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Abstract
Multilevel Thresholding (MLT) is a prominent image segmentation research field that can 
effectively handle problems encountered while collecting meaningful information from a 
digital image. Most of the existing entropy-based Multilevel thresholding approaches use 
the logarithmic behaviour of Shannon’s entropy, which does not exist for all possible points 
with appropriate bounded value. To evade this problem, an entropy-based on exponential 
information gain function is introduced as the fitness function in this paper to improve the 
thresholding accuracy. This research also proposes an enhanced Barnacle Mating optimiza-
tion algorithm (EBMO) for obtaining appropriate threshold values by maximising the fitness 
function. The enhancement over basic Barnacle mating optimization is achieved by incorpo-
rating an additional Gaussian mutation strategy and a random flow towards the best solution 
steps with the original algorithm. The involvement of these additional steps helps the algo-
rithm to prevent it to be stagnated at a local minimum by boosting its exploration capability. 
To validate the proposed optimization algorithm, it has been tested with a set of well-known 
benchmark functions and the CEC 2014 test suite. The results obtained in various tests are 
then compared with other standard and state-of-art algorithms with the help of quantitative 
analysis such as average, median, and standard deviation of the fitness values over several 
runs, qualitative analysis, such as search history, trajectory, and average fitness history and 
statistical analysis using Friedman Rank test and found superior to all. A more detailed analy-
sis of the obtained results was also conducted using post hoc Bonferroni–Dunn and Holm test 
to observe how the proposed EBMO algorithm is significantly different from others. A com-
parison of the proposed exponential entropy (EE) based multilevel thresholding using EBMO 
(EBMO-EE) with other optimization algorithms also presented. Various performance meas-
ures such as peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), feature 
similarity index (FSIM), and Uniformity Measures (UM) obtained from different standard 
benchmark images of varying dimension are considered. It has been observed that there is an 
improvement of the thresholding accuracy, using EBMO, about 2% to 4% over others.

Keywords Exponential entropy · Optimal multilevel thresholding · Barnacle mating 
optimization
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1 Introduction

Thresholding is a simple and effective approach for performing image segmentation 
by extracting homogenous sub-regions of the scene under consideration [23]. In a real-
world application, it is used to separate the objects in the scene from the background. 
Based on the number of thresholds used for partitioning an image into various groups, 
thresholding processes are classified into bi-level and multilevel thresholding. In bi-
level thresholding, a single threshold value is required to obtain from the scene which 
can separate the required object from the background. In the multilevel thresholding 
process, two or more threshold values are used to divide the gray level distribution of 
the image in hand into distinct groups and each group is assigned with a single intensity 
value. As in most of the applications, color images are used because of their more infor-
mation content capability, the requirement of thresholding is highly essential in these 
cases to increase the processing speed by performing segmentation before any high-
level processing. For the real-life segmentation applications, the best option is opting 
for multilevel thresholding over bi-level to extract useful information from the scene.

There are several global thresholding approaches available in the literature [5, 10, 
18, 19, 32, 37, 59] to perform the segmentation. Histogram-based thresholding [68, 71] 
gained its popularity because of its simple and efficient way of obtaining the optimal 
threshold from the gray level distribution of the pixels in the image. The most com-
mon histogram-based thresholding methods use a generalization of Shannon entropy 
as the fitness function for threshold calculation such as Kapur’s entropy [35], Renyi’s 
entropy [66], Tsallis’s entropy [3, 47], Cross Entropy [30], and Masi Entropy [73]. The 
segmentation process is then further improved by including the spatial correlation of 
the pixels into consideration with 2D variants of the above entropies calculated from 
a two-dimensional histogram [55, 70]. However, the use of logarithmic gain function 
by most of these entropies suffers from a drawback of undefined gain in information at 
points of highly probable or highly unlikely with appropriate bounded values [58]. For 
example, if the probability ′p′ of an event within the search space is zero, the logarithmic 
entropy E = log2(1/(p = 0)) = ∞ and if the probability ′p′ becomes one the Entropy will 
be E = log2(1/(p = 1)) = 0. In practice the gain in information value from an event must 
be defined within two finite limits irrespective of the chances of occurrence. For exam-
ple, the gain information becomes maximum when all the pixel values are taken into 
consideration irrespective of the image contents. To resolve this issue, an exponential 
entropy (EE) [58] based multilevel thresholding method is proposed in this paper.

In the literature, generally, two types of approaches are available to perform thresh-
olding operations for image segmentation: parametric and non-parametric approaches. 
The parametric approach of thresholding defines each class by estimating the parameters 
of the given probability density process, which is computationally expensive. Whereas 
in non-parametric approaches, the optimal threshold values are selected by optimizing 
a given fitness function such as: between class variance or entropy measures. Though 
the non-parametric approaches are efficient and popular, time complexity becomes high 
when the number of thresholds increases. Therefore Nature-inspired algorithms being 
used for multilevel thresholding operations over the past few decades. In the past few 
years, several metaheuristic algorithms have been proposed by researchers and prove 
their capability by solving complex engineering problems. Table 1 is a quick review of 
the literature on nature-inspired algorithms.

Researchers frequently employ soft computing, a subfield of Artificial Intelligence 
(AI), to address the computational time complexity challenge in multilevel thresholding. 
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Table 1  Brief review of nature-inspired algorithms

Nature-Inspired Algorithm Inspired by / based on

Genetic algorithm (GA) [27] Evolution
Particle swarm optimization (PSO) [15] Intelligent social behaviour of flocks of birds
Differential evolution (DE) [75] Darwin’s theory of evolution
Bacteria foraging optimization (BFO) [12] Escherichia coli bacteria’s communal foraging 

behaviour
Teaching–Learning-Based Optimization (TLBO) 

[64]
the impact of a teacher’s influence on students

Krill herd optimization (KHO) [21] A model of individual krill herding behaviour
Gravitational Search Algorithm (GSA) [65] The law of gravitation and mass interactions.
Cuckoo search algorithm (CS) [22] Some cuckoo species’ obligate brood parasitism, in 

which they deposit their eggs in the nests of other 
kinds of host birds found in various locations

Firefly optimization (FF) [34] Invertebrates such as glowworms and fireflies that 
produce flashing illumination patterns

Grey wolf optimizer (GWO) [49] The natural leadership structure and hunting mecha-
nism of grey wolves

Whale optimization algorithm (WOA) [48] Hunting strategy of humpback whales
Crow search algorithm (CSA) [6] Crows’ intelligence behaviour of storing surplus food 

in hidden places and retrieving it when it is needed
Grasshopper optimization algorithm (GOA) [69] The behaviour of grasshopper swarms in both nymph 

and adulthood stages.
Salp Swarm Algorithm (SS) [50] The swarming behaviour of salps in oceans when 

navigating and hunting
Volleyball Premier League Algorithm (VPL) [52] Volleyball match’s coaching procedure
Emperor penguin optimizer (EPO) [14] Emperor penguins’ communal huddling behaviour to 

survive in water
Squirrel search algorithm (SSA) [31] Dynamic hunting behaviour of southern flying 

squirrels, as well as their efficient gliding mode of 
mobility

History-Based Adaptive Differential Evolution 
with Linear population size reduction algorithm 
(L-SHADE) [61]

An adaptive DE strategy that combines linear popula-
tion size reduction with success-history-based 
parameter adaption.

Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [11]

A second-order approach for iteratively estimating a 
positive definite matrix, specifically a covariance 
matrix on convex-quadratic functions, is closely 
related to the inverse Hessian method.

Harris hawk optimization (HHO) [25] Harris’ hawks’ cooperative behaviour and attacking 
manner

Equilibrium optimization (EO) [16] Models of control volume mass balance used to esti-
mate both dynamic and equilibrium phases

Sailfish optimizer (SFO) [72] Group hunting attack-alternation tactic
Manta-ray foraging optimization (MRFO) [85] Foraging tactics used by manta rays include chain for-

aging, cyclone foraging, and somersault foraging.
Tunicate swarm algorithm (TSA) [36] Trunicates swarm activities and jer propulsion during 

its navigation and foraging phase
Slime mould algorithm (SMA) [41] Imitates slime mould behaviour and morphology 

during foraging
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The metaheuristic algorithms which are successfully applied to the multilevel algorithm 
with different fitness functions are discussed hereafter. In the article [61], the authors maxi-
mized the Otsu’s between class variance [56] with the help of a Genetic algorithm (GA) 
for obtaining optimal thresholds at a different level of thresholding [80]. Particle swarm 
optimization (PSO) is used to obtain the optimal threshold values in the paper [9]. The 
paper shows a clear demonstration of reduction computation time with the use of the meta-
heuristic algorithm. A lip area extraction from the face region with the help of Bacteria 
foraging optimization (BFO) based on thresholding is discussed in the article [8]. The arti-
cle illustrates that employing BFO for lip portion extraction has clinical implications. A 
maximum entropy-based multilevel thresholding approach using an Artificial bee colony 
algorithm is discussed in the paper [29]. The authors of the article used the method on sev-
eral types of benchmark photos and claimed to get near-optimal thresholds in the majority 
of cases with minimal computation time. A 2D histogram and maximum Tsallis entropy-
based multilevel thresholding approach using Differential evolution (DE) algorithm for 
optimizing the fitness function is presented in the paper [70].

To overcome the increase in computational complexity with an increase in the num-
ber of thresholds, the authors of the paper [40] used the Grey wolf optimization algorithm 
and found it computationally efficient over PSO and BFO based approaches. A multilevel 
thresholding approach using Otsu’s between class variance as a fitness function is proposed 
in the paper [63]. The paper used the Firefly algorithm (FFA) to maximize the fitness func-
tion for generating thresholded results. The paper produced convincing thresholded results 
with less computation time. An application of multilevel thresholding in medical image 
analysis is presented in the paper [38]. The paper used real-time MR/CT images for thresh-
olding by maximizing Otsu’s between-class variance and Kapur’s entropy with the help of 
the Crow search algorithm (CSA). The requirement of fewer parameters of CSA makes it 
suitable for the application. In paper [67], a multilevel thresholding strategy based on the 
Harris Hawks Optimization (HHO) algorithm is proposed, using minimum cross-entropy 
as the fitness function. The approach is put to the test on a set of benchmark images, the 
Berkeley segmentation database, and digital mammography images. The HHO algorithm 
is found superior over most of the well-known algorithms in terms of the accuracy of seg-
mentation results. The efficacy of the Equilibrium Optimizer (EO) is explored in the paper 
[2] by applying it to the thresholding of images at low as well as the high level of thresh-
olding. The results of the approach show a significant improvement of EO based methods 
over other state-of-art methods. The L-SHADE technique is used to find the best set of 
threshold values for separating clusters of pixels in the article [26]. The thresholded images 
were found impressive and the authors claimed that they can be used for practical applica-
tions. A basic version of the algorithm isn’t always ideal for all kinds of problems. There-
fore, along with these original algorithms, some of their hybrid and improved versions 
have also been developed by many researchers. Few of them are also applied to multilevel 
thresholding a problem with a significant improvement over the original version.

In Modified discrete grey wolf optimizer (MDGWO) [40], the authors discretize the 
grey wolf optimizer (GWO) before providing a unique attack strategy that replaces the 
original algorithm’s search formula for an optimal solution with the weight coefficient. The 
algorithm performed produced better segmentation accuracy using the multilevel thresh-
olding approach. An improved grey wolf optimizer is presented in the article (IGWO) [46] 
by integrating differential evolution (DE) strategy with GWO algorithm and Otsu algo-
rithm. The experimental results show a complete dominance of the improved version over 
the original version of GWO. The HHO algorithm is also modified to a leader Harris hawks 
optimization (LHHO) [55]. The goal of this study was to improve exploration competence 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Multimedia Tools and Applications 

1 3

by using an adaptive perching method throughout the exploration phase, as well as a muta-
tion stage with the leader Harris hawk in each generation. The paper used 2D as well as 
1D Masi entropy for generating thresholded images. By integrating adaptive dispersion 
decision-making for weaker search agents, the authors of the paper [83] introduced an 
adaptive equilibrium optimizer (AEO). Before applying AEO to the multilevel threshold-
ing task, it has been tested over several benchmark functions and found superior over the 
basic EO algorithm. A brain image analysis using hybrid adaptive cuckoo search-squirrel 
search algorithm (ACS-SS) based multilevel thresholding is presented in the paper [4]. 
The authors hybridized the searching pattern of adaptive cuckoo search algorithm (ACS) 
[53] with Squirrel search algorithm (SSA) for maximizing the edge magnitude information 
derived from gray-level co-occurrence matrix (GLCM) [60]. The paper shows a signifi-
cant improvement in the thresholding accuracy of hybridized method over basic ACS and 
SSA. A new color image segmentation using modified grasshopper algorithm (MGA) [43] 
based multilevel thresholding is proposed by the authors recently. The authors modified the 
exploration skill of the GOA algorithm by incorporating the Levy flight algorithm with it. 
The modification of GOA algorithm was found significantly different concerning segmen-
tation performance over GOA.

In the Improved cuckoo search algorithm (ICS) [77], the authors used the fitness 
value of each iteration for selecting the adaptive step size without using Levy flight. 
The technique not only reduces the computation time but also improve the performance 
of the algorithm. Multilevel thresholding of breast thermal images is presented in the 
paper [62] using improved particle swarm optimization (IPSO). The authors of this 
paper used PSO algorithm with a modified updating rule for velocity which shows an 
improvement of thresholding accuracy over traditional PSO. Learning enthusiasm-based 
teaching–learning-based optimization (LebTLBO) [74] mimics the behaviours of the 
teaching and learning process in a classroom and calculates the likelihood of the learner 
(student) receiving the quantity of knowledge desired from the educator. The algo-
rithm was also used by the authors for segmentation of the image and found a suitable 
method when combine with Kapur’s and Tsallis entropy. A Hybrid differential evolution 
(HDE) for multilevel thresholding is introduced in the article [51]. The hybridization 
is accomplished by incorporating a Cuckoo Search-inspired reset mechanism into the 
differential evolution evolutionary cycle. The paper’s findings demonstrate the superior-
ity of hybridization in thresholding over basic algorithm-based approaches such as DE. 
The authors of the paper [78] proposed a Hybrid gravitational search algorithm with 
a genetic algorithm (HGSA-GA). The paper rescued the chances of early convergence 
of GSA algorithm by adapting the roulette selection and discrete mutation operators 
of GA. The improvement in population diversity achieved by this hybridization helps 
the algorithm to improve the performance in multilevel thresholding. The authors of 
the Emperor penguin and Salp swarm algorithm (ESA) [13] introduced a novel hybrid 
algorithm that mimicked the emperor penguin optimizer and salp swarm algorithm’s 
huddling and swarm tendencies. The algorithm was tested over 53 benchmark func-
tions and found superior over SS and EPO algorithms. In Improved volleyball premier 
league algorithm (IVPA) [1] the authors used the WOA algorithm’s searching pattern 
for improvement of exploration skill of VPL algorithm before applying it to multilevel 
thresholding problem. The IVPA algorithm produced high-quality thresholded results 
when tested with standard as well as medical images. However, the role of optimiza-
tion in the field of digital image processing is not limited to thresholding. Nowadays, 
optimization algorithms are being used widely in image analysis and computer vision 
applications. To recognize gestures in the Human-computer interaction domain, a crow 
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search-based convolution neural networks model is presented in the article [20]. In arti-
cle [79], the authors applied the Antlion optimization (ALO) algorithm in the Deep neu-
ral network (DNN) model to assure optimal hyper-parameter selection for the categori-
zation of a multimodal stroke dataset that is unbalanced in a short amount of time.

Barnacle Mating optimization [76] is one of the recently developed evolutionary 
algorithms based on the mating behaviour of barnacles in nature for solving numerical 
optimization problems. Barnacles are famous for their unique long penises, which are 
nearly seven to eight times their body sizes. The unique mating process using the vari-
able penises length with its neighbours makes it different from other species on the earth. 
BMO’s notable performance in comparison to other well-known optimization algorithms 
draws our attention to investigate its strength and weakness. According to the No Free 
Lunch (NFL) [82] theorem, which stated that performance of any optimization algorithm 
may not be found satisfactory for all types of optimization-related issues. Therefore, 
the possibility of upgrading search ability towards the optimal result of any algorithm 
is always available. After an in-depth investigation of the BMO, it has been observed 
that the existing mutation strategy makes the algorithm exploration capability limited 
and fails to reach an optimal solution in some of the cases during tests with different 
types of problems. To enhance the exploration for improving the searching efficiency 
two additional steps: a Gaussian mutation [7] and a random movement towards the best 
solution [55], are included with BMO. The supplement of these new strategies leads to 
the development of the proposed Enhanced Barnacle Mating Optimization (EBMO). To 
validate the search capability of the proposed EBMO, it has been tested with a set of 
classical benchmark functions and IEEE CEC 2014 test suite. The comparison of EBMO 
with BMO and other state-of-the-art algorithms such as MRFO, SMA, EO, HHO, SSA, 
L-SHADE, TSA, and CMA-ES through various analyses have been carried out and the 
overall performance of EBMO is found better than all. To analyse the performance of 
EBMO in multilevel thresholding application, it also has been tested with low dimen-
sional standard colour images and high dimensional multispectral images collected from 
Landsat image gallery [39] by maximizing the exponential entropy. The performance of 
proposed exponential entropy (EE) based multilevel thresholding using EBMO (EBMO-
EE) is compared with the above optimization algorithm and found superior to all.

The highlights of this work are as follows:

 I. An Enhanced Barnacle Mating optimization (EBMO) algorithm is proposed by includ-
ing an exploration boosting mechanism with the help of Gaussian mutation and random 
movement towards the best strategies. The EBMO’s overall advantage is demonstrated 
by a quantitative and qualitative study of the test results across a set of classical bench-
mark functions and the IEEE CEC 2014 test suite. A probabilistic entropy of exponen-
tial gain function has been used to the multilevel thresholding problem

 II. The concept of Exponential entropy-based thresholding is extended to multilevel 
thresholding by proposing an exponential entropy-based multilevel thresholding 
approach using EBMO(EBMO-EE).

 III. using standard colour images and high dimensional images of Landsat datasets. The 
comparative results reveal that EBMO outperforms other state-of-the-art algorithms.

The remaining part of this article is as follows. A brief review of Exponential entropy 
and Barnacle Mating Optimization algorithm is presented in Section 2. An extension of 
exponential entropy for multilevel thresholding is discussed in Section 3. Section 4 deals 
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with the proposed Enhanced Barnacle Mating optimization algorithm concept and its per-
formance evaluation on benchmark functions. An exponential entropy-based multilevel 
thresholding is presented in Section 5. The experimental results and discussions of the pro-
posed multilevel thresholding are presented in Section 6. Finally, in Section 7, the paper 
came to a close with a closing remark.

2  Preliminaries

2.1  Exponential entropy (EE)

Unlike the logarithmic behaviour of Shannon’s entropy, the information gain function used 
here is exponential. The exponential gain function makes it possible to be defined at all 
possible points with a bounded value. For the case of highly probable or highly unlike 
event having probability ′p′, the logarithmic gain function log(1 − p) produces a value that 
is not within the desired limit. To circumvent this issue, the gain function used here is an 
exponential function of (1 − p) and the entropy derived from this concept of a n-state sys-
tem is defined as

where pi is the probability of occurrence of ith (event).
The desirable properties [58] which make it suitable for segmentation applications are:

 i. e(1−pi) can be defined for all possible points in the search space
 ii. lim

pi→0
e(1−pi) = h1 > 0 and finite

 iii. lim
pi→1

e(1−pi) = h2 > 0 and finite
 iv. h1 > h2
 v. e(1−pi) decreases exponentially with an increase in the probability
 vi. HE is continuous over the range of 0 ≤ pi ≤ 1
 vii. Maximum value of HE will be obtained when each event has equal probability.

2.2  Barnacle mating optimization

Barnacles are micro-organisms present on the earth since the time of the Jurassic. 
The unique mating process of these Barnacle for their long penises of variable sizes 
attract the attention of the researcher. Barnacle Mating optimization (BMO) [76] is 
one of the results of their research. In the process of mating with neighbours within 
their penis lengths, the variable penis sizes play a vital role in determining the size 
of the mating group. BMO is an evolutionary algorithm inspired by the mating 
behaviour of these Barnacles. The optimization in BMO is performed through three 
major stages: initialization, selection, and reproduction. The role of each stage is 
discussed below.

In the initialization stage, a population is formed by a random set of barnacles. Each bar-
nacle is a vector and represented by a certain number of control variables depending upon the 
problem at hand. The values of each control variable must lie within the defined upper and 

(1)HE =
∑n

i=1
pie

(1−pi)
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lower bound. In the Selection process, BMO adopted a random selection process for offspring 
generation, but the selection of parents is restricted to the barnacle’s penis’s length ‘pl’. This 
mechanism makes the BMO different from other evolutionary algorithms like GA and DE. 
During the mating process, each barnacle can receive sperms as well as contribute sperms 
to only one barnacle at a time. There is also a possibility of a sperm cast process when the 
selection of parents is done beyond the penis’s length of a barnacle. BMO also has a slightly 
different reproduction strategy than other evolutionary algorithms. As there is no specific 
mathematic formula to derive the reproduction mechanism of barnacle, BMO adopted the 
Hardy–Weinberg principle [9] for the generation of offspring by performing exploitation and 
exploration in two different conditions. The exploitation process begins when the barnacles 
to be meted are within the predefined range of the maximum penis length. The sperm cast 
mechanism in BMO [76] is treated as the exploration process, which is occurred when selec-
tions of barnacles for mating exceed the predefined maximum penis length. At the end of each 
iteration, the best barnacle is identified and the fittest barnacles from parents and offspring are 
selected for the next generation.

3  Exponential entropy for multilevel thresholding

The exponential entropy satisfies all the properties of Shannon’s entropy except the additive 
properties which do not have any remarkable impact on the image [58] because in an image 
the neighbouring pixel values are normally dependent on each other. It is also successfully 
applied to bi-level thresholding for classifying the object in the scenes from the background 
[57, 58]. In this section, the study of the thresholding scheme using exponential entropy is 
extended to multilevel thresholding.

Let’s consider an n-bits image f (x, y) of size M × N.The range of gray level is [0, L − 1], 
where L =  2n − 1. The probability of ith gray level in the image can be expressed as

Where, ni represent the pixels count of ith gray level.
In multilevel thresholding, more than two threshold values are used to divide an image into 

different homogeneous regions used for a certain application. To split the above image into 
k + 1 distinct regions depending on their intensity value, k numbers of thresholds are required 
which may be demonstrated using a basic thresholding rule as given below.

Where ′l′ represents the pixel intensity, g(x, y) indicates the segmented image and Rj indi-
cates the jth distinct regions of g(x, y) including the foreground, background, and intermediates 
sections. {T1, T2……Tk} are the k numbers of selected threshold values used for segmentation. 

(2)pi =
ni

MN
, i ∈ [1, 2, 3,… L − 1]

(3)g(x, y) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

R1 ← l, if 0 ≤ l < T1
R2 ← l, if T1 ≤ l < T2
R3 ← l, if T2 ≤ l < T3

.

.

.

.

Rk+1 ← l, if Tk ≤ l < L − 1
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To obtain these threshold values, it is required to maximize the information content of each 
distinct region. As entropy is nothing but the measure of information content in a source, in 
this work the optimal threshold values are selected by maximizing the exponential entropy cal-
culated from each region. The exponential entropy of background ′H1

E

′ , foreground �Hk+1
E

� and 
jth intermediate region Hj

E
 for multilevel thresholding can be expressed as:

where, ω is the probability of each segmented region and expressed as

The objective function for multilevel thresholding using exponential entropy obtained 
from all regions for getting optimal thresholds {T1

*, T2
*……Tk

*} can be formulated as:

Equation (8) is a maximization problem and can be solved with a suitable optimization 
algorithm to obtain the optimal threshold values.

4  Proposed enhanced barnacle mating optimization (EBMO)

After a detailed study of the Barnacle Mating Optimization (BMO) [76], it has been 
observed that there is a lack of diversity in the population which affects the accuracy of the 
algorithm in reaching the optimal solution. This leads to the development of the Enhanced 
Barnacle Mating Optimization (EBMO) algorithm by enhancing the exploration capability 
of BMO. The proposed EBMO algorithm includes two different strategies to perform this 
task: the first one is the use of Gaussian mutation [7]which allow the Barnacles to explore 
maximum regions in the search space and the second strategy is to follow a random move-
ment approach towards the current best solution [55] which provides desired exploration 
towards the best candidate in each generation. The impact of these double mutation strate-
gies in the algorithm is the fast convergence without being trapped in any local minima.

4.1  Mathematical formulation of EBMO

This section provides a detailed mathematical formation of the proposed EBMO algorithm 
with an additional mutational strategy. The optimization process in EBMO consists of four 
different stages in each generation. After the end of each generation, the newly formed 

(4)H1

E
=
∑T1−1

i=0

pi

�1

e

(

1−
pi

�1

)

(5)Hk+1
E

=
∑L−1

i=Tk

pi

�k+1

e

(

1−
pi

�k+1

)

(6)H
j

E
=
∑Tj−1

i=Tj−1

pi

�j

e

(

1−
pi

�j

)

(7)�1 =
∑T1−1

i=0
pi,�2 =

∑T2−1

i=T1
pi,…�j =

∑Tj−1

i=Tj
pi,… .�k+1 =

∑L−1

i=Tk
pi

(8)
{

T1
∗, T2

∗ …… Tk
∗
}

=
argmax

0 ≤ T1, T2 …Tk ≤ L − 1

(

H1
E
+ H2

E
+ H3

E
+…Hk+1

E

)
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barnacles in the population are sorted according to their fitness value and the barnacle at 
top of the list is identified as the best solution obtained so far. The best solution obtained 
when the termination criteria are met is declared as an optimal solution. The detailed func-
tioning of all stages is given below.

4.1.1  Initialization

Let ′N′ be the number barnacles participated in the mating process for obtaining the optimal 
solution and each barnacle is a ′n′ dimensional control vector, Xi =

[

x1
i
,x2

i
,… xn

i

]

, i = 1, 
2…N. The control variables of each vector must lie between the upper ′ub′ and lower bound 
′lb′ of the problem in hand. The best solution at each generation is represented by Xbest.

4.1.2  Selection process

The proposed EBMO also adopted the same random parents’ selection process as that of 
BMO by considering the barnacle’s penis’s length ′pl′. The barnacles in the populations are 
arranged in a random manner of different groups, one is referred to as ′Dad _ barnacle′ and 
another one is ′Mom _ barnacle′. At one time, each barnacle from a group of ′Mom _ barna-
cle′ can be fertilized by one from ′Dad _ barnacle′.

The above process can be modelled mathematically by arranging the barnacles in the 
population based on their fitness values from best to worst. The barnacle located at the top 
of this list is identified as the best solution obtained so far and named barnacle#1. Similarly, 
barnacle#N represents the worst solution of the population and is placed at the bottom of the 
list. If the maximum penis length of barnacles is ‘plmax

’ times of their body, then a barnacle in 
the list can produce offspring by mating with another barnacle placed at a distance, not more 
than ‘plmax

’ from its location. For example, if ‘plmax
’=7, barnacle#1 can mate with anyone 

from barnacle#2 - barnacle#7. The sperm cast process will be initiated if barnacle#1 selects 
any other barnacle other than above, i.e., barnacle#8 - barnacle#N. Sperm cast processes also 
provide the required exploration for the algorithm. Once the barnacles are ranked as per their 
fitness values, the random selection of parents can be expressed by the following expressions:

4.1.3  Reproduction

Like BMO, the proposed EBMO also adopted Hardy–Weinberg principle [24] to pro-
duce offspring in the first stage of the reproduction process. In the second stage of 
reproduction, the best candidates among the parents and offspring are selected to gener-
ate new offspring using Gaussian mutation and random movement towards the current 
best solution strategies.

Offspring generation based on hardy–Weinberg principle The reproduction process of 
BMO was developed by following the Hardy–Weinberg principle used here for offspring 

(9)Dad_barnacle = randperm (N)

(10)Mom_barnacle = randperm (N)
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generation. When the parent’s barnacles to be mated are within the range of the maximum 
penis length ‘plmax

’ a normal mating process occurred which is referred to as exploitation 
and expressed as

where, p is a random number normally distributed between [0, 1], and xn
i
 represent the nth 

control variable of ith barnacle. From Eq. (11) it can be observed that the newly formed 
offspring inherits the p% behaviour of the Dad _ barnacle and (1 − p)% behaviour of the 
Mom _ barnacle.

If the selected parents are not found suitable because of exceeding the maximum 
penis length ‘plmax

’, the algorithm generates offspring using the sperm cast mechanism as 
modelled below:

where ′rand′ indicates a random number distributed uniformly in the range [0, 1]. Equation 
(12) shows a very simple mating process of offspring generation. This process resembles 
the offspring generation by a Mom _ barnacle by receiving sperms from the water that has 
been released by any random barnacle.

Gaussian mutation and random movement towards best barnacle In EBMO, the 
new mutation strategies are applied to selected barnacles after the completion of a newly 
formed population matrix by BMO in each iteration. After sorting the barnacles in the 
population of ′N′ barnacles according to their fitness value, the best 1

3
rd of the population 

from the top are selected to generate two new offspring groups, each of size N
3
 with the 

help of gaussian mutation and random movement schemes separately. These two new 
offspring groups are then used to replace the remaining 2N

3
 of the population.

The Gaussian Mutation [7]can be performed by applying a Gaussian distribution to a 
barnacle vector Xi in the population, as follows:

where N(0, 1) represent a random vector of gaussian distribution, ′μ′ and ‘σ′ represent its 
mean and standard deviation and Xgm

i
 is the mutated vector. In this work, the mean and 

standard deviation are fixed to 0 and 1 respectively for every generation ′itr′.
The random movement towards the best solution obtained so far concept in [55] also 

attracts our attention toward it which helps the barnacle to explore towards the best solu-
tion. This random movement is expressed mathematically as:

where Xrm
i

 is the newly formed offspring by randomly following the best, Xmean indicates 
the mean of the population at every generation and r1  and r2 are random numbers uni-
formly distributed in the range [0, 1].

(11)x
n_new

i
= p xn

Dad_barnacle
+ (1 − p) xn

Mom_barnacle

(12)x
n_new

i
= rand × xn

Mom_barnacle

(13)X
gm

i
(itr) = Xi(itr).(� + �.N(0, 1)}

)

(14)Xrm
i
(itr) =

(

Xbest(itr) − Xmean(itr)
)

− r1
(

lb + r2(ub − lb)
)
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4.2  Pseudocode of EBMO

4.3  Performance evaluation of EBMO algorithm

To examine the effectiveness of the proposed EBMO, several performance evaluations tests 
have been carried out on a set of 52 well-known benchmark functions including 22 classi-
cal test functions (f1 − f22) [55] and 30 modern test functions (f23 − f52) from CEC 2014 test 
suit [42] as given in Appendix Tables 9, 10 and 11. From the above test functions (f1 − f7) 
having unimodal characteristics with a unique global minimum used to validate the ability 
of exploitation of optimization algorithms. Whereas test functions (f8 − f12) and (f13 − f22) 
are multimodal with scalable and fixed dimensions respectively used to observe exploration 
ability because of the presence of many local minima in it. However, real-world problems 
have no defined shapes or a combination of both unimodal and multimodal functions. The 
composite functions (f23 − f52) of IEEE CEC 2014 test suit mimic above characteristics of 
real-world problems by expanding, shifting, rotating, and hybridizing different types of uni-
modal and multimodal functions. Tests with these functions make an algorithm ready to han-
dle real challenges in the world. The results of the tests are investigated on various qualita-
tive, quantitative, and statistical analyses. A detailed study of search history, the trajectory 
of the first barnacle, average fitness history, optimization history is included in qualitative 
analysis. The quantitative analysis is based on inspecting the median, average, and standard 
deviation values over many independent runs. Whereas Non-parametric tests such as the Wil-
coxon signed-rank test at a significance level of 5% and Friedman mean test along with post 
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hoc statistical analyses using Holm and Bonferroni–Dunn test also conducted to notice the 
substantial deference between EBMO and other algorithms. As some of the algorithms need 
initial parameter settings for their operation, Table 2 shows the setting of these parameters.

To validate the efficacy of the proposed EBMO, the test results obtained from various 
test functions have been compared with various standard and state-of-art techniques such 
as BMO, MRFO, SMA, EO, HHO, SSA, L-SHADE, CMA-ES, and TSA. For all 52 bench-
mark functions, the population size ′N′ and maximum iteration itrmx of EBMO are set to 30 
and 500 respectively which is equivalent to 15,000 function evaluations. To provide a fair 
comparison, the above parameters of BMO, MRFO, SMA, EO, HHO, TSA, and SSA also 
remain the same. As the population size of CMA-ES and L-SHADE are dependent upon 
the number of control variables, the results obtained after 15,000 evaluations have been 
used here for comparison.

4.3.1  Qualitative analysis of EBMO

The efficiency of the proposed EBMO algorithm is demonstrated in Fig. 1 with the help 
of four qualitative metrics: search history, the trajectory of the first barnacle, average fit-
ness history, and optimization history. These metrics are evaluated by solving three clas-
sical (f2, f12 and f17) and three modern complex test functions (f25, f35 and f46) with 15,000 
evaluations to show the searching pattern of barnacles in the search space. Though these 
functions are defined in a high-dimensional space, the 2-dimensional view presented in 
Fig. 1 can provide an overview of the field topology. The search history of the algorithm is 
considered here as the first qualitative metric which comprises the barnacle’s concentration 
from the beginning of the evaluation to the end. It provides a clear understanding of the 
searching pattern followed by the barnacles in each search space. It can be observed from 
the Search history plot that, the barnacles can explore every corner of the search space at 
the beginning and can converge at global minima for classical unimodal or multimodal 
functions. For the complex test functions taken from CEC 2014 test suit in Fig. 1, the bar-
nacles try to reach the global minima by concentrating around it at end of the iteration. 

Table 2  Parameter setting of different Optimization Algorithms

Algorithm Parameter(s) Value

EBMO Maximum penis length (plmax) 7
BMO Maximum penis length (plmax) 7
MRFO Somersault factor (S) 2
SMA elimination-and-dispersal rate(z) 0.03
EO Generation probability (GP) 0.5

Exploration control parameter (a1 and a2) 2 and 1
HHO – –
SSA Gliding constant and Gliding distance (Gc and dg) 1.5 and 0.8

predator probability (Pdp) 0.1
L-SHADE Control parameters (H and p) 6 and 0.11

Arc rate (AR) 2.6
CMA-ES Global step-size (σ) 0.25
TSA Parameter Pmin 1

Parameter Pmax 4

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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Fig. 1  a f2 qualitative result, Fig.  1b f12 qualitative result, Fig.  1c f17 qualitative result, Fig.  1d 
f25(CEC14 − F3) qualitative result, Fig.  1e f35(CEC14 − F13) qualitative result, Fig.  1f f46(CEC14 − F24) 
qualitative result
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Fig. 1  (continued)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



 Multimedia Tools and Applications

1 3

Fig. 1  (continued)
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This behaviour of the algorithms gives a clear demonstration of its exploration as well as 
exploitation ability.

The next qualitative metric for evaluating the performance of the EBMO is the trajec-
tory of the first barnacle for all dimensions. It describes the locations of the first barnacle 
with all its dimension during the progress of the algorithm. It can be visualized from the 
figure that, initially the control variables of the selected classical test functions are scat-
tered in the search space and later it converges toward the optimal solution. The oscilla-
tory behaviour in the beginning stage shows the exploration acquired by the algorithm for 
searching global minima. Unlike classical test functions, the fluctuations are more in most 
of the cases of IEEE CEC 2014 test function due to the presence of a high level of com-
plexity in the initial stage of the iterations.

A cumulative behaviour of all the barnacles that participated in the searching process 
of EBMO to reach the global solution is represented by the Average fitness history. A 
descending curve for average history reveals the collaborative behaviour of all barna-
cles to reach global minima. The last one of the qualitative metrics is the optimiza-
tion history. It tracks the fitness value of the best barnacle during its journey from the 
beginning to the end of the iteration. The behaviour of the optimization history varies 
from problem to problem. For unimodal problems, the curve looks smooth. Whereas for 
multimodal or composite functions, the optimization curve becomes step-like at some 
instant indicating no improvement in fitness value during a specified period due to more 
complexity in the problem.

4.3.2  Performance analysis of EBMO on classical benchmark functions

The statistical results including Median value, Average value, and standard deviation 
over 31 independent runs for various unimodal and multimodal functions are depicted in 
Table 3. it can be observed that EBMO can obtain the global minima in most of the uni-
modal functions. For the function f5 EBMO dominates all other algorithms in its average 
and standard deviation values. In the test function f6 and f7 the result of EBMO was found 
better than BMO.

The exploration ability of an algorithm can be observed by analyzing its behaviour on 
multimodal functions. The performance on multimodal functions of scalable dimension 
(f8 − f12) reveals that EBMO provides the optimal solution for f8, f9 and f10. For functions 
f11, and f12, EBMO outperformed on BMO with a significant difference but lagged from 
others and occupied the 7th and 4th places respectively. It can also be observed from the 
statical result shown in Table 3 that, EBMO can reach close to the global minima in all 
most all multimodal functions with fixed dimension(f13 − f22) and outperformed BMO for 
the test functions f20, f21 and f22.

To observe the convergence property, convergence curves of different algorithms on 
six classical test functions are presented in Fig. 2. The curve shows the best fitness value 
attained by an algorithm versus several iterations. It is clear to observe that EBMO domi-
nates BMO in all cases and is found superior to all for the test functions f1 and f10 for 
its fast convergence rate. EBMO is only lagging from SSA for the test functions f5 and 
f12. For the rest of the functions, the performance of EBMO is very close to the leading 
algorithms. A boxplot is presented in Fig. 3 to realize how the optimal values of differ-
ent benchmark functions are obtained on 31 independent runs of the different algorithms. 
EBMO has proven to be more consistent among other optimization algorithms to achieve 
optimal value.
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Fig. 2  The convergence curves of the six classical test functions (f1, f5, f10, f12, f13 and f22)

Fig. 3  Boxplot of the six classical test functions
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4.3.3  Performance analysis of EBMO on IEEE CEC‑2014 test functions

Table  4 shows a comparison of different optimization algorithms including EBMO on 
IEEE CEC-2014 test suit to explore its complex problem handling capabilities. Out of 30 
complex test functions, EBMO can reach the optimal value for 11 test functions and out-
perform all for f27 and f40. It can also be observed that EBMO surpasses BMO in all most 
all cases. For the test functions f23, f24 and f39, where the complexity level is very high, 
the result of EBMO is competitive to others and secured fifth place. For the remaining 
test functions, EBMO has a very close contest with leading algorithms. The convergence 
performance of various algorithms for 6 different test functions are given in Fig. 3. From 
the convergence curves, it is obvious that the enhancement introduced in BMO helps it to 
improve its convergence rate. Though the convergence rates of EBMO for f23 and f40 are 
lagging from some of the state-of-art methods, its performance is found superior or similar 
for other test functions (Fig. 4). To analyze EBMO consistency and overall performance, 
the results obtained from 31 independent runs were taken for the ANOVA test and the 
results are plotted in terms of the Box plot in Fig. 5. It can be observed that EBMO and 
BMO are consistently better than most of the optimization algorithms except in the func-
tion f48.

4.3.4  Scalability analysis of EBMO

A performance assessment of the proposed EBMO algorithm for low- and high-dimen-
sional problems with the help of scalability analysis is presented in this section. Since opti-
mization problems in the real world often involve many variables, the algorithm is tested 
for 7 different dimensions: d = {10, 20, 40, 60, 100, 200, 400} and the results are plotted in 
Fig. 6. The tests are performed with fixed population size and a maximum iteration count 
of 30 and 500 respectively for the above dimensions. As the requirements of the search 
agents of L-SHADE and CMA-ES algorithms depend upon the dimension size, they are 
not included in this test. The test reveals how effectively the algorithm can work in pro-
portion to the increase in control variables for a given problem, while the population and 
maximum iterations counts are frozen to a particular value. It can be observed from the 
plots that EBMO can provide a consistent outcome in most of the test functions at differ-
ent dimensions without affecting its performance. For the test functions f2, f4, f5, f6and f11, 
EBMO surpasses BMO and for the rest, the performance is almost similar. Overall, the 
steady behaviour of EBMO makes it’s a suitable algorithm to face the challenges of vari-
able dimension size problems.

4.3.5  Statistical analysis of EBMO

This section is included in the performance evaluation to demonstrate the difference between 
EBMO, and another algorithm based on various statistical analyses. At first, the non-paramet-
ric Friedman average rank test is conducted on the results obtained from various test functions. 
For a reliable comparison, the Friedman test required at least 5 different algorithms for more 
than 10 benchmark functions. The performance evaluation study included 10 algorithms in the 
comparative study, and these are applied to 52 different test functions. In this work, the Fried-
man tests have been conducted on three different groups. The first group consist of all classical 
function from f1 to f22, the CEC 2014 benchmark functions f23 − f52 are included in the second 
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Fig. 4  The convergence curves of the six modern test functions from CEC2014 (f23, f27, f32, f40, f44 and f52)

Fig. 5  Boxplot of the six modern test functions from CEC 2014
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group and the third group consists of all 52 test functions. The Friedman mean rank values 
obtained over 31 independent runs on the test functions included in each group are shown in 
Table 5. Based on the Friedman score, EBMO ranks first for Group 1 with a Friedman score of 
3.911. For the second group, EBMO ranks fourth after lagging from SMA, MRFO, and EO. A 
comparison by taking all 52 test functions in the third group also has been done, which shows 
that the overall performance of EBMO is better than all with a Friedman mean rank of 3.864 
and secured the first rank by beating all state-of-the-art methods.

In the second part, a post hoc analysis using the Bonferroni-Dunn test [84] is conducted 
to observe which algorithm’s performance is significantly different from EBMO and which 
are equivalent to it. The test identifies the significant difference between the two algorithms 
by comparing the difference between the average ranks obtained by the method with a criti-
cal value obtained from the method given in [45] for a significance level of 95% (α = 0.05). 
If the difference is more than the critical value, the algorithm’s performance is different sig-
nificantly otherwise marked as similar. To perform the test the proposed EBMO is taken as 
the control algorithm and its performance is compared with the rest of the methods. Figure 7 
displays the average ranks obtained from the three groups of functions defined above. The 
critical values calculated for each group are represented by horizontal lines. The control algo-
rithm EBMO is superior to those algorithms for which the calculated average rank crossed 
these horizontal lines. For Group 1, EBMO was found significantly better than HHO, SSA, 
L-SHADE, and CMA-ES. Similarly, there is a significant difference in the performance of 
EBMO for Group 2 over SSA and L-SHADE. Finally, EBMO was found to significantly out-
perform HHO, SSA, L-SHADE, CMA-ES and TSA when tested on Group 3 functions.

The Bonferroni-Dunn test fails to give a fair decision about the algorithms which ranks are 
close to the critical values. Thus, in the final part of the statistical analysis, a Holm test [28] is 
conducted to identify which algorithms are better than EBMO and which are inferior. Holm’s 
test is one of the widely used multiple test methods based on a sequential rejective process. 
The compared algorithms in this test are first arranged according to their p value in increasing 
order from top to bottom as shown in Tables 6, 7, and 8. Each algorithm is then assigned with 

Fig. 6  Scalability analysis with d = {10, 20, 40, 60, 100, 200, 400}
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an algorithm number ′i′ starting from bottom to top. The test then starts from the most signifi-
cant p value and rejects the defined null hypothesis sequentially if the corresponding p value is 
less than α/i. Once the process encounters a case where the null hypothesis is accepted, it stops 
the process and considers the same for the remaining cases. The results obtained from Group-1 
are presented in Table 6. It can be observed that EBMO performance is significantly better 
than L-SHADE, BMO, MRFO, CMA-ES, EO, TSA and HHO. The Holm test conducted on 
the result of Group-2 functions is depicted in Table 7 and it is found that the proposed EBMO 
performance is statistically like HHO and BMO. Finally, a Holm test is also conducted for 
Group-3 function and the test results are presented in Table 8 show the superiority of EBMO 
result which is significantly different from most of the algorithms except BMO and HHO.

4.3.6  Discussion on results of EBMO

From the various post hoc analysis on the performance of different algorithms on bench-
mark functions, there is a significant improvement of EBMO over almost all algorithms 
including BMO for the set of classical benchmark functions. Though there is no significant 

Fig. 7  Result of Bonferroni–Dunn test for various algorithms and function groups with α = 0.05

Table 6  Holm’s test for group 1 
functions f1 − f22 (EBMO as the 
control algorithm)

The best results are highlighted in bold

EBMO vs. Rank z-value p-value i α/i (0.05)

L-SHADE 3.911 8.96263 1.02E-18 9 0.0055555
BMO 5.599 8.55854 3.04E-17 8 0.00625
MRFO 4.279 5.71985 1.31E-08 7 0.007143
CMA-ES 6.033 5.64047 2.06E-08 6 0.008333
EO 5.605 4.82381 1.57E-06 5 0.01
TSA 5.706 4.45409 8.43E-06 4 0.0125
HHO 6.394 4.44914 9.32E-06 3 0.016667
SSA 5.827 1.40264 0.160953 2 0.025
SMA 5.690 1.10973 0.267311 1 0.05
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difference between the performance of EBMO and BMO on the CEC 2014 benchmark func-
tion, EBMO is capable of dominating BMO by some improvement on achieving the optimal 
result and standing one step ahead on BMO as per the Friedman test. However, the objective 
of enhancement of BMO has been achieved by the supplement of the additional mutation 
strategy from the overall Friedman test score and convergence speed. The scalability test on 
EBMO shows that it has also the capability to handle problems with variable dimensions.

5  The proposed exponential entropy‑based multilevel thresholding 
using EBMO(EBMO‑EE)

In this section, we proposed a multilevel thresholding method for colour images using 
EBMO as the optimization algorithm applied to maximize the exponential entropy dis-
cussed in Section 3. A framework of the multilevel thresholding process of the colour image 
is shown in Fig. 8. Initially, the colour image is divided into three colour channel planes, 
Red, green, and blue: Ic(m, n) ∈ {Ir(m, n), Ig(m, n), Ib(m, n)}. The thresholding algorithm is 
applied to each colour channel independently with the help of an optimization algorithm. To 
obtain k + 1 distinct regions from each channel, each barnacle Xi in the EBMO algorithm is 
represented by a vector having k control variables, where i = 1, 2, 3……N and ‘N’ represent 
the population size. As the objective of the thresholding is to divide the image into a dis-
tinct region without affecting the desired information present in the image, the exponential 

Table 7  Holm’s test for group 2 
functions f23(CEC14 − F1) to f52
(CEC14 − F30) (EBMO as the 
control algorithm)

The best results are highlighted in bold

EBMO vs. Rank z-value p-value i α/i (0.05)

TSA 7.947 7.10843 2.78E-09 9 0.0055555
L-SHADE 7.892 6.00547 2.51E-09 8 0.00625
SSA 8.649 5.89629 4.57E-09 7 0.007143
MRFO 3.927 −3.56759 0.000378 6 0.008333
EO 3.934 −3.55038 0.000403 5 0.01
SMA 3.650 −3.54682 0.000409 4 0.0125
CMA-ES 5.267 −3.49433 0.000497 3 0.016667
HHO 5.216 −1.27719 0.202371 2 0.025
BMO 4.456 0.77374 0.439757 1 0.05

Table 8  Holm’s test for group 3 
functions f1 − f52 (EBMO as the 
control algorithm)

The best results are highlighted in bold

EBMO vs. Rank z-value p-value i α/i (0.05)

L-SHADE 7.027 5.94153 3.13E-09 9 0.0055555
SSA 7.828 5.84532 5.61E-09 8 0.00625
TSA 7.429 5.29713 1.18E-07 7 0.007143
MRFO 3.976 −3.55213 0.00039 6 0.008333
EO 4.517 −3.53499 0.00041 5 0.01
SMA 4.363 −3.53144 0.00042 4 0.0125
CMA-ES 5.535 −3.47917 0.00051 3 0.016667
HHO 5.620 −1.27132 0.20375 2 0.025
BMO 4.840 0.77020 0.44127 1 0.05
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entropy which is the information measure is considered as the fitness function in our pro-
posed method. Meta-heuristic algorithms are used to provide the desired threshold value 
by maximizing the fitness function. Once the thresholding operation is completed for each 
colour channel with the help of k thresholds, the thresholded images of all colour channels 
are then combined to produce the required colour RGB thresholded image:

Each of the colour channels is represented by only Q = k + 1 gray levels. So, the maxi-
mum number of the gray level required to represent the thresholded colour image Tc(m, n) 
becomes  Q3 which is quite less than the original input image.

The different steps involved in the process of proposed EBMO-EE based multilevel thresh-
olding are presented in Fig.  9. The thresholding process started by taking an RGB image as 
input. As an RGB image consists of three different channels (Red, Green, and Blue), the process 
is applied to each plane individually. The gray level distribution of a channel is then calculated in 
the form of a histogram. Once the above information is available, individual barnacle vectors in 
the population and other related parameters of EBMO are initialized from the program’s general 
perspective. The number of thresholds (’k‘) that must be calculated for multilevel thresholding 
is specified as the dimension of each barnacle vector. In the population, each barnacle vector 
provides a collection of thresholds for segmenting the images into k + 1 classes. The information 
content of each barnacle is represented by the exponential entropy associated with the respec-
tive segmented image, which is quantified by the fitness related to each barnacle. The EBMO 
algorithm discussed in Section 4 is now updating the barnacle vectors in the population by its 
updating strategies in each iteration. At the end of the iteration, the EBMO produces the optimal 
threshold vector for the selected channel. The process is repeated for each colour channel.

6  Results and discussions

The performance of the proposed exponential entropy-based multilevel thresholding 
using EBMO (EBMO-EE) is presented in this section. All the simulations are performed 
in MATLAB R2015b supported by Intel Core i3-8th generation 2.3 GHz processor with 

(15)Tc(m, n) =
[

Tr(m, n), Tg(m, n), Tb(m, n)
]

Fig. 8  Framework of proposed EBMO-EE based multilevel thresholding process
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8 GB RAM running on Windows10 environment. Thresholding operations are carried 
out in two different groups of the images as shown in Figs. 10 and 11 with their cor-
responding histogram of RGB colour channels. The first group contains six low-dimen-
sional standard images, while the second group contains six high-dimensional images 
collected using Landsat datasets [39]. The thresholding operation becomes a challeng-
ing task when the number of thresholds is more. This instigates us to use most efficient 
optimizers available so far such as BMO [76], MRFO [85], SMA [54], EO [16], HHO 
[25], SSA [31], CMA-ES [11], L-SHADE [61] and TSA [36] in comparison analysis. 
All the above algorithms are applied to each of the test images 31 times independently 
with a population size of 30 and the number of iterations fixed to 100 to maintain stabil-
ity. For CMA-ES and L-SHADE equivalent number of evaluations has been taken. Low 
dimensional images are thresholded with a threshold dimension of 2, 3, and 4, whereas 
the threshold dimension of 4, 8, and 12 have been selected for high dimensional images 

Fig. 9  Flowchart of EBMO-EE based multilevel thresholding
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in this experimental study. To evaluate the thresholded images obtained from various 
algorithms at a different level of thresholding, four performance measures: peak signal 
to noise ratio (PSNR) [33], Feature Similarity Index Measure (FSIM) [44], Structural 
Similarity Index Measure (SSIM) [81]and Uniformity Measure [17]. have been calcu-
lated and used in a comparative study. A higher value, of PSNR with closer the value of 
FSIM, SSIM, and UM to 1 is required for ideal thresholding.

Like BMO, the performance of EBMO also affected by the penis length plmax of 
the barnacle. The decision ongoing for the exploitation or exploration process com-
pletely depends upon the penis length. As the enhancement version of EBMO not only 
enhances the overall exploration but also explores the points close to the best barnacle, 
a balance of exploration and exploitation must be required for it to reach an optimal 
solution in less time. Different values of plmax have been tested at a different level of 
thresholding on a set of low as well as high dimensional images. The effect of plmax to 
attain the optimal solution of EBMO is shown in Fig. 12 for five different values of pl. 
The best result can be obtained for pl = 20. For this comparison analysis, plmax is set to 
20 which is nearly 70% of the total barnacle vector in the population.

The thresholding level at low as well as higher-level thresholding of images with var-
ied dimensions is discussed here. At lower-level thresholding, the complexity involved 
in the threshold’s selection process is less because of the presence of well-defined sepa-
rated regions in the gray level distribution of an image. Whereas, when the number of 

Fig. 10  The group-1 test images and their corresponding histograms
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Fig. 11  The group-2 test images and their corresponding histograms

Fig. 12  Effect of penis length (pl) in solving multilevel thresholding tasks
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Fig. 13  Performance analysis of various algorithm on group-1 images for (a) Average PSNR (b) Average 
FSIM (c) Average SSIM and (d) Average UM
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thresholds increases, the optimization algorithms encounter flat regions in the histogram 
which makes the thresholds selection process more complex. Such a type of complexity 
can only be overcome by selecting an algorithm having excellent exploration skills. The 
use of gaussian mutation in EBMO improves population diversity, allowing the algo-
rithm to examine as many threshold combinations as possible. This has a coarse tuning 
feel to it. A random movement towards the best answer aids EBMO in further explora-
tion around the present best, which is necessary for fine-tuning. The average PSNR, 
FSIM, SSIM, and UM of six thresholded images obtained from different algorithms 
when applied to group-1 low dimensional images are shown in Fig. 13 in the form of 
a bar chart. The results obtained with threshold dimensions of 2, 3, and 5 are repre-
sented by three different colours as shown in the figure. It can be observed that when 
the number of thresholds, k = 2, almost all algorithms except EBMO show almost simi-
lar performance for the PSNR values. After a close fight with MRFO and SMA algo-
rithms, EBMO produces a superior segmented image with a maximum average PSNR 
of 22.5282 due to exploring more threshold combinations in a short time. When the 
number of thresholds increases from 2 to 5, the performance of different algorithms 
starts varying. To assess how well the features of the images are retained in the seg-
mented images, the paper also presented the FSIM values obtained after the application 
of different optimization algorithms. It can be observed that the proposed EBMO based 
thresholding produced a better segmented image with less feature information loss by 
attending higher FSIM values. Perceptual differences between original and segmented 
images are further measured through SSIM. For SSIM values, EBMO has a significant 
improvement over its counterpart BMO when k = 2. Because of the excellent explora-
tion skill of EBMO, the perceptual difference found in the thresholded results associated 
with it is less to the original image. To carefully examine segmentation results in this 
paper one more similarity measure UM values obtained from the thresholded images are 
also included in the result section. Based on the experimental results of obtained UM 
values, EBMO dominates other examined algorithms for k = 2 and k = 3 but lags margin-
ally from the thresholding performance of SMA.

The convergence plots of different optimization algorithms taken for comparative analy-
sis for Lena image at the threshold dimension 5 are displayed in Fig. 14. All the optimi-
zation algorithms are applied independently to the image for maximizing the exponential 
entropy and the number of iterations required to reach the optimized value is recorded. By 

Fig. 14  Convergence curves of 
various optimization algorithms 
for Lena Image at a thresholding 
dimension of k = 5
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analysing the convergence plot, it can be observed that the additional mutation strategy 
included in EBMO helps it to converge fast with its superior exploration capability.

To observe the thresholding performance of proposed methods on high dimensional 
images and a higher level of thresholding, a comparative analysis with the above perfor-
mance measures for remote sensing mages taken from Group-2 also has been performed 
with a threshold dimension of 4, 8, and 12. The proposed multilevel thresholding approach 
is put to the test on remote sensing photos to ensure that it can be used in practice. The 
results obtained are presented in Fig. 15 with the help of bar chat. The improvement over 
BMO due to the proposed modification can be observed from the experimental results, 
where it beats BMO significantly with a higher value of average PSNR, FSIM, SSIM and 
UM. After a close race with MRFO and SMA-based thresholding, EBMO has reclaimed 
first place in terms of PSNR value. A better FSIM value achieved by the proposed method 
shows that the desired information can be collected from the threshold image. The compar-
ison results of SSIM values indicate that there is a close fight between EBMO and CMA-
ES algorithm toward retaining the structural similarity. Finally, the largest UM values asso-
ciated with suggested EBMO-based thresholding output make it a feasible method for the 
analysis of higher-dimensional remote sensing images.

To make a visual judgment and in-depth investigation, three images from each group are 
taken for further study. To encourage readers, these examples suffice for analysis and inter-
pretation. As the best performance measures value can be obtained by retaining maximum 
contextual information and the inherent characteristics of the original image in the output 
image, the quality of thresholded images is proportional to the information preserving abil-
ity by an optimization algorithm during threshold selection. Thresholded images of one 
low dimensional image and their corresponding histograms obtained from various optimi-
zation algorithms are presented in Fig. 16. To identify the improvement introduced by the 
proposed algorithm, the best PSNR, FSIM, SSIM, and UM values associated with each 
output image are also given in the figure. It can be observed, as the thresholded images 
are taken for k = 3, there is very close competition between different algorithms. Whereas 
a significant improvement can be observed for higher-level thresholding. Figure 17 shows 
the results of different algorithms for one high-dimensional image at k = 12 . The histogram 
of each colour channel is represented by the same colour. It is clear from the result that the 
proposed thresholding approach dominates all and can be claimed as a suitable solution for 
the analysis of real-time images.

At the end of the section, the thresholded images obtained from a few more low and 
high-dimensional test images at a different level of thresholding using different algorithms 
are presented in Appendix Figs.  18, 19, 20 and 21. The combined histogram associated 
with different thresholding levels using EBMO with exponential entropy as the fitness 
function is also presented for Group-1 and Group-2 images in Appendix Figs. 22 and 23. 
It can be seen that; the proposed exponential entropy-based multilevel thresholding using 
EBMO can perform multilevel thresholding tasks efficiently for low and high dimensional 
images at a different level of thresholding.

Fig. 15  Performance analysis of various algorithms on group-2 images for (a) Average PSNR (b) Average 
FSIM (c) Average SSIM and (d) Average UM

▸
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Fig. 16  4-level thresholded images (k = 3) and their corresponding histograms

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Multimedia Tools and Applications 

1 3

Fig. 17  13-level thresholded images (k = 12) and their corresponding histograms
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7  Conclusion

This work proposes a new exponential entropy-based multilevel thresholding algorithm by 
introducing a first-hand search algorithm called Enhance Barnacle Mating optimization 
(EBMO). After an in-depth investigation of the performance of EBMO, it is found appropriate 
for the proposed thresholding method. The EBMO algorithm is the enhancement of the recently 
developed Barnacle Mating Optimization (BMO) algorithm by incorporating an additional 
mutation strategy and a random movement towards the best solution. The addition of these 
new strategies makes the Barnacles explore all possible regions which help them to avoid local 
minima in their search path and move fast towards the optimal solution. The qualitative and 
quantitative results of the EBMO are compared to well-known optimization methods BMO, 
MRFO, SMA, EO, HHO, SSA, L-SHADE, CMA-ES, and TSA over different benchmark test 
functions, which reveals that EBMO surpasses other optimization techniques. The convergence 
rate of the EBMO is also found quite impressive than other state-of-the-art methods.

In this work, we have investigated an exponential entropy-based technique for multilevel 
thresholding using EBMO (EBMO-EE), which considers the exponential gain function to 
estimate the information available in the thresholded image. Unlike logarithmic gain-based 
entropy, exponential entropy can be calculated with a finite value at all possible points. Dif-
ferent optimization algorithms have been applied to maximize this entropy function, including 
the proposed EBMO. The statistical comparison using the average PSNR, FSIM, SSIM, and 
UM presented in the paper claims that the exponential entropy can be taken as a suitable fit-
ness function to perform thresholding. The EBMO is an efficient algorithm to optimize it at a 
different level of thresholding. The future scope of the work includes multilevel thresholding 
in a noisy environment. Though the performance of EBMO is superior over many state-of-art 
algorithms, a further improvement of the exploration and exploitation skill of the algorithm 
can be achieved by hybridization with an efficient optimization algorithm. The efficiency of 
the suggested multilevel thresholding approaches can also be improved by taking into account 
the spatial correlation between pixels, which is not taken into account in this study. To con-
clude, we believe that the proposed method for the image segmentation based on computa-
tional intelligence for intelligent healthcare applications will be found to be satisfactory.

Appendix

Table 9

Table 9  Unimodal test function

Function d Range fmin
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Table 11  Fixed dimension multimodal test function

Function Range fmin
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Table 11
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
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Fig. 18  3-level thresholded images (k = 2) and their corresponding histograms
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Fig. 19  6-level thresholded images (k = 5) and their corresponding histograms
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Fig. 20  5-level thresholded images (k = 4) and their corresponding histograms
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Fig. 21  9-level thresholded images (k = 8) and their corresponding histograms
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Fig. 22  Thresholding result of the proposed (EBMO-EE) method on Group-1 test images with combined 
histogram
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Fig. 23  Thresholding result of the proposed (EBMO-EE) method on Group-2 test images with combined 
histogram
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