tested with the Berkeley dataset [63]. Feng et al. [64] 
investigated the Brain MRI images using a multi-scale 3D Otsu-based 
multilevel thresholding approach. It is an iterative approach where 
the image is segmented using the effective 3D Otsu, and it is then 
smoothed using a quick local Laplacian filter. This smoothed image is 
then used as the input for the following iteration. To deal with the 
difficult problem of separating skin lesions of healthy skin, many image 
segmentation techniques have been proposed by researchers. 

Sumithra Attia et al. [14] suggested removing undesired hair from 
the lesion before running the segmentation method. Following that, 
colour and texture features were used to extract features. Both support 
vector machines (SVM) and K-nearest neighbour (KNN) were employed 
to classify the data. Similarly, Attia et al. [65] used convolutional and 
recurrent layers to create a hybrid context for hair segmentation. For 
hair delineation, they used deep encoded characteristics. Those were 
used to inscribe the spatial relationships between the incoherent image 
patches using recurrent layers. For skin lesion segmentation, Hawas 

et al. [66] suggested an Optimal Estimation of clustering using a neu-
trosophic graph-cut (OCE-NGC) technique. They used a meta-heuristic 
algorithm to improve the Clustering method based on histograms and 
find the best centroid/threshold values. They then used the resulting 
threshold value to group the pixels using the neutrosophic c-means 
technique. For detecting melanoma from dermoscopic pictures, Barata 
et al. [67] used a local-global technique. Local methods were used to 
extract features from bag-of-words, whereas global methods were 
investigated for skin lesion classification. Greater sensitivity and speci-
ficity were attained with promising outcomes. 

Chatterjee et al. [68]suggested a cross-correlation-based feature 
extraction technique with a skin lesion categorization application. Using 
the cross-correlation approach, the authors looked at both spatial and 
spectral aspects of the lesion site. Following that, kernel patches are 
selected based on the types of skin diseases, which are further catego-
rized using the recommended multi-label ensemble multi-class classi-
fier. Khan et al. [69]provided a strategy for classifying skin lesions using 
probabilistic distributions, using an entropy-based method for feature 
selection. Based on the properties of retinal blood vessels. Tang et al. [4] 
introduced a back-propagation (BP) neural network-based retinal 
vascular segmentation technique for colour fundus images. A study on 

Fig. 5. Convergence plot of four unimodal function.  
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Table 5 
Statistical results and comparison of OAVOA with other optimization algorithms such as AVOA, EO, HHO, TLBO, GSA, DE, TAVOA, IGWO, BLPSO and HGWOP on multimodal functions with variable dimensions (G2).  

Function  OAVOA AVOA EO HHO TLBO GSA DE TAVOA IGWO BLPSO HGWOP 

F8 Average − 12539.868 − 12242.614 − 8829.986 ¡12568.888 − 7710.452 − 2622.178 − 7455.230 − 12230.642 − 8707.205 − 7326.038 − 7210.915 
Best ¡12569.487 − 12569.487 − 10243.659 ¡12569.487 − 9190.530 − 3702.389 − 9998.600 − 12569.486 − 10898.353 − 8374.227 − 8772.956 
Median ¡12569.487 − 12553.590 − 8823.352 − 12569.153 − 7701.897 − 2524.089 − 7584.527 − 12568.286 − 9292.033 − 7336.147 − 7140.444 
Worst − 12331.093 − 9364.979 − 7349.286 ¡12564.514 − 6378.881 − 1766.697 − 4771.236 − 9532.471 − 5548.661 − 6620.522 − 5877.319 
Std. Dev. 71.923 676.996 612.860 0.921 854.938 439.884 1272.013 639.225 1463.874 456.685 915.649 

F9 Average 0 0 0 0 1.274E+01 2.760E+01 1.509E+02 0 1.933E+01 7.063E+01 2.645E+01 
Best 0 0 0 0 0 1.691E+01 4.704E+01 0 6.068E+00 5.837E+01 8.003E+00 
Median 0 0 0 0 1.293E+01 2.487E+01 1.582E+02 0 1.756E+01 6.813E+01 2.500E+01 
Worst 0 0 0 0 2.518E+01 4.676E+01 2.092E+02 0 3.441E+01 9.067E+01 4.380E+01 
Std. Dev. 0 0 0 0 6.516E+00 6.699E+00 3.775E+01 0 7.900E+00 8.650E+00 8.765E+00 

F10 Average 8.882E-16 8.882E-16 8.452E-15 8.882E-16 6.160E-15 1.225E-08 1.711E+00 8.882E-16 6.071E-14 2.443E-03 4.728E-02 
Best 8.882E-16 8.882E-16 7.994E-15 8.882E-16 4.441E-15 6.565E-09 2.758E-03 8.882E-16 3.997E-14 1.449E-03 1.184E-02 
Median 8.882E-16 8.882E-16 7.994E-15 8.882E-16 4.441E-15 1.131E-08 1.641E+00 8.882E-16 5.773E-14 2.330E-03 3.685E-02 
Worst 8.882E-16 8.882E-16 1.510E-14 8.882E-16 7.994E-15 2.706E-08 5.029E+00 8.882E-16 8.615E-14 5.056E-03 1.911E-01 
Std. Dev. 0 0 1.774E-15 0 1.805E-15 3.859E-09 1.122E+00 0 1.268E-14 7.931E-04 3.537E-02 

F11 Average 0 0 3.180E-04 0 0 2.788E+01 2.467E-01 0 3.676E-03 1.154E-03 4.997E-02 
Best 0 0 0 0 0 1.722E+01 5.419E-03 0 0 2.439E-05 5.275E-03 
Median 0 0 0 0 0 2.742E+01 9.100E-02 0 0 2.780E-04 3.496E-02 
Worst 0 0 9.858E-03 0 0 4.171E+01 1.303E+00 0 3.258E-02 1.180E-02 1.888E-01 
Std. Dev. 0 0 1.770E-03 0 0 5.758E+00 3.426E-01 0 8.231E-03 2.868E-03 4.530E-02 

F12 Average 8.034E-08 1.359E-07 5.872E-07 1.127E-05 8.674E-07 1.959E+00 1.673E+04 3.625E-07 7.020E-04 2.760E-05 1.355E-04 
Best 3.831E-10 2.015E-08 1.204E-08 3.547E-09 1.623E-09 3.593E-01 4.267E-01 6.123E-08 4.503E-06 2.995E-06 7.627E-06 
Median 3.825E-08 1.081E-07 3.737E-07 6.088E-06 1.424E-07 1.503E+00 7.063E+00 2.622E-07 7.463E-06 1.986E-05 8.381E-05 
Worst 4.121E-07 3.502E-07 2.925E-06 5.932E-05 6.119E-06 5.330E+00 4.556E+05 1.042E-06 6.554E-03 1.418E-04 7.883E-04 
Std. Dev. 1.038E-07 8.335E-08 6.118E-07 1.340E-05 1.823E-06 1.135E+00 8.173E+04 2.824E-07 1.864E-03 2.724E-05 1.628E-04 

F13 Average 9.642E-07 8.297E-06 3.386E-02 1.250E-04 5.114E-02 1.099E+01 8.307E+04 3.743E-04 1.025E-01 7.866E-04 7.402E-03 
Best 9.202E-09 7.099E-07 7.143E-07 4.142E-07 2.412E-06 1.099E-02 6.778E-01 1.201E-06 8.112E-05 6.892E-05 2.079E-04 
Median 6.706E-07 6.994E-06 1.100E-02 4.568E-05 2.105E-02 1.087E+01 7.217E+03 1.505E-05 9.719E-02 2.001E-04 2.293E-03 
Worst 3.414E-06 3.603E-05 1.963E-01 6.346E-04 1.524E-01 3.425E+01 8.028E+05 1.102E-02 3.607E-01 1.233E-02 5.584E-02 
Std. Dev. 9.988E-07 7.751E-06 5.197E-02 1.504E-04 5.339E-02 8.315E+00 2.050E+05 1.976E-03 1.004E-01 2.215E-03 1.164E-02  
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the colour fundus image libraries DRIVE and STARE demonstrates that 
this technique is capable of obtaining connected vessel stems and ter-
minals as well as a thorough segmentation of the retinal blood vessels. 
He et al. [3]presented a lung cancer recognition model using an Artifi-
cial Neural Network (ANN). In this method, the image segmentation 
algorithm was utilized to display the lung cancer lesion region indi-
vidually after identifying the lung cancer lesion area. Using a 
short-coupled saliency detection network with neutrosophic enhance-
ment, Hu et al. [10] introduces NeutSS-PLP, a novel technique for polyp 
region extraction in colonoscopy images. Results from experiments 
using two publicly available colorectal polyp datasets show that, for 
polyp extraction, the method performs better than a number of 
state-of-the-art saliency networks and semantic segmentation networks. 
However, developing a segmentation approach that is suitable for many 
categories of medical images, regardless of the distribution of in-
tensities, is always a tough task for researchers. 

3. Preliminaries 

3.1. Description of the multilevel segmentation method 

Multilevel thresholding is a simple and effective approach to the 

image segmentation. It divides an image into multiple sections using 
multiple threshold values. These values are determined by optimizing an 
appropriate objective function. 

Let’s Consider an image of size M × N with L intensity levels of 0,1,
2…L − 1, separated into k + 1 distinct regions. To generate k + 1 
different regions, k threshold values are needed, which can be demon-
strated using a simple thresholding rule as given below in Eq (1). The 
pixel intensity is represented by ν, while the jth the thresholded region is 
represented by Rj for j ∈ {1,2,⋯, k + 1}. The set [th1, th2, th2…thk] in-
dicates the list of selected thresholds used for producing the thresholded 
image. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1←ν, if 0 ≤ ν < th1

R2←ν, if th1 ≤ ν < th2

R3←ν, if th2 ≤ ν < th3

.

.

.

Rk←ν, if thk− 1 ≤ ν < thk

Rk+1←ν, if thk ≤ ν < L − 1

(1) 

Fig. 6. Boxplot of four multimodal functions with variable dimensions.  
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where L − 1 is the maximum intensity level. 

3.1.1. Entropy-based multilevel segmentation 
Entropy-based multilevel thresholding is one of the convenient and 

effective ways of the non-parametric thresholding approach. The en-
tropy function which is the measure of information contained in an 
image is used as the objective function, needs to be maximized by some 
meta-heuristic algorithm. Some of the popular entropy functions are 
Kaniadakis entropy, Masi entropy, Tsallis Entropy, Reniys entropy, 
Kapur’s entropy, and Shannon entropy. Relative entropy is another form 
of entropy function which measures the informational gap between two 
information sources. The popular relative entropy which has been used 
for multilevel thresholding is the minimum cross entropy (MCE). The 
entropy function is derived from the probabilistic distribution of the 
pixel values in the image, which can be obtained from the image 
normalized histogram and Region probability. The normalized histo-
gram of an image I having size M × N is defined as: 

hi =Pr(i) =
ni

M × N
, i = 1, 2, 3...L − 1 (2)  

where ni is the number of pixels in the image having an intensity value ’i’ 
and Pr(i) is the corresponding probability. 

The Region probability is expressed as: 

Pi =
∑thi

i=thi− 1

Pr(i) (3) 

The optimal threshold values [th∗

1, th
∗

2, th
∗

3…th∗

k] are obtained by 
maximizing or minimizing the objective function (OF) , derived from the 
entropy as given below: 

[
th∗

1, th∗
2, th

∗
3…th∗

k

]
=

argmax/ min
th1 < th2 < th2… < thk

(OF) (4) 

Table 2 shows a brief description of the objective function (OF)
derived from different entropies. 

3.1.2. Generalized cross-entropy 
Measuring the disparity between two probability distributions using 

cross-entropy fails to assess the degree of divergence associated with 
unknown variables. This problem is addressed by [70] to introduce a 
new definition of cross-entropy referred to as generalized cross-entropy. 

Fig. 7. Convergence plot of four multimodal functions with variable dimensions.  
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Table 6 
Statistical results and comparison of OAVOA with other optimization algorithms such as AVOA, EO, HHO, TLBO, GSA, DE, TAVOA, IGWO, BLPSO and HGWOP on multimodal functions with fixed dimensions (G3).  

Function  OAVOA AVOA EO HHO TLBO GSA DE TAVOA IGWO BLPSO HGWOP 

F14 Average 1.030 1.189 0.998 1.603 0.998 5.668 1.030 1.190 0.998 0.998 1.572 
Best 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 
Median 0.998 0.998 0.998 0.998 0.998 4.954 0.998 0.998 0.998 0.998 0.998 
Worst 1.992 5.929 0.998 5.929 0.998 13.772 1.992 2.982 0.998 0.998 5.929 
Std. Dev. 1.785E-01 8.976E-01 2.107E-16 1.478E+00 0.000E+00 3.463E+00 1.785E-01 5.963E-01 1.944E-16 0 1.294E+00 

F15 Average 3.261E-04 3.737E-04 4.224E-03 3.763E-04 1.020E-03 4.732E-03 1.943E-03 5.001E-04 3.075E-04 7.035E-04 1.923E-03 
Best 3.075E-04 3.075E-04 3.075E-04 3.089E-04 3.075E-04 1.013E-03 3.075E-04 3.075E-04 3.075E-04 6.025E-04 3.075E-04 
Median 3.101E-04 3.118E-04 3.138E-04 3.304E-04 3.075E-04 3.675E-03 4.698E-04 3.809E-04 3.075E-04 6.919E-04 4.938E-04 
Worst 7.690E-04 1.223E-03 2.036E-02 1.536E-03 2.036E-02 1.101E-02 2.036E-02 1.223E-03 3.075E-04 1.404E-03 2.036E-02 
Std. Dev. 8.234E-05 1.814E-04 8.039E-03 2.174E-04 3.594E-03 2.753E-03 4.944E-03 2.647E-04 2.434E-09 1.341E-04 4.939E-03 

F16 Average ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 
Best ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 
Median ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 
Worst ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 ¡1.032 
Std. Dev. 5.091E-11 2.109E-14 6.135E-16 5.677E-09 6.710E-16 4.780E-16 6.771E-16 4.328E-16 6.332E-16 3.292E-06 6.771E-16 

F17 Average 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 1.866 
Best 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.496 
Median 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 1.714 
Worst 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.398 3.963 
Std. Dev. 1.878E-09 3.362E-14 0 3.717E-05 0 0 0 4.988E-14 0 0 8.813E-01 

F18 Average 3 3 3 3.000 3 3 3 3.000 3 3 2.337E+02 
Best 3 3 3 3 3 3 3 3 3 3 3.047E+00 
Median 3 3 3 3 3 3 3 3.000 3 3 2.032E+02 
Worst 3 3 3 3.000 3 3 3 3.000 3 3 5.296E+02 
Std. Dev. 8.021E-09 1.826E-12 1.219E-15 1.898E-07 1.860E-15 4.351E-15 2.334E-15 6.042E-06 1.748E-15 1.253E-15 1.584E+02 

F19 Average ¡3.863 ¡3.863 ¡3.863 ¡3.860 ¡3.863 ¡3.863 ¡3.863 ¡3.863 ¡3.863 ¡3.863 − 2.911 
Best ¡3.863 ¡3.863 ¡3.863 ¡3.863 ¡3.863 ¡3.863 ¡3.863 ¡3.863 ¡3.863 ¡3.863 − 3.669 
Median ¡3.863 ¡3.863 ¡3.863 ¡3.861 ¡3.863 ¡3.863 ¡3.863 ¡3.863 ¡3.863 ¡3.863 − 2.991 
Worst ¡3.863 ¡3.863 ¡3.863 ¡3.853 ¡3.863 ¡3.863 ¡3.863 ¡3.863 ¡3.863 ¡3.863 − 2.087 
Std. Dev. 1.445E-07 3.549E-11 2.500E-15 2.705E-03 2.709E-15 2.257E-15 2.709E-15 4.259E-09 2.529E-15 2.695E-15 4.699E-01 

F20 Average − 3.303 − 3.284 − 3.269 − 3.101 − 3.294 ¡3.318 − 3.245 − 3.283 − 3.313 − 3.299 − 1.171 
Best ¡3.322 ¡3.322 ¡3.322 − 3.271 ¡3.322 ¡3.322 ¡3.322 ¡3.322 ¡3.322 ¡3.322 − 2.042 
Median ¡3.322 ¡3.322 ¡3.322 − 3.130 ¡3.322 ¡3.322 ¡3.203 ¡3.322 ¡3.322 ¡3.322 − 1.055 
Worst ¡3.203 ¡3.203 − 3.133 − 2.810 ¡3.203 ¡3.203 ¡3.203 − 3.198 − 3.203 − 3.203 − 0.553 
Std. Dev. 4.448E-02 5.650E-02 6.965E-02 1.118E-01 5.002E-02 2.139E-02 5.784E-02 5.677E-02 2.920E-02 4.775E-02 4.160E-01 

F21 Average ¡10.153 ¡10.153 − 8.026 − 5.053 − 9.826 − 5.876 − 9.342 ¡10.153 − 10.129 − 9.523 − 0.404 
Best ¡10.153 ¡10.153 ¡10.153 − 5.055 ¡10.153 ¡10.153 ¡10.153 ¡10.153 ¡10.153 ¡10.153 − 1.327 
Median ¡10.153 ¡10.153 ¡10.153 − 5.054 ¡10.153 − 2.973 ¡10.153 ¡10.153 ¡10.153 ¡10.153 − 0.372 
Worst ¡10.153 ¡10.153 − 2.630 − 5.043 − 5.055 − 2.630 − 2.683 ¡10.153 − 9.432 − 2.683 − 0.261 
Std. Dev. 7.920E-08 2.384E-10 2.780E+00 3.030E-03 1.267E+00 3.700E+00 2.185E+00 1.503E-10 1.295E-01 1.928E+00 1.918E-01 

F22 Average ¡10.403 ¡10.403 − 9.567 − 5.230 − 10.016 − 9.876 − 9.941 ¡10.403 ¡10.403 ¡10.403 − 0.491 
Best ¡10.403 ¡10.403 ¡10.403 − 9.652 ¡10.403 ¡10.403 ¡10.403 ¡10.403 ¡10.403 ¡10.403 − 0.748 
Median ¡10.403 ¡10.403 ¡10.403 − 5.085 ¡10.403 ¡10.403 ¡10.403 ¡10.403 ¡10.403 ¡10.403 − 0.459 
Worst ¡10.403 ¡10.403 − 2.766 − 5.066 − 3.724 − 3.906 − 2.752 ¡10.403 ¡10.403 ¡10.403 − 0.302 
Std. Dev. 1.254E-07 4.204E-11 2.247E+00 8.206E-01 1.507E+00 1.541E+00 1.794E+00 2.193E-10 3.181E-08 2.270E-15 1.166E-01 

F23 Average ¡10.536 ¡10.536 − 10.362 − 5.415 − 10.358 ¡10.536 − 10.320 ¡10.536 ¡10.536 ¡10.536 − 0.635 
Best ¡10.536 ¡10.536 ¡10.536 − 9.754 ¡10.536 ¡10.536 ¡10.536 ¡10.536 ¡10.536 ¡10.536 − 0.971 
Median ¡10.536 ¡10.536 ¡10.536 − 5.126 ¡10.536 ¡10.536 ¡10.536 ¡10.536 ¡10.536 ¡10.536 − 0.602 
Worst ¡10.536 ¡10.536 − 5.128 − 5.071 − 5.006 ¡10.536 − 3.835 ¡10.536 ¡10.536 ¡10.536 − 0.416 
Std. Dev. 1.701E-07 2.385E-11 9.713E-01 1.132E+00 9.933E-01 4.799E-15 1.204E+00 1.623E-10 5.603E-09 2.270E-15 1.554E-01  
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Let ξ and η be two unknown variables, each with its probability 
distribution φ and ψ respectively. The generalized cross-entropy is thus 
defined as follows: 

GCE[ξ, η] =
(∫ ∞

− ∞
|φ(x) − ψ(x)|p dx

)1
p

(5)  

where the parameter p indicates the degree of divergence index. 

3.2. African vulture optimization algorithm (AVOA) 

African vultures optimization algorithm (AVOA) [29] imitates the 
foraging and navigation behaviors of African vultures for searching for 
the optimal solution. In Africa, there are a variety of vultures, the ma-
jority of which have a similar lifestyle and hunt for food, frequently 
colliding and fighting over food. Vultures’ proclivity for eating and 
searching for food causes them not only to reach the optimal food source 
but also to flee the hunger trap. This concept in the foraging strategy is 
used by the authors in the paper to develop a novel optimization 
algorithm. 

The AVOA algorithm undergoes 4 different phases such as: 

identifying the best vulture in the population, vulture hunger rates, 
exploration, and exploitation. The mathematical formulations of 
different phases of the AVOA algorithm are discussed below. 

The AVOA algorithm starts with an initial population matrix (G) of 
size N × dim to solve a given optimization problem. 

G=

⎡

⎢
⎣

G1

G2

⋮
GN

⎤

⎥
⎦=

⎡

⎢
⎢
⎣

g1,1 g1,2 … g1,dim

g2,1 g2,2 … g2,dim

⋮

gN,1

⋮ ⋮ ⋮

gN,2 … gN,dim

⎤

⎥
⎥
⎦ (6) 

where N and dim represent the number of vultures referred to as 
solution vectors in the population matrix and dimension of the problem 
respectively. At the starting phase, each solution Gi in the population 
matrix G need to be initialized as: 

Gi = lb+ rand(1, dim) × (ub − lb) (7)  

where lb and ub denote the lower and upper bound of the search space, 
rand(1, dim) generates a sequence of a random number in the range [0,1]
of length dim. 

Following the initialization of the population, the fitness-related to 

Fig. 8. Boxplot of four multimodal functions with fixed dimensions.  
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each vulture is computed by evaluating the objective function and 
represented in the form of a fitness matrix as: 

fitness=

⎡

⎢
⎣

fitness(G1)

fitness(G2)

⋮

fitness(GN)

⎤

⎥
⎦ (8)    

(a) Phase-1: Finding the best vulture in the population 

According to the fitness values, the two best vultures are selected 
which then guide the remaining solutions by dividing them into two 
groups randomly. The selection of best vulture’s process modelled 
mathematically as: 

Vt =

{
Best Vulturet, if prt

i = L1

Second bestVulturet, if prt
i = L2

(9) 

where L1 and L2 are the random number defined at the beginning of 
the process in the range [0, 1] such that L1 + L2 = 1. The Roulette wheel 

method is adopted to determine the probability of selection prt
i among 

the two best vultures at iteration ’t’ for the ith vulture in the population 
as formulated below: 

prt
i =

fitness(Gi)

∑N

I=1
fitness(Gi)

(10)    

(b) Vulture hunger rates 

The level of hunger in vultures is used to provide a transition from 
the exploration to the exploitation stage. The following equation can be 
used to compute the vulture’s hunger degree Ft at the tth iteration. 

Ft =(2a+ 1)× b×
(

1 −
t
T

)
+ ϑt (11)  

where a and b are random numbers defined in the range [0, 1] and [− 1,1]
respectively. T denotes the maximum number of iterations. The factor ϑt 

is determined as: 

Fig. 9. Convergence plot of four multimodal functions with fixed dimensions.  
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Table 7 
Statistical results and comparison of OAVOA with other optimization algorithms such as AVOA, EO, HHO, TLBO, GSA, DE, TAVOA, IGWO, BLPSO and HGWOP on composition functions (G4) form CEC 2014 test suite.  

Function  OAVOA AVOA EO HHO TLBO GSA DE TAVOA IGWO BLPSO HGWOP 

F24 (CEC14-F23) Average 2500 2500 2615.313 2500 2615.434 2654.990 2616.145 2500 2616.200 2615.301 3667.400 
Best 2500 2500 2615.246 2500 2615.244 2500 2615.246 2500 2615.572 2615.245 3303.888 
Median 2500 2500 2615.282 2500 2615.263 2698.088 2615.591 2500 2616.019 2615.268 3646.067 
Worst 2500 2500 2615.588 2500 2619.754 2842.507 2620.635 2500 2618.694 2615.626 4205.578 
Std. Dev. 0 0 7.918E-02 0 8.106E-01 1.027E+02 1.375E+00 0 6.514E-01 9.478E-02 2.452E+02 

F25 (CEC14-F24) Average 2600 2600 2600.020 2600 2600.036 2624.903 2640.442 2600 2600.866 2626.286 2883.614 
Best 2600 2600 2600.010 2600 2600.023 2614.130 2627.024 2600 2600.055 2624.277 2792.542 
Median 2600 2600 2600.019 2600 2600.035 2625.167 2641.313 2600 2600.096 2626.102 2891.895 
Worst 2600 2600 2600.035 2600.003 2600.054 2636.111 2650.559 2600 2623.848 2628.981 2937.274 
Std. Dev. 0 1.510E-10 8.019E-03 4.877E-04 7.789E-03 5.203E+00 5.567E+00 0 4.265E+00 1.111E+00 3.645E+01 

F26 (CEC14-F25) Average 2700 2700 2701.622 2700 2700.334 2708.610 2706.092 2700 2706.358 2714.530 2809.397 
Best 2700 2700 2700 2700 2700 2701.946 2703.949 2700 2700.000 2711.642 2748.136 
Median 2700 2700 2700 2700 2700 2708.442 2705.695 2700 2706.538 2714.446 2807.410 
Worst 2700 2700 2712.510 2700 2709.654 2713.980 2711.390 2700 2708.548 2717.993 2889.775 
Std. Dev. 0 0 3.845E+00 0 1.734E+00 2.409E+00 1.485E+00 0 1.594E+00 1.629E+00 3.218E+01 

F27 (CEC14-F26) Average 2700.508 2700.509 2729.979 2777.542 2735.835 2793.524 2710.789 2755.088 2717.708 2745.105 2782.239 
Best 2700.279 2700.227 2700.194 2700.346 2700.346 2711.552 2700.373 2700.414 2700.282 2700.366 2707.287 
Median 2700.500 2700.501 2700.399 2800.000 2700.668 2800.125 2700.533 2800 2700.498 2702.576 2711.387 
Worst 2700.820 2700.915 2920.794 2800.000 2800.097 2800.332 2917.313 2800 2800.344 2801.757 3014.300 
Std. Dev. 1.304E-01 1.668E-01 5.504E+01 4.227E+01 4.839E+01 1.980E+01 4.230E+01 5.031E+01 3.733E+01 4.987E+01 1.253E+02 

F28 (CEC14-F27) Average 2900 2900 3285.769 2900 3334.604 4767.069 3239.448 2900 3180.862 3062.079 4135.982 
Best 2900 2900 3109.692 2900 3103.223 3694.090 3102.792 2900 3090.475 3021.385 3726.376 
Median 2900 2900 3286.278 2900 3282.315 4715.652 3248.254 2900 3155.574 3035.744 4153.706 
Worst 2900 2900 3451.682 2900 3613.073 5433.479 3408.669 2900 3417.996 3257.085 4288.827 
Std. Dev. 0 0 9.075E+01 0 2.056E+02 3.750E+02 9.065E+01 0 8.197E+01 5.994E+01 1.173E+02 

F29 (CEC14-F28) Average 3000 3000 3822.171 3000 4057.028 6390.381 3918.293 3000 3785.436 3874.189 5833.184 
Best 3000 3000 3610.634 3000 3734.977 4187.656 3666.856 3000 3621.340 3794.760 4437.236 
Median 3000 3000 3758.529 3000 3943.677 6395.614 3798.095 3000 3736.348 3879.250 5811.569 
Worst 3000 3000 4558.489 3000 4670.084 8549.415 4778.105 3000 4106.263 3979.374 7422.564 
Std. Dev. 0 0 2.056E+02 0 2.699E+02 8.943E+02 2.630E+02 0 1.276E+02 3.906E+01 5.825E+02 

F30 (CEC14-F29) Average 3100 2.626E+05 3.128E+06 7.469E+05 1.719E+06 2.307E+08 2.707E+06 2.432E+06 2.181E+04 2.095E+04 2.057E+07 
Best 3100 3100 4.123E+03 3100 3.935E+03 3.100E+03 4.314E+03 3100 1.079E+04 9.209E+03 6.461E+06 
Median 3100 3100 5.808E+03 3100 5.428E+03 1.640E+08 7.163E+03 3100 2.236E+04 2.094E+04 1.710E+07 
Worst 3100 7.888E+06 1.249E+07 2.306E+07 1.750E+07 6.576E+08 2.376E+07 1.218E+07 3.341E+04 3.668E+04 8.487E+07 
Std. Dev. 0 1.415E+06 4.652E+06 4.141E+06 4.665E+06 1.975E+08 5.728E+06 4.144E+06 5.102E+03 5.729E+03 1.389E+07 

F31 (CEC14-F30) Average 8.644Eþ03 2.557E+04 9.689E+03 1.507E+05 1.197E+04 2.042E+06 1.173E+04 2.946E+04 1.009E+04 1.168E+04 5.498E+05 
Best 3200 3200 5.194E+03 3200 4.877E+03 9.235E+05 4.683E+03 3200 5.473E+03 7.653E+03 2.795E+05 
Median 3200 2.139E+04 8.017E+03 3200 7.888E+03 1.897E+06 6.835E+03 2.300E+04 9.479E+03 1.088E+04 5.233E+05 
Worst 1.018E+05 9.242E+04 2.384Eþ04 9.044E+05 6.208E+04 3.819E+06 8.678E+04 1.085E+05 2.452E+04 2.240E+04 1.235E+06 
Std. Dev. 1.898E+04 2.314E+04 4.774Eþ03 2.700E+05 1.174E+04 6.177E+05 1.506E+04 2.562E+04 4.053E+03 2.893E+03 2.163E+05  
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ϑt = γt ×
(

sinω
(π

2
×

t
T

)
+ cos

(π
2
×

t
T

)
− 1
)

(12)  

where γt denotes a random number taken in between − 2 and 2, and ω is 
a pre-optimization parameter with a fixed value, which denotes the 
likelihood of the vulture carrying out the exploitation stage. When the 
value ω is high, the chance of reaching the exploration phase increases 
while dealing with the final phase. However, reducing the value ω re-
duces the likelihood of entering the exploratory phase. According to the 
design concept, Ft is steadily drop with progress in iterations and the 
range of falling becomes more for each iteration. When Ft ≥ 1, they 
enter the exploration stage and search for new food in various locations. 
When Ft is smaller than 1, vultures enter the exploitation stage, looking 
for better food in the immediate vicinity.  

(c) Exploration 

In the AVOA algorithm, two different exploration mechanisms are 
performed in a random manner. The mathematical representation of the 
exploration stage is expressed in Eq. (13). 

Gt+1
i =

{
Vt − Dt

i × Ft, if p1 ≥ r1

Vt − Ft
i + r2 × ((ub − lb) × r3 + lb), if p1 < r1

(13) 

The parameter p1 represent the likelihood of selecting an exploration 
mechanism and is set to a value within the range [0, 1] at the beginning 
of the search process. Gt+1

i is the updated position for the next (t + 1)th 

iteration. r1, r2 and r3 are uniformly distributed random numbers in the 
range [0,1]. The random distance from the best vulture Dt

i in the above 
equation can be calculated as 

Dt
i =

⃒
⃒Y ×Vt

i − Gt
i

⃒
⃒ (14)  

where Y is random in nature and distributed uniformly within the range 
[0, 2] and Gt

i is ith vulture’s location in tth iteration.  

(c) Exploitation 

If the value of | Ft | is less than one, the algorithm is ready to initiate 
the exploitation process, which is divided into two phases, each having 
two possible methods. Two factors p2 and p3 signify the degree to which 

Fig. 10. Boxplot of four composition functions from CEC2014 test suit.  
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each method is chosen in each phase of exploration introduced in this 
stage. Before executing the search, both parameters must be assigned 
with a value within the range [0, 1].  

(i) Exploitation phase 1 

When the value | Ft | is between 1 and 0.5, the vultures are somewhat 
satisfied and have sufficient energy. In this phase, AVOA performs food 
competitions or rotating flight operations randomly. Therefore, a 
random number r4 lies between 0 and 1, is generated at the beginning of 
this phase to control this process. The above operation is expressed 
mathematically as given below: 

Gt+1
i =

{
Food competition, r4 ≥ p2
Rotational flight, r4 < p2

=

{
Dt

i × (Ft + r5) − dt
i , r4 ≥ p2

Vt
i −
(
Qt

i1 + Qt
i2

)
, r4 < p2

(15)  

where r5 is random in nature and its value is within 0 and 1. dt
i , Qt

i1 and 
Qt

i2 are calculated by the following expression 

dt
i =Vt − Gt

i (16)  

Qt
i1 =Vt ×

(
r6 − Gt

i

2π

)

× cos
(
Gt

i

)
(17)  

and 

Qt
i2 =Vt ×

(
r7 − Gt

i

2π

)

× sin
(
Gt

i

)
(18)  

where r6 and r7 denote random numbers generated uniformly in the 
interval [0, 1].  

(ii) Exploitation phase 2 

When | Ft | is fallen below 0.5, the second phase of exploitation 
begins. In this case, the best two vultures’ movements aggregate mul-
tiple types of vultures around the same food source. Later, the vultures 
start attacking the food. The above activities are regulated by a random 
number r8 in the range [0, 1] defined at the initiation of this phase. The 
second phase of exploitation can be implemented in the algorithm with 
following expression: 

Fig. 11. Convergence plot of four composition functions from CEC2014 test suit.  
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Gt+1
i =

{
Aggregationbehavior, r8 ≥p3

AttackBehaviour, r8 < p3
=

⎧
⎪⎨

⎪⎩

(
St

i1+St
i2

)

2
, r8 ≥p3

Vt −
⃒
⃒dt

i

⃒
⃒×Ft

i ×Levy(dim), r8 < p3

(19)  

where St
i1, St

i2 and Levy(dim) are defined as given below 

St
i1 =Best Vulturet −

Best Vulturet × Gt
i

Best Vulturet −
(
Gt

i
)2 × Ft (20)  

St
i2 = Second best Vulturet −

Second best Vulturet × Gt
i

Second best Vulturet −
(
Gt

i
)2 × Ft (21)  

Levy(dim)= 0.01 ×
r9 × σ
|r10|

1
β

(22)  

where r9 and r10 are random numbers generated uniformly in the range 
[0, 1], β is a constant quantity, usually taken as 1.5. The term σ is 
calculated from the formula given in Eq. (23). 

σ =

⎛

⎜
⎜
⎝

Γ(1 + β) × sin
( πβ

2

)

Γ
( 1+β

2

)
× β × 2(

β− 1
2 )

⎞

⎟
⎟
⎠

1
β

,where Γ(x)= (x − 1)! (23)  

3.3. Opposition based learning 

In the past few years, opposition-based learning (OBL) [33] is being 
integrated with most of machine intelligence algorithms to enhance its 
performance [71]. The opposition concept is based on the fact that a 
combined search of random direction with its opposite at the same time 
offers a higher chance of reaching the optimal point in the search space. 
One of the common problems in optimization algorithms is falling in 
local optima after getting exhausted, when the space containing the 
optimal solutions is far apart from the random one. In such cases, the 
inclusion of opposite solutions Gopp calculated in the reverse direction of 
current solutions G in the population can overcome the complication in 
the algorithm. 

Let’s consider a point X in dim-dimensional search given below 

G=
[
g1,g2,g3,…gdim

]
(24)  

where gj is a real number bounded in between the lower bound lbj and 
upper bound ubj for j ∈ {1, 2, 3…dim}.The opposition number for the 
above point G in jth dimension is defined as 

Gopp
j = lbj + ubj − Gj (25)  

where j ∈ {1,2,3…dim}. 

Table 8 
p-value of OAVOA vs. another algorithm using Wilcoxon rank-sum test with 95% significance.  

Function AVOA EO HHO TLBO GSA DE TAVOA IGWO BLPSO HGWOP 

F1 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 1 5.960E-08 5.960E-08 5.960E-08 
F2 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 
F3 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 1 5.960E-08 5.960E-08 5.960E-08 
F4 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 
F5 4.329E-02 5.960E-08 4.077E-03 5.960E-08 5.960E-08 5.960E-08 9.105E-04 5.960E-08 5.960E-08 5.960E-08 
F6 1.943E-05 1.943E-05 4.077E-03 9.105E-04 5.960E-08 5.960E-08 1.565E-04 5.960E-08 5.960E-08 5.960E-08 
F7 4.077E-03 1.550E-06 6.900E-01 5.960E-08 5.960E-08 5.960E-08 1 5.960E-08 5.960E-08 5.960E-08 
F8 1.943E-05 5.960E-08 4.077E-03 5.960E-08 5.960E-08 5.960E-08 1.565E-04 5.960E-08 5.960E-08 5.960E-08 
F9 1 1 1 1.192E-07 5.960E-08 5.960E-08 1 5.960E-08 5.960E-08 5.960E-08 
F10 1 5.960E-08 1 5.960E-08 5.960E-08 5.960E-08 1 5.960E-08 5.960E-08 5.960E-08 
F11 1 1 1 1 5.960E-08 5.960E-08 1 3.125E-02 5.960E-08 5.960E-08 
F12 4.244E-01 1.565E-04 1.550E-06 4.329E-02 5.960E-08 5.960E-08 9.105E-04 5.960E-08 5.960E-08 5.960E-08 
F13 9.105E-04 1.550E-06 5.960E-08 5.960E-08 5.960E-08 5.960E-08 1.550E-06 5.960E-08 5.960E-08 5.960E-08 
F14 4.025E-04 9.537E-07 5.960E-08 5.960E-08 5.960E-08 1.550E-06 3.516E-02 1.192E-07 5.960E-08 1.078E-01 
F15 4.244E-01 1.078E-01 5.960E-08 2.295E-01 5.960E-08 1.078E-01 1.550E-06 5.960E-08 5.960E-08 1.943E-05 
F16 5.960E-08 5.960E-08 0.690038 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 1.565E-04 5.960E-08 
F17 5.960E-08 5.960E-08 1.943E-05 5.960E-08 5.960E-08 5.960E-08 1.550E-06 5.960E-08 5.960E-08 5.960E-08 
F18 5.960E-08 5.960E-08 1.078E-01 5.960E-08 5.960E-08 5.960E-08 1.550E-06 5.960E-08 5.960E-08 5.960E-08 
F19 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 5.960E-08 1.550E-06 5.960E-08 5.960E-08 5.960E-08 
F20 4.329E-02 6.900E-01 1.550E-06 1.078E-01 1.550E-06 6.900E-01 1.078E-01 9.105E-04 4.077E-03 5.960E-08 
F21 5.960E-08 6.900E-01 5.960E-08 1.565E-04 2.295E-01 1.565E-04 5.960E-08 4.329E-02 4.077E-03 5.960E-08 
F22 5.960E-08 1.565E-04 5.960E-08 1.943E-05 1.565E-04 1.943E-05 5.960E-08 1.565E-04 5.960E-08 5.960E-08 
F23 5.960E-08 1.550E-06 5.960E-08 1.550E-06 5.960E-08 1.550E-06 5.960E-08 1.550E-06 5.960E-08 5.960E-08 
F24(CEC14-F23) 1 5.960E-08 1 5.960E-08 5.960E-08 5.960E-08 1 5.960E-08 5.960E-08 5.960E-08 
F25(CEC14-F24) 5.000E-01 5.960E-08 7.629E-06 5.960E-08 5.960E-08 5.960E-08 1 5.960E-08 5.960E-08 5.960E-08 
F26(CEC14-F25) 1 5.960E-08 1 5.960E-08 5.960E-08 5.960E-08 1 5.960E-08 5.960E-08 5.960E-08 
F27(CEC14-F26) 0.690038 1.078E-01 1.565E-04 4.329E-02 5.960E-08 1.078E-01 4.077E-03 1 1.078E-01 5.960E-08 
F28(CEC14-F27) 1 5.960E-08 1 5.960E-08 5.960E-08 5.960E-08 1 5.960E-08 5.960E-08 5.960E-08 
F29(CEC14-F28) 1 5.960E-08 1 5.960E-08 5.960E-08 5.960E-08 1 5.960E-08 5.960E-08 5.960E-08 
F30(CEC14-F29) 1.563E-02 5.960E-08 2.500E-01 5.960E-08 5.960E-08 5.960E-08 4.883E-04 5.960E-08 5.960E-08 5.960E-08 
F31(CEC14-F30) 7.286E-04 9.105E-04 4.181E-03 9.105E-04 5.960E-08 9.105E-04 2.213E-04 9.105E-04 1.565E-04 5.960E-08  

Table 9 
Friedman’s mean rank.   

OAVOA AVOA EO HHO TLBO GSA DE TAVOA IGWO BLPSO HGWOP 

Friedman’s mean rank 4.133 4.299 5.241 5.522 4.914 8.274 7.224 4.160 6.188 6.688 9.355 
Rank 1 3 5 6 4 10 9 2 7 8 11  
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Fig. 12. Scalability plot of scalable functions f1 − f13  
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4. The proposed methodology 

4.1. The proposed opposition african vulture optimization algorithm 
(OAVOA) 

The African vulture optimization algorithm’s (AVOA) design has 
three shortcomings, even though it considers the balancing of explora-
tion and exploitation skills. Firstly, while exploitation has been incor-
porated as a specific technique to accelerate the rate of convergence in 

the initial exploration process, it has an impact on the individual’s 
global search in the solution space. Therefore, the AVOA eventually 
traps into a locally optimal solution without a more extensive global 
search. Secondly, during the exploration step, the AVOA only considers 
the population’s best two individual pieces of information, disregarding 
any current knowledge about the individuals. As a result, AVOA’s early 
convergence speed becomes poor. Thirdly, in the later stages of AVOA’s 
exploitation, it is assumed that the first- and second-best solutions have 
the same impact on other people. However, this assumption fails to 

Fig. 13. Friedman’s mean rank based on the scalability results obtained from performance comparisons on scalable unimodal and multimodal benchmark func-
tions F1–F13. 

Fig. 14. The sample Brain MR images and their corresponding histograms.  
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account for AVOA’s exploration and considered abilities, resulting in a 
lack of exploration and exploitation in the latter stages. 

No algorithm is perfect and there is always the possibility of 
improving the search performance. This is stated by the “no free lunch” 
(NFL) [72] principle. In this context, the authors propose an Opposition 
African Vulture Optimization Algorithm (OAVOA). The principle of 
additional reconstruction to progress the search process is handled 
differently in our algorithm. 

Before the application of the opposition strategy, the proposed al-
gorithm used a gaussian mutation strategy which helps the population to 
escape from the local optima. In this stage, a vulture in the population is 
randomly selected and moved to a new location with a chance of 30% 
using Eq. (26). 

Gt+1
i =

{
Gt+1

i .(μ + σs.randn(0, 1)), for r11 ≤ 0.3
Gt+1

i , for r11 > 0.3
(26)  

Here in Eq. (26), the r11 is random in nature which varies within [0,1] . 
Note that randn(0,1) denotes the random number taken from the stan-
dard normal distribution having mean zero and standard deviation of 
unity. Here, μ and σs are the normal distribution’s mean and standard 
deviation, respectively. 

Further, to explore maximum regions in the search space and reach 
an optimal solution in a considerable time, an opposition-based strategy 
is adopted. Here, it never misses out the reverse searching process. This 
is applied to the solution available in the population after the comple-
tion of the Gaussian mutation. Lastly, the OAVOA selection-based 
updating rule is stated as follows: 

Gt+1
i =

⎧
⎨

⎩

Gt+1,opp
i , for fitness

(
Gt+1,opp

i
)
≤ f
(
Gt+1

i

)

Gt+1
i , for fitness

(
Gt+1,opp

i
)
> f
(
Gt+1

i

) (27)  

where fitness(•) represents the fitness value for a solution (•), Gt+1,opp
i is 

the solution obtained using an opposition-based learning strategy as 
discussed in Section 3.3. 

4.1.1. The pseudocode of OAVOA 
Specify the number of vultures N, the problem’s dimension dim, the 

boundary limits are [lb, ub], the random parameters 
(L1, L2,ω, p1, p2 and p3) and the maximum allowable iteration T to reach 
the optimal position 

Algorithm-1. : OAVOA pseudocode   

4.2. Proposed multilevel image segmentation model based on the OAVOA 

In the proposed image segmentation methodology, a new multilevel 
thresholding approach is adopted which used a new minimum gener-
alized cross-entropy (MGCE) to evaluate the similarity between original 
and segmented image. A detail description of the MGCE based multilevel 
thresholding and role of Opposition African Vulture Optimization Al-
gorithm (OAVOA) algorithm to obtained optimal thresholds are dis-
cussed in following sub-sections. 

4.2.1. Minimum generalized cross-entropy (MGCE) based thresholding 
In this section, our key contribution idea is discussed. The idea of 

Cross Entropy (CE) was first introduced by Kullback [73] to estimate the 
conceptual information gap between two distributions. In both the ob-
ject and background sections, minimization of the cross entropy compels 
the overall intensity in the thresholded image, to be like that of the 
actual input image. The lesser the cross entropy, the more alike the 
distributions of two variables are, and vice versa. Kullback-Leibler 
number, discrimination information, directed divergence, and relative 
entropy are all terms, alternatively used to describe cross-entropy. In the 
article [74,75], the authors used the minimum cross entropy (MCE) 
thresholding to generate the segmented image by minimizing the 
divergence between the input and output segmented images. The 
cross-entropy calculated in this case is the sum of the divergence be-
tween the foreground and background probability distributions of the 
input and output image pixels. Though the MCE based thresholding is a 
popular and efficient method of segmentation, it performs poorly in 
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some cases, because of ignoring the degree of divergence. Further, the 
maximum entropy and minimum cross entropy yield the same result 
while dealing with uniform distribution of pixel intensities. 

To overcome this issue, the authors of this paper incorporate the 
degree of divergence as discussed earlier to present a better approach for 
computing the cross entropy, referred to as minimum generalized cross- 
entropy (MGCE) for multilevel thresholding application. The optimal 
thresholds are computed by minimizing the MGCE between the original 
input image and constructed thresholded output images. 

Let {th1, th2, th3…thk} are set of threshold values for splitting the 
input image to k + 1 distinct regions {Rg1,Rg2,…Rgk+1}. The objective 
function (OF) derived from the minimum generalized cross-entropy is 
now expressed as  

where the degree of divergence p is defined in the range 0 ≤ p ≤ ∞ and 

μi =
∑thi

i=thi− 1

i.hi

/
∑thi

i=thi− 1

hi
(29) 

To obtain the optimal thresholds, the above entropy function needs 
to be minimized, i.e., 

(
th∗

1, th
∗
2, th

∗
3…th∗

k

)
=

arg min
th1 < th2 < th3… < thk

[OFMGCE(th1, th2, th3…thk)]

(30)  

where th∗
1, th

∗
2, th

∗
3…th∗

k denote optimal threshold values. 
The entropy-based multilevel thresholding algorithm’s computation 

cost rises exponentially with an increase in threshold values. To address 
the issue, meta-heuristic optimization, and searching methods have 
been utilized by many researchers to obtain the best solutions in image 
multilevel thresholding. In this paper, an opposition African vulture 
optimization algorithm (OAVOA) is used to accelerate the searching 
process of optimal threshold selections. 

4.2.2. OAVOA-MGCE based optimal multilevel thresholding for medical 
image segmentation 

Here, a Minimum generalized cross-entropy (MGCE) based multi-

level threshold selection using the newly introduced opposition African 
vulture optimization algorithm (OAVOA) is discussed. An effort is made 
to provide the desired multilevel thresholded medical images which will 
be helpful for proper diagnosis. To perform multilevel thresholding, we 
have used the MGCE as the objective function which needs to be mini-
mized for obtaining the optimal thresholds. As minimization of MGCE is 
an optimization problem, we have used the OAVOA algorithm, because 
of its excellent optimization ability discussed in the preceding sections. 
The looking for the best threshold vector begins with a random gener-
ation of the OAVOA algorithm’s initial African vulture population. A 
feasible solution to a threshold vector is represented by each vulture Gi 
in the population. Each vulture ascertains their location utilizing the 
place appraises rule outlined in the preliminary part of this paper. 

During each iteration, the current fitness value is compared to that of the 
best location achieved so far. Accordingly, the current best is updated, 
provided this value is less than the previous one. This process is 
continued till the stopping criteria are met. Once the stopping criteria 
are satisfied, the optimum threshold vectors corresponding to the best 
vulture are obtained. These are further applied to the image for gener-
ating a thresholded image. For the creation of the output thresholded 
images, the following construction rule is used. In the case of three-level 
thresholding having a threshold vector [th1, th2 ], pixel intensities (less 
than or equal to th1) are substituted by the average intensity value of all 
pixels. In the same way, pixel values in the ranges [th1, th2] and [th2, L −
1] are set to a value equal to the average pixel intensities in the 
respective range, where L − 1 is the maximum possible intensity value. 

Once the thresholded image of the test image is available, the desired 
region can be analyzed by the physician separately for diagnosis. The 
framework of the proposed multilevel thresholding method is depicted 
in Fig. 1 as a flowchart. 

5. Experimental results and discussion 

The suggested MGCE based multilevel segmentation technique using 
OAVOA has been evaluated using MRI and dermoscopic images. The 
primary task for any non-parametric multilevel thresholding approach is 
the selection of a suitable optimization algorithm. To investigate the 

Fig. 15. The sample dermoscopic skin lesion image and their corresponding histograms.  

OFMGCE(th1, th2, th3…thk)=

[
∑th1

i=0

(

i.hi.log
(

i/μ1

))p
]1

p

+

[
∑th2

i=th1

(

i.hi.log
(

i/μ2

))p
]1

p

+… +

[
∑L− 1

i=thk

(

i.hi.log
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i/μk+1

))p
]1

p

(28)   
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effectiveness of the OAVOA algorithm, this section first discusses an 
experimental study of the proposed algorithm on various types of 
benchmark functions. As the essence of the proposed method is to 
multilevel segmentation of Brain MRI and dermoscopic images, a per-
formance evaluation the proposed OAVOA-MGCE based multilevel 
thresholding is discussed in the second part of the section. 

5.1. Experimental verification of OAVOA 

In this part, we examine the OAVOA’s performance using 23 

numbers of well-known benchmark test functions [76]. Eight popular 
composite functions from CEC 2014 test suite [76] are also examined 
because they are made up of basic and hybrid functions and ideal for 
evaluating the potential performance of algorithms. It is noteworthy to 
mention here that all 31 benchmark functions are divided into four 
groups: unimodal test functions (F1–F7), scalable multimodal test 
functions (F8–F13), fixed multimodal test functions (F14–F23), and 
composition test functions (F24 (CEC14-F23) - F31 (CEC14-F30)). The 
exploitation ability is demonstrated by unimodal test functions, whereas 
the exploration ability is demonstrated by multimodal test functions, 

Table 10 
Average PSNR, SSIM, and FSIM values obtained by different entropy-based thresholding for Brain MRI images.   

k OAVOA-MGCE OAVOA-MCE OAVOA-Kaniadakis OAVOA-Masi 

PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM 

Slice022 2 24.7596 0.7449 0.6941 24.0792 0.4702 0.6852 19.7751 0.2691 0.5583 19.1232 0.2509 0.5627 
3 27.5596 0.8567 0.8017 27.0298 0.6436 0.7741 23.5536 0.3957 0.6744 23.2171 0.3844 0.6680 
4 29.4057 0.9023 0.8656 29.0161 0.7573 0.8428 25.9696 0.4837 0.7667 25.1207 0.4507 0.7448 
5 30.9039 0.9273 0.9025 30.5311 0.8760 0.8859 26.6377 0.5046 0.7835 25.7323 0.4703 0.7650  

Slice045 2 24.1058 0.6743 0.7482 23.3876 0.5117 0.7429 16.8287 0.2655 0.5950 16.8927 0.2674 0.5962 
3 26.1053 0.8690 0.8226 25.6662 0.6409 0.8079 19.4539 0.3333 0.6796 18.1416 0.3036 0.6558 
4 27.9098 0.9027 0.8632 27.4173 0.8055 0.8546 27.2367 0.6412 0.8406 21.2739 0.3856 0.7301 
5 29.8519 0.9231 0.8984 28.8719 0.8716 0.8934 29.0148 0.7475 0.8827 28.2484 0.6590 0.8603  

Slice062 2 23.5642 0.7368 0.6803 22.7117 0.5286 0.6707 16.1878 0.2879 0.5540 16.2394 0.2897 0.5564 
3 25.7445 0.8066 0.7721 25.1478 0.6729 0.7777 17.8890 0.3486 0.6426 17.9072 0.3486 0.6424 
4 27.3938 0.8839 0.8305 26.8700 0.7459 0.8142 19.1733 0.3837 0.6898 19.2785 0.3851 0.6905 
5 29.1939 0.9159 0.8681 28.4661 0.8608 0.8664 28.0626 0.8079 0.8402 28.2410 0.7434 0.8372  

Slice082 2 23.6651 0.7493 0.7131 22.7508 0.5696 0.6902 16.4910 0.2798 0.5883 16.5755 0.2813 0.5898 
3 25.9230 0.8198 0.7713 24.4538 0.7053 0.7668 17.2868 0.3048 0.6431 17.3631 0.3060 0.6447 
4 27.9684 0.8856 0.8319 27.0335 0.8405 0.8119 18.5900 0.3568 0.6794 18.1355 0.3239 0.6754 
5 29.8130 0.9182 0.8739 29.5321 0.9088 0.8613 27.7940 0.8142 0.8190 28.9143 0.8322 0.8262               

Slice105 2 25.6857 0.8546 0.8219 24.4461 0.6582 0.7990 17.4865 0.2070 0.7547 17.1341 0.1972 0.7460 
3 27.8836 0.8934 0.8779 26.7389 0.8365 0.8441 19.0681 0.2451 0.7945 18.6109 0.2353 0.7851 
4 29.8494 0.9280 0.9138 29.3938 0.8574 0.8961 26.8863 0.7438 0.8596 19.4102 0.2537 0.8053 
5 31.7299 0.9480 0.9415 31.0563 0.9516 0.9293 30.4114 0.9124 0.9119 30.9522 0.9391 0.9229    

OAVOA-Tsallis OAVOA-Reniys OAVOA-Kapurs OAVOA-Shannon   
PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM 

Slice022 2 20.4489 0.2897 0.5665 20.4379 0.2894 0.5664 19.7620 0.2687 0.5581 19.8372 0.2710 0.5580 
3 23.6779 0.3992 0.6771 23.6760 0.3991 0.6773 23.8507 0.4063 0.6799 23.7837 0.4041 0.6782 
4 25.3544 0.4617 0.7492 25.4758 0.4667 0.7525 26.1032 0.4902 0.7702 25.8354 0.4850 0.7629 
5 26.9647 0.5188 0.7946 26.9808 0.5218 0.7969 26.6325 0.5108 0.7846 26.3620 0.4979 0.7787  

Slice045 2 19.3537 0.3224 0.6249 19.3848 0.3233 0.6252 16.9565 0.2693 0.5948 16.8890 0.2671 0.5942 
3 24.1409 0.4583 0.7500 24.0697 0.4552 0.7480 20.6356 0.3626 0.6998 19.5302 0.3359 0.6798 
4 26.0972 0.5391 0.8123 26.0302 0.5349 0.8111 27.3509 0.6679 0.8439 26.6706 0.6134 0.8282 
5 27.6235 0.5985 0.8478 27.6569 0.6069 0.8475 29.2329 0.7698 0.8880 28.8280 0.7428 0.8782  

Slice062 2 18.7901 0.3401 0.5872 18.7926 0.3402 0.5875 16.1578 0.2870 0.5531 16.0914 0.2855 0.5531 
3 23.4449 0.4525 0.6934 23.3249 0.4480 0.6913 18.1040 0.3533 0.6479 17.7756 0.3457 0.6388 
4 26.1546 0.5555 0.7726 26.1775 0.5597 0.7728 19.2963 0.3864 0.6923 18.9667 0.3795 0.6853 
5 27.8117 0.6595 0.8313 27.7502 0.6456 0.8293 28.6264 0.8460 0.8495 27.9523 0.7962 0.8383  

Slice082 2 18.2736 0.2983 0.5831 18.2553 0.2983 0.5838 16.5193 0.2803 0.5887 16.4348 0.2787 0.5872 
3 23.7294 0.4271 0.6962 23.7608 0.4275 0.6967 17.2469 0.3042 0.6424 17.1189 0.3019 0.6381 
4 26.6655 0.5586 0.7696 26.6147 0.5575 0.7684 19.3193 0.3951 0.6895 18.4350 0.3532 0.6730 
5 28.3635 0.6662 0.8329 28.3736 0.6604 0.8327 29.1065 0.8767 0.8352 26.1783 0.7112 0.7941  

Slice105 2 19.2864 0.2361 0.7627 19.2990 0.2361 0.7622 17.5308 0.2083 0.7553 17.7539 0.2135 0.7588 
3 24.7390 0.4168 0.8344 24.7296 0.4176 0.8339 19.1347 0.2466 0.7962 19.0119 0.2442 0.7937 
4 27.8289 0.5805 0.8815 27.7838 0.5798 0.8811 26.8449 0.6722 0.8561 25.6322 0.7274 0.8546 
5 29.2080 0.7104 0.9138 29.2879 0.7106 0.9147 30.1982 0.8955 0.9089 30.5853 0.9358 0.9175  
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which avoid several local minima in its path to arrive at the global 
minimum. Note that the CEC2014 benchmark functions have a lot of 
local minima and various shapes in different regions of the search space. 
Interestingly, all unimodal and multimodal functions have been shifted, 
rotated, hybridized, and enlarged to create these functions. The results 
of an algorithm, when applied to these composite functions, decide how 
far it is suitable to handle a real-time complex optimization problem. 

The OAVOA’s performance is compared to optimization techniques 
that are well-known and have recently been developed. These include – 
the African vultures optimization algorithm (AVOA) [29], Equilibrium 
optimizer (EO) [28], Harris hawks optimization (HHO) [27], Teach-
ing–learning-based optimization (TLBO) [20], Gravitational Search Al-
gorithm (GSA) [36], Differential Evolution (DE) [24]. Time-varying 
mechanism based African vulture optimization algorithm (TAVOA) 
[32], Biogeography-based learning particle swarm optimization 
(BLPSO) [48], Improved grey wolf optimizer (IGWO) [47] and Hybrid 
particle Swarm and grey wolf optimizer (HGWOP) [55]. The average 
(‘Avg’), best, median and worst results along with standard deviation 
(‘std’) are computed for statistical analysis. These metrics are acquired 
through 25 independent trials. These values are reported below. For 
validation, the Boxplots, convergence curves, and scalability curves are 
also presented. These plots are used to compare the OAVOA’s perfor-
mances with the other optimization techniques on a quantitative level. 
Furthermore, the substantial differences between the other optimization 
techniques are demonstrated using Friedman’s mean-rank test. The 
profound differences are observed while considering Wilcoxon 
signed-rank test. We achieved a degree of significance on the order of 
5%. The Wilcoxon signed-rank test is utilized for comparing the p-value 
of OAVOA vs. earlier optimizers. Here, we consider 25 self-governing 
optimal results, assigning a ’ + ’ for a p-value which is more than 5% 
degree of significance, a ’ − ’ for a p-value which is quite smaller than 
5% degree of significance, and a " for a p-value with zero momentous 
difference. All test functions are assessed with a population size of 30 
with 500 iterations, to get a reasonable comparison. The list of the 
control parameters is presented in Table 3. These are used for the 
implementation. The optimization algorithms are run in MATLAB 
R2018 on an operating system of Windows 10 with an Intel Core i3 
processor and RAM capacity of 8 GB. 

5.1.1. Qualitative analysis (search history, trajectory, and convergence 
curve) of OAVOA 

The qualitative analysis of the proposed OAVOA algorithm is 

comprised of search history, overall trajectory and convergence curve of 
various unimodal, multimodal and composite test functions shown in 
Figs. 2 and 3. Even though that these functions have large dimensions, 
the 2D representations of the functions reveal information on the to-
pology of the domain. The locations that vultures visited over the course 
of iterations are shown in the search history map. The trajectory diagram 
keeps track of changes in the first vulture’s in different dimensions as the 
process progresses. Additionally, the convergence metric shows how the 
fitness value of the vulture changes throughout the course of 
optimization. 

According to the search history data, the vultures in unimodal 
functions tend to congregate around the optimal point more successfully 
than in multimodal and composite functions. This move by OAVOA 
reveals its capacity for exploitation. However, the proper dispersion of 
particles in the search space of multimodal and composition functions 
demonstrates the exploratory potential of OAVOA’s algorithm. From the 
trajectory map, it is clear that during the initial generation, the vulture 
positions have a wide range that spans the whole search space; however, 
as optimization moves forward, the vulture positions start to converge to 
the solution space by adopting an oscillatory behaviour in some cases. It 
is evident that the fluctuations are associated with the complexity of the 
domain. More variations happen in a more complicated domain. After 
several repetitions, there are no fluctuations in unimodal functions. In 
most of the cases of multimodal and composite functions, variations are 
more pronounced, occur more frequently, and last for more iterations. 
This behaviour shows that careful exploitation and exploration are ad-
vantageous to OAVOA. It can be seen from the convergence curve that, 
there is an accelerated decline pattern in all of the curves depicted in the 
last column of Figs. 2 and 3, especially after the competition of almost 
half of the iterations for the complex functions. A careful observation 
can also reveal that when the OAVOA is expected to move from the 
exploration stage to exploitation stage. It has been noted that the 
OAVOA can show a trend of faster and desired convergence property. 

5.1.2. OAVOA’s performance on unimodal test functions 
Table 4 shows the comparison findings for the test functions (F1–F7). 

Test functions are assessed for dim = 30. It can be observed that the 
results of OAVOA for unimodal test functions (F1–F4) are much better 
than those of other optimization algorithms. For the test function F5, the 
OAVOA performs better than others with a marginal improvement over 
AVOA and HHO. Though GSA can move close to the optimal solution for 
the function F6, but not consistent with it. Whereas the lowest average 
value of OAVOA for the test function F6 with minimum standard devi-
ation makes it more reliable than GSA. A close competition between 
OAVOA and AVOA can be seen in function F7. Except for the best value, 
OAVOA dominates the AVOA in all aspects and is again found better. 
Even though chaotic mapping and the time-varying technique improve 
TAVOA over AVOA, it can only outperform OAVOA for the test functions 
F2 and F4. The boxplots are displayed in Fig. 4 to help readers under-
stand the distribution of findings. The Boxplots depict the optimization 
algorithm’s potential. These charts can be used to determine how 
frequently or consistently the optimal solutions are found. In Fig. 4, 
boxplots of 4 test functions (F1, F3, F5, and F7) for fitness value utilizing 
the best solutions obtained during 25 independent runs are shown. 
Surprisingly, among all optimization techniques, the OAVOA has pro-
duced satisfactory results. It’s also crucial to maintain track of an al-
gorithm’s convergence. Convergence graphs show how an algorithm 
improves over time, which is useful for determining how well an algo-
rithm is or which algorithm performs better. Based on the iteration 
count, a comparison of the OAVOA with various optimization methods 
(for 4 test functions) is provided in Fig. 5. The OAVOA ‘s performance of 
unimodal test functions is significantly better than other strategies 
except F2 and F4, where TAVOA dominates, as shown in figure. 

5.1.3. The OAVOA’s performance on scalable multimodal test functions 
The performance related to multimodal functions (F8–F13), which 

Fig. 16. Effect of degree of divergence on segmentation of Brain MRI 
image (Slice022). 
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have several optimal solutions with scalable dimensions, is discussed in 
this section. The obtained results of these functions are presented in 
Table 5. It is observed that the OAVOA dominates once again for all 
cases except F8. It has a very close completion with HHO concerning the 
average value, but can achieve the best fitness same as the HHO. The 
consistency of the OAVOA is also found impressive from the Boxplots (of 
four test functions) shown in Fig. 6. The remarkable convergence 
behavior of the OAVOA in the convergence plot presented in Fig. 7 re-
veals its excellent exploration, skill in reaching the desired solution in a 
limited time. 

5.1.4. The OAVOA’s performance on fixed dimension multimodal test 
functions 

The section reveals the proposed optimization algorithm’s diversi-
fication as well as the local optimal escape potentials after applying to 
multimodal functions having fixed dimensions. Table 6 displays the 
obtained results, which show that the proposed method has a satisfac-
tory performance in minimizing these test functions. For the test func-
tion F14, though the proposed algorithm can reach the optimal solution, 
but stands in second place in the comparison table for the average value. 
For the test function F15, the IGWO algorithm dominates all in most of 
the performance measures. Whereas, for the remaining test functions, 

Fig. 17. Thresholded images of Brain MR image (Slice 082) for k = 2 and 5  
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Fig. 18. ANOVA test result of different entropy-based thresholding methods on five test Brain MR images.  
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OAVOA performance is quite noticeable. It only lags with the nearest 
competitors by a very little margin for standard deviations. The steadi-
ness is observed in the box plot shown in Fig. 8 for the test functions F15, 
F20, F21, and F23. The result reveals that there is a remarkable 
improvement over AVOA for the test function F20 while acceptable 
performance for the remaining cases. Fig. 9 shows the convergence 
curves of four test functions. This is a curve of the finest fitness obtained 
so far vs. iterations count. According to the findings, the OAVOA leads 
others for F15 and F23. Whereas, for the test functions F20 and F21, the 
behavior of the OAVOA takes a little more iteration to converge due to 
the presence of an additional exploration stage. 

5.1.5. The OAVOA’s performance on composite test functions 
The most difficult test cases are composite test cases. These functions 

are used to assess a method’s capacity to avoid local minima including 
its exploration ability. Table 7 (F24–F31) compares the performance of 
OAVOA and other approaches to composition functions. As these are 
associated with various local minima, a pictorial illustration of the dis-
tribution of values obtained for four functions using the boxplots (for 
four composite functions F25, F28, F30, and F31) is provided in Fig. 10. 
However, the opposition-based strategy along with Gaussian mutation 
helps OAVOA to reach an optimal solution for all and overall found 
better than all. The OAVOA is also found superior for its excellent 
convergence speed shown in Fig. 11 (for the above four composite 
functions). The above tests prove that the proposed OAVOA performs 
the exploitation and exploration mechanism excellently while dealing 
with complex problems. 

5.1.6. Statistical significance analysis 
As a nonparametric test, the Wilcoxon Signed-Rank Test can effec-

tively examine statistically significant differences between two opti-
mizers. Table 8 shows the statistical findings of the Wilcoxon Signed- 
Rank Test for 31 benchmark functions in 25 runs with a 5% signifi-
cant level (α= 0.05) and the obtained p-values are listed. A count of ′ = ′

sign represents that, OAVOA’s performance is identical with other op-
timizers for p-values equals unity. The ′ + ′ sign, which denotes the 
proposed algorithm, performs better than compared one with p-values 
less than 0.05. Table 6 reveals that our proposal dominates for most of 
the functions with a maximum count of ′ + ′ sign. The ′− ′ sign indicates 
that the OAVOA is worse than the one being compared. To further assess 
the OAVOA’s statistical performance, the Friedman test [50] is also 
conducted. Table 9 summarizes Friedman’s mean-rank for all 25 inde-
pendent runs of 31 test functions (F1–F31) using various optimization 
techniques. The Friedman statistic is based on the calculation of mean 
rank values. The critical values are obtained for the significance level 
(α= 0.05) , then compared to Friedman statistics to decide on a rejection 
of the null hypothesis. From Table 8, it is explicitly clear that the null 
hypothesis is found rejected and the OAVOA stands at rank one. 

5.1.7. Scalability analysis of OAVOA 
This section uses a scalability analysis to assess the OAVOA algo-

rithm’s performance for high and low-dimensional problems. Because 
real-world optimization problems frequently have many parameters that 
need to be optimized, the proposed algorithm along with a set of algo-
rithms for comparison are also tested with dimensions dim = 10, 20,50,
100,200,400 as shown in Fig. 12. The number of iterations and popu-
lation size is fixed at 500 and 30 respectively during the test. This test 
illustrates how well the method performs as the dimension of the 
problem grows, while the number of iterations and particles remain 
constant. To assess the exploration and abilities, the test is done on five 
test samples of unimodal and multimodal functions. Three test samples 
of composite test functions are also used for the testing. The following 
facts are extracted from the analysis: 

Table 11 
Wilcoxon’s test for comparison of proposed OAVOA-MGCE based multilevel 
thresholding with other entropy-based thresholding based on PSNR, SSIM, and 
FSIM on Brain MR images.    

PSNR SSIM FSIM  

k p-value win p-value win p-value win 

MGCE vs MCE 2 5.29E- 
23 

(+) 5.29E- 
23 

(− ) 5.29E-23 (+) 

3 5.29E- 
23 

(+) 5.29E- 
23 

(+) 0.002444 (+) 

4 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E-23 (+) 

5 5.29E- 
23 

(+) 0.00108 (+) 1.51E-19 (+)  

MGCE vs 
Kaniadakis 

2 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E-23 (+) 

3 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E-23 (+) 

4 5.29E- 
23 

(+) 8.40E- 
09 

(+) 5.29E-23 (+) 

5 5.29E- 
23 

(+) 1.16E- 
14 

(+) 5.29E-23 (+)  

MGCE vs Masi 2 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E-23 (+) 

3 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E-23 (+) 

4 5.29E- 
23 

(+) 1.16E- 
14 

(+) 5.29E-23 (+) 

5 5.29E- 
23 

(+) 3.73E- 
18 

(+) 5.29E-23 (+)  

MGCE Vs Tsallis 2 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E-23 (+) 

3 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E-23 (+) 

4 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E-23 (+) 

5 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E-23 (+)  

MGCE vs Reniys 2 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E-23 (+) 

3 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E-23 (+) 

4 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E-23 (+) 

5 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E-23 (+)  

MGCE vs Kapurs 2 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E-23 (+) 

3 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E-23 (+) 

4 5.29E- 
23 

(+) 1.69E- 
09 

(+) 5.29E-23 (+) 

5 5.29E- 
23 

(+) 1.16E- 
14 

(+) 5.29E-23 (+)  

MGCE vs 
Shannon 

2 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E-23 (+) 

3 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E-23 (+) 

4 5.29E- 
23 

(+) 3.81E- 
08 

(+) 5.29E-23 (+) 

5 5.29E- 
23 

(+) 1.16E- 
14 

(+) 5.29E-23 (+)  
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→ For unimodal test functions, the OAVOA can reach near-optimal 
solutions in most of the case except for the case F5 and F7. It is 
quite difficult to achieve with restriction in population size and 
number of iterations. There is a very close completion found between 
OAVOA and TAVOA for the test functions F2, F3 and F4, where the 
OAVOA lags TAVOA with very little margin  

→ An impressive result is observed from the multimodal test functions. 
This shows its consistency in reaching optimal solutions irrespective 
of the dimension size in most of the cases. 

5.1.8. Discussion on results of OAVOA 
According to the qualitative and quantitative analyses covered in the 

previous part, the OAVOA has demonstrated the supremacy over various 
contemporary successful optimizers, including EO, HHO, TLBO, GSA, 
DE, IGWO, BLPSO and HGWOP, as well as an improvement over its 
predecessors AVOA. As there is a very close fight between the OAVOA 
and TAVOA, a Friedman’s mean rank analysis using average fitness of 25 
independent runs for scalable test functions is conducted and the result 
is presented in Fig. 13. The results show that OAVOA dominated TAVOA 

Table 12 
Average PSNR, SSIM, and FSIM values obtained by different entropy-based thresholding for Dermoscopic skin lesion image.   

k OAVOA-MGCE OAVOA-MCE OAVOA-Kaniadakis OAVOA-Masi   

PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM 

ISIC_0000020 2 28.3688 0.8309 0.7511 27.9557 0.8123 0.7552 28.1102 0.8111 0.7170 28.1102 0.8111 0.7170 
3 30.5511 0.8430 0.7936 30.2482 0.8429 0.8012 29.9908 0.8246 0.7630 30.0012 0.8238 0.7643 
4 32.5131 0.8613 0.8330 32.3559 0.8547 0.8282 30.3325 0.8291 0.7717 30.5536 0.8325 0.7794 
5 33.7790 0.8782 0.8488 33.5675 0.8766 0.8598 30.9923 0.8381 0.7930 31.0550 0.8369 0.7947  

ISIC_0000071 2 26.4886 0.7876 0.7623 25.6015 0.8107 0.7278 21.9398 0.8133 0.7464 19.2304 0.4721 0.6911 
3 28.3997 0.8349 0.7795 27.3891 0.8231 0.7558 27.9561 0.8402 0.7736 28.1859 0.8427 0.7856 
4 30.7616 0.8615 0.8305 30.1766 0.8639 0.7996 29.3620 0.8527 0.8167 29.4496 0.8551 0.8278 
5 32.1361 0.8911 0.8596 31.5513 0.8699 0.8325 30.9513 0.8660 0.8551 31.0599 0.8669 0.8610  

ISIC_0000107 2 27.5769 0.8673 0.7905 26.5505 0.8422 0.7871 27.6247 0.8486 0.7781 27.6247 0.8486 0.7781 
3 29.8910 0.8628 0.8208 29.7413 0.8542 0.8167 29.0469 0.8541 0.8107 29.0542 0.8539 0.8109 
4 31.6451 0.8622 0.8539 31.4163 0.8547 0.8501 29.6512 0.8608 0.8272 29.7174 0.8615 0.8293 
5 32.8765 0.8706 0.8780 32.5855 0.8634 0.8771 30.1727 0.8683 0.8472 30.2320 0.8672 0.8497  

ISIC_0000117 2 30.0296 0.9117 0.8200 30.0296 0.9104 0.8099 30.0115 0.8815 0.8082 30.0115 0.8815 0.8082 
3 31.9255 0.8950 0.8428 31.7843 0.8958 0.8433 31.4089 0.8859 0.8366 31.4157 0.8862 0.8368 
4 33.7827 0.9056 0.8862 33.3703 0.8950 0.8717 32.1936 0.8939 0.8603 32.2330 0.8946 0.8614 
5 34.8323 0.9108 0.9016 34.7950 0.9023 0.9002 32.5247 0.8993 0.8701 32.7253 0.9026 0.8760  

ISIC_0000149 2 27.1469 0.8084 0.7574 27.0240 0.8146 0.7468 25.6172 0.8056 0.7616 25.6689 0.8033 0.7600 
3 29.2463 0.8411 0.7912 29.0585 0.8200 0.7931 26.6421 0.8066 0.7812 26.7137 0.8049 0.7800 
4 31.0485 0.8308 0.8493 30.8524 0.8249 0.8382 28.7888 0.8133 0.8165 29.0716 0.8125 0.8186 
5 32.4832 0.8511 0.8722 32.3090 0.8297 0.8667 30.0569 0.8206 0.8413 30.3731 0.8237 0.8475    

OAVOA-Tsallis OAVOA-Reniys OAVOA-Kapurs OAVOA-Shannon   
PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM 

ISIC_0000020 2 27.9661 0.8100 0.7171 28.0516 0.8097 0.7179 28.3196 0.8062 0.7372 28.3489 0.8069 0.7368 
3 29.7985 0.8185 0.7644 29.9080 0.8215 0.7652 30.0128 0.8241 0.7643 30.0132 0.8245 0.7636 
4 30.8618 0.8198 0.7868 30.5220 0.8238 0.7785 30.4873 0.8311 0.7772 30.5698 0.8320 0.7800 
5 32.0704 0.8298 0.8124 31.4215 0.8328 0.8021 31.0607 0.8376 0.7952 31.0820 0.8374 0.7958  

ISIC_0000071 2 26.0322 0.7302 0.7564 25.5582 0.6962 0.7394 21.9347 0.8129 0.7457 21.9398 0.8133 0.7464 
3 28.3964 0.8159 0.8012 28.4134 0.8158 0.7997 27.9348 0.8397 0.7727 27.9386 0.8395 0.7723 
4 29.8098 0.8221 0.8329 29.6449 0.8337 0.8358 29.3888 0.8524 0.8180 29.4003 0.8527 0.8191 
5 31.5765 0.8457 0.8663 31.1231 0.8680 0.8662 30.8686 0.8656 0.8553 30.9247 0.8647 0.8551  

ISIC_0000107 2 27.2783 0.8519 0.7720 27.5069 0.8506 0.7763 27.6396 0.8477 0.7781 27.6204 0.8475 0.7778 
3 28.6958 0.8511 0.8030 28.8697 0.8521 0.8069 29.0735 0.8534 0.8115 29.0890 0.8534 0.8118 
4 29.8041 0.8536 0.8324 29.6812 0.8586 0.8278 29.6774 0.8610 0.8278 29.7350 0.8609 0.8297 
5 30.7160 0.8510 0.8589 30.3810 0.8614 0.8547 30.2286 0.8672 0.8497 30.2371 0.8674 0.8500  

ISIC_0000117 2 29.1270 0.8803 0.8041 29.7757 0.8856 0.8079 29.9881 0.8799 0.8078 29.9881 0.8799 0.8078 
3 30.9892 0.8873 0.8326 31.1968 0.8848 0.8333 31.4132 0.8860 0.8368 31.4310 0.8866 0.8371 
4 32.0696 0.8907 0.8570 32.0247 0.8917 0.8553 32.1957 0.8940 0.8606 32.2289 0.8946 0.8613 
5 32.8449 0.8915 0.8772 32.6323 0.8958 0.8733 32.5854 0.9006 0.8717 32.6478 0.9019 0.8737  

ISIC_0000149 2 25.0262 0.8007 0.7498 24.7474 0.8060 0.7526 25.6689 0.8033 0.7600 25.6689 0.8033 0.7600 
3 27.0326 0.7936 0.7708 26.9381 0.7986 0.7744 26.6519 0.8056 0.7803 26.6973 0.8054 0.7803 
4 29.0086 0.8085 0.8089 28.9284 0.8088 0.8091 28.8360 0.8118 0.8154 29.1113 0.8127 0.8186 
5 30.3930 0.8132 0.8379 30.3359 0.8146 0.8373 30.0411 0.8208 0.8417 30.2353 0.8210 0.8434  
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and came in first place in the majority of cases. Finally, OAVOA resolve 
the problems identified in OAVOA by providing required diversity to 
search agents regulate the exploration and exploitation in the desired 
manner to reach at the optimum solution. 

5.1.9. Analysis of computational complexity 
A function that relates the algorithm’s execution time to the prob-

lem’s input size provides information about the computational 
complexity of an optimization algorithm. Here, Big-O notation is 
employed as a standard word to describe this situation. Complexity is 
influenced by factors like the cost of function evaluation (c), the popu-
lation size (N), the dimension of the problem (dim), and the maximum 
iteration counts (T). The complexity of initialising the population is 
become O(N). computation required for updating vulture’s position 
using Eq. (13), Eq. (15), and Eq. (29) is O(T × N × dim), computational 
complexity involved in mutation stage is O(T × 0.3N), Computation 
required for generating new solutions using Eq. (25) is O(T × N × dim), 
fitness evaluations of solutions till the end of iterations required a 
computational complexity of O(T × 2N). The overall computational 
complexity of the proposed OAVOA algorithm is O(T × 2.3N × dim)+

O(T × 2N). 

5.2. Experimental verification of OAVOA-MGCE based multilevel 
thresholding 

The suggested OAVOA-MGCE based multilevel thresholding tech-
nique has been evaluated using medical images collected from Harvard 
Medical school’s brain T2-weighted MR image dataset [13] and ISIC 
2016 Dermoscopic skin lesion image dataset [77]. Multilevel thresh-
olding is applied to these images to assign a uniform intensity to 
different objects and the background. Physicians need specific, con-
strained sections of the test image for clinical analysis, and thresholded 
images are ideally suited for this purpose. Figs. 14 and 15 shows a 
sample of five test images and their histogram collected from each 
dataset. The corresponding thresholded results are depicted in subse-
quent Figures for the study and analysis. For processing and validating 
the result, we used MATLAB software R2018 with an Intel Core (TM) i3 
Processor running at 1.70 GHz, 8 GB RAM, and a 64-bit operating sys-
tem. The suggested OAVOA-MGCE based multilevel thresholding 
approach’s primary goal is to choose the optimum thresholding values at 
various thresholding levels. In this study, for the purposes of reliability 
assessment and visual perception, the test images are segmented into 

four different levels of thresholding with k = 2, 3, 4, and 5. To show the 
superiority of proposed algorithm using MGCE as the objective function, 
we compare it with outputs of its counterparts, the minimum 
cross-entropy (MCE) and six others broadly used entropy-based tech-
niques, i. e, Kaniadakis entropy, Masi entropy, Tsallis entropy, Renyis 
entropy, Kapurs entropy and Shannon entropy. The above entropy 
functions are used as the objective functions. These are optimized by the 
proposed OAVOA. The reason is its superior performance in reaching the 
global solution compared to state of art techniques discussed in Section 
5.1. The above entropies employing OAVOA for performing multilevel 
thresholding tasks are now referred as OAVOA-MCE, OAVOA-Kaniada-
kis, OAVOA-Masi, OAVOA-Tsallis, OAVOA-Renyis, OAVOA-Kapurs and 
OAVOA-Shannon. Keeping the randomization and stochastic behaviour 
of optimization algorithm into consideration, each method is run inde-
pendently 11 times for each test image. The controlling parameter of 
OAVOA is set as given in Table 3. The maximum iteration count is set to 
150. To evaluate the performance of different techniques, we have used 
the standard performance measures: Peak signal to noise ratio (PSNR) 
[78], Structural Similarity (SSIM) index [79], Feature Similarity index 
(FSIM) [80]. 

5.2.1. Experiments with brain MR images 
Diseases related to the brain are very harmful and an early diagnosis 

can only reduce the fatality rate. The physician uses MR images of the 
brain in most of the cases to identify any injuries or abnormalities in the 
brain. This is the reason for the selection of brain MR images for eval-
uating our proposed method. Table 10 provides a summary of the per-
formance of different entropy-based multilevel thresholding approaches 
on five test brain MR images utilizing the proposed OAVOA algorithm to 
optimize the objective functions. The listed values in the tables are 
average PSNR, average SSIM, and average FSIM over 11 independent 
runs. The results demonstrated that the OAVOA-MGCE based multilevel 
thresholding approach enhanced PSNR at various threshold levels. The 
improvement over MCE based thresholding reveals that the degree of 
divergence plays a vital role in the thresholding problem. 

Due to the non-symmetrical characteristic, the traditional cross en-
tropy, which is also referred as an information divergence measure, 
sometimes not found an appropriate similarity measure between two 
different probability distributions. This problem is resolved by the use of 
minimum generalized cross entropy (MGCE) which uses a degree of 
convergence for the measurement of the distance between two proba-
bility distributions related to original and segmented images. Some of 
the useful properties that the generalized cross entropy possesses are its 
flexibility and robustness in similarity measure. The above benefits can 
be achieved by a single tuning parameter known as the degree of 
divergence index. To show the effect of degree of divergence index along 
with the proposed OAVOA algorithm, an ANOVA test is conducted on 
the test image Slice22 and the obtained PSNR values at k = 5 is pre-
sented in Fig. 16. It can be seen from the result that a better value of 
PSNR is obtained when the degree of divergence index is 0.3 with 
minimal variation. 

In our experiment, the degree of divergence index is taken between 
0.1 and 0.3. For all entropy-based multilevel thresholding approaches, 
similarity metrics like SSIM and FSIM are also calculated between the 
original image and the thresholded image. The structural similarity 
index (SSIM), which considers factors, including brightness, contrast, 
and structural similarity, measures how similar the test image and its 
threshold version. Whereas, feature similarity index (FSIM) is another 
metric for evaluating the quality of an image by comparing its features to 
those in the thresholded image. The SSIM and FSIM index values fall 
between [0, 1]. A higher value of these metrics denotes a higher level of 
segmented image quality. It is observed from the results that, the pro-
posed OAVOA-MGCE method is able to provide a better segmented 
result with maximum SSIM and PSNR values. Whenever the number of 
thresholds increases, the pixel has a greater likelihood of segmenting 
into the class of objects that are most comparable. This makes the SSIM 

Fig. 19. Effect of degree of divergence on segmentation of Dermoscopic image 
(ISIC0000149). 
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and the FSIM increase with the increase in thresholding level. For visual 
interpretation of the results, the thresholded images of different entropy- 
based thresholding for k = 2 and 5 on slice 082 image are shown in 
Fig. 17. The optimal threshold values, obtained by maximizing or 
minimizing the objective function using the OAVOA, are also included 
on the top of each thresholded output image. To highlight the segmented 
regions, we have performed Pseudo coloring of the thresholded output. 
It is observed from the Brain MRI thresholded images that, the soft tis-
sues of the brain as well as other regions are well separated using MGCE 
and MCE based thresholding compared to other entropy-based methods. 
To show how consistent and reliable is the proposed thresholding 
approach, ANOVA test is also conducted. This test is used to deepen our 
understanding of the different entropy-based thresholding using 
OAVOA. Here, 55 data samples from each dataset are used for the 
ANOVA statistical test. The above data samples are collected from five 
test images and run it independently 11 times. For a better illustration of 
the ANOVA test results a separate plot for each performance parameter, 
such as PSNR, SSIM and FSIM plotted in the form of Boxplots for 
thresholding levels k = 2 to 5 as shown in Fig. 18. The ANOVA test re-
sults for Brain MRI images are completely in favour of the proposed 
OAVO-MGCE based approach, for its highest median value with 

comparable less variation from others. In addition to ANOVA test, 
another statistical analysis of the results using the Wilcoxon signed rank 
test is also conducted. 

The Wilcoxon test p-values are shown in Table 11. These are calcu-
lated by comparing the mean PSNR, SSIM, and FSIM values between the 
MGCE and other entropy-based thresholding methods. There are seven 
different pairs of algorithms shown: MGCE vs MCE, MGCE vs Kaniada-
kis, MGCE vs Masi, MGCE vs Tsallis, MGCE vs Renyis, MGCE vs Kapurs 
and MGCE vs Shannon. When the obtained p-values are less than 0.05, 
they can be considered statistically significant, because the null hy-
pothesis is rejected. The methods under comparison show substantial 
differences from one another. To provide a better interpretation of the 
obtained Wilcoxon test result, the symbols (+) and (− ) are assigned to 
each p-values, which denote the performance of the MGCE based 
method against the comparative techniques based on superiority and no 
significant difference, respectively. The table shows that, in most of the 
cases, each pair of methods typically yields a value less than 0.05 with 
respect to PSNR, SSIM, and FSIM, demonstrating a considerable differ-
ence between the techniques. 

Fig. 20. Thresholded images of Dermoscopic skin lesion images (ISIC 0000020) for k = 2 and 5  
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Fig. 21. ANOVA test result of different entropy-based thresholding methods on 50 test Dermoscopic Skin images.  
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5.2.2. Experiments with dermoscopic skin lesion images 
Another challenging task in medical image analysis is the detection 

of the lesion in dermoscopic images. Thresholding can be considered one 
of the convenient methods of detecting the lesion by assigning a certain 
grey level in the affected region. The grey level distributions of these 
dermoscopic images are completely different from brain MR images. 
This is observed from their histogram shown in Fig. 15. Table 12 pre-
sents the obtained results of different entropy-based thresholding 
methods on five different images, selected randomly from the ISIC 
dataset. An ANOVA test is also conducted to support the claimed range 
of degree of divergence index and the result is presented in Fig. 19 for 
k = 5. The degree of divergence parameter is taken between 0.7 and 0.9 
for achieving the best results. A higher value of PSNR achieved by the 
proposed OAVOA-MGCE based methodology again proved that its seg-
mentation accuracy is better than others. Although the similarity metric 
SSIM for MCE-based thresholding is comparable to MGCE-based 
approach, the MGCE-based method dominates when the number of 
thresholds rises. A higher FSIM value attained by the proposed method 
indicates that the consideration of the degree of divergence is helpful for 
preserving the image features while thresholding. Fig. 20 presented the 
thresholded images at levels 2 and 5. The lesion in the skin images is also 
highlighted in the thresholded image in a better way in MGCE and MCE 
based thresholding. Although MCE based method gives comparable re-
sults, failed to differentiate the background completely from the lesion. 
A close observation of the thresholded results reveals that the proposed 
OAVOA-MGCE method produces better-thresholded results. It separates 
different regions in the scenes including backgrounds. The superiority of 
the proposed method is also reflected in the ANOVA test (in Fig. 21). At 
low-level thresholding, most of the entropy-based methods behaves 
likewise. However, a significant difference between the performances is 
observed, when the thresholding levels are increased. The Wilcoxon’s 
test results are shown in Table 13 (for dermoscopic images). This pro-
vides a clear view that the suggested method is statistically different 
from others, with respect to various performance metrics. 

At the end of the discussion, the thresholded images, obtained by the 
proposed OAVOA-MGCE multilevel thresholding approach to all test 
images, are presented in Fig. 22. The resultant output reveals that the 
segmented results are quite impressive and well suited for medical 
image analysis. 

6. Conclusions 

This paper proposed an efficient OAVOA-MGCE methodology by 
minimizing the MGCE fitness functions. The proposed opposition Afri-
can vulture optimization algorithm (OAVOA) is used to compute the 
optimal thresholds for the segmentation of medical images. The fitness 
functions include the degree of divergence between the input and 
segmented output images, as opposed to the previous studies. As a 
result, improved accuracy is ascertained by properly optimizing the 
fitness functions. To evaluate the proposed OAVOA-MGCE multilevel 
thresholding approach, the segmentation was performed at four 
different levels on two different types of the medical images. A set of 
metrics for assessing the efficiency of segmentation at each level is ob-
tained to interpret the segmentation accuracy. Based on the results, it is 
concluded that the OAVOA-MGCE shows substantial results, because the 
technique suggested mainly exhibits the best values compared to other 
entropy-based thresholding schemes. In addition to the performance 
metrics, ANOVA and Wilcoxon tests were also conducted to show the 
consistency and superiority of the proposed method over others. 
Although the proposed OAVOA-MGCE method appears to work well in 
various test images, the primary drawbacks associated with the method 
is that it is not automatic. It may be noted that the number of thresholds 
and degree of divergence must be provided at the beginning manually. 
However, it is anticipated to be used by the machine learning or rein-
forcement learning, to automatically find the appropriate number of 
thresholds as well as the degree of divergence for a particular image, in 

Table 13 
Wilcoxon’s test for comparison of proposed OAVOA-MGCE based multilevel 
thresholding with other entropy-based thresholding based on PSNR, SSIM, and 
FSIM on Dermoscopic skin lesion images.    

PSNR SSIM FSIM  

k p-value win p-value win p-value win 

MGCE vs CE 2 1.73E- 
18 

(+) 1.05E- 
01 

(− ) 1.01E- 
12 

(+) 

3 5.29E- 
23 

(+) 6.11E- 
07 

(+) 2.48E- 
01 

(− ) 

4 1.51E- 
19 

(+) 3.11E- 
10 

(+) 5.29E- 
23 

(+) 

5 1.51E- 
19 

(+) 3.73E- 
18 

(+) 1.08E- 
03 

(+)  

MGCE vs 
Kaniadakis 

2 1.59E- 
07 

(+) 1.59E- 
07 

(+) 1.59E- 
07 

(+) 

3 5.29E- 
23 

(+) 1.59E- 
07 

(+) 5.29E- 
23 

(+) 

4 5.29E- 
23 

(+) 1.01E- 
12 

(+) 5.29E- 
23 

(+) 

5 5.29E- 
23 

(+) 1.51E- 
19 

(+) 5.29E- 
23 

(+)  

MGCE vs Masi 2 1.59E- 
07 

(+) 5.29E- 
23 

(+) 1.59E- 
07 

(+) 

3 5.29E- 
23 

(+) 1.59E- 
07 

(+) 1.59E- 
07 

(+) 

4 5.29E- 
23 

(+) 6.11E- 
07 

(+) 3.73E- 
18 

(+) 

5 5.29E- 
23 

(+) 6.81E- 
17 

(+) 5.15E- 
11 

(+)  

MGCE Vs Tsallis 2 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E- 
23 

(+) 

3 5.15E- 
11 

(+) 5.29E- 
23 

(+) 1.59E- 
07 

(+) 

4 5.29E- 
23 

(+) 5.29E- 
23 

(+) 3.81E- 
08 

(+) 

5 5.29E- 
23 

(+) 5.29E- 
23 

(+) 6.11E- 
07 

(+)  

MGCE vs Reniys 2 5.29E- 
23 

(+) 5.29E- 
23 

(+) 5.29E- 
23 

(+) 

3 3.81E- 
08 

(+) 5.29E- 
23 

(+) 1.59E- 
07 

(+) 

4 5.29E- 
23 

(+) 1.51E- 
19 

(+) 1.59E- 
07 

(+) 

5 5.29E- 
23 

(+) 5.29E- 
23 

(+) 1.59E- 
07 

(+)  

MGCE vs Kapurs 2 1.76E- 
04 

(+) 1.59E- 
07 

(+) 1.59E- 
07 

(+) 

3 5.29E- 
23 

(+) 1.59E- 
07 

(+) 5.29E- 
23 

(+) 

4 5.29E- 
23 

(+) 1.17E- 
13 

(+) 5.29E- 
23 

(+) 

5 5.29E- 
23 

(+) 1.51E- 
19 

(+) 5.29E- 
23 

(+)  

MGCE vs Shannon 2 4.50E- 
04 

(+) 1.59E- 
07 

(+) 1.59E- 
07 

(+) 

3 5.29E- 
23 

(+) 1.59E- 
07 

(+) 5.29E- 
23 

(+) 

4 5.29E- 
23 

(+) 5.15E- 
11 

(+) 5.29E- 
23 

(+) 

5 5.29E- 
23 

(+) 1.51E- 
19 

(+) 4.02E- 
21 

(+)  
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future applications. In addition, the proposed approach can be extended 
to noisy images with a selection of appropriate objective function 
derived from 2D or 3D histogram. The segmented method may be 
applied to remote sensing images for improving the result of change 
detection. 
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