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A B S T R A C T

Nevertheless, the accuracy of a multilevel image thresholding technique using 1D or 2D Tsallis entropy is
limited. To overcome this, we propose a maximum 3D Tsallis entropy-based multilevel thresholding method.
The idea of 3D Tsallis entropy is introduced. Opposed to the 1D/2D Tsallis entropy, the 3D Tsallis entropy-
based approach is more robust, it performs well even in the case of the low signal-to-noise-ratio and contrast.
Manta Ray Foraging Optimization (MRFO) algorithm is a newly introduced algorithm to solve the optimization
problem by imitating the foraging technique of Manta Ray fish in the ocean using a mathematical model. Due to
insufficient energy levels of search agents in MRFO, they fail to avoid local minima and fall on it. To make the
algorithm more effective for the segmentation application, we introduce a new algorithm coined as attacking
Manta Ray foraging optimization (AMRFO). A set of classical benchmark functions together with composite
functions (CEC 2014) is used to validate the proposed AMRFO algorithm. Statistical analysis is implicitly carried
out using Wilcoxon’s signed-rank test and Friedman’s mean rank test. Interestingly, the results show that the
proposed AMRFO is superior to the state-of-the-art optimization algorithms. Moreover, the proposed method
is also compared with 1D/2D Tsallis entropy-based approaches. To experiment, 100 test images from the
AANLIB MR Image dataset are considered. Our method outperforms 1D/2D Tsallis entropy-based approaches.
The proposed scheme would be useful for the segmentation of multi-spectral color images.
. Introduction

In the field of image processing and computer vision, image seg-
entation has its importance. The role of Image segmentation is to
ecompose the test image into meaningful homogeneous parts or ob-
ects depend upon the problem for easier analysis. In most of the
pplications, the objects of interest in the scene need to be processed for
hich different types of segmentation techniques are used in the initial

tage of processing. Image segmentation has numerous applications in
he area of Medical Imaging, Object detection and recognition, Machine
ision, etc. (Zaitoun and Aqel, 2015). There are various methods of
mage segmentation. One of the popular, effective, and convenient
ethods is the thresholding-based method. In bi-level thresholding, the

cene in the image is subdivided into two different regions with the help
f a threshold value obtained from the image histogram. Whereas, in
ultilevel thresholding, two or more thresholds are used to segment

he test image into different classes.
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One of the challenging tasks of thresholding-based segmentation is
to obtain the optimal threshold values. There are two approaches to
finding an optimal threshold: parametric approach and Non-parametric
approach. Due to the high computational complexity of a parametric-
based approach, it is hardly used for multilevel image threshold-
ing (Bohat and Arya, 2019). Therefore, non-parametric methods like
histogram-based thresholding became more popular because of their
robustness and speed. The threshold calculation in non-parametric
thresholding methods generally based on some statistical criteria or
entropy measures. One of the well-known statistical criteria-based
thresholding is Otsu’s Thresholding algorithm (Otsu, 1979) which
works on the principle of maximizing between class variance for obtain-
ing the optimal thresholds. Some of the popular entropy-based methods
include Tsallis’s Entropy (Agrawal et al., 2013), Kapur’s Entropy (Kapur
et al., 1985), Renyi entropy (Sahoo et al., 1997), Fuzzy entropy (Chao
et al., 2016), and Masi Entropy (Masi, 2005; Shubham and Bhandari,
2019) calculate the optimal threshold by maximizing the corresponding
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Table 1
Parameter setting of different optimization algorithms.

Algorithm Parameter(s) Value

DE Mutation factor (𝐹 ) 0.5
Cross over Rate (𝐶𝑟) 0.5

PSO 𝐶1 𝑎𝑛𝑑 𝐶2 2
Inertia Weight (𝜔) 0.9

SFO Coefficient 𝐴 𝑎𝑛𝑑 𝜖 4 and 0.001

EO Constants 𝑎1 and 𝑎2 2 and 1
Initial Generation value (𝐺0) 0.5

MRFO Somersault factor (𝑆) 2

AMRFO Initial Attacking Power (𝐴) 3
Somersault factor (𝑆) 2

entropic information between object pixels and background pixels. One
of the major limitations of threshold selection using a 1D histogram is
that it does not consider the spatial distribution of the pixels in the
image (Nie et al., 2013). Images having identical histograms may have
a different spatial distribution which should be treated in the same
manner for threshold selection. Therefore, researchers started using the
local average of pixel intensity which carries the spatial information of
neighborhood pixels in a 2D histogram along with original pixel points
for threshold selection. 2D Otsu thresholding (Liu et al., 1991), 2D
Tsallis entropy-based thresholding (Sarkar and Das, 2013a), 2D Masi
Entropy (Wunnava et al., 2020a), and gray gradient algorithm-based
thresholding (Wunnava et al., 2020b) are some well-known algorithms
proves that 2D histogram-based methods are better and more effective
for noisy images than the 1D histogram. However, 2D histogram-based
methods are not always satisfactory because the target object points
and the points on the boundary of second and third regions closed to
the diagonal line are ignored (Wang et al., 2012).

To overcome this problem, 3D histogram-based thresholding was
introduced by including the median values of the neighboring pixels are
included in the histogram with average pixel value and original pixel
gray level. 3D Otsu function-based thresholding (Bhandari et al., 2019)
is one of the recent works on a 3D histogram and claimed that it has
better performance than 1D and 2D based histogram method for images
in low signal to noise ratio and poor contrast. These advantages of 3D
histogram-based threshold selection motivate us to propose a Maximum
3D Tsallis entropy-based multilevel thresholding, as an extension of
2D Tsallis entropy. Although 3D histogram-based techniques are found
suitable for segmentation, they are generally consuming more time for
processing an image due to high computational complexity.

Evolutionary metaheuristic algorithms are successfully applied to
solve the computational time problem of multilevel thresholding al-
gorithms for image segmentation. The most popular meta-heuristic
algorithms which are effectively applied in multilevel thresholding are
Particle swarm optimization (PSO) (Maitra and Chatterjee, 2008a);
Differential evolution (DE) (Horng, 2010; Sarkar and Das, 2013a);
Ant colony optimization (ACO) (Zhiwei et al., 2005); Honey bee mat-
ing optimization (HBMO); Grasshopper optimization algorithm (GOA)
(Saremi et al., 2017); Sailfish optimizer (SFO) (Shadravan et al., 2019),
Crow search algorithm (CSA) (Education, 2019); Firefly algorithm (FA)
(Horng and Liou, 2011); Artificial bee colony (ABC) (Horng, 2011);
Cuttlefish algorithm(CFA) (Bhandari et al., 2019); Cuckoo search algo-
rithm (CS) algorithm (Bhandari et al., 2014); Squirrel search algorithm
(SSA) (Jain et al., 2019); Gray wolf optimizer (GWO) (Khairuzzaman
and Chaudhury, 2017); Krill herd optimization (KHO) (Baby Resma
and Nair, 2018) and Wind driven optimization (WDO) (Bhandari et al.,
2014). It has also been observed that some algorithms are modified
or hybridized with other algorithms by the researchers to make them
more suitable than their original versions. Some of these algorithms are
adaptive Harris hawks optimization (AHHO) (Wunnava et al., 2020b);
Modified grasshopper optimization algorithm (MGOA) (Liang et al.,
2

2019); Hybrid differential evolution (HDE) (Mlakar et al., 2016); Im-
proved adaptive cuckoo search algorithm (ICAS) (Sun and Wei, 2020);
Modified firefly algorithm (MFA) (He and Huang, 2017); Hybrid salp
swarm Algorithm (HSSA) (Alwerfali et al., 2019) and Improved bat
algorithm (IBA) (Alihodzic and Tuba, 2014).

Manta ray foraging optimization (MRFO) (Zhao et al., 2020) is the
recently proposed algorithm based on the foraging behavior of the
Manta Ray creature in the ocean. The impressive performance of MRFO
against other well-known optimization algorithms draws our attention
to it to explore its strength and weakness. According to No Free Lunch
(NFL) (Wolpert and Macready, 1997), which stated that no optimiza-
tion algorithm gives satisfactory results for all kinds of problems and
MRFO is not an exception, there is a possibility to improve its global
searchability. After a detailed investigation, we introduced additional
attacking power to the Manta ray during foraging which helps it
to avoid local minima. This leads to the formation of the Attacking
manta ray foraging optimization algorithm (AMRFO). Performance of
AMRFO found better when tested with a set of 21 classical Benchmark
functions (Wunnava et al., 2020b) and six composition test functions
from CEC 2014 (Liang et al., 2013) against the well-known state-of-art
algorithms such as MRFO (Zhao et al., 2020); EO (Abdel-Basset et al.,
2020); HHO (Heidari et al., 2019); SFO (Shadravan et al., 2019); GWO
(Khairuzzaman and Chaudhury, 2017); PSO (Maitra and Chatterjee,
2008b) and DE (Sarkar and Das, 2013a). The performance of AMRFO
is further explored in this paper to obtain optimal thresholds from
AANLIB Brain MR images taken from Harvard medical education (The
Whole Brain Atlas) by maximizing Tsallis entropy in a 3D histogram
structure.

The important contributions of the proposed work are:

• A 3D Tsallis entropy derived from the 3D histogram is proposed in
this paper as an extension of 2D Tsallis entropy for more effective
multilevel thresholding in a different situation.

• An attacking manta ray foraging optimization (AMRFO) algo-
rithm is also proposed by including an additional attacking power
for the Manta Ray during searching for food, which helps it
to reach a global solution without falling in any local minima.
The quantitative and qualitative analysis of the test results over
27 different Benchmark functions shows the superiority of the
proposed method.

• Maximum 3D Tsallis entropy-based multilevel thresholding using
AMRFO is validated using the ANNLIB Brain MRI dataset. The
comparison results show its better performance over state-of-the-
art methods.

A detailed discussion of the work proposed in this paper is presented
in the following sections. The rest part of the paper is organized as
follows. The proposed 3D Tsallis entropy-based multilevel thresholding
method is presented in Section 2. In Section 3, we discuss the proposed
Attacking Manta Ray foraging optimization (AMRFO) algorithm. The
performance evolution of the proposed Optimization algorithm against
other state-of-the-art methods is presented in Section 4. The framework
of 3D Tsallis entropy-based multilevel thresholding using the AMRFO
algorithm is presented in Section 5. Results and discussion of Maximum
3D Tsallis entropy-based multilevel thresholding using AMRFO are
presented in Section 6. The paper ended with a concluding remark in
Section 7.

2. The proposed 3-D Tsallis entropy-based multilevel image
thresholding

Tsallis entropy-based multilevel thresholding is one of the efficient
and popular methods of image segmentation. In this section, we intro-
duced a new 3D Tsallis entropy, which is the extension of 2D Tsallis
Entropy (Sarkar and Das, 2013a) by considering both mean and median
value of the neighboring pixels along with pixel intensity in a 3D
histogram as shown in Fig. 1(a) into account. This extension of Tsallis
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Fig. 1. 3D-histogram structure for 3-level segmentation.

Fig. 2. Illustration of the searching pattern using the search history.

3
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t

Fig. 3. Illustration of the Searching pattern using the trajectory of first Manta Ray.
Fig. 4. Qualitative Results of unimodal test functions 𝑓1 and 𝑓5.
entropy has better noise resistance and edge preservation capability
than 1D and 2D Tsallis Entropy.

The axes of a 3D histogram for a given image 𝐼 of size 𝑀×𝑁 having
𝐿 intensity levels [0, 𝐿 − 1], represents the pixel intensity level 𝑓 (𝑥, 𝑦),
he local mean 𝑓𝑎𝑣𝑔(𝑥, 𝑦) and median 𝑓𝑚𝑒𝑑 (𝑥, 𝑦) values. The local mean

and median value at a certain coordinate (𝑥, 𝑦) in a 𝑚×𝑚 neighborhood
4

region is expressed in Eqs. (1) and (2), respectively.

𝑓𝑎𝑣𝑔 (𝑥, 𝑦) =
1

𝑚 × 𝑚

𝑚−1
2
∑

𝑢=− 𝑚−1
2

𝑚−1
2
∑

𝑣=− 𝑚−1
2

𝑓 (𝑥 + 𝑢, 𝑦 + 𝑣) (1)

𝑓𝑚𝑒𝑑 (𝑥, 𝑦) = 𝑚𝑒𝑑
{

𝑓 (𝑥 + 𝑢, 𝑦 + 𝑣) ; 𝑢, 𝑣 = −𝑚 − 1
2

… 𝑚 + 1
2

}

(2)
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Fig. 5. Qualitative Results of multimodal test functions 𝑓11 and 𝑓16.
Fig. 6. Qualitative Results of composite test functions 𝑓23 and 𝑓26 from CEC 2014 test suit.
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In this paper, the value of 𝑚 is fixed and taken as 3 for all the images
t a different level of segmentation. The pixel intensity 𝑓 (𝑥, 𝑦) = 𝑖
f an image with its corresponding mean 𝑓𝑎𝑣𝑔 (𝑥, 𝑦) = 𝑗 and median
𝑚𝑒𝑑 (𝑥, 𝑦) = 𝑘 intensity values are combined to form a gray level triple
𝑖, 𝑗, 𝑘). All possible triples in a 3D histogram are represented by its joint
robability expressed in Eq. (3) within a cube of volume 𝐿×𝐿×𝐿 shown
n Fig. 1(a)

𝑖𝑗𝑘 =
𝜇𝑖𝑗𝑘

𝑀 ×𝑁
(3)

where 𝜇𝑖𝑗𝑘 is the number of occurrences of a triple (𝑖, 𝑗, 𝑘) and 0 ≤
𝑖, 𝑗, 𝑘 ≤ 𝐿 − 1.

Let us consider an arbitrary threshold point (𝑠1, 𝑠2; 𝑡1, 𝑡2; 𝑟1, 𝑟2) in
the 3D histogram as shown in Fig. 1 for tri-level thresholding. 𝑠 , 𝑠
1 2

5

enotes the threshold from the pixel gray levels, 𝑡1, 𝑡2 and 𝑟1, 𝑟2 are
ocal mean and median thresholds, respectively. The given threshold
oints in tri-level thresholding split the 3D histogram into 27 distinct
egions. Cube 27 and 14 in Figs. 1(b) and 1(c) considered as the two
bjects of interest and cube 1 in Fig. 1(d) represent the background. The
emaining cubes generally contain information related to border pixels
r noises. The probability of gray level triples in these regions are very
ess and approximated to zero, which can be ignored without affecting
hresholding efficiency. The probability distribution 𝑃27𝑎𝑛𝑑𝑃14 of the
bove two object classes and background 𝑃1 are given by

𝑃27(𝑠, 𝑡, 𝑟) = 𝑃𝐶1 (𝑠, 𝑡, 𝑟) =
𝐿−1
∑

𝐿−1
∑

𝐿−1
∑

𝑝𝑖𝑗𝑘 (4)

𝑖=𝑠2+1 𝑗=𝑡2+1 𝑘=𝑟2+1
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Table 2
Statistical results of benchmark functions.

Function Matric AMRFO MRFO EO HHO SFO GWO PSO DE

Unimodal
test function

𝑓1 Ave 0 0 2.37E−41 5.00E−96 3.24E−15 6.56E−08 5.42E−02 1.37E+01
Std 0 0 4.06E−41 2.79E−95 7.25E−15 1.62E−07 1.38E−02 5.36E+01

𝑓2 Ave 3.63E−201 1.39E−249 4.24E−24 5.93E−50 1.45E−07 3.63E−05 1.07E+00 1.41E−02
Std 0 0 3.96E−24 1.96E−49 1.75E−07 3.54E−05 1.58E−01 3.47E−02

𝑓3 Ave 0 0 8.54E−08 1.33E−75 7.39E−13 2.26E−01 5.32E−01 5.92E+02
Std 0 0 5.24E−07 9.43E−75 2.22E−12 2.75E−01 1.18E−01 4.24E+02

𝑓4 Ave 2.51E−202 3.43E−242 3.20E−10 2.07E−47 9.17E−09 1.43E−01 1.43E−01 2.34E+01
Std 0 0 7.65E−10 1.46E−46 1.31E−08 1.23E−01 2.18E−02 6.62E+00

𝑓5 Ave 2.49E−04 2.30E+01 2.55E+01 1.13E−02 7.69E−02 2.87E+01 3.35E+01 8.22E+03
Std 4.85E−04 4.82E−01 2.46E−01 1.84E−02 1.55E−01 3.29E−01 1.60E+00 2.89E+04

𝑓6 Ave 4.39E−10 7.54E−10 1.11E−05 1.33E−04 3.01E+00 3.47E+00 5.14E−02 1.06E+01
Std 1.49E−09 2.28E−09 7.99E−06 2.11E−04 1.81E+00 7.02E−01 1.36E−02 3.88E+01

𝑓7 Ave 1.06E−04 1.10E−04 1.33E−03 1.34E−04 2.15E−04 5.52E−03 1.27E−01 6.76E−02
Std 7.78E−05 9.80E−05 7.14E−04 1.26E−04 1.72E−04 3.34E−03 4.69E−02 1.65E−02

Scalable dimension
Multimodal test
function

𝑓8 Ave 0 0 1.95E−02 0 5.96E−13 3.18E+01 1.73E+01 1.57E+02
Std 0 0 1.39E−01 0 1.47E−12 3.48E+01 4.37E+00 3.10E+01

𝑓9 Ave 8.88E−16 8.88E−16 8.41E−15 8.88E−16 2.27E−08 5.51E−05 3.07E−01 2.15E+00
Std 0 0 1.53E−15 0 2.51E−08 4.74E−05 1.31E−01 1.07E+00

𝑓10 Ave 0 0 3.94E−04 0 1.11E−16 2.90E−09 3.36E−03 3.16E−01
Std 0 0 1.97E−03 0 4.11E−16 4.76E−09 8.84E−04 4.45E−01

𝑓11 Ave 3.36E−10 5.94E−10 2.03E−03 1.20E−05 5.47E−01 3.10E−01 7.58E−04 4.05E+03
Std 1.93E−09 3.33E−09 1.45E−02 2.62E−05 2.66E−01 9.60E−02 2.39E−04 2.42E+04

𝑓12 Ave 3.43E−03 2.00E+00 2.47E−02 5.56E−05 6.16E−03 2.11E+00 1.70E−02 3.50E+04
Std 5.54E−03 1.33E+00 5.19E−02 6.74E−05 9.80E−03 2.79E−01 7.50E−03 1.26E+05

Fixed dimension
Multimodal test
function

𝑓13 Ave 7.17E−04 7.56E−04 2.37E−03 4.37E−04 6.58E−04 7.75E−04 4.08E−04 1.39E−03
Std 4.18E−04 4.87E−04 6.00E−03 3.05E−04 1.85E−03 6.35E−04 2.05E−04 3.92E−03

𝑓14 Ave −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0270 −1.0316 −1.0316
Std 2.88E−16 2.93E−16 3.08E−16 6.57E−09 3.79E−04 1.15E−02 1.27E−06 2.31E−16

𝑓15 Ave 0.3979 0.3979 0.3979 0.3979 0.4095 0.5800 0.4889 0.3979
Std 3.92E−16 3.92E−16 3.92E−16 2.79E−05 4.26E−02 9.10E−01 6.50E−01 3.92E−16

𝑓16 Ave 3 3 3 3 7.7956 5.1407 3.0000 3
Std 1.80E−15 2.40E−15 1.40E−15 1.80E−07 1.40E+01 7.32E+00 6.03E−05 4.18E−15

𝑓17 Ave −3.8628 −3.8628 −3.8626 −3.8602 −3.7931 −3.7407 −3.8565 −3.8628
Std 3.06E−15 3.11E−15 1.10E−03 3.85E−03 7.43E−02 5.72E−01 3.12E−03 3.14E−15

𝑓18 Ave −3.2964 −3.2800 −3.2705 −3.0972 −2.9706 −2.4238 −3.1428 −3.2311
Std 4.94E−02 5.74E−02 6.34E−02 1.06E−01 2.06E−01 7.80E−01 1.84E−01 5.09E−02

𝑓19 Ave −10.1532 −7.7115 −8.7653 −5.3295 −5.0109 −4.6455 −5.0548 −9.0720
Std 8.11E−15 2.78E+00 2.59E+00 1.13E+00 5.49E−02 1.25E+00 3.51E−04 2.41E+00

𝑓20 Ave −10.4029 −8.0466 −9.9722 −5.2790 −5.3272 −4.5943 −5.0872 −9.5884
Std 9.51E−15 3.05E+00 1.74E+00 9.76E−01 1.18E+00 1.36E+00 3.54E−04 2.27E+00

𝑓21 Ave −10.5364 −7.0232 −9.7507 −5.0695 −5.2762 −4.7984 −5.1281 −10.3861
Std 1.27E−14 3.22E+00 2.22E+00 3.80E−01 9.04E−01 1.13E+00 3.43E−04 1.07E+00

Composition test
function
(CEC 2014)

𝑓22 Ave 2500 2500 2615.3165 2500 2500 2500.0055 2506.0424 2617.4092
Std 0 0 7.37E−02 0 1.68E−06 7.52E−03 8.75E−01 8.01E+00

𝑓23 Ave 2600 2600 2600.0235 2600.0003 2600.0005 2601.6712 2601.2768 2639.7510
Std 0 0 1.13E−02 6.25E−04 4.36E−04 7.54E−01 1.59E−01 7.04E+00

𝑓24 Ave 2700 2700 2701.4302 2700 2700.0000 2700.0001 2700.0950 2706.1518
Std 0 0 4.00E+00 0 1.28E−08 6.19E−05 1.23E−02 1.42E+00

𝑓25 Ave 2700.6256 2700.6399 2729.6636 2774.6299 2787.5090 2800.0003 2800.0017 2714.6172
Std 1.00E−01 1.08E−01 4.59E+01 4.38E+01 3.16E+01 7.75E−04 4.03E−04 4.15E+01

𝑓26 Ave 2900 2900.0001 3308.0067 2900 2900 2900.0007 2903.8909 3261.5505
Std 0 9.82E−04 1.06E+02 0 2.05E−07 7.73E−04 9.04E−01 6.77E+01

𝑓27 Ave 3000 3000 3815.4687 3000 3000.0000 3000.0017 3005.4869 3931.4169
Std 0 0 1.55E+02 0 5.89E−07 1.64E−03 1.17E+00 2.40E+02

Friedman’s mean rank 1.89 2.70 4.67 3.43 4.69 6.57 5.91 6.15

Rank 1 2 4 3 5 8 6 7
𝐸

𝑃14 (𝑠, 𝑡, 𝑟) = 𝑃𝐶2 (𝑠, 𝑡, 𝑟) =
𝑠2
∑

𝑖=𝑠1+1

𝑡2
∑

𝑗=𝑡1+1

𝑟2
∑

𝑘=𝑟1+1
𝑝𝑖𝑗𝑘 (5)

𝑃1 (𝑠, 𝑡, 𝑟) = 𝑃𝐶3 (𝑠, 𝑡, 𝑟) =
𝑠1
∑

𝑖=0

𝑡1
∑

𝑗=0

𝑟1
∑

𝑘=0
𝑝𝑖𝑗𝑘 (6)
where 𝑠 = [𝑠1, 𝑠2], 𝑡 = [𝑡1, 𝑡2] and 𝑟 = [𝑟1, 𝑟2]

6

The 3D Tsallis entropy of each class distribution is expressed as

𝐸𝛼
3 (𝑠, 𝑡, 𝑟) =

1
𝛼 − 1

[

1 −
𝐿−1
∑

𝑖=𝑠2+1

𝐿−1
∑

𝑗=𝑡2+1

𝐿−1
∑

𝑘=𝑟2+1

( 𝑝𝑖𝑗𝑘
𝑃𝐶1 (𝑠, 𝑡, 𝑟)

)𝛼
]

(7)

𝛼
2 (𝑠, 𝑡, 𝑟) =

1
𝛼 − 1

[

1 −
𝑠2
∑

𝑡2
∑

𝑟2
∑

( 𝑝𝑖𝑗𝑘
𝑃 (𝑠, 𝑡, 𝑟)

)𝛼
]

(8)

𝑖=𝑠1+1 𝑗=𝑡1+1 𝑘=𝑟1+1 𝐶2
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𝐸𝛼
1 (𝑠, 𝑡, 𝑟) =

1
𝛼 − 1

[

1 −
𝑠1
∑

𝑖=0

𝑡1
∑

𝑗=0

𝑟1
∑

𝑘=0

( 𝑝𝑖𝑗𝑘
𝑃𝐶3 (𝑠, 𝑡, 𝑟)

)𝛼
]

(9)

where 𝛼 is the Tsallis entropy index (Sarkar and Das, 2013b).
The above entropy form can be extended for multilevel thresholding

by a pseudo additive entropy rule as:

𝐸𝛼 (𝑠, 𝑡, 𝑟) = 𝐸𝛼
1 + 𝐸𝛼

2 + 𝐸𝛼
3 + (1 − 𝛼)𝐸𝛼

1𝐸
𝛼
2𝐸

𝛼
3 (10)

Hence the objective function for above tri-level thresholding to
obtain optimal threshold (𝑠∗, 𝑡∗, 𝑟∗) can be formulated as

(

𝑠∗, 𝑡∗, 𝑟∗
)

= arg𝑚𝑎𝑥
0 ≤ 𝑠, 𝑡, 𝑟 ≤ 𝐿 − 1

{𝐸𝛼 (𝑠, 𝑡, 𝑟)} (11)

where, 𝑠∗ = [𝑠∗1 , 𝑠
∗
2], 𝑡

∗ = [𝑡∗1 , 𝑡
∗
2] and 𝑟∗ = [𝑟∗1 , 𝑟

∗
2].

Once the optimal values (𝑠∗, 𝑡∗, 𝑟∗) are obtained, the threshold vector
contains two threshold values

[ 𝑠∗1+𝑡
∗
1+𝑟

∗
1

3 ,
𝑠∗2+𝑡

∗
2+𝑟

∗
2

3

]

is used for generating
the thresholded image.

The objective function can be extended to 𝐾 + 1-level thresholding
for 𝐾 thresholds values as

𝐸𝛼 (𝑠, 𝑡, 𝑟) = arg𝑚𝑎𝑥
(

𝐸𝛼
1 + 𝐸𝛼

2 +⋯ + 𝐸𝛼
𝐾+1 + (1 − 𝛼)𝐸𝛼

1𝐸
𝛼
2 ⋯𝐸𝛼

𝐾+1
)

(12)

where

𝐸𝛼
𝑛 (𝑠, 𝑡, 𝑟) =

1
𝛼 − 1

[

1 −
𝑠𝑛
∑

𝑖=𝑠𝑛−1+1

𝑡𝑛
∑

𝑗=𝑡𝑛−1+1

𝑟𝑛
∑

𝑘=𝑟𝑛−1+1

( 𝑝𝑖𝑗𝑘
𝑃𝐶𝑛 (𝑠, 𝑡, 𝑟)

)𝛼
]

, (13)

𝑠 = [𝑠1, 𝑠2,… , 𝑠𝐾 ], 𝑡 = [𝑡1, 𝑡2,… , 𝑡𝐾 ] 𝑎𝑛𝑑 𝑟 = [𝑟1, 𝑟2,… , 𝑟𝐾 ].

3. The proposed attacking Manta ray foraging optimization (AM-
RFO)

Manta ray foraging optimization (MRFO) (Zhao et al., 2020) imi-
tates the foraging behaviors of one of the largest creatures found in the
ocean known as Manta Rays. Manta Ray adopts three different kinds of
foraging strategies as Chain foraging, cyclone foraging, and somersault
foraging to reach food sources, which are planktons. In the Chain
foraging strategy, more than 50 Manta Rays are involved and form a
foraging chain by line up one after another. Manta Rays adopt cyclone
foraging when the food concentration is high and move towards the
food in a spiral-shaped path around it. Somersault foraging is a random
cyclic movement of a Manta Ray around the current best position
to optimize its foraging process. The development of the Attacking
Manta ray foraging optimization algorithm (AMRFO) is based on the
enrichment of energy levels in the foraging strategy of Manta Ray on
exploration and exploitation stages of MRFO (Zhao et al., 2020) taking
inspiration from sailfish optimizer (SFO) (Shadravan et al., 2019).

3.1. A mathematical formulation of AMRFO

AMRFO includes additional adaptive attacking power in different
foraging strategy of Manta Ray, which not only improve the diversity
of the population in the earlier stage but also prevent it to stick at
any local minima or maxima at later stages. In this way, the algorithm
maintains the desired balance between its initial exploration and later
exploitation abilities. In each of the foraging behaviors discussed above
a Manta Ray fish update its position by the current best solution and the
solution in front of it. It has been observed that because of inadequate
energy in the update algorithm of MRFO, it does not maintain the
required diversity of the population to use the search space efficiently
and escape from local minima or maxima once it is stuck there. Thus,
the proposed algorithm includes an additional attacking power 𝐴𝑃 as
given in (14), which updates itself concerning iterations and provides
the required energy to overcome the above problems.

𝐴𝑃 = 𝑃 ⋅
(

1 − 𝑖𝑡𝑟
)30⋅

(

𝑖𝑡𝑟
𝑖𝑡𝑟𝑚𝑎𝑥

)

(14)

𝑖𝑡𝑟𝑚𝑎𝑥 w

7

here 𝑃 is the initial attacking power taken as 3 determined exper-
mentally in this paper and allows 𝐴𝑃 to decrease from 𝑃 = 3 to
𝑃 = 0 when iterations progress. The 𝐴𝑃 triggers the Manta Ray to
perform exploration efficiently in the initial stage of iterations due to
supplementary energy and in later stages, it improves the exploitation
capability to reach global optima. The 𝑖𝑡𝑟𝑎𝑛𝑑𝑖𝑡𝑟𝑚𝑎𝑥 represent the current
and maximum iterations, respectively. The positions of Manta Ray are
updated using the chain, cyclone, and somersault foraging.

3.1.1. Chain foraging
In chain foraging, Manta Rays are in a chain during foraging when

searching the plankton with high concentration. The first Manta Ray
in this chain updates its position concerning the current best position,
whereas the remaining Manta Rays update their position concerning
the current best position as well as the position of the alee Manta Ray.
This can be mathematically expressed with additional attacking power
as

𝑋𝑖 (𝑖𝑡𝑟 + 1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑋𝑖 (𝑖𝑡𝑟) + 𝑟1 ⋅
(

𝑋𝑏𝑒𝑠𝑡 −𝑋𝑖 (𝑖𝑡𝑟)
)

+𝛾 ⋅
(

𝑋𝑏𝑒𝑠𝑡 −𝑋𝑖 (𝑖𝑡𝑟)
)

+ 𝑟2 ⋅ 𝐴𝑃 𝑖 = 1
𝑋𝑖 (𝑖𝑡𝑟) + 𝑟1 ⋅

(

𝑋𝑖−1(𝑖𝑡𝑟) −𝑋𝑖 (𝑖𝑡𝑟)
)

+𝛾 ⋅
(

𝑋𝑏𝑒𝑠𝑡 −𝑋𝑖 (𝑖𝑡𝑟)
)

+ 𝑟2 ⋅ 𝐴𝑃 𝑖 = 2, 3,… , 𝑁𝑃

(15)

where, 𝑋𝑖 (𝑖𝑡𝑟 + 1) and 𝑋𝑖 (𝑖𝑡𝑟) are the next position vector and the
current position vector of 𝑖𝑡ℎ population. 𝑋𝑏𝑒𝑠𝑡 is the current best
position and 𝑋𝑖−1(𝑖𝑡𝑟) is the (𝑖 − 1)𝑡ℎ individual in the population. 𝑟1
is a random vector in the range [0, 1], 𝑟2 is a random number in the
range [0, 1] The parameter 𝛾 is known as weight co-efficient, which is
calculated as

𝛾 = 2𝑟 ⋅
√

|log(𝑟)| (16)

here 𝑟 is taken as a random vector within the range [0, 1].

.1.2. Cyclone foraging
In cyclone foraging the Manta Rays present in a chain follows a

piral path towards the food during foraging. The updating rule for
yclone foraging with supplementary attacking power can be written
s

𝑖 (𝑖𝑡𝑟 + 1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑋𝑏𝑒𝑠𝑡 (𝑖𝑡𝑟) + 𝑟1 ⋅
(

𝑋𝑏𝑒𝑠𝑡 −𝑋𝑖 (𝑖𝑡𝑟)
)

+𝛽 ⋅
(

𝑋𝑏𝑒𝑠𝑡 −𝑋𝑖 (𝑖𝑡𝑟)
)

+ 𝑟2 ⋅ 𝐴𝑃 𝑖 = 1
𝑋𝑏𝑒𝑠𝑡 (𝑖𝑡𝑟) + 𝑟1 ⋅

(

𝑋𝑖−1(𝑖𝑡𝑟) −𝑋𝑖 (𝑖𝑡𝑟)
)

+𝛽 ⋅
(

𝑋𝑏𝑒𝑠𝑡 −𝑋𝑖 (𝑖𝑡𝑟)
)

+ 𝑟2 ⋅ 𝐴𝑃 𝑖 = 2, 3,… , 𝑁𝑃

(17)

here 𝛽 is the weight co-efficient used for controlling the spiral move-
ent and calculated as

= 2𝑒𝑟1
𝑖𝑡𝑟𝑚𝑎𝑥−𝑖𝑡𝑟+1

𝑖𝑡𝑟𝑚𝑎𝑥 ⋅ sin
(

2𝜋𝑟1
)

(18)

here, 𝑟1 is a random number in range [0, 1]. The spiral movement is
xcellent for the exploitation approach, but to overcome the trap in
ocal minima an exploration along with exploitation is required during
terations. This can be achieved by the current position of Manta Ray
long with the randomly chosen Manta ray from a population in spiral
oraging, which can be modeled as:

𝑖 (𝑖𝑡𝑟 + 1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑋𝑟𝑎𝑛𝑑 (𝑖𝑡𝑟) + 𝑟1 ⋅
(

𝑋𝑟𝑎𝑛𝑑 −𝑋𝑖 (𝑖𝑡𝑟)
)

+𝛽 ⋅
(

𝑋𝑟𝑎𝑛𝑑 −𝑋𝑖 (𝑖𝑡𝑟)
)

+ 𝑟2 ⋅ 𝐴𝑃 𝑖 = 1
𝑋𝑟𝑎𝑛𝑑 (𝑖𝑡𝑟) + 𝑟1 ⋅

(

𝑋𝑖−1(𝑖𝑡𝑟) −𝑋𝑖 (𝑖𝑡𝑟)
)

+𝛽 ⋅
(

𝑋𝑟𝑎𝑛𝑑 −𝑋𝑖 (𝑖𝑡𝑟)
)

+ 𝑟2 ⋅ 𝐴𝑃 𝑖 = 2, 3,… , 𝑁𝑃

(19)

here, 𝑋 is any arbitrary random position within the search space.
𝑟𝑎𝑛𝑑
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Fig. 7. Box plot of six unimodal, three multimodal, and three composite functions.
3.1.3. Somersault foraging
In somersault foraging, the best position found so far is considered

nutrient-rich and all the individuals can adapt their position by a
swim around it and somersault to a new location. This helps the
algorithm to discover a new position between the current location and
its symmetrical location around the nutrient rich. Then, the somersault
8

foraging behavior with supplementary power can be expressed as

𝑋𝑖 (𝑖𝑡𝑟 + 1) = 𝑋𝑖 (𝑖𝑡𝑟) + 𝑆 ⋅
(

𝑟1 ⋅𝑋𝑏𝑒𝑠𝑡 − 𝑟3 ⋅𝑋𝑖 (𝑖𝑡𝑟)
)

+ 𝑟2 ⋅ 𝐴𝑃 (20)

where 𝑆 is the Somersault factor indicates the somersault range, 𝑟1 and
𝑟 are the random numbers in the range [0, 1].
3



B. Jena, M.K. Naik, R. Panda et al. Engineering Applications of Artificial Intelligence 103 (2021) 104293

i
𝐷
u
n

4

t
f
O
w
i
f
f
e
p
(
u
b

r
t
B
e
a
(
m
t
a
a
t
t
s

Table 3
𝑝-values of Wilcoxon’s signed-rank test for AMRFO against seven well-known algorithms with 50 independent runs. Counts of (+)/(≈)/(−) represent the number of cases AMRFO
is statistically superior/similar/inferior than/to other algorithms with a level of significance (𝛼 = 0.05).

Test functions AMRFO vs. MRFO AMRFO vs. EO AMRFO vs. HHO AMRFO vs. SFO AMRFO vs. GWO AMRFO vs. PSO AMRFO vs. DE

𝑓1 1.00E+00 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16
𝑓2 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16
𝑓3 1.00E+00 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16
𝑓4 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16
𝑓5 8.88E−16 8.88E−16 2.33E−09 4.62E−14 8.88E−16 8.88E−16 8.88E−16
𝑓6 4.60E−03 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16
𝑓7 7.80E−01 8.88E−16 9.19E−02 4.89E−02 8.88E−16 8.88E−16 8.88E−16
𝑓8 1.00E+00 1.00E+00 1.00E+00 2.33E−10 8.88E−16 8.88E−16 8.88E−16
𝑓9 1.00E+00 8.88E−16 1.00E+00 8.88E−16 8.88E−16 8.88E−16 8.88E−16
𝑓10 1.00E+00 2.50E−01 1.00E+00 9.77E−04 8.88E−16 8.88E−16 8.88E−16
𝑓11 4.60E−03 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16
𝑓12 8.88E−16 5.70E−05 4.60E−03 1.77E−03 8.88E−16 1.97E−11 4.62E−14
𝑓13 7.80E−01 5.76E−01 5.76E−01 5.76E−01 5.76E−01 1.00E+00 4.89E−02
𝑓14 1.00E+00 6.90E−01 8.88E−16 8.88E−16 8.88E−16 8.88E−16 9.77E−04
𝑓15 1.00E+00 1.00E+00 7.11E−15 8.88E−16 8.88E−16 8.88E−16 1.00E+00
𝑓16 1.35E−01 2.26E−02 4.62E−14 8.88E−16 8.88E−16 8.88E−16 1.46E−10
𝑓17 6.54E−02 2.27E−02 8.88E−16 8.88E−16 8.88E−16 8.88E−16 1.95E−03
𝑓18 5.25E−02 3.51E−02 1.18E−12 8.88E−16 4.62E−14 1.83E−08 3.47E−06
𝑓19 2.94E−03 7.66E−07 8.88E−16 8.88E−16 8.88E−16 8.88E−16 6.80E−04
𝑓20 3.51E−02 2.77E−04 8.88E−16 8.88E−16 8.88E−16 8.88E−16 2.86E−01
𝑓21 4.87E−06 2.32E−03 8.88E−16 8.88E−16 8.88E−16 8.88E−16 4.92E−05
𝑓22 1.00E+00 8.88E−16 1.00E+00 8.88E−16 8.88E−16 8.88E−16 8.88E−16
𝑓23 1.00E+00 8.88E−16 5.68E−14 8.88E−16 8.88E−16 8.88E−16 8.88E−16
𝑓24 1.00E+00 8.88E−16 1.00E+00 8.88E−16 8.88E−16 8.88E−16 8.88E−16
𝑓25 4.01E−01 4.89E−02 5.70E−05 8.88E−16 8.88E−16 8.88E−16 7.80E−01
𝑓26 1.00E+00 8.88E−16 1.00E+00 8.88E−16 8.88E−16 8.88E−16 8.88E−16
𝑓27 1.00E+00 8.88E−16 1.00E+00 8.88E−16 8.88E−16 8.88E−16 8.88E−16

Count: (+)/(≈)/(−) 9∕12∕6 22∕2∕3 18∕7∕2 26∕0∕1 26∕0∕1 26∕1∕0 24∕1∕2
w
3.2. Pseudocode of AMRFO algorithm

Let us initialize the size of the population, represents the number of
Manta Ray take part in searching for an optimal solution as 𝑁𝑃 and
ts initial position as 𝑋𝑖, = [𝑥1𝑖 , 𝑥

2
𝑖 ,… , 𝑥𝐷𝑖 ], 𝑤ℎ𝑒𝑟𝑒𝑖 = 1, 2,… , 𝑁𝑃 and

denotes the problem dimension, the boundary of the search space
sing upper bound 𝑋𝑢𝑏 = 255 and lower bound 𝑋𝑙𝑏 = 0, the maximum
umber of iterations as 𝑖𝑡𝑟𝑚𝑎𝑥 and the objective function 𝐹 (𝑋𝑖).

. Performance evaluation of AMRFO algorithm

To evaluate the performance of the proposed AMRFO algorithm,
ests have been carried out by a set of 21 diverse classical benchmark
unctions ((𝑓1 −𝑓21) taken from the literature (Wunnava et al., 2020b).
ut of these 21 benchmark functions, (𝑓1 − 𝑓7) are unimodal functions
ith unique global minima used to validate the exploitative capabil-

ty of the optimization algorithm. Test using multimodal benchmark
unctions (𝑓8 − 𝑓12) with scalable dimension and (𝑓13 − 𝑓21) with a
ixed dimension having many local minima are used to observe how
ffectively to avoid local minima during exploration. As the real-world
roblems have no specific structure, 6 complex composite functions
𝑓22 − 𝑓27) from CEC2014 test suits (Liang et al., 2013) also have been
sed to reveal the performance of the algorithm. The details of the
enchmark functions are given in Appendix.

To validate the efficacy of the proposed algorithm, the performance
esults of AMFRO are compared with well-known nature-inspired op-
imization algorithms such as MRFO (Zhao et al., 2020), EO (Abdel-
asset et al., 2020), HHO (Heidari et al., 2019), SFO (Shadravan
t al., 2019), GWO (Khairuzzaman and Chaudhury, 2017), PSO (Maitra
nd Chatterjee, 2008b) and DE (Sarkar and Das, 2013a). The average
‘Ave’) and standard deviation (‘Std’) values are taken as a quantitative
easure based on 51 independent runs of each benchmark test func-

ion, whereas qualitative measure includes search history, trajectory,
verage fitness history, box plot, convergence curve, and scalability
nalysis. To effectively detect statistical differences between optimiza-
ion algorithms, most used the nonparametric Wilcoxon signed-rank
est at a 5% significance level (𝛼 = 0.05) is also performed. This test

hows how better or inferior an optimization algorithm is compared

9

ith another algorithm using 𝑝 value. A ‘+’ sign represents the proposed
algorithm conquers over the compared algorithm and vice versa for the
‘−’ sign. Another nonparametric test is known as Friedman’s mean rank
also used to rank the algorithm by observing its average performance in
all benchmark test functions. Rank 1 is allotted to the best-performing
algorithm.

The population size (𝑁𝑃 ) and maximum number of iterations
(𝑖𝑡𝑟𝑚𝑎𝑥) for all considered optimization algorithms are taken as 30 and
500, respectively. As the initial parameter setting of different optimiz-
ers to produce satisfactory results are required, which is presented in
Table 1. All the experiments are done in (MATLAB 2015) environment
in the i3-intel core processor (8th gen.) with a RAM capacity of 8 GB.

4.1. Qualitative analysis of AMRFO

Results suitable for qualitative analysis of AMFRO are shown in
Figs. 2–6. It includes three qualitative metrics of six different test
functions: search history, the trajectory of the first Manta Ray, and
the average fitness value. These clearly show the search pattern of
Manta Ray and in what way a Manta Ray contributes to getting the
optimal solution in the proposed AMRFO. For a better illustration of the
search patterns using the search history, the variations of the positions
(colorful dots) of 𝑁𝑃 Manta Rays throughout iterations are presented
in Fig. 2. It can be observed that initially the Manta Rays explore the
promising area of the 2D search space and start exploiting around the
global optima when iterations increase. The trajectory map of the first
Manta Ray in Fig. 3 shows how the 30 different control variables of
a Manta Ray vector in a 2D space varies in the process phases when
the number of iterations increase. Each line in the figure represents
the trajectory of a control variable from the beginning to the end of
the iteration. In the initial state of the process, the searching process
starts from random locations and the variation of their movement is
high enough to reach most of the promising areas in the search space.
When time progresses, the magnitude of the variation decreases, and
the algorithm makes a transition from exploration state to exploitation
state. Finally, the movement of the first Manta Ray becomes almost

stable, indicating that the algorithm is about to reach the global optima.
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The average fitness value represents the variation of the average fitness
value throughout the optimization process.

Figs. 4, 5 and 6 show the qualitative metrics of unimodal, multi-
modal, and composite test functions, respectively. The second column
of these figures shows the search history of all the Manta Rays in the
population at different steps of the optimization process. The search
history plots in these figures are generated by accumulating the search
locations obtained in different stages as shown in Fig. 2. It can be
observed from the search history that the maximum number of Manta
Rays are concentrated in the desired minima on the contour plot of
𝑓1, 𝑓5, 𝑓11, 𝑓16, 𝑓24 and 𝑓27. From the Trajectory diagram of 𝑓1, 𝑓5, 𝑓11
nd 𝑓16, it is visible that in the initial state of the iteration, the curve
elates to the position of first Manta Ray oscillates due to performing
xplorations and later converges to an optimal location. Due to the
ore complex behavior of composite functions 𝑓24, and 𝑓27, the tra-

jectory diagram includes more fluctuation in early states of iterations
and then converges. To observe the collaborative behavior of Manta
Rays, the average fitness history of different test functions over 500
iterations is presented in the fourth column. The decreasing graph in
all the considered cases shows that, all the Manta Ray participated in
 m

10
the foraging simultaneously updated their current position by moving
to a better location.

4.2. AMRFO performance on benchmark functions

The statistical results of classical unimodal functions (𝑓1 − 𝑓7),
ultimodal functions of scalable and fixed dimensions (𝑓8 − 𝑓21) and

omposite functions of modern CEC 2014 test suits (𝑓22 − 𝑓27) along
ith the result of Friedman’s mean rank test are presented in Table 2.
he best values in the table for every benchmark function are high-

ighted in bold font. It can be observed from the Friedman test that,
MRFO was placed in Rank 1 among all other well-known algorithms.
ven though AMRFO lags from another optimization algorithm in test
unctions 𝑓2, 𝑓4, 𝑓12, 𝑓13, 𝑓14, and 𝑓16, it dominates the others in most
ases. Compared with MRFO, AMRFO outperforms more than half of
he test functions used for performance evaluation. It can also be seen
hat none of the compared algorithms including MRFO could find the
lobal optima for 𝑓5, but the solution ability of AMRFO is much better
han others. AMRFO proofs its exploitation capability by outperforming
ost of the unimodal functions. To validate the exploration ability
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Fig. 8. Convergence curve of six unimodal, three multimodal and three composite functions.
Fig. 9. Scalability results comparison of AMRFO to other well-known algorithms of classical test functions.
of the proposed AMRFO, the results of multimodal functions having
multiple minima must be taken into consideration. The recorded result
under this multimodal category shows that AMRFO is superior on
𝑓11, 𝑓17, 𝑓18, 𝑓19, 𝑓20, and 𝑓21 whereas comparable results on 𝑓14 and 𝑓16
with DE and EO, respectively. PSO and HHO dominates all methods in
𝑓12 and 𝑓13 solution respectively by its superior performance. However,
the exploration capability of AMFRO is satisfactory as compared to
others. Results of composite functions show that AMFRO can be applied
to solve real-world complex problems. A pictorial representation of the
results of 12 benchmark test functions collected from 51 independent
runs of each algorithm is presented as a Box plot in Fig. 7. Boxplot
(Williamson et al., 1989) is a standard way to view the distribution
of data based on minimum, first quartile, median, third quartile, and
11
maximum values. It can say, how well the data is lumped together.
It can be observed from the boxplots that, the first quartile and third
quartile which are 25th and 75th percentile of AMRFO samples de-
creased towards the lowest solution within a narrow interquartile range
for all most all the test functions. The performance of AMRFO is thus
satisfactory in comparison with other methods.

For further analysis of the performance of AMRFO, 𝑝-value of the
non-parametric Wilcoxon signed-rank test at a 95% significance level
of all test functions are listed in Table 3. The 𝑝-values less than 0.05
are considered as a win (+ sign) of the proposed method against the
compared algorithms. A loss (− sign) of the proposed method repre-
sented by 𝑝-values scored more than 0.05, 𝑝-values equal to 1 denote
that proposed and compared algorithms have identical performance
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Fig. 10. Flow chart of Maximum 3D Tsallis based multilevel thresholding using AMRFO.
g

nd marked as similar (≈ sign). From the last row of Table 3, it can
e observed that the proposed method scored more ‘+’ signs against all
lgorithms. Therefore, AMRFO performance can be considered superior
ompared to seven algorithms in the Wilcoxon signed-rank test.

Convergence curves of the different algorithms for 12 benchmark
est functions of different categories are shown in Fig. 8. The curve
epicts the best fitness obtained by an algorithm so far vs iterations.
ased on convergence capability, AMRFO dominates all algorithms for
est functions 𝑓5, 𝑓6, 𝑓7, 𝑓1, 𝑓17, and 𝑓21. From the convergence curves of

composite functions 𝑓23 and 𝑓27 given in the figure, it is can be observed
that, AMRFO has the same converging rate as most of the well-known
 c

12
algorithms. Overall, AMRFO can be declared as a suitable algorithm for
optimization problems.

To show how robust is the proposed AMRFO algorithm for a low to
a high dimensional problem, the scalability test is also performed, and
the results are depicted in Fig. 9. The dimensions are taken as 𝐷 = 10,
30, 50, 100, and 300 with a population size of 30 for the scalability
test. Like other qualitative analyses, here also the proposed algorithm
compared with well-known algorithms with 12 classical benchmark
test functions. The AMRFO beat the 7 compared algorithms for the
test functions 𝑓1, 𝑓3, 𝑓7, 𝑓8, 𝑓9, and 𝑓10 in the scalability test, whereas
ives satisfactory performance for test functions 𝑓3, 𝑓5 and 𝑓6 by lagging

losely from its competitor.
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Table 4
Performance measures.

Performance
Measure

Formulation Description Reference

Peak Signal to Noise
Ratio (𝑃𝑆𝑁𝑅)

𝑃𝑆𝑁𝑅 (𝑑𝐵) = 10 log 10
(

2552

𝑀𝑆𝐸

)

where Mean
Square Error (MSE) for an 𝑀 ×𝑁 is defined
as

𝑀𝑆𝐸 = 1
𝑀 ×𝑁

𝑀−1
∑

𝑖=0

𝑁−1
∑

𝑗=0
(𝑋𝑖,𝑗–𝑋̂𝑖,𝑗 )2 where,

𝑋𝑖,𝑗 represents the reference image and 𝑋̂𝑖,𝑗
is the test image.

PSNR is the most common measure for
computing the quality of any test image
concerning a reference image. For an 8-bit
image, it is the ratio between maximum
power (2552) and the Mean square error
value between two images. Higher the
PSNR value represents better the quality of
the test image.

Agrawal et al.
(2013)

Feature Similarity
Index (𝐹𝑆𝐼𝑀)

𝐹𝑆𝐼𝑀 =
∑

𝑥∈𝛺 𝑆𝐿 (𝑥).𝑃𝐶𝑚 (𝑥)
∑

𝑥∈𝛺 𝑃𝐶𝑚 (𝑥)
where, 𝑃𝐶𝑚 (𝑥) is

the maximum of the Phase Congruency map
between test and reference image.
𝑆𝐿 (𝑥) . Is the product of similarity measure
of Gradient Magnitude map and Phase
Congruency map.

FSIM evaluates the importance of the local
structure between the reference and test
image. The maximum FSIM value that can
be attended is 1.

Lin Zhang
(2011)

Performance
Measures Structural
Similarity Index
Measure (𝑆𝑆𝐼𝑀)

𝑆𝑆𝐼𝑀 = (2𝜇𝑋𝜇𝑋̂+𝐶1 )(2𝜎𝑋𝑋̂+𝐶2 )
(𝜇2

𝑋+𝜇2
𝑋̂
+𝐶1 )(𝜎2

𝑋+𝜎2
𝑋̂
+𝐶2 )

where, 𝜇 and 𝜎

are mean and standard deviation,
respectively. 𝐶 is the contrast comparison

The structural similarity measure is a
function of luminance comparison, contrast
comparison, and structure comparison of
test and reference image. The closer the
value of SSIM to 1 represents better the
segmentation result

Daoud et al.
(2017)
Table 5
Comparison of different optimization algorithms (Computed over 100 test images from AANLIB MR image dataset) for threshold level (𝐾) = 2, 3, 4, and
5 using average fitness values and standard deviations.
𝐾 Algorithm 3D Tsallis (3DTE) 2D Tsallis (2DTE) 1D Tsallis (1DTE)

𝑓𝐴𝑣𝑔 𝑠𝑡𝑑 𝑓𝐴𝑣𝑔 𝑠𝑡𝑑 𝑓𝐴𝑣𝑔 𝑠𝑡𝑑

2

AMFRO 4.75E+09 1.89471E+09 2.63E+08 1.25743E+06 2.29E+04 2.00702E+03
MFRO 4.75E+09 1.94960E+09 2.63E+08 1.25743E+06 2.29E+04 2.00702E+03
EO 4.74E+09 1.95149E+09 2.63E+08 1.05037E+08 2.29E+04 2.00702E+03
HHO 4.75E+09 1.95149E+09 2.63E+08 9.84830E+07 2.29E+04 2.00702E+03
SFO 4.71E+09 1.95228E+09 2.63E+08 1.05090E+08 2.29E+04 2.00702E+03
GWO 4.01E+09 2.21746E+09 2.57E+08 1.05233E+08 2.29E+04 2.00702E+03
PSO 4.47E+09 1.96041E+09 2.63E+08 1.05098E+08 2.29E+04 2.00702E+03
DE 4.38E+09 2.02091E+09 2.62E+08 1.05118E+08 2.29E+04 2.00702E+03

3

AMFRO 2.33E+12 7.39416E+11 4.91E+10 1.01678E+08 2.34E+05 2.58689E+04
MFRO 2.28E+12 1.05574E+12 4.91E+10 1.01678E+08 2.34E+05 2.59010E+04
EO 2.22E+12 1.06289E+12 4.90E+10 2.46997E+10 2.34E+05 2.59010E+04
HHO 2.23E+12 1.05805E+12 4.91E+10 2.26168E+10 2.34E+05 2.59010E+04
SFO 2.20E+12 1.06289E+12 4.88E+10 2.49953E+10 2.34E+05 2.59010E+04
GWO 1.57E+12 1.31132E+12 4.55E+10 2.50557E+10 2.34E+05 2.60014E+04
PSO 2.07E+12 1.06318E+12 4.62E+10 2.50020E+10 2.34E+05 2.59010E+04
DE 1.88E+12 1.11101E+12 4.60E+10 2.50493E+10 2.34E+05 2.59010E+04

4

AMFRO 7.56E+14 1.87838E+14 6.39E+12 5.75822E+09 1.87E+06 2.33885E+05
MFRO 7.36E+14 3.15858E+14 6.38E+12 5.75822E+09 1.87E+06 2.36600E+05
EO 6.00E+14 3.30822E+14 6.35E+12 3.52280E+12 1.87E+06 2.38679E+05
HHO 6.98E+14 3.15858E+14 6.35E+12 2.79056E+12 1.87E+06 2.38555E+05
SFO 5.45E+14 3.79241E+14 6.29E+12 3.91770E+12 1.87E+06 2.38691E+05
GWO 3.32E+14 4.60855E+14 4.36E+12 3.93841E+12 1.84E+06 2.39196E+05
PSO 5.33E+14 4.26655E+14 5.58E+12 3.92754E+12 1.87E+06 2.38806E+05
DE 4.73E+14 4.59551E+14 4.49E+12 3.93614E+12 1.86E+06 2.39196E+05

5

AMFRO 1.76E+17 5.56645E+16 6.03E+14 1.89100E+11 1.25E+07 1.82325E+06
MFRO 1.64E+17 5.56645E+16 6.03E+14 1.89100E+11 1.25E+07 1.82325E+06
EO 1.59E+17 8.66729E+16 5.91E+14 3.40410E+14 1.25E+07 1.88253E+06
HHO 1.62E+17 6.36216E+16 5.94E+14 2.98182E+14 1.25E+07 1.88087E+06
SFO 1.06E+17 1.04646E+17 5.83E+14 4.27392E+14 1.25E+07 1.88321E+06
GWO 8.09E+16 1.25286E+17 3.14E+14 4.30142E+14 1.19E+07 1.93714E+06
PSO 1.05E+17 1.06276E+17 4.31E+14 4.28881E+14 1.21E+07 1.88387E+06
DE 8.20E+16 1.09035E+17 3.59E+14 4.28980E+14 1.21E+07 1.88426E+06
m
w
v
r

5. A framework of the proposed 3D Tsallis entropy-based multi-
level thresholding using AMRFO

In this section, we introduce the maximum 3D Tsallis entropy-based
multilevel thresholding using the AMRFO algorithm to decompose the
test images into 𝐾+1 distinct regions with the help of 𝐾 optimal thresh-
ld values. As discussed in Section 2, 3D Tsallis entropy is used as an
bjective function to generate the optimal threshold matrix in terms of
riple vector (𝑠, 𝑡, 𝑟), which represents the threshold values correspond
o the intensity of original, mean, and median images, respectively. The
13
ean and median images are generated by considering intensity values
ithin the 3 × 3 region around a pixel. In multilevel thresholding, each
ariable in the matrix represents a threshold vector containing a set of
eal numbers of [0, 𝐿−1], where 𝐿−1 represents the maximum possible

intensity value, which is further rounded off to the nearest integer. The
threshold vectors 𝑠, 𝑡, and 𝑟 for which the objective function attained
the maximum values are referred to as optimal threshold vectors. The
procedure of obtaining optimal threshold values by maximizing the
3D Tsallis entropy is an optimization problem, which can be done

effectively with the help of a suitable optimization algorithm.
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Table 6
Comparison of different optimization algorithms (Computed over 100 test images from AANLIB MR image dataset) for threshold level (𝐾) = 2, 3, 4, and 5 using average PSNR,
SIM, and SSIM values.
𝐾 Algorithm 3D Tsallis (3DTE) 2D Tsallis (2DTE) 1D Tsallis (1DTE)

𝑃𝑆𝑁𝑅𝐴𝑣𝑔 𝐹𝑆𝐼𝑀𝐴𝑣𝑔 𝑆𝑆𝐼𝑀𝐴𝑣𝑔 𝑃𝑆𝑁𝑅𝐴𝑣𝑔 𝐹𝑆𝐼𝑀𝐴𝑣𝑔 𝑆𝑆𝐼𝑀𝐴𝑣𝑔 𝑃𝑆𝑁𝑅𝐴𝑣𝑔 𝐹𝑆𝐼𝑀𝐴𝑣𝑔 𝑆𝑆𝐼𝑀𝐴𝑣𝑔

2

AMFRO 23.0882 0.7087 0.4069 22.8061 0.6982 0.3718 19.2997 0.6268 0.3000
MFRO 23.0249 0.7061 0.4068 22.6209 0.6843 0.3602 19.2732 0.6268 0.2956
EO 22.8830 0.7060 0.4041 21.9301 0.6839 0.3600 19.2526 0.6265 0.2950
HHO 23.0249 0.7061 0.4068 21.9311 0.6842 0.3602 19.2628 0.6265 0.2950
SFO 22.8515 0.7039 0.4029 21.9233 0.6834 0.3595 19.2365 0.6261 0.2948
GWO 21.8983 0.6906 0.3900 21.7401 0.6812 0.3558 19.2223 0.6249 0.2947
PSO 22.6637 0.7013 0.3979 21.9028 0.6834 0.3561 19.2366 0.6256 0.2948
DE 22.2755 0.7008 0.3954 21.7534 0.6830 0.3560 19.2314 0.6251 0.2948

3

AMFRO 26.2380 0.7993 0.5596 26.1134 0.7797 0.5271 24.2047 0.7378 0.4364
MFRO 26.1134 0.7977 0.5577 25.7056 0.7777 0.5144 24.1524 0.7378 0.4328
EO 25.9781 0.7962 0.5474 25.5459 0.7768 0.5009 24.0885 0.7364 0.4274
HHO 26.0388 0.7977 0.5532 25.5787 0.7775 0.5096 24.1327 0.7377 0.4309
SFO 25.87237 0.7939 0.5356 25.442 0.7766 0.5004 24.0885 0.7360 0.4252
GWO 25.601 0.7838 0.5315 25.0726 0.7706 0.4815 23.8123 0.7285 0.4159
PSO 25.8470 0.7918 0.5338 25.2894 0.7745 0.4991 24.0461 0.7357 0.4226
DE 25.7867 0.7892 0.5319 25.2267 0.7710 0.4883 24.0049 0.7341 0.4220

4

AMFRO 28.2866 0.8493 0.7060 28.0211 0.8397 0.6655 26.6743 0.8063 0.5729
MFRO 27.9708 0.8455 0.6860 27.8096 0.8395 0.6395 26.6743 0.806 0.5719
EO 27.8384 0.8416 0.6339 27.7522 0.8357 0.6227 26.5527 0.8014 0.5527
HHO 27.9156 0.8431 0.6513 27.7579 0.8380 0.6259 26.6362 0.8031 0.5556
SFO 27.8384 0.8395 0.6336 27.5132 0.8300 0.6192 26.5225 0.8010 0.5491
GWO 27.5013 0.8384 0.5982 27.3039 0.8271 0.5802 26.4156 0.7954 0.5372
PSO 27.6104 0.8385 0.6243 27.3867 0.8298 0.6043 26.5181 0.8006 0.5469
DE 27.5702 0.8385 0.6003 27.3485 0.8289 0.5802 26.5085 0.8002 0.5468

5

AMFRO 29.8792 0.8858 0.7960 29.6114 0.8809 0.7426 28.4174 0.8483 0.6702
MFRO 29.4214 0.8810 0.7409 29.3456 0.8737 0.7402 28.2790 0.8475 0.6512
EO 29.3257 0.8764 0.7393 29.2131 0.8714 0.7101 28.1821 0.8458 0.6507
HHO 29.4195 0.8799 0.7394 29.2525 0.8720 0.7183 28.1980 0.8460 0.6510
SFO 29.2305 0.8739 0.7292 29.2034 0.8702 0.6887 28.1642 0.8455 0.6473
GWO 28.8094 0.8722 0.6513 28.6577 0.8618 0.6498 27.9538 0.8395 0.6302
PSO 29.2305 0.8739 0.7207 29.0933 0.8699 0.6809 28.0727 0.8454 0.6395
DE 29.2026 0.8732 0.7034 28.9685 0.8659 0.6663 27.9538 0.8395 0.6331
Table 7
Comparison of optimal threshold values obtained from different algorithms for the test image with identification number 102 from AANlIB MR image datasets.
𝐾 Methods Algorithms

AMRFO MRFO EO HHO SFO GWO PSO DE

2
3D Tsallis 72 112 74 121 74 122 74 120 78 128 78 139 77 139 74 121
2D Tsallis 77 139 78 139 89 164 78 139 77 137 80 129 79 128 89 164
1D Tsallis 88 164 88 166 91 144 89 165 88 164 88 165 89 164 91 144

3
3D Tsallis 48 96 139 55 101 140 57 101 139 58 106 136 62 109 140 63 105 139 59 101 141 70 102 144
2D Tsallis 57 106 157 60 109 157 65 112 156 60 110 157 64 119 161 64 115 162 60 109 156 65 112 156
1D Tsallis 66 126 184 67 125 185 67 126 185 67 126 184 67 127 184 66 126 185 66 126 184 67 126 185

4
3D Tsallis 38 70 105 146 43 80 121 162 52 95 124 153 45 81 116 158 50 93 130 168 53 93 130 166 44 82 123 163 49 88 122 165
2D Tsallis 41 69 121 164 51 94 132 171 48 97 144 192 52 93 131 166 56 98 127 157 56 90 116 145 51 98 146 195 48 97 144 192
1D Tsallis 51 98 146 195 51 99 147 195 41 69 121 164 54 105 151 197 50 99 147 194 53 101 147 194 58 91 121 155 51 98 146 195

5
3D Tsallis 28 65 87 110 144 33 72 97 123 156 36 56 94 125 159 38 71 105 139 174 38 64 107 130 158 44 80 115 146 180 39 72 106 143 180 37 74 101 142 190
2D Tsallis 34 67 104 137 175 47 76 97 121 151 41 65 97 120 148 27 53 78 103 142 48 85 118 145 174 42 85 125 164 204 43 84 124 165 205 41 65 97 120 148
1D Tsallis 34 68 104 142 193 42 83 124 164 204 45 86 133 175 212 34 68 104 142 193 45 89 131 168 206 53 91 121 149 182 53 87 112 138 167 45 86 133 175 212
t
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Fig. 11. Test image with identification number 102 from the AANLIB dataset.

The role of the AMRFO algorithm is to maximize the 3D Tsallis
ntropy efficiently for obtaining these optimal thresholds. The search
or optimal threshold vector started with generating the initial Manta
ay population of the AMRFO algorithm randomly. Each Manta Ray
𝑋 ) in the population denotes a possible solution to a threshold vectors
𝑖

14
set (𝑠𝑖, 𝑡𝑖, 𝑟𝑖). The dimension 𝐾 of each vector is decided upon by
he number of thresholds required to perform multilevel thresholding.
uring the progress of the algorithm, each Manta Ray updates their
osition using the position update rule discussed in Section 3. During
very iteration, the fitness value associated with a new position of
ach Manta Ray compared with the fitness of the best position 𝑋𝑏𝑒𝑠𝑡
btained so far and update the 𝑋𝑏𝑒𝑠𝑡 if possess higher fitness value.
nce the stopping criteria met, the optimal threshold vectors (𝑠∗, 𝑡∗, 𝑟∗)

corresponds to the 𝑋𝑏𝑒𝑠𝑡 is retrieved and the optimal threshold vector
contains K threshold values

[ 𝑠∗1+𝑡
∗
1+𝑟

∗
1

3 ,
𝑠∗2+𝑡

∗
2+𝑟

∗
2

3 ……
𝑠∗𝐾+𝑡∗𝐾+𝑟∗𝐾

3

]

is used
for producing the required thresholded image.

The following reconstruction rule is adopted for the generation of
output thresholded images. For a threshold vector of 𝐾 dimension
[𝑇ℎ1, 𝑇 ℎ2,…… 𝑇ℎ𝐾 ], pixels having intensity values less than or equal
to 𝑇ℎ1 are replaced by the average intensity of all pixels within this
ange. Similarly, pixels intensity values within the range [𝑇ℎ𝑖+1, 𝑇 ℎ𝑖+1]
nd [𝑇ℎ𝐾 + 1, 𝐿 − 1] is assigned a value equal to the average pixels
ntensity values within the respective ranges.

The flow chart of the method is shown in Fig. 10.
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Fig. 12. Convergence plot of various optimization algorithms of the test image with identification number 102 from AANLIB MR image dataset for threshold level (𝐾) = 5.
i

The steps involved in the proposed multilevel thresholding methods
are discussed below:

i Input the image needs to be segmented with a required number of
thresholds as dimension 𝐾 of AMRFO.

ii Set the parameters of AMRFO.
iii Construct the 3D histogram of the image using mean, median and

pixel intensity.
iv Input the 3D histogram data and threshold level into the AMRFO
algorithm for calculation of entropy as the objective function.

v Initialized the position of 𝑁 number of Manta Ray of dimension 𝐷.
vi Run the AMRFO algorithm to maximize the objective function till the
termination criterion does not arrive.

vii Output the desired optimal threshold values.
viii Reconstruct the thresholded image using obtained threshold values.

6. Results and discussions

In this paper, the proposed 3D Tsallis entropy along with 2D and 1D
Tsallis entropy is considered as the fitness function and is maximized
using different optimization algorithms to obtain optimal threshold
values. For our experiments, 100 different test images are selected
from the AANLIB MR image dataset (The Whole Brain Atlas). To
evaluate the efficacy of the proposed AMRFO base multilevel thresh-
olding technique, the experimental results of the proposed method is
compared with other well-known methods suitable for thresholding—
MRFO (Zhao et al., 2020), EO (Faramarzi et al., 2020), HHO (Wunnava
et al., 2020a), SFO (Shadravan et al., 2019), GWO (Khairuzzaman and
Chaudhury, 2017), PSO (Maitra and Chatterjee, 2008b) and DE (Sarkar
and Das, 2013a). Quantitative Performance measures recommended for
evaluation of segmentation results are discussed in Table 4.

During the experiment, the population size, and the number of
iterations for all algorithms are fixed to 30 and 200, respectively. The
Tsallis entropy index 𝛼 is used as a tuning parameter and must be
chosen carefully in the range [0.1−0.3] for better segmentation output.
n this paper, it is set to 0.1 for threshold selection by maximizing
sallis entropy. Proposed 3D Tsallis entropy along with Tsallis entropy
btained from 2D and 1D histograms are used as the fitness func-
ion for threshold selection in three different multilevel thresholding
 o

15
Table A.1
Unimodal test function.

Function 𝐷 Range 𝑓𝑚𝑖𝑛

𝑓1 (𝑋) =
𝑑
∑

𝑖=1
𝑥2𝑖 30 [−100, 100]𝐷 0

𝑓2 (𝑋) =
𝑑
∑

𝑖=1

|

|

𝑥𝑖|| +
𝑑
∏

𝑖=1

|

|

𝑥𝑖|| 30 [−10, 10]𝐷 0

𝑓3 (𝑋) =
𝑑
∑

𝑖=1

( 𝑖
∑

𝑗=1
𝑥𝑗

)2

30 [−100, 100]𝐷 0

𝑓4 (𝑋) = max
𝑖

{

|

|

𝑥𝑖|| , 1 ≤ 𝑖 ≤ 𝑑
}

30 [−100, 100]𝐷 0

𝑓5 (𝑋) =
𝑑−1
∑

𝑖=1

[

100
(

𝑥𝑖+1 − 𝑥2𝑖
)2 +

(

𝑥𝑖 − 1
)2
]

30 [−30, 30]𝐷 0

𝑓6 (𝑋) =
𝑑
∑

𝑖=1

(

⌊𝑥𝑖 + 0.5⌋
)2 30 [−100, 100]𝐷 0

𝑓7 (𝑋) =
𝑑
∑

𝑖=1
𝑖𝑥4𝑖 + 𝑟𝑎𝑛𝑑𝑜𝑚 [0, 1) 30 [−1.28, 1.28]𝐷 0

methods. To show the performance of various thresholding method,
we have used the average fitness value (𝑓𝑎𝑣𝑔) and standard deviation
(𝑠𝑡𝑑) computed from 100 test images. As the 100 test images have
different modalities and features, we obtained a large variation in their
fitness values which makes the standard deviation quite high. For an
instant, let us consider a simple example to illustrate it, with the help
of results obtained from 5 test images having identification numbers
022, 032, 092, 102, and 112. The fitness values associated with these
images are 2.25E+04, 2.45E+04, 2.14E+04, 2.04E+04 and 1.87E+04
respectively for a threshold level 𝐾=2. This gives an average fitness
value of 2.15E+04 and a standard deviation of 2.18E+03. It can be
observed that the fitness value of one image is quite different from the
other, which leads to a large standard deviation. Similarly, the average
fitness value (𝑓𝑎𝑣𝑔) and standard deviation (𝑠𝑡𝑑) of 100 test images
for threshold levels 𝐾 = 2, 3, 4, and 5, which are evaluated using 21
ndependent runs of each image are presented in Table 5.

A higher fitness value with a lower standard deviation of a thresh-
lding method indicates the better one. It is clear from the 1D Tsallis
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Fig. 13. Visual Comparison of Thresholded images obtained from various methods of the test image with identification number 102 from AANLIB MR image dataset for threshold
level (𝐾) = 5.
entropy result, the performance of all search algorithms is almost
similar for the average fitness values. Whereas there is a deviation
in the performance of search algorithms when moving from 1D to
3D Tsallis based Thresholding. There are significant changes in fitness
function for 3D Tsallis for various optimization algorithms at a higher
level of thresholding due to more complexity in threshold selection
from a 3D histogram. Higher fitness value and lower standard devi-
ation for the different threshold level of AMRFO algorithms shows
16
its superiority over compared optimization algorithms. To show the
effectiveness of the 3D Tsallis based technique in multilevel thresh-
olding, average PSNR, FSIM, and SSIM value obtained from different
methods presented in Table 6. Higher the PSNR, FSIM, and SSIM values
indicate better reconstruction of the segmented image from obtained
threshold values. It is clear from the table that, there is a substantial
improvement of PSNR values for 3D Tsallis entropy-based thresholding
at a higher level of thresholding. Two more similarity measures FSIM
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Fig. 13. (continued).
and SSIM also available in the table to support the effectiveness of
the proposed method of thresholding. Higher values of FSIM and SSIM
values indicating better segmentation results are marked with bold font
in the table.

The result analysis is further extended to explore the convergence
rate and visual assessment of the different methods on a test image
17
with identification number 102 from the dataset, which is shown in
Fig. 11. The convergence curves of AMRFO and other optimization
algorithms for threshold level 5 using 3D, 2D, and 1D Tsallis entropy
as fitness function are shown in Fig. 12. It can be observed that for 1D
Tsallis entropy AMRFO, MRFO, HHO, and SFO are performing well. For
2D and 3D Tsallis entropy function, the convergence curve of AMRFO
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Table A.2
Scalable dimension multimodal test function.

Function 𝐷 Range 𝑓𝑚𝑖𝑛

𝑓8 (𝑋) =
𝑑
∑

𝑖=1

[

𝑥2𝑖 − 10 cos
(

2𝜋𝑥𝑖
)

+ 10
]

30 [−5.12, 5.12]𝐷 0

𝑓9 (𝑋) = −20 exp
⎛

⎜

⎜

⎝

−0.2

√

√

√

√
1
𝑑

𝑑
∑

𝑖=1
𝑥2𝑖
⎞

⎟

⎟

⎠

− exp

(

1
𝑑

𝑑
∑

𝑖=1
cos

(

2𝜋𝑥𝑖
)

)

+ 20 + 𝑒 30 [−32, 32]𝐷 0

𝑓10 (𝑋) = 1
4000

𝑑
∑

𝑖=1
𝑥2𝑖 −

𝑑
∏

𝑖=1
cos

(

𝑥𝑖
√

𝑖

)

+ 1 30 [−600, 600]𝐷 0

𝑓11 (𝑋) = 𝜋
𝑑

{

10 sin
(

𝜋𝑦𝑖
)

+
𝑑−1
∑

𝑖=1

(

𝑦𝑖 − 1
)2 [1 + 10 sin 2

(

𝜋𝑦𝑖+1
)]

+
(

𝑦𝑑 − 1
)2
}

+
𝑑
∑

𝑖=1
𝑢
(

𝑥𝑖, 10, 100, 4
)

𝑦𝑖 = 1 +
𝑥𝑖 + 1
4

𝑢
(

𝑥𝑖, 𝑎, 𝑘, 𝑚
)

=

⎧

⎪

⎨

⎪

⎩

𝑘
(

𝑥𝑖 − 𝑎
)𝑚 𝑥𝑖 > 𝑎

0 −𝑎 < 𝑥𝑖 < 𝑎
𝑘
(

−𝑥𝑖 − 𝑎
)𝑚 𝑥𝑖 < −𝑎

30 [−50, 50]𝐷 0

𝑓12 (𝑋) = 0.1

{

sin 2
(

3𝜋𝑥1
)

+
𝑑
∑

𝑖=1

(

𝑥𝑖 − 1
)2 [1 + sin 2

(

3𝜋𝑥𝑖 + 1
)]

+
(

𝑥𝑑 − 1
)2 [1 + sin 2

(

2𝜋𝑥𝑑
)]

}

+
𝑑
∑

𝑖=1
𝑢
(

𝑥𝑖, 5, 100, 4
)

𝑦𝑖 = 1 +
𝑥𝑖 + 1
4

𝑢
(

𝑥𝑖, 𝑎, 𝑘, 𝑚
)

=

⎧

⎪

⎨

⎪

⎩

𝑘
(

𝑥𝑖 − 𝑎
)𝑚 𝑥𝑖 > 𝑎

0 −𝑎 < 𝑥𝑖 < 𝑎
𝑘
(

−𝑥𝑖 − 𝑎
)𝑚 𝑥𝑖 < −𝑎

30 [−50, 50]𝐷 0
Table A.3
Fixed dimension multimodal test function.

Function Range 𝑓𝑚𝑖𝑛

𝑓13 (𝑋) =
11
∑

𝑖=1

[

𝑎𝑖 −
𝑥1

(

𝑏2𝑖 + 𝑏𝑖𝑥2
)

𝑏2𝑖 + 𝑏𝑖𝑥3 + 𝑥4

]2

[−5, 5]4 0.0003075

𝑓14 (𝑋) = 4𝑥21 − 2.1𝑥41 +
1
3
𝑥61 + 𝑥1𝑥2 − 4𝑥22 + 4𝑥42 [−5, 5]2 −1.0316285

𝑓15 (𝑋) =
(

𝑥2 −
5.1
4𝜋2

𝑥21 +
5
𝜋
𝑥1 − 6

)2
+ 10

(

1 − 1
8𝜋

)

cos 𝑥1 + 10 [−5, 10] × [0, 15] 0.398

𝑓16 (𝑋) =
[

1 +
(

𝑥1 + 𝑥2 + 1
)2 ×

(

19 − 14𝑥1 + 3𝑥21 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥22
)

]

×
[

30 +
(

2𝑥1 − 3𝑥2
)2 ×

(

18 − 32𝑥1 + 12𝑥21 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥22
)

]

[−2, 2]2 3

𝑓17 (𝑋) = −
4
∑

𝑖=1
𝑐𝑖 exp

(

−
3
∑

𝑗=1
𝑎𝑖𝑗

(

𝑥𝑗 − 𝑝𝑖𝑗
)2
)

[0, 1]3 −3.86

𝑓18 (𝑋) = −
4
∑

𝑖=1
𝑐𝑖 exp

(

−
6
∑

𝑗=1
𝑎𝑖𝑗

(

𝑥𝑗 − 𝑝𝑖𝑗
)2
)

[0, 1]6 −3.32

𝑓19 (𝑋) = −
5
∑

𝑖=1

[

(

𝑋 − 𝑎𝑖
) (

𝑋 − 𝑎𝑖
)𝑇 + 𝑐𝑖

]−1
[0, 10]4 −10.1532

𝑓20 (𝑋) = −
7
∑

𝑖=1

[

(

𝑋 − 𝑎𝑖
) (

𝑋 − 𝑎𝑖
)𝑇 + 𝑐𝑖

]−1
[0, 10]4 −10.4028

𝑓21 (𝑋) = −
10
∑

𝑖=1

[

(

𝑋 − 𝑎𝑖
) (

𝑋 − 𝑎𝑖
)𝑇 + 𝑐𝑖

]−1
[0, 10]4 −10.5363
dominates all by attending the maximum fitness value in a short time.
The corresponding optimal threshold values are presented in Table 7. It
is observed that there is a significant difference in the threshold value of
AMRFO from others in the 3D Tsallis entropy method of thresholding.
Quantitative analysis is not always preferred to judge the quality of the
segmentation. Thus, sometimes visual assessment of the segmentation
outputs is also considered for quality judgment. Therefore, we have
generated the thresholded images of 100 test images at a different
level of thresholding and investigated them visually. The results of
one of the test images with identification number 102 of the AANLIB
dataset are shown in Fig. 13. It can be observed from the output images
of different methods that the proposed 3D Tsallis based thresholding
output is optimum in quality than others.
18
Table A.4
Composition test function from CEC 2014.

Function Name of the function Range 𝑓𝑚𝑖𝑛
𝑓22 (𝑋) Composition Function 1 (𝑁 = 5) [−100, 100]𝐷 2300
𝑓23 (𝑋) Composition Function 2 (𝑁 = 3) [−100, 100]𝐷 2400
𝑓24 (𝑋) Composition Function 3 (𝑁 = 3) [−100, 100]𝐷 2500
𝑓25 (𝑋) Composition Function 4 (𝑁 = 5) [−100, 100]𝐷 2600
𝑓26 (𝑋) Composition Function 5 (𝑁 = 5) [−100, 100]𝐷 2700
𝑓27 (𝑋) Composition Function 6 (𝑁 = 5) [−100, 100]𝐷 2800
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7. Conclusion

A 3D Tsallis entropy-based multilevel thresholding method using a
new search algorithm called attacking Manta Ray foraging optimization
(AMRFO) is presented. The AMRFO algorithm is found well suited for
optimization, because of its inherent attacking power. This additional
power makes the Manta Ray more attacking in the exploration stage
to avoid the local minima in its path and move towards the optimal
solution. The convergence rate of AMRFO is also quite impressive than
other state-of-the-art algorithms. The performance of AMRFO is explic-
itly shown using benchmark functions. The 3D histogram is constructed
with an average and median value of the neighboring pixel intensity
with the original pixel point. Therefore, the information related to the
spatial distribution of pixel intensity and boundary points is retained.
This helps the 3D histogram-based entropy calculation more appropri-
ate for optimal threshold selection. Nonetheless, the use of the median
makes it more attractive for such applications. The proposed 3D Tsallis
entropy concept may enrich the literature. The statistical comparison
using average fitness functions, PSNR, FSIM, and SSIM presented in
the paper claims the superiority of the proposed method over others.
Wilcoxon’s signed-rank test and Friedman’s mean rank test results
exhibit its enforcement in the subject field. For qualitative analysis, the
segmented output images at different levels of thresholding are also
shown. The proposed method yields better quality outputs because the
3D construction of the histogram retains more edge information. The
work may encourage researchers to explore its capability for solving
the world of engineering problems. Its future application would be the
segmentation of the multi-spectral color images.
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