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Abstract: Visual analysis of an electroencephalogram (EEG) by medical professionals is highly
time-consuming and the information is difficult to process. To overcome these limitations, several
automated seizure detection strategies have been introduced by combining signal processing and
machine learning. This paper proposes a hybrid optimization-controlled ensemble classifier com-
prising the AdaBoost classifier, random forest (RF) classifier, and the decision tree (DT) classifier for
the automatic analysis of an EEG signal dataset to predict an epileptic seizure. The EEG signal is
pre-processed initially to make it suitable for feature selection. The feature selection process receives
the alpha, beta, delta, theta, and gamma wave data from the EEG, where the significant features, such
as statistical features, wavelet features, and entropy-based features, are extracted by the proposed hy-
brid seek optimization algorithm. These extracted features are fed forward to the proposed ensemble
classifier that produces the predicted output. By the combination of corvid and gregarious search
agent characteristics, the proposed hybrid seek optimization technique has been developed, and is
used to evaluate the fusion parameters of the ensemble classifier. The suggested technique’s accuracy,
sensitivity, and specificity are determined to be 96.6120%, 94.6736%, and 91.3684%, respectively, for
the CHB-MIT database. This demonstrates the effectiveness of the suggested technique for early
seizure prediction. The accuracy, sensitivity, and specificity of the proposed technique are 95.3090%,
93.1766%, and 90.0654%, respectively, for the Siena Scalp database, again demonstrating its efficacy
in the early seizure prediction process.

Keywords: electroencephalograph (EEG); epileptic seizure prediction; ensemble classifier; corvid
and gregarious search agents; hybrid seek optimization

1. Introduction

The human brain is a key component of the central nervous system (CNS), and epilepsy
is a common neurological condition that affects the CNS in the brain. According to a report
by the International League Against Epilepsy (ILAE) [1], epilepsy is a neurological brain
disorder that occurs due to the symptoms of an epileptic seizure. A sudden, uncontrolled,
electrical disturbance in the brain is known as a seizure. It can change your emotions,
actions, behavior, and degree of consciousness. Epilepsy is typically defined as having
two or more seizures that are unprovoked and occur at least 24 h apart [2]. A person with
epilepsy may experience a single seizure or a variety of them. Generalized, focal, and
unidentified seizures are the three primary types of seizures. Focal seizures, also known
as a partial seizure, occur in about 60% of people with epilepsy. The characteristics of a
focused seizure can occasionally be confused with indications of mental illness or other
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types of neurological conditions. A person may experience both motor and non-motor
symptoms as the seizure intensifies [3]. Generalized seizures can also be either non-motor,
which does not entail physical movement, or motor, which entails physical movements
such as jerking motions, limp or weak limbs, rigid muscles, muscle twitching, or full-body
epileptic spasms [4]. Tonic-clonic seizures or grand-mal seizures are another form of motor
seizures which include stiffening, loss of consciousness, rhythmic jerking, bluish skin from
oxygen deprivation, and/or loss of bladder and/or bowel control [5].

Abnormal activities of the brain, such as loss of consciousness, sensation, or other
cognitive functions, are the causes of epileptic seizures [6]. A recent analysis shows that
about 23 to 100 per 100,000 people are affected with epilepsy. People of extreme age are
more likely to be affected, and it peaks in people between 10 and 20 years old. Around
70 million people worldwide, or 1% of the population, suffer from epilepsy. Despite
taking numerous anti-seizure drugs, 30–40% of people living with epilepsy still experience
seizures [7]. In severe cases such as focal epilepsy, patients are subjected to surgical
procedures, but it is not advisable to take such measures for about 30% of the patients.
Hence, once a seizure is identified, it is important to control the consequent seizures [8]. It
is possible to record the abnormal activity of the brain before the occurrence of a seizure
with electroencephalogram (EEG) signals [9,10]. EEG is a prominent tool for analyzing
epilepsy by recording the activities of the human brain. EEG is mostly used for brain-related
diseases as it is non-invasive, highly accurate, and economical. According to the length of
the episode, epileptic seizures are divided into a variety of stages. The ictal state refers to
the state that initiates with an onset and ends with an epileptic seizure. The postictal period
begins after the seizure has ended and lasts for a short while. The preictal state begins
around 60 to 90 min before the commencement of the seizure and is referred to as common
brain activity or interictal state. The scanning of seizures visually is time-consuming,
particularly when the EEG signal is very long. In such cases, automatic computer-based
diagnosis is preferential, where the features of the EEG signals are used for diagnosis [11].
In addition to being extremely expensive for the person with epilepsy, their family, and
society as a whole, seizures are difficult to control. Seizures that go unchecked significantly
lower a person’s quality of life. In terms of the global load of disease, which depends on
years lost by individuals due to premature mortality and years spent in less-than-optimal
health, epilepsy represents more than 0.5% of the total. Epilepsy has significant financial
repercussions regarding medical expenses, preventable deaths, and missed productivity at
work. An Indian cost-effectiveness study found that public support for first- and second-
line therapies and other medical costs helped lessen the financial burden that epilepsy
creates. Since epilepsy is stigmatized and discriminated against globally, even if social
effects vary from country to country, epilepsy is occasionally more challenging to manage
than the seizures themselves. Epilepsy sufferers may be the object of prejudice. People
who want to avoid being associated with the condition may be discouraged from getting
treatment due to stigma. By 2050, the number of people over 65 is predicted to rise from
461 million to 2 billion. The social and medical effects of this large growth will be profound.
HAR is developing as a potent tool for monitoring older individuals’ physical, functional,
and cognitive health in their homes [12].

Early trials of automatic diagnosis resulted in systems with an accuracy of 76% to 90%
and a false detection rate of 1 to 0.71/h. Hence, it is necessary to develop computationally
effective methods. EEG recordings contain a huge amount of data; thus, technologies are
required to be developed to handle the classification and feature selection processes. Some
challenges in seizure prediction methods are listed below:

1. One of the primary drawbacks of generative adversarial networks LSTM unit is the
right or left amplitude predominance in EEG readings;

2. Methods for predicting epileptic seizures based on the support vector machine and
K-nearest neighbors inherit the problem of lacking directionality and phase-related
data;
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3. The EEG spike rate technique-based seizure prediction algorithm does not employ
deep learning methodology. Consequently, utilizing this method does not allow for
the accurate evaluation of an epileptic episode;

4. The major problem associated with the generative adversarial networks strategy for
the prediction of seizure is that it is unsuccessful in enhancing the anticipation time;

5. Deep learning algorithms for seizure prediction are hampered by lower SNR and a
higher number of parameter inputs.

The problem of reduced classification accuracy in seizure prediction methods has
been addressed by several researchers. Most of the seizure prediction strategies are user-
specific due to the variation in the type and location of the seizure with the EEG signals
of patients. The conventional technique of seizure prediction consists of processes such
as pre-processing of signals, selection of features, and classification [13–16]. The pre-
processing step is executed to remove unwanted noise, enhance signal quality, and so on.
Pre-processing is carried out with band pass/band stop filtering, Fourier transforms (FT),
empirical mode decomposition, wavelet transform (WT), and Hilbert vibration decomposi-
tion. The methods that do not follow the initial pre-processing are suspected of possessing
reduced specificity and sensitivity. Following this step, the signal goes through a feature
selection method to extract the informative characteristics. If the size of the feature is
large, its dimensions can be reduced to form a feature vector. The classification component
performs the final step, where the feature vector is tested to find the best approach to
categorize the characteristics based on the hidden pattern.

The major goal of this research concentrates on developing an optimized seizure
prediction method using a hybrid seek optimization-based ensemble classifier. The EEG
signal acts as the input for the classification module, where all the waves (i.e., alpha, beta,
delta, theta, and gamma) of the EEG signals are subjected to a feature selection process.
The EEG signals are further processed to extract statistical, wavelet, and entropy-based
features [17] for reducing the prediction complexity. Finally, the significant features are
analyzed with the proposed hybrid seek optimization-based ensemble classifier for seizure
prediction. The optimization technique, named hybrid seek optimization, is based on
the corvid and the gregarious search agents. The classifiers, such as AdaBoost, random
forest, and decision tree, are combined as an ensemble classifier in the proposed seizure
prediction module. The ensemble classifier is finely tuned in such a way as to produce
the prediction output with enhanced accuracy. This paper suggests an intelligent seizure
prediction module based on a hybrid seek optimization-based ensemble classifier employed
for predicting seizure disease utilizing the EEG signal of the patients. To effectively achieve
this outcome, the following contributions are made:

1. This research proposed a hybrid seek optimization-based ensemble classifier for
seizure prediction with EEG signals. Advanced feature selection techniques have
been used with EEG to improve findings and for simplification. This paper presents
an innovative seizure prediction paradigm to provide researchers with a benchmark;

2. With the hybrid characteristics of gregarious and corvid search agents, a unique hybrid
seek optimization method is created to make it easier for the ensemble classifier’s
hyper-parameters to function;

3. Experiments have been conducted with a python tool installed in Windows 10 OS
on CHB-MIT and Siena Scalp EEG databases. The outcomes demonstrate that the
suggested model outperformed both datasets without experiencing over- or under-
fitting issues;

4. Based on performance indicators utilizing the CHB-MIT database and Siena database
in terms of training % and k-fold value, the comparative study revealed the viability
of a hybrid seek optimization-based ensemble classifier for the seizure prediction
module;

5. Compared to other techniques, it is clear that the hybrid seek-based ensemble classifier
may provide enhanced seizure prediction while achieving higher accuracy, sensitivity,
and specificity levels.



Sensors 2023, 23, 423 4 of 23

The sections of this research are structured as follows: Section 2 presents the literature
based on the current seizure prediction models and their drawbacks. Section 3 explains the
fusion parameter estimation for the strategy for seizure prediction. Section 4 demonstrates
the outcomes along with a performance analysis of the proposed seizure prediction system,
and finally, the paper is concluded with Section 5.

2. Related Work

There are many research contributions to seizure disease prediction techniques in
the medical field literature and the most recent are summarized in this section. Khakon
Das et al. [18] developed a model for identifying epileptic seizure waveforms from the
pre-ictal phase of the EEG signal. This method detects the seizure at its initial stage and
produces an alarm to make the neurologists aware of the condition. However, occasionally,
the occurrence of left or right amplitude preponderance was noted and is considered the
major drawback of this method. Marzieh Savadkoohi et al. [19] used classifiers, such as
K-nearest neighbors (KNN) and support vector machine (SVM), for the prediction of a
seizure, which was efficient, reliable, and flexible, and thus could be used for any range of
frequency variation. However, it possessed poor phase information and directionality. Itaf
Ben Slimen et al. [20] introduced a seizure detection approach based on spike rate, which
was highly accurate and helped improve epileptic disease patients’ quality of life. However,
a deep learning strategy was not used in the prediction process; thus, this may lead to
performance degradation. Syed Muhammad Usman et al. [21] developed the generative
adversarial networks long short term memory (LSTM) units with an enhanced sensitivity
and reduced false positive alarm rate, but did not efficiently improve the anticipation time.
Syed Muhammad Usman et al. [22] designed a prediction module for seizures using deep
learning methods, obtaining an increased sensitivity and specificity. However, reduced
SNR measures and the use of a large number of parameters were considered to be major
limitations of this method. Chien-Liang Liu et al. [23] introduced a prediction model with
a convolutional neural network framework that attained a shared indication of time and
frequency domain features, but it could not be used to test the brain computer interface
dataset. Heba M. Emara et al. [24] developed an anomaly detection strategy for multi-
channel EEG signals, which was capable of attaining a high rate of prediction, but the
need for a sample was the major drawback of this method. Hisham Daoud and Magdy
A. Bayoumi [25] modeled the deep learning-based algorithms without the need to pre-
process the input signal. This method completed the prediction process in less time with
a reduced false alarm rate; however, this result mode was not capable of low variance
entropy. Khakon Das et al. [26] implemented a seizure waveform for the detection of
epileptic seizures. This model predicted an epileptic seizure in advance, and it is attracting
significant attention in neuroscience. This model has a very high complexity and uses more
computational time. Gang Wang et al. [27] executed an algorithm based on CNN and DTF,
which is an accurate seizure prediction method that can be applied in a clinical setting
and has advantages for the epilepsy patient as it is a closed-loop treatment; however, it
was highly time-consuming. Syed Muhammad Usman et al. [28] devised an ensemble
learning method for epileptic prediction with raised sensitivity without combining heart
rate variability with EEG recordings in implementation. Many articles implement machine
learning in healthcare Figure 1 shows the distribution of three methods of evaluation
metrics considered in this literature review.

In the methods mentioned above, most of them suffered from disadvantages such as
lack of data which is overcome in this research by the use of a standard dataset. Addition-
ally, the procedures did not apply optimization algorithms to obtain an optimal solution.
However, in this research, hybrid seek optimization is used to optimize the parameters.
Most above-mentioned methods were computationally complex and consumed more time,
but the proposed method reduced the time consumption of the classifier by optimal tuning.
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3. Development of the Proposed Strategy

Information on the status of the brain is gathered by EEG signals, which are broadly
utilized to analyze the different activities of the brain. In particular, they present significant
data relevant to epileptic seizure disease. Epilepsy is a disease caused by a neurological
disorder connecting disturbances in the nervous system induced by damage in the brain. It
has been reported that about 1% of the world’s population is affected by a seizure disease.

Visual analyses of EEG signals are tedious and time consuming, with lengthy EEG
signals leading to increased error in measurements. Hence, artificial intelligence-based
seizure prediction technologies are proposed to improve detection accuracy. Ensemble
classifier-based EEG signal classification has attained enhanced attention from both industry
and academia. This research explores using a new ensemble classifier to predict an epileptic
seizure with noisy EEG signals. The schematic representation of the proposed model of
seizure prediction is shown in Figure 2.
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3.1. Pre-Processing of EEG Signals

The first step of the proposed seizure detection module is pre-processing, intending to
eliminate the artifacts present in the raw EEG signals containing nonlinear and non-stationary
components. The artifacts are required to be pre-processed in such a way as to enhance the
prediction accuracy of the proposed ensemble classifier. After the raw EEG signals have been
downsampled, a band-pass filter is employed to exclude the frequencies that go beyond the
proposed frequency threshold. The signals within the frequency range between 0 Hz and
75 Hz was used in this research, and the rest were eliminated to obtain a smooth EEG signal
suitable for further processes. The pre-processed signal is shown in Figure 3.
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3.2. Frequency Bands of EEG Signal

The production of frequency bands for the input EEG signal, such as alpha, beta,
gamma, theta, and delta, are involved in the evaluation of inner-nodal data, enhancing
recognition accuracy. The frequency of the delta band is between 0 and 4 Hz and the
frequency of the theta band lies between 4 Hz and 8 Hz. The frequency of the alpha band is
between 8 Hz and 13 Hz and the frequency of the beta band is between 13 Hz and 22 Hz.
The frequency range of the gamma band varies at the higher frequency range of 22–30 Hz.

3.3. Feature Selection

Extracting significant features from each of the five frequency bands represents the
next important step in the proposed seizure prediction module. The feature selection
approach determines a feature vector from a regular vector represented in table1. A feature
is a distinctive measurement that is extracted from a segment of a pattern of frequency
bands in the proposed prediction module. It involves selecting the features or data that are
the most significant to execute the classification process. The important features needed to
be extracted in the proposed system are the statistical, wavelet, and entropy-based features.
All the extracted feature and vectors are represented in Table 1.

Table 1. Representation of feature vectors.

Number of
Samples/Feature Vectors 0 1 2 . . . 128 129

0 −4.78 × 10−16 2.06 × 10−27 4.54 × 10−14 . . . 0.34987 8.13 × 10−28

1 1.35 × 10−16 5.15 × 10−28 2.27 × 10−14 . . . 0.34677 2.90 × 10−28

2 −7.42 × 10−17 3.13 × 10−28 1.77 × 10−14 . . . 0.33928 2.26 × 10−28

3 −1.69 × 10−17 1.88 × 10−27 4.33 × 10−14 . . . 0.33216 7.34 × 10−28

4 8.69 × 10−17 1.63 × 10−27 4.03 × 10−14 . . . 0.4069 7.40 × 10−28

5 2.93 × 10−16 1.67 × 10−27 4.08 × 10−14 . . . 0.31926 8.24 × 10−28

6 −5.95 × 10−16 1.56 × 10−27 3.95 × 10−14 . . . 0.32999 6.32 × 10−28

7 −5.78 × 10−16 1.76 × 10−27 4.19 × 10−14 . . . 0.3514 1.19 × 10−27

8 −2.55 × 10−17 3.42 × 10−27 5.85 × 10−14 . . . 0.3786 1.41 × 10−27

9 −1.77 × 10−16 1.02 × 10−27 3.19 × 10−14 . . . 0.38145 6.72 × 10−28
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3.3.1. Statistical Features

These EEG signal features are used in the proposed classification approach to consider
even minor variations in the original EEG signal. The statistical features are extracted from
all five frequency bands and are described as:

(a) Mean: Mean is one of the most important statistical features which is used to eval-
uate the average of the total instances of the EEG signal to the total instances, expressed as:

FMN =
1
q

q

∑
r=1

A
r

(1)

where q represents the total instances of the EEG signal and Ar represents the average of
the features obtained from the rth data in the range [1, q].

(b) Variance: Variance is defined as the average of deviations in the square over the
individual data, and the mean FMN is expressed as:

FVR =
1

q− 1

q

∑
r=1

(Ar − FMN)
2 (2)

Even a small variation in the measure of variance needs to be considered, as it may
enhance the prediction performance.

(c) Standard deviation: The standard deviation is the assessment of widely dispersed
data that determines the mean for each instance of the EEG signal and is considered as the
root of the variance. It is represented by the equation:

FSDN =

√√√√ 1
q− 1

q

∑
r=1

(Ar − FMN)
2 (3)

(d) Skewness: Skewness is defined as the assessment of asymmetry in relation to the
third central moment’s rate. The normal division resembles the skewness to zero, and an
entire symmetry database may have a zero skewness and is mathematically expressed as
follows:

FSKW = ∑
(Ar − FMN)

3

qd3 (4)

(e) Kurtosis: Kurtosis is measured by determining the value of the shared weight of
the tails analogous to the enduring distribution that residue zero for Gaussian distribution.
The expression for kurtosis is specified as,

FKRT = ∑
(Ar − FMN)

4

qd4 (5)

where, Ar indicates the rth value of A, and d is the sample standard deviation.

3.3.2. Wavelet Features

The wavelet transform is suggested for its near-optimal time-frequency localization,
multi-rate filtering, and multi-scale zooming features for the detection of transients in the
system. The two important types of wavelet features are stated below:

(a) Wavelet energy: The energy after the decomposition of the wavelet sub-band is
known as wavelet energy and is formulated as:

B(w) = ∑
r
|Sw|r||

2 (6)



Sensors 2023, 23, 423 8 of 23

where w is the level of decomposition and Sw|r| is the factor of wavelet coefficient at the
level r. The relative wavelet energy is evaluated with the ratio of normalized wavelet
energy to the entire wavelet energy and is formulated as:

FWEY =
B(w)

∑H
gco=1 b(gco)

(7)

(b) Wavelet entropy: In general, entropy is a measure of asymmetric, improbability,
and disturbing signals. Uncertainties highly rely on the states and probability of the EEG
signals. The value of wavelet entropy is generated as:

FWEN =
B(w)

∑H
gco=1 b(gco)

log
B(w)

∑H
gco=1 b(gco)

(8)

where gco represents the number of wavelet decompositions, b(g) denotes the wavelet
coefficients, and the value of g is in the range [1, H].

3.3.3. Entropy-Based Features

Entropy is an important measure of information due to its ability to quantify random
variables’ improbability. It can scale the rate of information applicability effectively and
can be applied in different domains. Redundancy, independence, and interdependence
between the numbers of features are distinguished using the entropy-based measure. The
entropy measure can be mathematically formulated as:

FHEN =
z(g)

∑
x=1

L
x

log Lx (9)

where g indicates the attribute vector, z(g) indicates the number of unique values in g, and
Lx is the probability of xth information.

3.4. Feature Selection Using the Proposed Hybrid Seek Optimization

The feature vector is derived from the EEG input that contains the important patient
data that will be examined. The feature vector, which may be written as feature vector, F, is
made up of characteristics such as mean, variance, standard deviation, skewness, kurtosis,
wavelet energy, wavelet entropy, and holo-entropy-based features.

F = {FMN , FVR, FSDN .FSKW , FKRT , FWEY, FWEN , FHEN} (10)

Finally, the feature vectors’ dimension is for predicting the EEG signals containing in-
dications of a seizure. The solution encoding represents the statistical features as mentioned
in Equation (10), and the optimization selects the best features to support the improved
classification accuracy. The features of the EEG signal are represented in the feature vector.
The selection of the significant features among all features plays an important role in the
enhancement of accuracy in the proposed prediction module. Hence, significant features
need to be selected using the proposed algorithm, which inherits the characteristics features
of corvid and the gregarious search agents. The working principle of the proposed hybrid
seek optimization algorithm is explained in the next section.

3.5. Proposed Hybrid Seek-Based Ensemble Classifier for Epileptic Seizure Prediction

In most experiments related to the prediction of a seizure disease, the classification is
executed by a single classifier. In recent times, the successful use of ensemble classifiers,
which are developed from individual classifiers, has motivated us to enhance the system
effectiveness using multiple classifiers. The important benefit of such an ensemble classifier
is that a collection of classifiers of similar characteristics is likely to provide enhanced
performance compared to any of the classifiers on its own. The ensemble classifier in
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the proposed seizure prediction module comprises the combined characteristics of the
classifiers such as the AdaBoost classifier, the random forest classifier, and the decision tree
classifier that accepts the selected features of the EEG signals by the proposed hybrid seek
optimization model to predict a seizure disease.

The classifiers in the proposed ensemble classifier are discussed in detail in this
section to understand each classifier’s operating principle. The ensemble classifier has been
developed using the Adaboost classifier, RF classifier, and the DT classifier in a way that
the outputs from the individual classifiers are fused to represent the ensemble classifier’s
output. The fusion parameters, i.e., δ, η, and ε merge the outputs from the individual
classifiers of the ensemble classifier in such a way as to predict the presence or absence of
seizure disease, with a condition of τ + ρ + ε = 1. The output from the proposed ensemble
classifier is represented as:

Ec = τEAB + ρERF + εEDT (11)

where, τ, ρ, and ε are the individual outputs of the AdaBoost classifier, RF classifier, and
the DT classifier, respectively, that are combined with the fusion parameters. A detailed
analysis of the classifiers used in the proposed ensemble classifier is described below. The
proposed ensemble classifier in seizure classification is depicted in Figure 4.
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3.5.1. AdaBoost Classifier

The AdaBoost algorithm is an iterative model that trains and assembles the weak
classifiers into a strong classifier in such a way to obtain enhanced classification accuracy.
The algorithm initially consigns a similar weight to the entire training set samples. A weak
classifier, uc, is then called for the classification of the samples, and the equivalent rate of
classification error, ϕc, is evaluated. The term ϕc involves updating each sample’s weight
and evaluating the weight, τc, of the weak classifier, uc, in the subsequent iteration, and the
processes are repeated. In the final step, the strong classifier, UC, is accumulated from the



Sensors 2023, 23, 423 10 of 23

weak classifiers and their equivalent weights. The error rate of classification by the weak
classifier is expressed as:

ϕc =
N

∑
s=1

pc
sE(uc(vs) 6= ts) (12)

where uc(vs) is the rate of prediction of the weak classifier, ts represents the true label,
and E indicates the optimization function of the weight coefficient. The value s is in the
range [1, N]. The term pc

s represents the weight measure of the present weak classifier. The
weights of the weak classifiers that are grouped as strong classifiers are expressed as:

τc =
1
2

ln
(

1− ϕc

ϕc

)
(13)

With the combination of the weak classifiers and their optimized weights, the strong
classifier can be obtained as:

CAB = sign

(
C

∑
c=1

τcuc(v)

)
(14)

where C represents the count of weak classifiers and CAB is the prediction outcome of
each weak classifier. The schematic representation of the AdaBoost classifier is shown
in Figure 5.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 25 
 

 








 −
=

c

c

c φ
φτ 1

ln
2

1

 

(13)

With the combination of the weak classifiers and their optimized weights, the strong 

classifier can be obtained as: 

( ) =
= C

c ccAB vusignC
1

)(τ
 

(14)

where C  represents the count of weak classifiers and ABC  is the prediction outcome of 

each weak classifier. The schematic representation of the AdaBoost classifier is shown in 

Figure 5. 

 

Figure 5. The architecture of the AdaBoost classifier. 

3.5.2. Random Forest Classifier 

The RF classifier is a combination of the number of decision trees and hence individ-

ually acts as an ensemble learning-based algorithm. Each tree acts as a separate classifier, 

and the decision trees choose the classification outcome. The significant benefits of using 

an RF classifier are the increased accuracy in classification with resistance to overtraining, 

the capability to work with data sets of larger size, no need for the normalized features, 

and the need for only a few parameters in optimizations. These benefits are of particular 

concern when applied in early seizure detection. To develop an RF classifier consisting of 

R  trees, the rules are as follows: 

Step 1: Initially, the Q  number of samples is obtained from the dataset, and it must 

be noted that all the training data may not be utilized, and only some data may be consid-

ered more than one time, while some may never be considered. 

Step 2: If the dimension of the feature is D , then h  is the dimension of the sub-

features with the condition that Dh <  from the actual feature vectors. Then, h  feature 

variables are chosen at random from the D  features, and the best split is used to split 

the node. 

Step 3: Each tree keeps emerging until the entire training samples are completely di-

vided without pruning, and the result thus obtained is represented as RFC . As shown, 

the forest error rate relies on two factors: the reduced correlation between any two trees 

and the increased strength of the trees. The dimension reduction, h , significantly reduces 

the correlation and strength, so a trade-off between strength and correlation is necessary. 

The architecture of the random forest classifier is depicted in Figure 6. 

 

Input feature 

vector 

Model 1 

. 

. 

. 

Model 2 

Model n 

Combine the 

prediction of 

each model 

Final 

prediction 

Figure 5. The architecture of the AdaBoost classifier.

3.5.2. Random Forest Classifier

The RF classifier is a combination of the number of decision trees and hence individu-
ally acts as an ensemble learning-based algorithm. Each tree acts as a separate classifier,
and the decision trees choose the classification outcome. The significant benefits of using
an RF classifier are the increased accuracy in classification with resistance to overtraining,
the capability to work with data sets of larger size, no need for the normalized features,
and the need for only a few parameters in optimizations. These benefits are of particular
concern when applied in early seizure detection. To develop an RF classifier consisting of
R trees, the rules are as follows:

Step 1: Initially, the Q number of samples is obtained from the dataset, and it must be
noted that all the training data may not be utilized, and only some data may be considered
more than one time, while some may never be considered.

Step 2: If the dimension of the feature is D, then h is the dimension of the sub-features
with the condition that h < D from the actual feature vectors. Then, h feature variables are
chosen at random from the D features, and the best split is used to split the node.

Step 3: Each tree keeps emerging until the entire training samples are completely
divided without pruning, and the result thus obtained is represented as CRF. As shown,
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the forest error rate relies on two factors: the reduced correlation between any two trees
and the increased strength of the trees. The dimension reduction, h, significantly reduces
the correlation and strength, so a trade-off between strength and correlation is necessary.
The architecture of the random forest classifier is depicted in Figure 6.
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Figure 6. The architecture of the random forest classifier.

3.5.3. Decision Tree Classifier

DT is a classifier with a tree data construction comprising decision nodes and leaves.
A leaf represents the classification, and the decision node indicates the test to be executed
to appraise a single attributes. A solution is attained for the entire possible outputs of the
analysis concerning a child node. The response of the decision tree to a series of samples
is known as accuracy in classification. In other words, accuracy is defined as the part of
rightly classified occurrences. A DT is concluded optimal with the classification of the
dataset with increased precision and the existence of a few nodes. The local greedy search
model is normally used in the DT to split the classes by assuming the information gain as
the target function, and is formulated as:

CDT = 1−∑
χ

V2
DTχ

(15)

where VDTχ
is the probability of the χth class. The layout for the decision tree is depicted in

Figure 7.
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3.6. Proposed Hybrid Seek Optimization in Fusion Parameter Estimation

The proposed hybrid seek optimization technique involves feature selection and
identifies the ensemble classifier’s fusion parameters τ, ρ, and ε. The solution encoding
represents the best set of fusion values within [0, 1] to support higher accuracy. The
proposed algorithm uses gregarious and corvid search agents’ characteristics to resolve
the feature selection and hyper parameter tuning optimization problems. The suggested
algorithm assists by preserving a better relationship between the phases, such as exploration
and exploitation, to generate improved outcomes in terms of both the local optimum
solution and the ideal global solution. Both search agents pursue a seeking process to
update the optimal position that is applied in the optimization process to find the solution
to real-world optimization problems.

Proposed Hybrid Seek Optimization Algorithm

It is widely acknowledged that swarm intelligence (SI)-based optimization algorithms
have been the main method for resolving global optimization issues because of their
adaptability, simplicity, and improved effectiveness. In addition, the SI-based strategies
mainly initiate randomness during the search process, apart from deterministic strategies.
Using these strategies to attain the optimal global solution without getting trapped in the
local optimal solution is of real significance. The corvid search agents are intelligent agents
containing a giant brain irrespective of their size. They possess enhanced self-awareness
and the ability to make tools. They remember faces and can retain information regarding
the location of food even after several months. The characteristics of the corvid search
agents are creating flocks, memorizing the positions of hidden food, following each other
to steal the food, and protecting their young ones. These steps are discussed below,

Step 1: Population initialization: The optimization problem, decision parameters, and
constraints are initialized in the population initialization step. The size of the flock of corvid
search agents, Gsize, the flight length, and the awareness probability, Paw, is also initialized.

Step 2: Initialization of memory and position: The position of each corvid search agent,
Je, of the flock is initialized, with the condition e = 1, 2, . . . , m. The corvid search agents are
positioned randomly. The memory of the corvid search agents is initialized as ZG

i . At the
initial stage, the corvid search agent possesses zero memory; hence, the food is assumed to
be placed at the initial position.

Step 3: Evaluation of fitness solution: For each corvid search agent, the quality of the
position is evaluated with the substitution of the decision variables in the objective function
in such a way as to find the fitness measure in terms of accuracy.

Step 4: Generation of a new position: Consider if the corvid search agent e wants to
generate a new position in the search space; it follows a new corvid search agent, f , of a
randomly selected flock of corvid search agents. The new position of the corvid search
agent e is formulated as:

Je,n+1
CS = Je,n

CS + λ1 × ae,n ×
(

Z f ,n − Je,n
CS

)
(16)

where n is the iteration count, λ1 is the random value and varies between 0 and 1, and a
represents the flight length. The possibility of the corvid search agents getting trapped in the
optimal local solution makes the solution non-preferable. In addition, the reduced searching
precision of the corvid search agents needs to be enhanced; therefore, the characteristics
of the gregarious search agents are introduced into the proposed system of optimization.
The gregarious search agents are selected due to their flexible applications in practical
engineering fields. The anti-predation characteristics of the gregarious search agents are
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the most important feature inherited with the corvid search agent. The gregarious search
agent position is updated as:

Je,n+1
GS =

 Jn
best + θ

∣∣∣Je,n
GS − Jn,∂

best

∣∣∣, i f je > jgl

Je,n
GS + χ

(
Je,n
GS−Jn

worst
(je−jws)+ς

)
i f je = jgl

 (17)

where Jn
best is the current global optimal position of the gregarious search agent, θ is the

control parameter corresponding to the step size, χ is a random number varying between
−1 and 1. je is the fitness of the present gregarious search agent, jgl is the global best value,
and jws is the global worst solution of the gregarious search agent. Introducing a new
parameter based on velocity:

Jn,∂
best = Jn

best + Vn+1 (18)

Jn,∂
best = Jn

best + (Vn + ν1v1 × Jn
best) (19)

Jn,∂
best = Jn

best[1 + ν1v] + Vn (20)

Je,n+1
GS = Jn

best + θ
∣∣Je,n

GS − Jn
best[1 + ν1v] + Vn ∣∣ (21)

Finally, the location of search agents depending on the characteristics of corvid and
gregarious search agents are hybridized based on [16] as:

Jn+1 = 0.5Jn+1
CS + 0.5Hn+1

GS (22)

Jn+1 = 0.5[Je,n
CS + λ1× ae,n×

(
Z f ,n − Je,n

CS

)
] + 0.5[Jn

best + θ
∣∣Je,n

GS − Jn
best[1 + ν1v] + Vn ∣∣] (23)

Jn+1 = 0.5[Je,n
CS(1− λ1ae,n) + λ1ae,n × Z f ,n] + 0.5[Jn

best + θ
∣∣Je,n

GS − Jn
best[1 + ν1v] + Vn ∣∣] (24)

This final Equation (24) is the standard equation comprising the features of corvid and
gregarious search agents used in the proposed optimization algorithm.

Step 5: Feasibility check for positions: If the position of the new hybrid seek search
agent is feasible, then the location is updated; otherwise, the old position is preserved.

Step 6: Fitness evaluation for a new position: The fitness measure for the entire newly
generated hybrid seek search agents is re-evaluated.

Step 7: Update memory for a new position: The memory of the hybrid seek search
agents are updated as Jn+1 when the fitness of the new hybrid seek search agent is better
than the fitness of the old hybrid seek search agent.

Step 8: Terminating condition: The above steps are repeated until the termination
condition is met. The algorithm involves finding the features of the EEG signal and
the hyper-parameters of the ensemble classifier in such a way as to predict the seizure
disease with enhanced accuracy. In Algorithm 1, the hybrid seek optimization algorithm’s
pseudocode is shown.
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Algorithm 1: Comprising the features of corvid search and the gregarious search agents.

Input: JG
i , i = {1, 2, . . . , m} and G = {1, 2, . . . , W}

Output: Jn+1

1: Set and load the population of hybrid seek search agents
2: Set and initialize maximum iteration, Imax, flight length, a, and probability of awareness,
Paw
3: Evaluate fitness function or probability
4: {
5: Update the new position relying on Equation (24)
7: Check for feasibility
8: Re-evaluate fitness measure
9: if (fitnessold < fitnessnew)
10: {
11:
12: Replace old solution with new solution
13: }
14: Update memory
15: }
16: Return Jn+1

17: Terminate

4. Performance Evaluation

This section interprets the findings of the proposed seizure prediction module and
compares the results to show how well the hybrid seek-based ensemble classifier works in
the proposed seizure prediction module. The analysis was carried out using a PYTHON
tool that was running Windows version 10 with a 64-bit with 16 GB of RAM OS.

4.1. EEG Dataset Description

This research used the standard benchmark data that supports accurate prediction,
while the authentication and labeling issues associated with the real-data promoted the use
of the datasets mentioned below. In this section, a brief description of the dataset used to
test the proposed hybrid seek-based ensemble classifier is provided.

CHB-MIT Scalp EEG Database: This dataset, which is grouped into 23 cases, was
obtained from Boston Children’s Hospital and was collected from 22 patients including
5 males (aged 3–22) and 17 females (aged 1.5–19). It is frequently used for the evaluation
of latency. The database is composed of pediatric patients’ EEG recordings of persis-
tent seizures. Sixteen bits per second of resolution were used with a sampling rate of
256 samples [29].

Siena Scalp EEG Database: This collection includes information from 14 patients
include 9 males (ages 25–71) and 5 females (ages 20–58) admitted to the University of
Siena’s department of neurology and neurophysiology. The patients were examined using
a Video-EEG at a sampling rate of 512 Hz, with electrodes positioned by the worldwide
10–20 system [30].

4.2. Evaluation Metrics

The metrics listed below were used to test the effectiveness of the hybrid seek
optimization-ensemble classifier.

Accuracy: Accuracy is formally stated as the rate of closeness between the estimated
measure of the system and the actual measures, which is mathematically defined as:

Accuracy =
Tpos + Tneg

Rpos + Rneg
(25)
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Sensitivity: Sensitivity is the probability of the test to result in a genuine positive
outcome and is represented by the below equation:

Senitivity =

(
Tpos

no o f Rpos cases

)
(26)

Specificity: Specificity is the probability of the test to result in a genuine negative
outcome and is represented by the below equation:

Sensitivity =

(
Tneg

no. o f Rneg cases

)
(27)

4.3. Results and Discussion

This section comprises the analytical results from the hybrid seek-based ensemble
classifier used to predict a seizure disease. In this section we compare the proposed hybrid
seek-based ensemble classifier model of seizure prediction with the most recently reported
seizure prediction algorithms.

4.4. Comparative Methods

The proposed hybrid seek-based ensemble classifier was compared to other ensemble
classifiers, including the AdaBoost classifier (EM1) [31], decision tree classifier (EM2) [6,32],
random forest classifier (EM3) [9,33], K-nearest neighbor (EM4) classifier [34], support
vector machine (EM5) classifier [13,35], deep learning classifier (EM6) [22], convolutional
neural network (EM7) classifier [18,36], crow search optimization-based ensemble classi-
fier [37] (EM8), and squirrel search optimization classifier (EM9) [38].

4.4.1. Analysis Using the CHB-MIT Database

This section discusses the comparative evaluation of the proposed hybrid seek-based
ensemble classifier technique using the CHB-MIT dataset in terms of training % and k-fold
value. Analysis based on increasing training % and k-fold values on different epoch values
is given in Figures A1 and A2 of Appendix A.

(a) Based on the training percentage

Figure 8 provides an overview of the analysis using the CHB-MIT dataset for training
percentages of 40%, 50%, 60%, 80%, and 90% for EM1, EM2, EM3, EM4, EM5, EM6, EM7,
EM8, EM9, and the hybrid seek-ensemble classifier. Figure 8a–c shows the comparison of
the strategies accuracy, sensitivity, and specificity in terms of the training %.

(b) Based on the k-fold value

The analysis using the CHB-MIT dataset is shown in Figure 9 for the K -fold values
of 2, 4, 6, 8, 10, and 12 for EM1, EM2, EM3, EM4, EM5, EM6, EM6, EM7, EM8, EM9, and
the hybrid seek-ensemble classifier. Figure 9a–c shows the k-fold measure of accuracy,
sensitivity, and specificity of several approaches.
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4.4.2. Analysis Using the Siena Scalp Database

This part compares the training % and k-fold value of a hybrid seek-based ensemble
classifier approach on the Siena Scalp dataset. Analysis based on increasing training % and
k-fold values on different epoch values is given in Figures A3 and A4 of Appendix A.

(a) Based on the training percentage

Figure 10 shows the analysis using the Siena dataset for the training percentages based
on performance indices such as accuracy, sensitivity, and specificity of the methods, including
EM1, EM2, EM3, EM4, EM5, EM6, EM7, EM8, EM9, and the hybrid seek-ensemble classifier.
Training percentages of 40%, 50%, 60%, 80%, and 90% are also shown. Figure 10a–c illus-
trates the proposed approach’s sensitivity, specificity, and accuracy in terms of the training
percentage.
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(b) Based on the k-fold value

Figure 11 shows the analysis using the Siena dataset for the k-fold values based on
performance indices such as accuracy, sensitivity, and specificity of the methods, including
EM1, EM2, EM3, EM4, EM5, EM6, EM7, EM8, EM9, and the hybrid seek-ensemble classifier
for the k-fold values of 2, 4, 6, 8, 10, and 12. Figure 11a–c illustrates the approach’s
sensitivity, specificity, and accuracy in terms of k-fold values.
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4.5. Comparative Discussion

In terms of training percentage and k-fold values, Table 2 contrasts several performance
indices based on different approaches using the CHB-MIT dataset. Regarding training
percentage, the hybrid seek-based ensemble classifier’s accuracy, sensitivity, and specificity
are 96.6120%, 94.6736%, and 91.3684%, respectively. Similar to this, the accuracy, sensitivity,
and specificity of the hybrid seek-based ensemble classifier in terms of the k-fold value are
93.812%, 93.812%, and 88.5684%, respectively.

In terms of training percentage and k-fold value, a comparative analysis of different
approaches based on accuracy, sensitivity, and specificity using the Siena Scalp dataset is
shown in Table 3. Table 3 shows that the accuracy, sensitivity, and specificity of the pro-
posed hybrid seek-based ensemble classifier in terms of training percentage are 95.3090%,
93.1766%, and 90.0654%, respectively. Similarly, the accuracy, sensitivity, and specificity of
the hybrid seek-based ensemble classifier in terms of k-fold value are 92.3150%, 90.1826%,
and 87.0714%, respectively.
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Table 2. Comparison of methods using the CHB-MIT database.

Methods
Training Percentage k-Fold Value

Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

Adaboost 83.4833 81.3509 68.4699 66.9866 64.8542 61.4750
Decision Tree 85.0614 83.3334 78.0727 70.6876 68.8392 65.4440

Random Forest 86.9478 84.8154 81.5302 73.6596 71.8232 68.4160
K-NN 90.9272 88.7948 85.5016 81.9344 79.8020 76.6908
SVM 91.9080 89.7756 86.4804 83.9160 81.7836 78.6724

Deep Learning 92.8884 90.7560 87.4588 85.8968 83.7644 80.6532
CNN 93.8684 91.7360 88.4368 87.8768 85.7444 82.6332

CSO-based
classifier 94.8480 92.7156 89.4144 89.8560 87.7236 84.6124

SSO-based
classifier 95.8272 93.6948 90.3916 91.8344 89.7020 86.5908

Proposed Hybrid
Seek-based

Ensemble Classifier
96.6120 94.6736 91.3684 93.8120 91.6796 88.5684

Table 3. Comparison of methods using the Siena Scalp database.

Methods
Training Percentage k-Fold Value

Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

Adaboost 75.2349 73.1025 69.9914 63.7245 61.5921 58.4809
Decision Tree 78.2187 76.0863 72.9751 67.4595 65.3271 62.2159

Random Forest 80.4517 78.3193 75.2081 77.3605 75.2281 72.1169
K-NN 86.4308 84.2984 81.1872 79.5200 77.3876 74.2764
SVM 87.9120 85.7796 82.6684 79.9200 77.7876 74.6764

Deep Learning 89.3926 87.2602 84.1490 82.4010 80.2686 77.1574
CNN 90.8726 88.7402 85.6290 84.8810 82.7486 79.6374

CSO-based
classifier 92.3520 90.2196 87.1084 87.3600 85.2276 82.1164

SSO-based
classifier 93.8308 91.6984 88.5872 89.8380 87.7056 84.5944

Proposed Hybrid
Seek-based

ensemble classifier
95.3090 93.1766 90.0654 92.3150 90.1826 87.0714

As a result, it is clear that the hybrid seek-based ensemble classifier, compared to
comparable approaches, can offer superior seizure prediction while achieving higher
accuracy, sensitivity, and specificity measures.

5. Conclusions and Future Scope

This paper proposes an ensemble classifier with an optimization-based optimization
module for automated seizure prediction. Pre-processing is first applied to the EEG data
set to eliminate any noise that may be present. The significant statistical, wavelet-based,
and entropy-based features are then retrieved from the alpha, beta, delta, theta, and gamma
waves of the EEG data. The features are extracted with the proposed hybrid seek algorithm
and developed with the corvid and gregarious search agents. The features that have been
successfully extracted are then given to the ensemble classifier, consisting of the AdaBoost,
random forest, and decision tree classifiers. The fusion parameters are evaluated using
the proposed hybrid seek optimization algorithm to provide precise seizure prediction at
an early stage. The accuracy, sensitivity, and specificity performance indices were used to
evaluate the performance of the suggested method, and they were found to be 96.6120%,
94.6736%, and 91.3684%, respectively, for the CHB-MIT database, and 95.3090%, 93.1766,
and 90.0654%, respectively, for the Siena Scalp dataset. These values are high compared
to other methods, and we are confident that this will help in information processing for
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complex medical diseases, such as seizures, to improve management of these diseases in
the future. COVID-19-affected people have a high chance of developing seizures; therefore,
in the future, if we analyze the data of COVID-19-affected people, then seizure prediction
could be performed more efficiently.
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Appendix A

This additional section details the analytical results from the hybrid seek-based ensem-
ble classifier used to predict seizure diseases using CHB-MIT and Siena Scalp databases
based on training percentage and k-fold values.

(a) Analysis using the CHB-MIT database: This section evaluates the training per-
centage and k-fold values of a hybrid seek-based ensemble classifier using the CHB-MIT
dataset.

(i) Based on the training percentage: Figure A1 illustrates the analysis using the CHB-
MIT dataset for the training percentage based on performance indices such as accuracy,
sensitivity, and specificity. These parameters of the hybrid seek-based ensemble classifier
are calculated at an epoch of 20, 40, 60, 80, and 100 in terms of training percentages of 40%,
50%, 60%, 80%, and 90%.
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Figure A1. Analysis of performance using CHB-MIT database in terms of training % (a) accuracy,
(b) sensitivity, and (c) specificity.

(ii) Based on the k-fold value: Figure A2 illustrates the analysis using the CHB-MIT
dataset for k-fold values based on performance indices such as accuracy, sensitivity, and
specificity. These parameters of the hybrid seek-based ensemble classifier are calculated at
an epoch of 20, 40, 60, 80, and 100 in terms of k-fold values of 2, 4, 6, 8, 10, and 12.



Sensors 2023, 23, 423 21 of 23
Sensors 2023, 23, x FOR PEER REVIEW 23 of 25 
 

 

   
(a)  (b)  (c) 

Figure A2. Analysis of performance using the CHB-MIT dataset in terms of k-fold value (a) accu-

racy, (b) sensitivity, and (c) specificity. 

(b) Analysis using Siena Scalp database: The analysis of the hybrid seek-based en-

semble classifier with the Siena Scalp dataset in terms of training percentage and k-fold 

value is detailed in this section. 

(i) Based on the training percentage: Figure A3 illustrates the analysis using the Siena 

dataset for the training percentage based on performance indices such as accuracy, sensi-

tivity, and specificity. These parameters of the hybrid seek-based ensemble classifier are 

calculated at the epoch of 20, 40, 60, 80, and 100 in terms of training percentages of 40%, 

50%, 60%, 80%, and 90%. 

  

(a)  (b)  (c) 

Figure A3. Analysis of performance using Siena database in terms of training % (a) accuracy, (b) 

sensitivity, and (c) specificity. 

(ii) Based on the k-fold value: Figure A4 illustrates the analysis using the Siena da-

taset for k-fold values based on performance indices such as accuracy, sensitivity, and 

specificity. These parameters of the hybrid seek-based ensemble classifier are calculated 

at an epoch of 20, 40, 60, 80, and 100 in terms of k-fold values of 2, 4, 6, 8, 10, and 12. 

 
(a)  (b)  (c) 

Figure A4. Analysis of performance using the Siena database in terms of k-fold values (a) accuracy, 

(b) sensitivity, and (c) specificity. 

Figure A2. Analysis of performance using the CHB-MIT dataset in terms of k-fold value (a) accuracy,
(b) sensitivity, and (c) specificity.

(b) Analysis using Siena Scalp database: The analysis of the hybrid seek-based ensem-
ble classifier with the Siena Scalp dataset in terms of training percentage and k-fold value
is detailed in this section.

(i) Based on the training percentage: Figure A3 illustrates the analysis using the
Siena dataset for the training percentage based on performance indices such as accuracy,
sensitivity, and specificity. These parameters of the hybrid seek-based ensemble classifier
are calculated at the epoch of 20, 40, 60, 80, and 100 in terms of training percentages of 40%,
50%, 60%, 80%, and 90%.
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(ii) Based on the k-fold value: Figure A4 illustrates the analysis using the Siena dataset
for k-fold values based on performance indices such as accuracy, sensitivity, and specificity.
These parameters of the hybrid seek-based ensemble classifier are calculated at an epoch of
20, 40, 60, 80, and 100 in terms of k-fold values of 2, 4, 6, 8, 10, and 12.

Sensors 2023, 23, x FOR PEER REVIEW 23 of 25 
 

 

   
(a)  (b)  (c) 

Figure A2. Analysis of performance using the CHB-MIT dataset in terms of k-fold value (a) accu-

racy, (b) sensitivity, and (c) specificity. 

(b) Analysis using Siena Scalp database: The analysis of the hybrid seek-based en-

semble classifier with the Siena Scalp dataset in terms of training percentage and k-fold 

value is detailed in this section. 

(i) Based on the training percentage: Figure A3 illustrates the analysis using the Siena 

dataset for the training percentage based on performance indices such as accuracy, sensi-

tivity, and specificity. These parameters of the hybrid seek-based ensemble classifier are 

calculated at the epoch of 20, 40, 60, 80, and 100 in terms of training percentages of 40%, 

50%, 60%, 80%, and 90%. 

  

(a)  (b)  (c) 

Figure A3. Analysis of performance using Siena database in terms of training % (a) accuracy, (b) 

sensitivity, and (c) specificity. 

(ii) Based on the k-fold value: Figure A4 illustrates the analysis using the Siena da-

taset for k-fold values based on performance indices such as accuracy, sensitivity, and 

specificity. These parameters of the hybrid seek-based ensemble classifier are calculated 

at an epoch of 20, 40, 60, 80, and 100 in terms of k-fold values of 2, 4, 6, 8, 10, and 12. 

 
(a)  (b)  (c) 

Figure A4. Analysis of performance using the Siena database in terms of k-fold values (a) accuracy, 

(b) sensitivity, and (c) specificity. 
Figure A4. Analysis of performance using the Siena database in terms of k-fold values (a) accuracy,
(b) sensitivity, and (c) specificity.



Sensors 2023, 23, 423 22 of 23

References
1. Epileptic Disorders 2020 Annual Report. Available online: https://www.ilae.org/files/dmfile/52-EpDisorders-2020-V2.pdf

(accessed on 12 August 2021).
2. Rocamora, R.; Peltola, J.; Assenza, G.; McMurray, R.; Villanueva, V. Safety, tolerability and effectiveness of transition to

eslicarbazepine acetate from carbamazepine or oxcarbazepine in clinical practice. Seizure 2019, 75, 121–128. [CrossRef] [PubMed]
3. Stafstrom, C.E.; Carmant, L. Seizures and Epilepsy: An Overview for Neuroscientists. Cold Spring Harb. Perspect. Med. 2015, 5,

a022426. [CrossRef] [PubMed]
4. Yang, X.; Yang, X.; Liu, B.; Sun, A.; Zhao, X. Risk factors for postictal generalized EEG suppression in generalized convulsive

seizure: A systematic review and meta-analysis. Seizure 2022, 98, 19–26. [CrossRef] [PubMed]
5. Sharmila, A. Epilepsy detection from EEG signals: A review. J. Med. Eng. Technol. 2018, 42, 368–380. [CrossRef] [PubMed]
6. Sharma, D.K.; Jalal, A.S.; Sikander, B. Suspect Face Retrieval via Multicriteria Decision Process. In Proceedings of the 2022 9th

International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 23–25 March 2022.
7. WHO. Improving Access to Epilepsy Care. Available online: https://www.who.int/mental_health/neurology/epilepsy/en/

(accessed on 12 August 2022).
8. Abdulghani, A.M.; Casson, A.J.; Rodriguez-Villegas, E. Compressive sensing scalp EEG signals: Implementations and practical

performance. Med. Biol. Eng. Comput. 2011, 50, 1137–1145. [CrossRef]
9. Agrawal, S.C.; Jalal, A.S. Dense haze removal by nonlinear transformation. IEEE Trans. Circuits Syst. Video Technol. 2021, 32,

593–607. [CrossRef]
10. Chávez, M.; Martinerie, J.; Le Van Quyen, M. Statistical assessment of nonlinear causality: Application to epileptic EEG signals.

J. Neurosci. Methods 2003, 124, 113–128. [CrossRef]
11. Chiang, C.-Y.; Chang, N.-F.; Chen, T.-C.; Chen, H.-H.; Chen, L.-G. Seizure prediction based on classification of EEG synchronization

patterns with on-line retraining and post-processing scheme. In Proceedings of the 2011 Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; Volume 2011, pp. 7564–7569.
[CrossRef]

12. Demrozi, F.; Pravadelli, G.; Bihorac, A.; Rashidi, P. Human Activity Recognition Using Inertial, Physiological and Environmental
Sensors: A Comprehensive Survey. IEEE Access 2020, 8, 210816–210836. [CrossRef]

13. Rai, R.; Vats, R.; Kumar, M. Detecting Oral Cancer: The Potential of Artificial Intelligence. Curr. Med. Imaging 2022, 18, 919–923.
[CrossRef]

14. Wei, X.; Zhou, L.; Zhang, Z.; Chen, Z.; Zhou, Y. Early prediction of epileptic seizures using a long-term recurrent convolutional
network. J. Neurosci. Methods 2019, 327, 108395. [CrossRef]

15. Alshebeili, S.A.; Sedik, A.; El-Rahiem, B.A.; Alotaiby, T.N.; El Banby, G.M.; El-Khobby, H.A.; Ali, M.A.; Khalaf, A.A.; El-Samie,
F.E.A. Inspection of EEG signals for efficient seizure prediction. Appl. Acoust. 2020, 166, 107327. [CrossRef]

16. Chu, H.; Chung, C.K.; Jeong, W.; Cho, K.-H. Predicting epileptic seizures from scalp EEG based on attractor state analysis. Comput.
Methods Programs Biomed. 2017, 143, 75–87. [CrossRef]

17. Lian, J.; Shi, Y.; Zhang, Y.; Jia, W.; Fan, X.; Zheng, Y. Revealing False Positive Features in Epileptic EEG Identification. Int. J. Neural
Syst. 2020, 30, 2050017. [CrossRef]

18. Yadav, D.P.; Sharma, A.; Singh, M.; Goyal, A. Feature Extraction Based Machine Learning for Human Burn Diagnosis From Burn
Images. IEEE J. Transl. Eng. Health Med. 2019, 7, 1800507. [CrossRef]

19. Savadkoohi, M.; Oladunni, T.; Thompson, L. A machine learning approach to epileptic seizure prediction using Electroencephalo-
gram (EEG) Signal. Biocybern. Biomed. Eng. 2020, 40, 1328–1341. [CrossRef]

20. Slimen, I.B.; Boubchir, L.; Seddik, H. Epileptic seizure prediction based on EEG spikes detection of ictal-preictal states. J. Biomed.
Res. 2020, 34, 162. [CrossRef]

21. Usman, S.M.; Khalid, S.; Bashir, Z. Epileptic seizure prediction using scalp electroencephalogram signals. Biocybern. Biomed. Eng.
2021, 41, 211–220. [CrossRef]

22. Usman, S.M.; Khalid, S.; Aslam, M.H. Epileptic Seizures Prediction Using Deep Learning Techniques. IEEE Access 2020, 8,
39998–40007. [CrossRef]

23. Liu, C.-L.; Xiao, B.; Hsaio, W.-H.; Tseng, V.S. Epileptic Seizure Prediction With Multi-View Convolutional Neural Networks. IEEE
Access 2019, 7, 170352–170361. [CrossRef]

24. Emara, H.M.; Elwekeil, M.; Taha, T.E.; El-Fishawy, A.S.; El-Rabaie, E.-S.M.; El-Shafai, W.; El Banby, G.M.; Alotaiby, T.; Alshebeili,
S.A.; El-Samie, F.E.A. Efficient Frameworks for EEG Epileptic Seizure Detection and Prediction. Ann. Data Sci. 2021, 9, 393–428.
[CrossRef]

25. Daoud, H.; Bayoumi, M.A. Efficient Epileptic Seizure Prediction Based on Deep Learning. IEEE Trans. Biomed. Circuits Syst. 2019,
13, 804–813. [CrossRef] [PubMed]

26. Das, K.; Daschakladar, D.; Roy, P.P.; Chatterjee, A.; Saha, S.P. Epileptic seizure prediction by the detection of seizure waveform
from the pre-ictal phase of EEG signal. Biomed. Signal Process. Control. 2019, 57, 101720. [CrossRef]

27. Wang, G.; Wang, D.; Du, C.; Li, K.; Zhang, J.; Liu, Z.; Tao, Y.; Wang, M.; Cao, Z.; Yan, X. Seizure Prediction Using Directed Transfer
Function and Convolution Neural Network on Intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2711–2720.
[CrossRef] [PubMed]

https://www.ilae.org/files/dmfile/52-EpDisorders-2020-V2.pdf
http://doi.org/10.1016/j.seizure.2019.12.022
http://www.ncbi.nlm.nih.gov/pubmed/31981862
http://doi.org/10.1101/cshperspect.a022426
http://www.ncbi.nlm.nih.gov/pubmed/26033084
http://doi.org/10.1016/j.seizure.2022.03.018
http://www.ncbi.nlm.nih.gov/pubmed/35398670
http://doi.org/10.1080/03091902.2018.1513576
http://www.ncbi.nlm.nih.gov/pubmed/30465700
https://www.who.int/mental_health/neurology/epilepsy/en/
http://doi.org/10.1007/s11517-011-0832-1
http://doi.org/10.1109/TCSVT.2021.3068625
http://doi.org/10.1016/S0165-0270(02)00367-9
http://doi.org/10.1109/iembs.2011.6091865
http://doi.org/10.1109/ACCESS.2020.3037715
http://doi.org/10.2174/1573405618666220408103549
http://doi.org/10.1016/j.jneumeth.2019.108395
http://doi.org/10.1016/j.apacoust.2020.107327
http://doi.org/10.1016/j.cmpb.2017.03.002
http://doi.org/10.1142/S0129065720500173
http://doi.org/10.1109/JTEHM.2019.2923628
http://doi.org/10.1016/j.bbe.2020.07.004
http://doi.org/10.7555/JBR.34.20190097
http://doi.org/10.1016/j.bbe.2021.01.001
http://doi.org/10.1109/ACCESS.2020.2976866
http://doi.org/10.1109/ACCESS.2019.2955285
http://doi.org/10.1007/s40745-020-00308-7
http://doi.org/10.1109/TBCAS.2019.2929053
http://www.ncbi.nlm.nih.gov/pubmed/31331897
http://doi.org/10.1016/j.bspc.2019.101720
http://doi.org/10.1109/TNSRE.2020.3035836
http://www.ncbi.nlm.nih.gov/pubmed/33147147


Sensors 2023, 23, 423 23 of 23

28. Usman, S.M.; Khalid, S.; Bashir, S. A deep learning based ensemble learning method for epileptic seizure prediction. Comput. Biol.
Med. 2021, 136, 104710. [CrossRef] [PubMed]

29. CHB-MIT Scalp EEG Database. Available online: https://physionet.org/content/chbmit/1.0.0/ (accessed on 22 June 2022).
30. Siena Scalp Database. Available online: https://physionet.org/content/siena-scalp-eeg/1.0.0/ (accessed on 22 June 2022).
31. Bandarabadi, M.; Dourado, A.; Teixeira, C.A.; Netoff, T.I.; Parhi, K.K. Seizure prediction with bipolar spectral power features

using Adaboost and SVM classifiers. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; Volume 2013, pp. 6305–6308. [CrossRef]

32. Aydemir, O.; Kayikcioglu, T. Decision tree structure based classification of EEG signals recorded during two dimensional cursor
movement imagery. J. Neurosci. Methods 2014, 229, 68–75. [CrossRef]

33. Zhang, T.; Chen, W.; Li, M. AR based quadratic feature extraction in the VMD domain for the automated seizure detection of EEG
using random forest classifier. Biomed. Signal Process. Control. 2017, 31, 550–559. [CrossRef]

34. Amato, G.; Falchi, F. kNN based image classification relying on local feature similarity. In Proceedings of the Third International
Conference on Similarity Search and Applications, New York, NY, USA, 18–19 September 2010. [CrossRef]

35. Direito, B.; Teixeira, C.; Sales, F.; Castelo-Branco, M.; Dourado, A. A Realistic Seizure Prediction Study Based on Multiclass SVM.
Int. J. Neural Syst. 2017, 27, 1750006. [CrossRef]

36. Iešmantas, T.; Alzbutas, R. Convolutional neural network for detection and classification of seizures in clinical data. Med. Biol.
Eng. Comput. 2020, 58, 1919–1932. [CrossRef]

37. Zolghadr-Asli, B.; Bozorg-Haddad, O.; Chu, X. Crow search algorithm (CSA). In Advanced Optimization by Nature-Inspired
Algorithms; Springer: Singapore, 2018; pp. 143–149.

38. Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control. Eng. 2020, 8,
22–34. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.compbiomed.2021.104710
http://www.ncbi.nlm.nih.gov/pubmed/34364257
https://physionet.org/content/chbmit/1.0.0/
https://physionet.org/content/siena-scalp-eeg/1.0.0/
http://doi.org/10.1109/embc.2013.6610995
http://doi.org/10.1016/j.jneumeth.2014.04.007
http://doi.org/10.1016/j.bspc.2016.10.001
http://doi.org/10.1145/1862344.1862360
http://doi.org/10.1142/S012906571750006X
http://doi.org/10.1007/s11517-020-02208-7
http://doi.org/10.1080/21642583.2019.1708830

	Introduction 
	Related Work 
	Development of the Proposed Strategy 
	Pre-Processing of EEG Signals 
	Frequency Bands of EEG Signal 
	Feature Selection 
	Statistical Features 
	Wavelet Features 
	Entropy-Based Features 

	Feature Selection Using the Proposed Hybrid Seek Optimization 
	Proposed Hybrid Seek-Based Ensemble Classifier for Epileptic Seizure Prediction 
	AdaBoost Classifier 
	Random Forest Classifier 
	Decision Tree Classifier 

	Proposed Hybrid Seek Optimization in Fusion Parameter Estimation 

	Performance Evaluation 
	EEG Dataset Description 
	Evaluation Metrics 
	Results and Discussion 
	Comparative Methods 
	Analysis Using the CHB-MIT Database 
	Analysis Using the Siena Scalp Database 

	Comparative Discussion 

	Conclusions and Future Scope 
	Appendix A
	References

