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Abstract

Multilevel Thresholding (MLT) is a prominent image segmentation research field that can
effectively handle problems encountered while collecting meaningful information from a
digital image. Most of the existing entropy-based Multilevel thresholding approaches use
the logarithmic behaviour of Shannon’s entropy, which does not exist for all possible points
with appropriate bounded value. To evade this problem, an entropy-based on exponential
information gain function is introduced as the fitness function in this paper to improve the
thresholding accuracy. This research also proposes an enhanced Barnacle Mating optimiza-
tion algorithm (EBMO) for obtaining appropriate threshold values by maximising the fitness
function. The enhancement over basic Barnacle mating optimization is achieved by incorpo-
rating an additional Gaussian mutation strategy and a random flow towards the best solution
steps with the original algorithm. The involvement of these additional steps helps the algo-
rithm to prevent it to be stagnated at a local minimum by boosting its exploration capability.
To validate the proposed optimization algorithm, it has been tested with a set of well-known
benchmark functions and the CEC 2014 test suite. The results obtained in various tests are
then compared with other standard and state-of-art algorithms with the help of quantitative
analysis such as average, median, and standard deviation of the fitness values over several
runs, qualitative analysis, such as search history, trajectory, and average fitness history and
statistical analysis using Friedman Rank test and found superior to all. A more detailed analy-
sis of the obtained results was also conducted using post hoc Bonferroni—-Dunn and Holm test
to observe how the proposed EBMO algorithm is significantly different from others. A com-
parison of the proposed exponential entropy (EE) based multilevel thresholding using EBMO
(EBMO-EE) with other optimization algorithms also presented. Various performance meas-
ures such as peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), feature
similarity index (FSIM), and Uniformity Measures (UM) obtained from different standard
benchmark images of varying dimension are considered. It has been observed that there is an
improvement of the thresholding accuracy, using EBMO, about 2% to 4% over others.
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1 Introduction

Thresholding is a simple and effective approach for performing image segmentation
by extracting homogenous sub-regions of the scene under consideration [23]. In a real-
world application, it is used to separate the objects in the scene from the background.
Based on the number of thresholds used for partitioning an image into various groups,
thresholding processes are classified into bi-level and multilevel thresholding. In bi-
level thresholding, a single threshold value is required to obtain from the scene which
can separate the required object from the background. In the multilevel thresholding
process, two or more threshold values are used to divide the gray level distribution of
the image in hand into distinct groups and each group is assigned with a single intensity
value. As in most of the applications, color images are used because of their more infor-
mation content capability, the requirement of thresholding is highly essential in these
cases to increase the processing speed by performing segmentation before any high-
level processing. For the real-life segmentation applications, the best option is opting
for multilevel thresholding over bi-level to extract useful information from the scene.

There are several global thresholding approaches available in the literature [5, 10,
18, 19, 32, 37, 59] to perform the segmentation. Histogram-based thresholding [68, 71]
gained its popularity because of its simple and efficient way of obtaining the optimal
threshold from the gray level distribution of the pixels in the image. The most com-
mon histogram-based thresholding methods use a generalization of Shannon entropy
as the fitness function for threshold calculation such as Kapur’s entropy [35], Renyi’s
entropy [66], Tsallis’s entropy [3, 47], Cross Entropy [30], and Masi Entropy [73]. The
segmentation process is then further improved by including the spatial correlation of
the pixels into consideration with 2D variants of the above entropies calculated from
a two-dimensional histogram [55, 70]. However, the use of logarithmic gain function
by most of these entropies suffers from a drawback of undefined gain in information at
points of highly probable or highly unlikely with appropriate bounded values [58]. For
example, if the probability p’ of an event within the search space is zero, the logarithmic
entropy E=1log,(1/(p=0))= oo and if the probability p" becomes one the Entropy will
be E=log,(1/(p=1))=0. In practice the gain in information value from an event must
be defined within two finite limits irrespective of the chances of occurrence. For exam-
ple, the gain information becomes maximum when all the pixel values are taken into
consideration irrespective of the image contents. To resolve this issue, an exponential
entropy (EE) [58] based multilevel thresholding method is proposed in this paper.

In the literature, generally, two types of approaches are available to perform thresh-
olding operations for image segmentation: parametric and non-parametric approaches.
The parametric approach of thresholding defines each class by estimating the parameters
of the given probability density process, which is computationally expensive. Whereas
in non-parametric approaches, the optimal threshold values are selected by optimizing
a given fitness function such as: between class variance or entropy measures. Though
the non-parametric approaches are efficient and popular, time complexity becomes high
when the number of thresholds increases. Therefore Nature-inspired algorithms being
used for multilevel thresholding operations over the past few decades. In the past few
years, several metaheuristic algorithms have been proposed by researchers and prove
their capability by solving complex engineering problems. Table 1 is a quick review of
the literature on nature-inspired algorithms.

Researchers frequently employ soft computing, a subfield of Artificial Intelligence
(AI), to address the computational time complexity challenge in multilevel thresholding.
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Table 1 Brief review of nature-inspired algorithms

Nature-Inspired Algorithm

Inspired by / based on

Genetic algorithm (GA) [27]

Particle swarm optimization (PSO) [15]
Differential evolution (DE) [75]

Bacteria foraging optimization (BFO) [12]

Teaching—Learning-Based Optimization (TLBO)
[64]

Krill herd optimization (KHO) [21]

Gravitational Search Algorithm (GSA) [65]

Cuckoo search algorithm (CS) [22]

Firefly optimization (FF) [34]

Grey wolf optimizer (GWO) [49]

‘Whale optimization algorithm (WOA) [48]
Crow search algorithm (CSA) [6]

Grasshopper optimization algorithm (GOA) [69]
Salp Swarm Algorithm (SS) [50]

Volleyball Premier League Algorithm (VPL) [52]
Emperor penguin optimizer (EPO) [14]

Squirrel search algorithm (SSA) [31]

History-Based Adaptive Differential Evolution
with Linear population size reduction algorithm
(L-SHADE) [61]

Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [11]

Harris hawk optimization (HHO) [25]
Equilibrium optimization (EO) [16]

Sailfish optimizer (SFO) [72]
Manta-ray foraging optimization (MRFO) [85]

Tunicate swarm algorithm (TSA) [36]

Slime mould algorithm (SMA) [41]

Evolution
Intelligent social behaviour of flocks of birds
Darwin’s theory of evolution

Escherichia coli bacteria’s communal foraging
behaviour

the impact of a teacher’s influence on students

A model of individual krill herding behaviour
The law of gravitation and mass interactions.
Some cuckoo species’ obligate brood parasitism, in

which they deposit their eggs in the nests of other
kinds of host birds found in various locations

Invertebrates such as glowworms and fireflies that
produce flashing illumination patterns

The natural leadership structure and hunting mecha-
nism of grey wolves

Hunting strategy of humpback whales

Crows’ intelligence behaviour of storing surplus food
in hidden places and retrieving it when it is needed

The behaviour of grasshopper swarms in both nymph
and adulthood stages.

The swarming behaviour of salps in oceans when
navigating and hunting

Volleyball match’s coaching procedure

Emperor penguins’ communal huddling behaviour to
survive in water

Dynamic hunting behaviour of southern flying
squirrels, as well as their efficient gliding mode of
mobility

An adaptive DE strategy that combines linear popula-
tion size reduction with success-history-based
parameter adaption.

A second-order approach for iteratively estimating a
positive definite matrix, specifically a covariance
matrix on convex-quadratic functions, is closely
related to the inverse Hessian method.

Harris’ hawks’ cooperative behaviour and attacking
manner

Models of control volume mass balance used to esti-
mate both dynamic and equilibrium phases

Group hunting attack-alternation tactic

Foraging tactics used by manta rays include chain for-
aging, cyclone foraging, and somersault foraging.

Trunicates swarm activities and jer propulsion during
its navigation and foraging phase

Imitates slime mould behaviour and morphology
during foraging
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The metaheuristic algorithms which are successfully applied to the multilevel algorithm
with different fitness functions are discussed hereafter. In the article [61], the authors maxi-
mized the Otsu’s between class variance [56] with the help of a Genetic algorithm (GA)
for obtaining optimal thresholds at a different level of thresholding [80]. Particle swarm
optimization (PSO) is used to obtain the optimal threshold values in the paper [9]. The
paper shows a clear demonstration of reduction computation time with the use of the meta-
heuristic algorithm. A lip area extraction from the face region with the help of Bacteria
foraging optimization (BFO) based on thresholding is discussed in the article [8]. The arti-
cle illustrates that employing BFO for lip portion extraction has clinical implications. A
maximum entropy-based multilevel thresholding approach using an Artificial bee colony
algorithm is discussed in the paper [29]. The authors of the article used the method on sev-
eral types of benchmark photos and claimed to get near-optimal thresholds in the majority
of cases with minimal computation time. A 2D histogram and maximum Tsallis entropy-
based multilevel thresholding approach using Differential evolution (DE) algorithm for
optimizing the fitness function is presented in the paper [70].

To overcome the increase in computational complexity with an increase in the num-
ber of thresholds, the authors of the paper [40] used the Grey wolf optimization algorithm
and found it computationally efficient over PSO and BFO based approaches. A multilevel
thresholding approach using Otsu’s between class variance as a fitness function is proposed
in the paper [63]. The paper used the Firefly algorithm (FFA) to maximize the fitness func-
tion for generating thresholded results. The paper produced convincing thresholded results
with less computation time. An application of multilevel thresholding in medical image
analysis is presented in the paper [38]. The paper used real-time MR/CT images for thresh-
olding by maximizing Otsu’s between-class variance and Kapur’s entropy with the help of
the Crow search algorithm (CSA). The requirement of fewer parameters of CSA makes it
suitable for the application. In paper [67], a multilevel thresholding strategy based on the
Harris Hawks Optimization (HHO) algorithm is proposed, using minimum cross-entropy
as the fitness function. The approach is put to the test on a set of benchmark images, the
Berkeley segmentation database, and digital mammography images. The HHO algorithm
is found superior over most of the well-known algorithms in terms of the accuracy of seg-
mentation results. The efficacy of the Equilibrium Optimizer (EO) is explored in the paper
[2] by applying it to the thresholding of images at low as well as the high level of thresh-
olding. The results of the approach show a significant improvement of EO based methods
over other state-of-art methods. The L-SHADE technique is used to find the best set of
threshold values for separating clusters of pixels in the article [26]. The thresholded images
were found impressive and the authors claimed that they can be used for practical applica-
tions. A basic version of the algorithm isn’t always ideal for all kinds of problems. There-
fore, along with these original algorithms, some of their hybrid and improved versions
have also been developed by many researchers. Few of them are also applied to multilevel
thresholding a problem with a significant improvement over the original version.

In Modified discrete grey wolf optimizer (MDGWO) [40], the authors discretize the
grey wolf optimizer (GWO) before providing a unique attack strategy that replaces the
original algorithm’s search formula for an optimal solution with the weight coefficient. The
algorithm performed produced better segmentation accuracy using the multilevel thresh-
olding approach. An improved grey wolf optimizer is presented in the article IGWO) [46]
by integrating differential evolution (DE) strategy with GWO algorithm and Otsu algo-
rithm. The experimental results show a complete dominance of the improved version over
the original version of GWO. The HHO algorithm is also modified to a leader Harris hawks
optimization (LHHO) [55]. The goal of this study was to improve exploration competence
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by using an adaptive perching method throughout the exploration phase, as well as a muta-
tion stage with the leader Harris hawk in each generation. The paper used 2D as well as
1D Masi entropy for generating thresholded images. By integrating adaptive dispersion
decision-making for weaker search agents, the authors of the paper [83] introduced an
adaptive equilibrium optimizer (AEO). Before applying AEO to the multilevel threshold-
ing task, it has been tested over several benchmark functions and found superior over the
basic EO algorithm. A brain image analysis using hybrid adaptive cuckoo search-squirrel
search algorithm (ACS-SS) based multilevel thresholding is presented in the paper [4].
The authors hybridized the searching pattern of adaptive cuckoo search algorithm (ACS)
[53] with Squirrel search algorithm (SSA) for maximizing the edge magnitude information
derived from gray-level co-occurrence matrix (GLCM) [60]. The paper shows a signifi-
cant improvement in the thresholding accuracy of hybridized method over basic ACS and
SSA. A new color image segmentation using modified grasshopper algorithm (MGA) [43]
based multilevel thresholding is proposed by the authors recently. The authors modified the
exploration skill of the GOA algorithm by incorporating the Levy flight algorithm with it.
The modification of GOA algorithm was found significantly different concerning segmen-
tation performance over GOA.

In the Improved cuckoo search algorithm (ICS) [77], the authors used the fitness
value of each iteration for selecting the adaptive step size without using Levy flight.
The technique not only reduces the computation time but also improve the performance
of the algorithm. Multilevel thresholding of breast thermal images is presented in the
paper [62] using improved particle swarm optimization (IPSO). The authors of this
paper used PSO algorithm with a modified updating rule for velocity which shows an
improvement of thresholding accuracy over traditional PSO. Learning enthusiasm-based
teaching—learning-based optimization (LebTLBO) [74] mimics the behaviours of the
teaching and learning process in a classroom and calculates the likelihood of the learner
(student) receiving the quantity of knowledge desired from the educator. The algo-
rithm was also used by the authors for segmentation of the image and found a suitable
method when combine with Kapur’s and Tsallis entropy. A Hybrid differential evolution
(HDE) for multilevel thresholding is introduced in the article [51]. The hybridization
is accomplished by incorporating a Cuckoo Search-inspired reset mechanism into the
differential evolution evolutionary cycle. The paper’s findings demonstrate the superior-
ity of hybridization in thresholding over basic algorithm-based approaches such as DE.
The authors of the paper [78] proposed a Hybrid gravitational search algorithm with
a genetic algorithm (HGSA-GA). The paper rescued the chances of early convergence
of GSA algorithm by adapting the roulette selection and discrete mutation operators
of GA. The improvement in population diversity achieved by this hybridization helps
the algorithm to improve the performance in multilevel thresholding. The authors of
the Emperor penguin and Salp swarm algorithm (ESA) [13] introduced a novel hybrid
algorithm that mimicked the emperor penguin optimizer and salp swarm algorithm’s
huddling and swarm tendencies. The algorithm was tested over 53 benchmark func-
tions and found superior over SS and EPO algorithms. In Improved volleyball premier
league algorithm (IVPA) [1] the authors used the WOA algorithm’s searching pattern
for improvement of exploration skill of VPL algorithm before applying it to multilevel
thresholding problem. The IVPA algorithm produced high-quality thresholded results
when tested with standard as well as medical images. However, the role of optimiza-
tion in the field of digital image processing is not limited to thresholding. Nowadays,
optimization algorithms are being used widely in image analysis and computer vision
applications. To recognize gestures in the Human-computer interaction domain, a crow
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search-based convolution neural networks model is presented in the article [20]. In arti-
cle [79], the authors applied the Antlion optimization (ALO) algorithm in the Deep neu-
ral network (DNN) model to assure optimal hyper-parameter selection for the categori-
zation of a multimodal stroke dataset that is unbalanced in a short amount of time.

Barnacle Mating optimization [76] is one of the recently developed evolutionary
algorithms based on the mating behaviour of barnacles in nature for solving numerical
optimization problems. Barnacles are famous for their unique long penises, which are
nearly seven to eight times their body sizes. The unique mating process using the vari-
able penises length with its neighbours makes it different from other species on the earth.
BMO’s notable performance in comparison to other well-known optimization algorithms
draws our attention to investigate its strength and weakness. According to the No Free
Lunch (NFL) [82] theorem, which stated that performance of any optimization algorithm
may not be found satisfactory for all types of optimization-related issues. Therefore,
the possibility of upgrading search ability towards the optimal result of any algorithm
is always available. After an in-depth investigation of the BMO, it has been observed
that the existing mutation strategy makes the algorithm exploration capability limited
and fails to reach an optimal solution in some of the cases during tests with different
types of problems. To enhance the exploration for improving the searching efficiency
two additional steps: a Gaussian mutation [7] and a random movement towards the best
solution [55], are included with BMO. The supplement of these new strategies leads to
the development of the proposed Enhanced Barnacle Mating Optimization (EBMO). To
validate the search capability of the proposed EBMO, it has been tested with a set of
classical benchmark functions and IEEE CEC 2014 test suite. The comparison of EBMO
with BMO and other state-of-the-art algorithms such as MRFO, SMA, EO, HHO, SSA,
L-SHADE, TSA, and CMA-ES through various analyses have been carried out and the
overall performance of EBMO is found better than all. To analyse the performance of
EBMO in multilevel thresholding application, it also has been tested with low dimen-
sional standard colour images and high dimensional multispectral images collected from
Landsat image gallery [39] by maximizing the exponential entropy. The performance of
proposed exponential entropy (EE) based multilevel thresholding using EBMO (EBMO-
EE) is compared with the above optimization algorithm and found superior to all.

The highlights of this work are as follows:

1. An Enhanced Barnacle Mating optimization (EBMO) algorithm is proposed by includ-
ing an exploration boosting mechanism with the help of Gaussian mutation and random
movement towards the best strategies. The EBMO’s overall advantage is demonstrated
by a quantitative and qualitative study of the test results across a set of classical bench-
mark functions and the IEEE CEC 2014 test suite. A probabilistic entropy of exponen-
tial gain function has been used to the multilevel thresholding problem

II. The concept of Exponential entropy-based thresholding is extended to multilevel
thresholding by proposing an exponential entropy-based multilevel thresholding
approach using EBMO(EBMO-EE).

III.  using standard colour images and high dimensional images of Landsat datasets. The
comparative results reveal that EBMO outperforms other state-of-the-art algorithms.

The remaining part of this article is as follows. A brief review of Exponential entropy
and Barnacle Mating Optimization algorithm is presented in Section 2. An extension of
exponential entropy for multilevel thresholding is discussed in Section 3. Section 4 deals
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with the proposed Enhanced Barnacle Mating optimization algorithm concept and its per-
formance evaluation on benchmark functions. An exponential entropy-based multilevel
thresholding is presented in Section 5. The experimental results and discussions of the pro-
posed multilevel thresholding are presented in Section 6. Finally, in Section 7, the paper
came to a close with a closing remark.

2 Preliminaries
2.1 Exponential entropy (EE)

Unlike the logarithmic behaviour of Shannon’s entropy, the information gain function used
here is exponential. The exponential gain function makes it possible to be defined at all
possible points with a bounded value. For the case of highly probable or highly unlike
event having probability p’, the logarithmic gain function log(1 —p) produces a value that
is not within the desired limit. To circumvent this issue, the gain function used here is an
exponential function of (1 —p) and the entropy derived from this concept of a n-state sys-
tem is defined as

Hy= 3 piel!™) (1)

where p; is the probability of occurrence of i (event).
The desirable properties [58] which make it suitable for segmentation applications are:

i. e(!=7) can be defined for all possible points in the search space
ii. lime(?) =k, > 0 and finite

pi—0
iii. lime(~7) = h, > 0 and finite

pi—1
iV. he > h2
v. eU=7) decreases exponentially with an increase in the probability

vi. Hpis continuous over the range of 0 <p,<1
vii. Maximum value of H will be obtained when each event has equal probability.

2.2 Barnacle mating optimization

Barnacles are micro-organisms present on the earth since the time of the Jurassic.
The unique mating process of these Barnacle for their long penises of variable sizes
attract the attention of the researcher. Barnacle Mating optimization (BMO) [76] is
one of the results of their research. In the process of mating with neighbours within
their penis lengths, the variable penis sizes play a vital role in determining the size
of the mating group. BMO is an evolutionary algorithm inspired by the mating
behaviour of these Barnacles. The optimization in BMO is performed through three
major stages: initialization, selection, and reproduction. The role of each stage is
discussed below.

In the initialization stage, a population is formed by a random set of barnacles. Each bar-
nacle is a vector and represented by a certain number of control variables depending upon the
problem at hand. The values of each control variable must lie within the defined upper and
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lower bound. In the Selection process, BMO adopted a random selection process for offspring
generation, but the selection of parents is restricted to the barnacle’s penis’s length ‘p’. This
mechanism makes the BMO different from other evolutionary algorithms like GA and DE.
During the mating process, each barnacle can receive sperms as well as contribute sperms
to only one barnacle at a time. There is also a possibility of a sperm cast process when the
selection of parents is done beyond the penis’s length of a barnacle. BMO also has a slightly
different reproduction strategy than other evolutionary algorithms. As there is no specific
mathematic formula to derive the reproduction mechanism of barnacle, BMO adopted the
Hardy—Weinberg principle [9] for the generation of offspring by performing exploitation and
exploration in two different conditions. The exploitation process begins when the barnacles
to be meted are within the predefined range of the maximum penis length. The sperm cast
mechanism in BMO [76] is treated as the exploration process, which is occurred when selec-
tions of barnacles for mating exceed the predefined maximum penis length. At the end of each
iteration, the best barnacle is identified and the fittest barnacles from parents and offspring are
selected for the next generation.

3 Exponential entropy for multilevel thresholding

The exponential entropy satisfies all the properties of Shannon’s entropy except the additive
properties which do not have any remarkable impact on the image [58] because in an image
the neighbouring pixel values are normally dependent on each other. It is also successfully
applied to bi-level thresholding for classifying the object in the scenes from the background
[57, 58]. In this section, the study of the thresholding scheme using exponential entropy is
extended to multilevel thresholding.

Let’s consider an n-bits image f (x,y) of size MXN.The range of gray level is [0,L—1],
where L=2"— 1. The probability of i gray level in the image can be expressed as

pi= e (€123, L-1] )

Where, n; represent the pixels count of i™ gray level.

In multilevel thresholding, more than two threshold values are used to divide an image into
different homogeneous regions used for a certain application. To split the above image into
k+ 1 distinct regions depending on their intensity value, k numbers of thresholds are required
which may be demonstrated using a basic thresholding rule as given below.

R <1, if0<I<T,
Ryl ifT, <I<T,
Ryl ifT,<I<T,

g(x,y) =1 : 3)

Ry <1l ifT, <l<L-1

Where [ represents the pixel intensity, g(x,y) indicates the segmented image and R; indi-
cates the j distinct regions of g(x,y) including the foreground, background, and intermediates

sections. {T},T5...... T,} are the k numbers of selected threshold values used for segmentation.
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To obtain these threshold values, it is required to maximize the information content of each
distinct region. As entropy is nothing but the measure of information content in a source, in
this work the optimal threshold values are selected by maximizing the exponential entropy cal-
culated from each region. The exponential entropy of background 'H }{:/, foreground ’ Hg“' and

j™ intermediate region Hg for multilevel thresholding can be expressed as:

T,-1 p; _rn

Hy = Zi:lO aTl e<1 wl) €]
-1 p; 1—ti

Hi' =Y o ) 5)

o= 2@—1 P e<l_%> 6)

b o
where, w is the probability of each segmented region and expressed as

T,-1 T,-1 7“/,_1 -1
@1= Zi:O Pi» @y = Zi:Tl Dis - @0 = Z,’:T Piseo Wy = §Vi:Tkp" @)
7 .

The objective function for multilevel thresholding using exponential entropy obtained

from all regions for getting optimal thresholds {7,",T,"...... T,"} can be formulated as:
— #\ _ arg max 1 2 3 k+1
{1 1,%... ... T} = 0<T.T,. T, <L—1 (Hy+Hy +H) +...H'') (g

Equation (8) is a maximization problem and can be solved with a suitable optimization
algorithm to obtain the optimal threshold values.

4 Proposed enhanced barnacle mating optimization (EBMO)

After a detailed study of the Barnacle Mating Optimization (BMO) [76], it has been
observed that there is a lack of diversity in the population which affects the accuracy of the
algorithm in reaching the optimal solution. This leads to the development of the Enhanced
Barnacle Mating Optimization (EBMO) algorithm by enhancing the exploration capability
of BMO. The proposed EBMO algorithm includes two different strategies to perform this
task: the first one is the use of Gaussian mutation [7]which allow the Barnacles to explore
maximum regions in the search space and the second strategy is to follow a random move-
ment approach towards the current best solution [55] which provides desired exploration
towards the best candidate in each generation. The impact of these double mutation strate-
gies in the algorithm is the fast convergence without being trapped in any local minima.

4.1 Mathematical formulation of EBMO

This section provides a detailed mathematical formation of the proposed EBMO algorithm
with an additional mutational strategy. The optimization process in EBMO consists of four
different stages in each generation. After the end of each generation, the newly formed
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barnacles in the population are sorted according to their fitness value and the barnacle at
top of the list is identified as the best solution obtained so far. The best solution obtained
when the termination criteria are met is declared as an optimal solution. The detailed func-
tioning of all stages is given below.

4.1.1 Initialization

Let N’ be the number barnacles participated in the mating process for obtaining the optimal

1.2 P
l.,xl.,...x'.' ,i=1,

solution and each barnacle is a n dimensional control vector, X; = |x :

2...N. The control variables of each vector must lie between the upper ub and lower bound
Ib’ of the problem in hand. The best solution at each generation is represented by X,,,,.

4.1.2 Selection process

The proposed EBMO also adopted the same random parents’ selection process as that of
BMO by considering the barnacle’s penis’s length ‘p. The barnacles in the populations are
arranged in a random manner of different groups, one is referred to as ‘Dad _barnacle and
another one is Mom _barnacle'. At one time, each barnacle from a group of 'Mom _barna-
cle’ can be fertilized by one from ‘Dad_ barnacle .

The above process can be modelled mathematically by arranging the barnacles in the
population based on their fitness values from best to worst. The barnacle located at the top
of this list is identified as the best solution obtained so far and named barnacle#1. Similarly,
barnacle#N represents the worst solution of the population and is placed at the bottom of the
list. If the maximum penis length of barnacles is ‘plmax’ times of their body, then a barnacle in
the list can produce offspring by mating with another barnacle placed at a distance, not more
than ‘pl,,. from its location. For example, if pl,, =7, barnacle#] can mate with anyone
from barnacle#2 - barnacle#7. The sperm cast process will be initiated if barnacle#1 selects
any other barnacle other than above, i.e., barnacle#8 - barnacle#N. Sperm cast processes also
provide the required exploration for the algorithm. Once the barnacles are ranked as per their
fitness values, the random selection of parents can be expressed by the following expressions:

Dad_barnacle = randperm (N) ()

Mom_barnacle = randperm (N) (10)

4.1.3 Reproduction

Like BMO, the proposed EBMO also adopted Hardy—Weinberg principle [24] to pro-
duce offspring in the first stage of the reproduction process. In the second stage of
reproduction, the best candidates among the parents and offspring are selected to gener-
ate new offspring using Gaussian mutation and random movement towards the current
best solution strategies.

Offspring generation based on hardy-Weinberg principle The reproduction process of
BMO was developed by following the Hardy—Weinberg principle used here for offspring
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generation. When the parent’s barnacles to be mated are within the range of the maximum
penis length Eplmax a normal mating process occurred which is referred to as exploitation
and expressed as

n_new
i

X =p xrl’)ad_bumucle + (1 4 ) ngom_bumucle (1 1)

where, p is a random number normally distributed between [0, 1], and xl'.' represent the n'h
control variable of i barnacle. From Eq. (11) it can be observed that the newly formed
offspring inherits the p% behaviour of the Dad _barnacle and (1 —p)% behaviour of the
Mom _barnacle.

If the selected parents are not found suitable because of exceeding the maximum
penis length pl,,,, the algorithm generates offspring using the sperm cast mechanism as
modelled below:

xo;’,new =rand X X}X/]()m_bamatle (12)

where ‘rand indicates a random number distributed uniformly in the range [0, 1]. Equation
(12) shows a very simple mating process of offspring generation. This process resembles
the offspring generation by a Mom _barnacle by receiving sperms from the water that has
been released by any random barnacle.

Gaussian mutation and random movement towards best barnacle In EBMO, the
new mutation strategies are applied to selected barnacles after the completion of a newly
formed population matrix by BMO in each iteration. After sorting the barnacles in the
population of ‘N barnacles according to their fitness value, the best %rd of the population
from the top are selected to generate two new offspring groups, each of size Y with the
help of gaussian mutation and random movement schemes separately. These two new
offspring groups are then used to replace the remaining ZTN of the population.

The Gaussian Mutation [7]can be performed by applying a Gaussian distribution to a
barnacle vector X; in the population, as follows:

X" (itr) = X(itr).(u + .N(O, 1)}) (13)

where N(0, 1) represent a random vector of gaussian distribution, ' and ‘c’ represent its
mean and standard deviation and Xfm is the mutated vector. In this w9r1§, the mean and
standard deviation are fixed to 0 and 1 respectively for every generation itr.

The random movement towards the best solution obtained so far concept in [55] also
attracts our attention toward it which helps the barnacle to explore towards the best solu-
tion. This random movement is expressed mathematically as:

XI"(itr) = (Xpess (1) = Xopean(itr)) — 11 (Ib + ry(ub — 1b)) (14)

where X™ is the newly formed offspring by randomly following the best, X,,,,, indicates
the mean of the population at every generation and r, and r, are random numbers uni-

formly distributed in the range [0, 1].
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4.2 Pseudocode of EBMO

Input: The population matrix N X n for a n-dimensional problem, upper and lower bound ‘ub’ and 'lb" of each
control variable, maximum penis length ‘pl,,,," and maximum iteration itr;,,,. Set itr = 1

Output: The best barnacle vector with its fitness value
Initialization: Randomly initialize the barnacles in the population and identify the best solution Xj,,:by evaluating
the fitness of each barnacle.
While (itr < ithygy)
(i)  Evaluate the fitness function of f(X;) for all barnacles in the population
(i) Arrange the barnacles in the population matrix as per their fitness values from best to worst
(iii) Perform the random selection of Dad and Mom barnacles as per Eq. (9) and (10) for mating
(iv) for each barnacle in Dad
(a)  select the corresponding barnacle from Mom
(b)  if'the selection of parents from Dad and Mom are within the range of pl,,,qx
Generate offspring using Eq. (11)
else
Generate offspring using Eq. (12)
end if
end for

(iv) Sort the barnacles according to their fitness value from best to worst

(v) Apply Gaussian mutation and random movement schemes to the best % of the population separately to
generate % offspring using Egs. (13) and (14) and replace this with remaining % of the population

(vi) Update the best solution X

(vii) itr = itr + 1

end while

Return Xpesr

4.3 Performance evaluation of EBMO algorithm

To examine the effectiveness of the proposed EBMO, several performance evaluations tests
have been carried out on a set of 52 well-known benchmark functions including 22 classi-
cal test functions (f; —f5,) [55] and 30 modern test functions (f,; —fs,) from CEC 2014 test
suit [42] as given in Appendix Tables 9, 10 and 11. From the above test functions (f; —f;)
having unimodal characteristics with a unique global minimum used to validate the ability
of exploitation of optimization algorithms. Whereas test functions (f;—f},) and (fj3—/,)
are multimodal with scalable and fixed dimensions respectively used to observe exploration
ability because of the presence of many local minima in it. However, real-world problems
have no defined shapes or a combination of both unimodal and multimodal functions. The
composite functions (f; —fs5,) of IEEE CEC 2014 test suit mimic above characteristics of
real-world problems by expanding, shifting, rotating, and hybridizing different types of uni-
modal and multimodal functions. Tests with these functions make an algorithm ready to han-
dle real challenges in the world. The results of the tests are investigated on various qualita-
tive, quantitative, and statistical analyses. A detailed study of search history, the trajectory
of the first barnacle, average fitness history, optimization history is included in qualitative
analysis. The quantitative analysis is based on inspecting the median, average, and standard
deviation values over many independent runs. Whereas Non-parametric tests such as the Wil-
coxon signed-rank test at a significance level of 5% and Friedman mean test along with post
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hoc statistical analyses using Holm and Bonferroni—Dunn test also conducted to notice the
substantial deference between EBMO and other algorithms. As some of the algorithms need
initial parameter settings for their operation, Table 2 shows the setting of these parameters.

To validate the efficacy of the proposed EBMO, the test results obtained from various
test functions have been compared with various standard and state-of-art techniques such
as BMO, MRFO, SMA, EO, HHO, SSA, L-SHADE, CMA-ES, and TSA. For all 52 bench-
mark functions, the population size 'N' and maximum iteration itrmx of EBMO are set to 30
and 500 respectively which is equivalent to 15,000 function evaluations. To provide a fair
comparison, the above parameters of BMO, MRFO, SMA, EO, HHO, TSA, and SSA also
remain the same. As the population size of CMA-ES and L-SHADE are dependent upon
the number of control variables, the results obtained after 15,000 evaluations have been
used here for comparison.

4.3.1 Qualitative analysis of EBMO

The efficiency of the proposed EBMO algorithm is demonstrated in Fig. 1 with the help
of four qualitative metrics: search history, the trajectory of the first barnacle, average fit-
ness history, and optimization history. These metrics are evaluated by solving three clas-
sical (f,, fi, and f;;) and three modern complex test functions (f,s, f35 and f,) with 15,000
evaluations to show the searching pattern of barnacles in the search space. Though these
functions are defined in a high-dimensional space, the 2-dimensional view presented in
Fig. 1 can provide an overview of the field topology. The search history of the algorithm is
considered here as the first qualitative metric which comprises the barnacle’s concentration
from the beginning of the evaluation to the end. It provides a clear understanding of the
searching pattern followed by the barnacles in each search space. It can be observed from
the Search history plot that, the barnacles can explore every corner of the search space at
the beginning and can converge at global minima for classical unimodal or multimodal
functions. For the complex test functions taken from CEC 2014 test suit in Fig. 1, the bar-
nacles try to reach the global minima by concentrating around it at end of the iteration.

Table 2 Parameter setting of different Optimization Algorithms

Algorithm Parameter(s) Value

EBMO Maximum penis length (p/,,,,.) 7

BMO Maximum penis length (p/,,,,) 7

MRFO Somersault factor (S) 2

SMA elimination-and-dispersal rate(z) 0.03

EO Generation probability (GP) 0.5
Exploration control parameter (a, and a,) 2and 1

HHO - -

SSA Gliding constant and Gliding distance (G, and d,,) 1.5and 0.8
predator probability (P,,) 0.1

L-SHADE Control parameters (H and p) 6 and 0.11
Arc rate (AR) 2.6

CMA-ES Global step-size (o) 0.25

TSA Parameter P, 1
Parameter P, 4
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This behaviour of the algorithms gives a clear demonstration of its exploration as well as
exploitation ability.

The next qualitative metric for evaluating the performance of the EBMO is the trajec-
tory of the first barnacle for all dimensions. It describes the locations of the first barnacle
with all its dimension during the progress of the algorithm. It can be visualized from the
figure that, initially the control variables of the selected classical test functions are scat-
tered in the search space and later it converges toward the optimal solution. The oscilla-
tory behaviour in the beginning stage shows the exploration acquired by the algorithm for
searching global minima. Unlike classical test functions, the fluctuations are more in most
of the cases of IEEE CEC 2014 test function due to the presence of a high level of com-
plexity in the initial stage of the iterations.

A cumulative behaviour of all the barnacles that participated in the searching process
of EBMO to reach the global solution is represented by the Average fitness history. A
descending curve for average history reveals the collaborative behaviour of all barna-
cles to reach global minima. The last one of the qualitative metrics is the optimiza-
tion history. It tracks the fitness value of the best barnacle during its journey from the
beginning to the end of the iteration. The behaviour of the optimization history varies
from problem to problem. For unimodal problems, the curve looks smooth. Whereas for
multimodal or composite functions, the optimization curve becomes step-like at some
instant indicating no improvement in fitness value during a specified period due to more
complexity in the problem.

4.3.2 Performance analysis of EBMO on classical benchmark functions

The statistical results including Median value, Average value, and standard deviation
over 31 independent runs for various unimodal and multimodal functions are depicted in
Table 3. it can be observed that EBMO can obtain the global minima in most of the uni-
modal functions. For the function f; EBMO dominates all other algorithms in its average
and standard deviation values. In the test function fg and f; the result of EBMO was found
better than BMO.

The exploration ability of an algorithm can be observed by analyzing its behaviour on
multimodal functions. The performance on multimodal functions of scalable dimension
(fs —f1») reveals that EBMO provides the optimal solution for fg, fy and fi,. For functions
fi1» and fi,, EBMO outperformed on BMO with a significant difference but lagged from
others and occupied the 7th and 4th places respectively. It can also be observed from the
statical result shown in Table 3 that, EBMO can reach close to the global minima in all
most all multimodal functions with fixed dimension(f,; —f,,) and outperformed BMO for
the test functions fy, >, and f5,.

To observe the convergence property, convergence curves of different algorithms on
six classical test functions are presented in Fig. 2. The curve shows the best fitness value
attained by an algorithm versus several iterations. It is clear to observe that EBMO domi-
nates BMO in all cases and is found superior to all for the test functions f; and f;, for
its fast convergence rate. EBMO is only lagging from SSA for the test functions f5 and
f1o- For the rest of the functions, the performance of EBMO is very close to the leading
algorithms. A boxplot is presented in Fig. 3 to realize how the optimal values of differ-
ent benchmark functions are obtained on 31 independent runs of the different algorithms.
EBMO has proven to be more consistent among other optimization algorithms to achieve
optimal value.
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Fig.2 The convergence curves of the six classical test functions (f}, fs, 1o, f12, f13 and f>,)
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4.3.3 Performance analysis of EBMO on IEEE CEC-2014 test functions

Table 4 shows a comparison of different optimization algorithms including EBMO on
IEEE CEC-2014 test suit to explore its complex problem handling capabilities. Out of 30
complex test functions, EBMO can reach the optimal value for 11 test functions and out-
perform all for f5; and f,,. It can also be observed that EBMO surpasses BMO in all most
all cases. For the test functions f53, f54 and f39, where the complexity level is very high,
the result of EBMO is competitive to others and secured fifth place. For the remaining
test functions, EBMO has a very close contest with leading algorithms. The convergence
performance of various algorithms for 6 different test functions are given in Fig. 3. From
the convergence curves, it is obvious that the enhancement introduced in BMO helps it to
improve its convergence rate. Though the convergence rates of EBMO for f,; and f, are
lagging from some of the state-of-art methods, its performance is found superior or similar
for other test functions (Fig. 4). To analyze EBMO consistency and overall performance,
the results obtained from 31 independent runs were taken for the ANOVA test and the
results are plotted in terms of the Box plot in Fig. 5. It can be observed that EBMO and
BMO are consistently better than most of the optimization algorithms except in the func-

tion fyq.

4.3.4 Scalability analysis of EBMO

A performance assessment of the proposed EBMO algorithm for low- and high-dimen-
sional problems with the help of scalability analysis is presented in this section. Since opti-
mization problems in the real world often involve many variables, the algorithm is tested
for 7 different dimensions: d={10,20,40, 60, 100,200,400} and the results are plotted in
Fig. 6. The tests are performed with fixed population size and a maximum iteration count
of 30 and 500 respectively for the above dimensions. As the requirements of the search
agents of L-SHADE and CMA-ES algorithms depend upon the dimension size, they are
not included in this test. The test reveals how effectively the algorithm can work in pro-
portion to the increase in control variables for a given problem, while the population and
maximum iterations counts are frozen to a particular value. It can be observed from the
plots that EBMO can provide a consistent outcome in most of the test functions at differ-
ent dimensions without affecting its performance. For the test functions f,, f3, fs, feand fi;,
EBMO surpasses BMO and for the rest, the performance is almost similar. Overall, the
steady behaviour of EBMO makes it’s a suitable algorithm to face the challenges of vari-
able dimension size problems.

4.3.5 Statistical analysis of EBMO

This section is included in the performance evaluation to demonstrate the difference between
EBMO, and another algorithm based on various statistical analyses. At first, the non-paramet-
ric Friedman average rank test is conducted on the results obtained from various test functions.
For a reliable comparison, the Friedman test required at least 5 different algorithms for more
than 10 benchmark functions. The performance evaluation study included 10 algorithms in the
comparative study, and these are applied to 52 different test functions. In this work, the Fried-
man tests have been conducted on three different groups. The first group consist of all classical
function from f; to f,,, the CEC 2014 benchmark functions f,; —f5, are included in the second

@ Springer
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Fig.4 The convergence curves of the six modern test functions from CEC2014 (f53, f57, f32, fa0, fas and f55)
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Fig.6 Scalability analysis with d= {10, 20,40, 60, 100,200,400}

group and the third group consists of all 52 test functions. The Friedman mean rank values
obtained over 31 independent runs on the test functions included in each group are shown in
Table 5. Based on the Friedman score, EBMO ranks first for Group 1 with a Friedman score of
3.911. For the second group, EBMO ranks fourth after lagging from SMA, MRFO, and EO. A
comparison by taking all 52 test functions in the third group also has been done, which shows
that the overall performance of EBMO is better than all with a Friedman mean rank of 3.864
and secured the first rank by beating all state-of-the-art methods.

In the second part, a post hoc analysis using the Bonferroni-Dunn test [84] is conducted
to observe which algorithm’s performance is significantly different from EBMO and which
are equivalent to it. The test identifies the significant difference between the two algorithms
by comparing the difference between the average ranks obtained by the method with a criti-
cal value obtained from the method given in [45] for a significance level of 95% (a=0.05).
If the difference is more than the critical value, the algorithm’s performance is different sig-
nificantly otherwise marked as similar. To perform the test the proposed EBMO is taken as
the control algorithm and its performance is compared with the rest of the methods. Figure 7
displays the average ranks obtained from the three groups of functions defined above. The
critical values calculated for each group are represented by horizontal lines. The control algo-
rithm EBMO is superior to those algorithms for which the calculated average rank crossed
these horizontal lines. For Group 1, EBMO was found significantly better than HHO, SSA,
L-SHADE, and CMA-ES. Similarly, there is a significant difference in the performance of
EBMO for Group 2 over SSA and L-SHADE. Finally, EBMO was found to significantly out-
perform HHO, SSA, L-SHADE, CMA-ES and TSA when tested on Group 3 functions.

The Bonferroni-Dunn test fails to give a fair decision about the algorithms which ranks are
close to the critical values. Thus, in the final part of the statistical analysis, a Holm test [28] is
conducted to identify which algorithms are better than EBMO and which are inferior. Holm’s
test is one of the widely used multiple test methods based on a sequential rejective process.
The compared algorithms in this test are first arranged according to their p value in increasing
order from top to bottom as shown in Tables 6, 7, and 8. Each algorithm is then assigned with
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Fig.7 Result of Bonferroni—-Dunn test for various algorithms and function groups with a=0.05

an algorithm number i starting from bottom to top. The test then starts from the most signifi-
cant p value and rejects the defined null hypothesis sequentially if the corresponding p value is
less than a/i. Once the process encounters a case where the null hypothesis is accepted, it stops
the process and considers the same for the remaining cases. The results obtained from Group-1
are presented in Table 6. It can be observed that EBMO performance is significantly better
than L-SHADE, BMO, MRFO, CMA-ES, EO, TSA and HHO. The Holm test conducted on
the result of Group-2 functions is depicted in Table 7 and it is found that the proposed EBMO
performance is statistically like HHO and BMO. Finally, a Holm test is also conducted for
Group-3 function and the test results are presented in Table 8 show the superiority of EBMO
result which is significantly different from most of the algorithms except BMO and HHO.

4.3.6 Discussion on results of EBMO

From the various post hoc analysis on the performance of different algorithms on bench-
mark functions, there is a significant improvement of EBMO over almost all algorithms
including BMO for the set of classical benchmark functions. Though there is no significant

Table 6 Holm’s test for group 1 EBMO vs.

functions f, — f,, (EBMO as the Rank z-value p-value i ali (0.05)

control algorithm) L-SHADE 3911 896263 1.02E-18 9  0.0055555
BMO 5599 855854  3.04E-17 8  0.00625
MRFO 4279 571985  131E08 7  0.007143
CMA-ES 6033 564047 206E-08 6  0.008333
EO 5605 482381  157E06 5 001
TSA 5706 445400  843E-06 4 00125
HHO 6394 444914 932E-06 3 0.016667
SSA 5.827 140264  0.160953 2 0.025
SMA 5690 110973 0267311 1 0.05

The best results are highlighted in bold
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Table 7 Holm’s test for group 2

functions f,y(CEC14—F1) o0 fay EBMO vs. Rank z-value p-value i ali (0.05)

(CEC14=F30) (EBMOasthe  pgp 7947 710843  278E09 9  0.0055555

control algorithm)
L-SHADE 7.892 6.00547 2.51E-09 8 0.00625
SSA 8.649 5.89629 4.57E-09 7 0.007143
MRFO 3.927 -3.56759 0.000378 6 0.008333
EO 3.934 —3.55038 0.000403 5 0.01
SMA 3.650 —3.54682 0.000409 4 0.0125
CMA-ES 5.267 —3.49433 0.000497 3 0.016667
HHO 5.216 —-1.27719 0.202371 2 0.025
BMO 4.456 0.77374 0.439757 1 0.05

The best results are highlighted in bold

difference between the performance of EBMO and BMO on the CEC 2014 benchmark func-
tion, EBMO is capable of dominating BMO by some improvement on achieving the optimal
result and standing one step ahead on BMO as per the Friedman test. However, the objective
of enhancement of BMO has been achieved by the supplement of the additional mutation
strategy from the overall Friedman test score and convergence speed. The scalability test on
EBMO shows that it has also the capability to handle problems with variable dimensions.

5 The proposed exponential entropy-based multilevel thresholding
using EBMO(EBMO-EE)

In this section, we proposed a multilevel thresholding method for colour images using
EBMO as the optimization algorithm applied to maximize the exponential entropy dis-
cussed in Section 3. A framework of the multilevel thresholding process of the colour image
is shown in Fig. 8. Initially, the colour image is divided into three colour channel planes,
Red, green, and blue: Ic(m,n)E{I,(m,n),Ig(m, n),I,(m,n)}. The thresholding algorithm is
applied to each colour channel independently with the help of an optimization algorithm. To
obtain k+ 1 distinct regions from each channel, each barnacle X; in the EBMO algorithm is
represented by a vector having k control variables, where i=1, 2, 3...... N and ‘N’ represent
the population size. As the objective of the thresholding is to divide the image into a dis-
tinct region without affecting the desired information present in the image, the exponential

Table 8 Holm’s test for group 3

EBMO vs.
functions f, — f5, (EBMO as the b
control algorithm)

Rank z-value p-value i ali (0.05)

L-SHADE  7.027 5.94153 3.13E-09 9 0.0055555
SSA 7.828 5.84532 5.61E-09 8 0.00625
TSA 7.429 529713 1.18E-07 7 0.007143
MRFO 3.976 —3.55213 0.00039 6 0.008333
EO 4517 —3.53499 0.00041 5 0.01
SMA 4.363 —3.53144 0.00042 4 0.0125
CMA-ES 5.535 —3.47917 0.00051 3 0.016667
HHO 5.620 —-1.27132  0.20375 2 0.025
BMO 4.840 0.77020 0.44127 1 0.05
The best results are highlighted in bold
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Fig. 8 Framework of proposed EBMO-EE based multilevel thresholding process

entropy which is the information measure is considered as the fitness function in our pro-
posed method. Meta-heuristic algorithms are used to provide the desired threshold value
by maximizing the fitness function. Once the thresholding operation is completed for each
colour channel with the help of k thresholds, the thresholded images of all colour channels
are then combined to produce the required colour RGB thresholded image:

T.(m,n) = [T,(m, n), Tg(m, n), T, (m, n)] (15)

Each of the colour channels is represented by only Q=k+1 gray levels. So, the maxi-
mum number of the gray level required to represent the thresholded colour image T,(m,n)
becomes Q® which is quite less than the original input image.

The different steps involved in the process of proposed EBMO-EE based multilevel thresh-
olding are presented in Fig. 9. The thresholding process started by taking an RGB image as
input. As an RGB image consists of three different channels (Red, Green, and Blue), the process
is applied to each plane individually. The gray level distribution of a channel is then calculated in
the form of a histogram. Once the above information is available, individual barnacle vectors in
the population and other related parameters of EBMO are initialized from the program’s general
perspective. The number of thresholds (’k°) that must be calculated for multilevel thresholding
is specified as the dimension of each barnacle vector. In the population, each barnacle vector
provides a collection of thresholds for segmenting the images into k+ 1 classes. The information
content of each barnacle is represented by the exponential entropy associated with the respec-
tive segmented image, which is quantified by the fitness related to each barnacle. The EBMO
algorithm discussed in Section 4 is now updating the barnacle vectors in the population by its
updating strategies in each iteration. At the end of the iteration, the EBMO produces the optimal
threshold vector for the selected channel. The process is repeated for each colour channel.

6 Results and discussions

The performance of the proposed exponential entropy-based multilevel thresholding
using EBMO (EBMO-EE) is presented in this section. All the simulations are performed
in MATLAB R2015b supported by Intel Core i3-8th generation 2.3 GHz processor with
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Fig.9 Flowchart of EBMO-EE based multilevel thresholding

8 GB RAM running on Windows10 environment. Thresholding operations are carried
out in two different groups of the images as shown in Figs. 10 and 11 with their cor-
responding histogram of RGB colour channels. The first group contains six low-dimen-
sional standard images, while the second group contains six high-dimensional images
collected using Landsat datasets [39]. The thresholding operation becomes a challeng-
ing task when the number of thresholds is more. This instigates us to use most efficient
optimizers available so far such as BMO [76], MRFO [85], SMA [54], EO [16], HHO
[25], SSA [31], CMA-ES [11], L-SHADE [61] and TSA [36] in comparison analysis.
All the above algorithms are applied to each of the test images 31 times independently
with a population size of 30 and the number of iterations fixed to 100 to maintain stabil-
ity. For CMA-ES and L-SHADE equivalent number of evaluations has been taken. Low
dimensional images are thresholded with a threshold dimension of 2, 3, and 4, whereas
the threshold dimension of 4, 8, and 12 have been selected for high dimensional images
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Fig. 10 The group-1 test images and their corresponding histograms

in this experimental study. To evaluate the thresholded images obtained from various
algorithms at a different level of thresholding, four performance measures: peak signal
to noise ratio (PSNR) [33], Feature Similarity Index Measure (FSIM) [44], Structural
Similarity Index Measure (SSIM) [81]and Uniformity Measure [17]. have been calcu-
lated and used in a comparative study. A higher value, of PSNR with closer the value of
FSIM, SSIM, and UM to 1 is required for ideal thresholding.

Like BMO, the performance of EBMO also affected by the penis length pl, . of
the barnacle. The decision ongoing for the exploitation or exploration process com-
pletely depends upon the penis length. As the enhancement version of EBMO not only
enhances the overall exploration but also explores the points close to the best barnacle,
a balance of exploration and exploitation must be required for it to reach an optimal
solution in less time. Different values of pl,, . have been tested at a different level of
thresholding on a set of low as well as high dimensional images. The effect of pl,,,, to
attain the optimal solution of EBMO is shown in Fig. 12 for five different values of pl.
The best result can be obtained for p/=20. For this comparison analysis, pl,,,. is set to
20 which is nearly 70% of the total barnacle vector in the population.

The thresholding level at low as well as higher-level thresholding of images with var-
ied dimensions is discussed here. At lower-level thresholding, the complexity involved
in the threshold’s selection process is less because of the presence of well-defined sepa-
rated regions in the gray level distribution of an image. Whereas, when the number of
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thresholds increases, the optimization algorithms encounter flat regions in the histogram
which makes the thresholds selection process more complex. Such a type of complexity
can only be overcome by selecting an algorithm having excellent exploration skills. The
use of gaussian mutation in EBMO improves population diversity, allowing the algo-
rithm to examine as many threshold combinations as possible. This has a coarse tuning
feel to it. A random movement towards the best answer aids EBMO in further explora-
tion around the present best, which is necessary for fine-tuning. The average PSNR,
FSIM, SSIM, and UM of six thresholded images obtained from different algorithms
when applied to group-1 low dimensional images are shown in Fig. 13 in the form of
a bar chart. The results obtained with threshold dimensions of 2, 3, and 5 are repre-
sented by three different colours as shown in the figure. It can be observed that when
the number of thresholds, k=2, almost all algorithms except EBMO show almost simi-
lar performance for the PSNR values. After a close fight with MRFO and SMA algo-
rithms, EBMO produces a superior segmented image with a maximum average PSNR
of 22.5282 due to exploring more threshold combinations in a short time. When the
number of thresholds increases from 2 to 5, the performance of different algorithms
starts varying. To assess how well the features of the images are retained in the seg-
mented images, the paper also presented the FSIM values obtained after the application
of different optimization algorithms. It can be observed that the proposed EBMO based
thresholding produced a better segmented image with less feature information loss by
attending higher FSIM values. Perceptual differences between original and segmented
images are further measured through SSIM. For SSIM values, EBMO has a significant
improvement over its counterpart BMO when k=2. Because of the excellent explora-
tion skill of EBMO, the perceptual difference found in the thresholded results associated
with it is less to the original image. To carefully examine segmentation results in this
paper one more similarity measure UM values obtained from the thresholded images are
also included in the result section. Based on the experimental results of obtained UM
values, EBMO dominates other examined algorithms for k=2 and k=3 but lags margin-
ally from the thresholding performance of SMA.

The convergence plots of different optimization algorithms taken for comparative analy-
sis for Lena image at the threshold dimension 5 are displayed in Fig. 14. All the optimi-
zation algorithms are applied independently to the image for maximizing the exponential
entropy and the number of iterations required to reach the optimized value is recorded. By

BMO. MRFO —— SMA —— EO HHO

SSA — — ‘LSHADE — — ‘CMA-ES —— T5A)

Fig. 14 Convergence curves of =t
various optimization algorithms [
for Lena Image at a thresholding
dimension of k=5

- =

Fitness value

Iterations
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Fig. 15 Performance analysis of various algorithms on group-2 images for (a) Average PSNR (b) Average p
FSIM (c) Average SSIM and (d) Average UM

analysing the convergence plot, it can be observed that the additional mutation strategy
included in EBMO helps it to converge fast with its superior exploration capability.

To observe the thresholding performance of proposed methods on high dimensional
images and a higher level of thresholding, a comparative analysis with the above perfor-
mance measures for remote sensing mages taken from Group-2 also has been performed
with a threshold dimension of 4, 8, and 12. The proposed multilevel thresholding approach
is put to the test on remote sensing photos to ensure that it can be used in practice. The
results obtained are presented in Fig. 15 with the help of bar chat. The improvement over
BMO due to the proposed modification can be observed from the experimental results,
where it beats BMO significantly with a higher value of average PSNR, FSIM, SSIM and
UM. After a close race with MRFO and SMA-based thresholding, EBMO has reclaimed
first place in terms of PSNR value. A better FSIM value achieved by the proposed method
shows that the desired information can be collected from the threshold image. The compar-
ison results of SSIM values indicate that there is a close fight between EBMO and CMA-
ES algorithm toward retaining the structural similarity. Finally, the largest UM values asso-
ciated with suggested EBMO-based thresholding output make it a feasible method for the
analysis of higher-dimensional remote sensing images.

To make a visual judgment and in-depth investigation, three images from each group are
taken for further study. To encourage readers, these examples suffice for analysis and inter-
pretation. As the best performance measures value can be obtained by retaining maximum
contextual information and the inherent characteristics of the original image in the output
image, the quality of thresholded images is proportional to the information preserving abil-
ity by an optimization algorithm during threshold selection. Thresholded images of one
low dimensional image and their corresponding histograms obtained from various optimi-
zation algorithms are presented in Fig. 16. To identify the improvement introduced by the
proposed algorithm, the best PSNR, FSIM, SSIM, and UM values associated with each
output image are also given in the figure. It can be observed, as the thresholded images
are taken for k=3, there is very close competition between different algorithms. Whereas
a significant improvement can be observed for higher-level thresholding. Figure 17 shows
the results of different algorithms for one high-dimensional image at k=12 . The histogram
of each colour channel is represented by the same colour. It is clear from the result that the
proposed thresholding approach dominates all and can be claimed as a suitable solution for
the analysis of real-time images.

At the end of the section, the thresholded images obtained from a few more low and
high-dimensional test images at a different level of thresholding using different algorithms
are presented in Appendix Figs. 18, 19, 20 and 21. The combined histogram associated
with different thresholding levels using EBMO with exponential entropy as the fitness
function is also presented for Group-1 and Group-2 images in Appendix Figs. 22 and 23.
It can be seen that; the proposed exponential entropy-based multilevel thresholding using
EBMO can perform multilevel thresholding tasks efficiently for low and high dimensional
images at a different level of thresholding.
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7 Conclusion

This work proposes a new exponential entropy-based multilevel thresholding algorithm by
introducing a first-hand search algorithm called Enhance Barnacle Mating optimization
(EBMO). After an in-depth investigation of the performance of EBMO, it is found appropriate
for the proposed thresholding method. The EBMO algorithm is the enhancement of the recently
developed Barnacle Mating Optimization (BMO) algorithm by incorporating an additional
mutation strategy and a random movement towards the best solution. The addition of these
new strategies makes the Barnacles explore all possible regions which help them to avoid local
minima in their search path and move fast towards the optimal solution. The qualitative and
quantitative results of the EBMO are compared to well-known optimization methods BMO,
MRFO, SMA, EO, HHO, SSA, L-SHADE, CMA-ES, and TSA over different benchmark test
functions, which reveals that EBMO surpasses other optimization techniques. The convergence
rate of the EBMO is also found quite impressive than other state-of-the-art methods.

In this work, we have investigated an exponential entropy-based technique for multilevel
thresholding using EBMO (EBMO-EE), which considers the exponential gain function to
estimate the information available in the thresholded image. Unlike logarithmic gain-based
entropy, exponential entropy can be calculated with a finite value at all possible points. Dif-
ferent optimization algorithms have been applied to maximize this entropy function, including
the proposed EBMO. The statistical comparison using the average PSNR, FSIM, SSIM, and
UM presented in the paper claims that the exponential entropy can be taken as a suitable fit-
ness function to perform thresholding. The EBMO is an efficient algorithm to optimize it at a
different level of thresholding. The future scope of the work includes multilevel thresholding
in a noisy environment. Though the performance of EBMO is superior over many state-of-art
algorithms, a further improvement of the exploration and exploitation skill of the algorithm
can be achieved by hybridization with an efficient optimization algorithm. The efficiency of
the suggested multilevel thresholding approaches can also be improved by taking into account
the spatial correlation between pixels, which is not taken into account in this study. To con-
clude, we believe that the proposed method for the image segmentation based on computa-
tional intelligence for intelligent healthcare applications will be found to be satisfactory.

Appendix

Table 9 Unimodal test function

Function d Range Sonin
[0 =Y 2 30, 100 [-100, 1001 0
LX) =X ]+ T2, x| 30, 100 [-10, 10

. AN 30, 100 [-100, 1001 0
£ = 2L (Zi)
fiX) =max{|x]|, 1 <i<d} 30, 100 [-100, 100} 0

v

d

L0=x [100(%“ —32)"+ (- 1)2] 30100 [=30.30] 0
0 =3 (lx+05))° 30, 100 [~100, 100 0
X = Zii]ix? + random|0, 1) 30, 100 [-1.28,1.28] 0
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Table 11 Fixed dimension multimodal test function

Function Range Snin
-1 2 1
. _ 1 25 1 —65.536,
fi0) = (5 + Zj:‘.m> [ 65.536 ]
_ (P rhm) 12 [-5,5]* 0.0003075
fu0 =31 [“i - h?(-i—}’7,-x3+x,,,)

fis0) =42 = 2.1x} + %x? + X1, — 4x? +4x) [-5,51° —1.0316285
[-5,10]1%[0,15] 0.398

2
SisX) = (Xz - jﬂl,x% + %xl - 6) + lO(l - é) cosx; + 10
fir 0 = [1 +(x +x2+1)2><(19_ 14x, + 327 — 14x2+6x1x2+3x§)] [-2,21% 3

x[30+ (26 = 35)7 x (18 = 320, + 1263 + 48%, = 3631, + 273 |

X)=- - - 3 —
Si(X) Z?=|Ci CXP( Z;=]aij(xj pij)2> [0,1] 3.86
X)=-3 => 6 —
J1o(X) ?:16‘; exp ( lea[/()c_/ —p,_-/.)2> [0,1] 3.32
X)=-) — B 0,101 —10.1532
20X f:l [(X ai)(X—ai)T+ci] [ ]
0 (X)) =-— - — - 0,1071* —10.4028
Ja1(X) 21-7:1 [(X ai)(X ai)T+ci] [ ]
[0, 101* —10.5363

Jn(X) = —Z,-l: [(X -a;)(X - “i)T + Ci]_]
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Fig.21 9-level thresholded images (k=8) and their corresponding histograms
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Thresholding result of the proposed (EBMO-EE) method on Group-1 test images with combined histogram
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Fig.22 Thresholding result of the proposed (EBMO-EE) method on Group-1 test images with combined
histogram
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Thresholding result of the proposed (EBMO-EE) method on Group-2 test images with combined histogram
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