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A B S T R A C T

Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO) are nature-inspired, swarm-
based optimization algorithms respectively. Though they have been widely used for single-objective opti-
mization since their inception, they suffer from premature convergence. Even though the hybrids of GSA
and PSO perform much better, the problem remains. Hence, to solve this issue, we have proposed a fuzzy
mutation model for two hybrid versions of PSO and GSA — Gravitational Particle Swarm (GPS) and PSOGSA.
The developed algorithms are called Mutation based GPS (MGPS) and Mutation based PSOGSA (MPSOGSA).
The mutation operator is based on a fuzzy model where the probability of mutation has been calculated
based on the closeness of particle to population centroid and improvement in the particle value. We have
evaluated these two new algorithms on 23 benchmark functions of three categories (unimodal, multimodal
and multimodal with fixed dimension). The experimental outcome shows that our proposed model outperforms
their corresponding ancestors, MGPS outperforms GPS 13 out of 23 times (56.52%) and MPSOGSA outperforms
PSOGSA 17 times out of 23 (73.91%). We have also compared our results against those of some recently
proposed optimization algorithms such as Sine Cosine Algorithm (SCA), Opposition-Based SCA, and Volleyball
Premier League Algorithm (VPL). In addition, we have applied our proposed algorithms on some classic
engineering design problems and the outcomes are satisfactory. The related codes of the proposed algorithms
can be found in this link: Fuzzy-Mutation-Embedded-Hybrids-of-GSA-and-PSO.
. Introduction

An optimization problem maximizes or minimizes a real function
y systematically choosing input values from an allowed set. This
roblem is of particular interest in the fields of operations research
nd certain engineering applications. There are major subfields to
his section of mathematics including convex programming, stochas-
ic programming and optimization, meta-heuristic programming, etc.

hile meta-heuristics do not guarantee that the best solution will
e found, they are widely used to find good approximate (optimal)
olutions for many complicated optimization problems. Gravitational
earch Algorithm (GSA) (Rashedi et al., 2009), Particle Swarm Algo-
ithm (PSO) (Eberhart and Kennedy, 1995), Genetic Algorithm (Schott,
995), Cuckoo search algorithm (Gandomi et al., 2013), Grey Wolf
lgorithm (Dhargupta et al., 2020) are some of the effective meta-
euristic algorithms based on natural phenomena that have yielded
romising results over the years. Of particular importance are GSA and
SO which are swarm-based meta-heuristics.
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PSO was proposed by Ebelhart and Kennedy in 1995 (Eberhart
and Kennedy, 1995). It simulates the social behavior of birds and
fish. Its ability to efficiently solve numerous scientific and engineering
optimization problems has given it increasing support and acceptance
among researchers. Apart from optimization problems, PSO has been
applied in feature selection (Xue et al., 2012; Chuang et al., 2008) as
well as data clustering (Van Der Merwe and Engelbrecht, 2003). The
algorithm has been used in the field of electromagnetics (Robinson
and Rahmat-Samii, 2004) and image segmentation (Omran et al., 2006;
Feng et al., 2005; Puranik et al., 2009). PSO has also been modified to
improve its convergence capabilities to create a Quantum based PSO
(Jeong et al., 2010) as well as an adaptive version described in Zhan
et al. (2009). Oppositional learning has also been used to improve PSO’s
exploration capability by preventing the particles from getting trapped
in a local minimum in OBPSO (Wang et al., 2007).

GSA was proposed by Rashedi and Saryazdi in 2008 (Rashedi et al.,
2009) for solving single-objective optimization problems. It is based
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on Newtonian gravity stating ‘‘Every particle in the universe attracts
every other particle with a force which is directly proportional to the
product of their masses and inversely proportional to the square of the
distance between the masses’’. Variations of GSA include QIGSA (Quan-
tum Inspired GSA) (Soleimanpour-Moghadam et al., 2014) which uses
quantum mechanics theories to prevent the premature convergence
problem of GSA. CGSA (Li et al., 2012) combines chaos with GSA for
selection of parameters using chaos theory. A binary version of the GSA
has also been developed called BGSA (Rashedi et al., 2010) by the same
authors, Rashedi and Saryazdi, that efficiently tackles feature selection
and dimension reduction (Papa et al., 2011). This algorithm has also
been combined with Simulated Annealing to form GABSA (Gravitation

lgorithm Based Simulated Annealing) (Tong, 2014). GSA has been
odified and used for various other real-world problems like data

lustering (Yin et al., 2011). GSA has also been implemented in the
ptimization of power despatch in a grid (Soleimanpour-Moghadam
t al., 2014; Duman et al., 2012), forecasting turbine heat rate (Zhang
t al., 2013) and also in image segmentation (Sun and Zhang, 2013).

Hybrid algorithms combining PSO and GSA have also been proposed
n the literature. These include PSOGSA (Mirjalili and Hashim, 2010)
hich integrates the ability of exploitation in PSO with the exploration
bility in GSA to harness both algorithms’ strengths. Comparison of
he hybrid algorithms with both the standard PSO and GSA algorithms
y testing against some benchmark functions shows that the hybrid
lgorithm has a better capability to escape from local optima with faster
onvergence rate than the standard PSO and GSA. Another such hybrid
lgorithm is the Gravitational Particle Swarm (GPS) (Tsai et al., 2013)
n which a GPS agent has attributes of both GSA and PSO. GPS agents
pdate their respective positions with PSO and GSA velocities. GPS
gents, therefore, can exhibit both social and cognitive behavior, and
otion of birds in flight as shown by the PSO algorithm (Eberhart and
ennedy, 1995) along with the law of gravity utilized in GSA (Rashedi
t al., 2009). Results show that both GPS and PSOGSA outperform both
SO and GSA by a significant margin. Therefore, we choose these two
ybrids of GSA and PSO as our base algorithm for further improvement.

But the main limitation of these hybrid algorithms is that they have
oor local search capabilities especially in GPS which is pointed out in
ngeline (1998). Due to their fast convergence rate, they suffer from
remature convergence. So, the algorithm may, in most cases, converge
o some local optima (sometimes very close to the global optima) and
s stuck there which hinders the achievement of the best result, like in
he case of their ancestors. To get rid of this problem, the concept of
n exploratory operator called centroid based fuzzy mutation has been
ntroduced in GPS and PSOGSA. This addition of mutation allows us
o address the problem of premature convergence, which is the main
ontribution of this paper. We have tested the proposed algorithms on a
et of benchmark functions and the results corroborate our assumption.

Apart from the algorithms mentioned previously, we have also
ompared our results to algorithms like Opposition-based PSO (OBPSO,
007) (Wang et al., 2007), which was a step in the direction to address
he tendency of PSO to get trapped in a local optima, as well as,
ine Cosine Algorithm (SCA, 2016) (Mirjalili, 2016), Opposition-based
CA (OBSCA, 2017) (Abd Elaziz et al., 2017), Social Spider Algorithm
SSO, 2013) (Cuevas et al., 2013), League Championship Algorithm
LCA, 2009) (Kashan, 2009), Soccer League Competition Algorithm
SLC, 2014) (Moosavian and Roodsari, 2014) and Volleyball Premier
eague Algorithm (VPL, 2018) (Moghdani and Salimifard, 2018). These
lgorithms are outperformed in almost 70% cases by the proposed
lgorithms.

Engineering design problems involve defining values of design pa-
ameters which gives the best output for a mechanical device, struc-
ure, or system. This process for determining the best values is called
ngineering optimization. Sometimes many variables need to be ad-
usted while satisfying several conflicting objectives and/or constraints.
herefore, implicitly determining values using intuition becomes very

ifficult. Optimization using evolutionary algorithms can play a huge

2

role here. There are several works on the use of evolutionary algorithms
in engineering design problems (Dasgupta and Michalewicz, 2013;
Deb, 1999). To portray the usefulness of our algorithms, we have
applied them to five benchmark engineering design problems (Kohli
and Arora, 2017) — Tension/Compression Spring Design problem, Gear
train design problem, Welded Beam Design problem, Pressure design
vessel problem and Closed coil helical spring design problem.

The contributions of this manuscript are presented below:

i. Development of an effective fuzzy-based mutation for hybrids of
PSO and GSA namely GPS and PSOGSA to solve the problem
of premature convergence and improve their local searching
capabilities.

ii. Evaluation of the proposed algorithms on several benchmark
functions to prove the effectiveness and relative superiority of
the same.

iii. Application of the algorithms on some classical engineering
design problems to show their practical usage.

2. Methods and methodologies

The hybrid algorithms we consider in our work — PSOGSA and
GPS are described briefly in Sections 2.1 and 2.2 respectively. It should
be noted that the points in our search space are referred to as points,
particles and agents inter-changeably and refer to the same.

2.1. Hybrid Particle Swarm and Gravitational Search Algorithm (PSOGSA)

PSOGSA (Mirjalili and Hashim, 2010) is a novel hybrid optimization
algorithm, combining the strengths of both PSO and GSA. It has been
shown through results that this algorithm outperforms both PSO and
GSA in terms of exploration and exploitation. The original version of
this algorithm is well suited for problems with continuous search space.

The basic idea of PSOGSA is to combine the ability of social thinking
(𝑔𝑏𝑒𝑠𝑡) in PSO with exploration capability of GSA. The PSOGSA algo-
rithm was mathematically modeled as similar to PSO and GSA where
every search agent has a position vector reflecting the current position
in search spaces as follows:

𝑋𝑖 =
(

𝑥𝑖1,… , 𝑥𝑖𝑑 ,… , 𝑥𝑖𝐷
)

, 𝑖 = 1, 2,… , 𝑁 (1)

N is the number of search agents, 𝑑 is the index and 𝐷 is the
dimension of the problem, and 𝑥𝑖𝑑 is the position of the 𝑖th agent in the
𝑑th dimension. Optimization process begins with filling out the position
matrix with random values. During optimization, the gravitational
force from agent 𝑗 on agent 𝑖 at a specific time 𝑡 is defined as follows:

𝐹 𝑑
𝑖𝑗 = 𝐺 (𝑡) ∗

(𝑀𝑝𝑗 (𝑡) ∗ 𝑀𝑎𝑗 (𝑡)
𝑅𝑖𝑗 (𝑡) + 𝜀

)

∗
(

𝑥𝑗𝑑 (𝑡) − 𝑥𝑖𝑑 (𝑡)
)

(2)

𝑎𝑗 is the active gravitational mass related to agent 𝑗, 𝑀𝑝𝑖 is the passive
ravitational mass related to agent 𝑖, 𝐺 (𝑡) is a gravitational constant
t time 𝑡, 𝜀 is a small constant, and 𝑅𝑖𝑗 (𝑡) is the Euclidian distance
etween two agents 𝑖 and 𝑗 at time 𝑡. We consider the values of the
wo gravitational masses to be the same (𝑀𝑝𝑗 = 𝑀𝑎𝑗).

Gravitational and inertial masses are simply calculated by the fitness
valuation. A heavier mass means a fitter agent (corresponds to a lower
alue). This means that the better agents have higher attraction and
ove more slowly. Assuming the equality of gravitational mass and

nertial mass, values of masses are calculated using the value of fitness.
he gravitational and inertial masses are updated by the following
quations:

𝑎𝑖 = 𝑀𝑝𝑖 = 𝑀𝑖𝑖 = 𝑀𝑖, 𝑖 = 1, 2,… , 𝑁 (3)

𝑀𝑖𝑖 is the inertial mass of the 𝑖th agent and 𝑀𝑖 is the overall mass
f the 𝑖th agent.

𝑚𝑖 =
𝑓𝑖𝑡𝑖 (𝑡) −𝑤𝑜𝑟𝑠𝑡 (𝑡)

(4)

𝑏𝑒𝑠𝑡 (𝑡) −𝑤𝑜𝑟𝑠𝑡 (𝑡)
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𝑀𝑖 =
𝑚𝑖 (𝑡)

∑𝑁
𝑗=1 𝑚𝑗 (𝑡)

(5)

𝑓𝑖𝑡𝑖 (𝑡) represents the fitness value of agent 𝑖 at time 𝑡, and 𝑤𝑜𝑟𝑠𝑡 (𝑡)
and 𝑏𝑒𝑠𝑡 (𝑡) are defined as follows (for a minimization problem):

𝑏𝑒𝑠𝑡 (𝑡) = min
𝑗∈{1,…,𝑁}

𝑓𝑖𝑡𝑗 (𝑡) (6)

𝑤𝑜𝑟𝑠𝑡 (𝑡) = max
𝑗∈{1,…,𝑁}

𝑓𝑖𝑡𝑗 (𝑡) (7)

It is to be noted that for a maximization problem, 𝑚𝑎𝑥 is used in
place of 𝑚𝑖𝑛 and vice versa in Eqs. (6) and (7) respectively.

𝐺 and 𝑅𝑖𝑗 between two agents 𝑖 and 𝑗 are calculated as follows:

𝐺 (𝑡) = 𝐺𝑜 ∗ 𝑒𝑥𝑝 (−𝛼 ∗ 𝑖𝑡𝑒𝑟∕𝑚𝑎𝑥𝑖𝑡𝑒𝑟) (8)

𝑅𝑖𝑗 =
2

√

√

√

√

𝐷
∑

𝑘=0

(

𝑋𝑖𝑘 (𝑡) −𝑋𝑗𝑘 (𝑡)
)2 (9)

𝛼 is the descending coefficient, 𝐺0 indicates the initial gravitational
constant, 𝑖𝑡𝑒𝑟 is the current iteration, and 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 is the maximum
number of iterations. In a problem space for the 𝑑th dimension, the
total force that acts on agent 𝑖 is calculated by the following equation:

𝐹 𝑑
𝑖 (𝑡) =

𝑁
∑

𝑗=1,𝑗≠𝑖
𝑟𝑎𝑛𝑑𝑗𝐹

𝑑
𝑖𝑗 (𝑡) (10)

𝑟𝑎𝑛𝑑𝑗 is a random number generated with uniform distribution in
the interval [0, 1]. The law of motion has also been utilized in this
algorithm which states that acceleration of a mass is proportional to
the resultant force and inverse of its mass, so the acceleration of all
agents is calculated as follows:

𝑎𝑖𝑑 (𝑡) =
𝐹𝑖𝑑 (𝑡)
𝑀𝑖𝑖 (𝑡)

(11)

𝑀𝑖𝑖 is the inertial mass of agent 𝑖. During optimization, the best-
btained solution so far is saved as 𝑔𝑏𝑒𝑠𝑡 following the concept of PSO.
q. (12) was proposed as follows for combining PSO and GSA:

𝑖 (𝑡 + 1) = 𝑟𝑎𝑛𝑑 ∗ 𝑉𝑖 (𝑡) + 𝑐1 ∗ 𝑎𝑖 (𝑡) + 𝑐2 ∗
(

𝑔𝑏𝑒𝑠𝑡–𝑋𝑖 (𝑡)
)

(12)

𝑉𝑖 (𝑡) is the velocity of agent 𝑖 at time 𝑡, 𝑐𝑗 is an accelerating
factor, rand is a random number generated with a uniform distribution
between 0 and 1, 𝑎𝑖 (𝑡) is the acceleration of agent 𝑖 at time 𝑡, and 𝑔𝑏𝑒𝑠𝑡
is the best-obtained solution so far. In each iteration, the positions of
agents are updated as follows:

𝑋𝑖 (𝑡 + 1) = 𝑋𝑖 (𝑡) + 𝑉𝑖 (𝑡 + 1) (13)

In PSOGSA, at first, all the agents are randomly initialized using
uniform distribution. Each agent is considered as a candidate solution.
After initialization, 𝐹 𝑑

𝑖𝑗 , 𝐺 (𝑡), and 𝐹 𝑑
𝑖 (𝑡) are calculated by Eq. (2), Eq. (8)

and Eq. (10) respectively. Whereas, the accelerations of particles are
defined by Eq. (11). In each iteration, the best-attained solution should
be updated. After calculating the acceleration and updating the best
solution, the velocity of each agent is calculated by Eq. (12). Finally,
the positions of agents are updated by Eq. (13). The process of updating
velocities and positions is stopped when an end criterion is met.

2.2. Gravitational Particle Swarm (GPS)

GPS (Tsai et al., 2013) is a swarm intelligence based hybrid algo-
rithm which incorporates both the ideas of PSO and GSA. The particles
under consideration in GPS update their respective positions based on
both PSO and GSA velocities. Thus, GPS, as a whole, exploits both the
social behavior of PSO as well as the population-based search pattern
of GSA. Population and the respective particle positions and velocities
are represented in the following manner.

𝑋 =
(

𝑥 ,… , 𝑥 ,… , 𝑥
)

, 𝑖 = 1𝑁 where 𝐷 is the dimension (14)
𝑖 𝑖1 𝑖𝑑 𝑖𝐷

3

𝑣𝑑𝑖 (𝑡 + 1)𝑃𝑆𝑂 = 𝑤 (𝑡) 𝑣𝑑𝑖 (𝑡) + 𝑐1𝑟𝑖1
(

𝑝𝑏𝑒𝑠𝑡𝑑𝑖 − 𝑥𝑑𝑖 (𝑡)
)

+ 𝑐2𝑟𝑖2
(

𝑔𝑏𝑒𝑠𝑡𝑑𝑖 –𝑥𝑑𝑖 (𝑡)
)

(15)

𝑣𝑑𝑖 (𝑡 + 1)𝐺𝑆𝐴 = 𝑟𝑎𝑛𝑑𝑖 ∗ 𝑣𝑑𝑖 (𝑡) + 𝐹 𝑑
𝑖 (𝑡) ∕𝑀𝑑

𝑖 (𝑡) (16)

𝑑
𝑖 (𝑡 + 1)𝐺𝑃𝑆 = 𝑐3𝑟𝑖3 ∗ 𝑣𝑑𝑖 (𝑡 + 1)𝑃𝑆𝑂 + 𝑐4

(

1–𝑟𝑖3
)

∗ 𝑣𝑑𝑖 (𝑡 + 1)𝐺𝑆𝐴 (17)

𝑑
𝑖 (𝑡 + 1) = 𝑥𝑑𝑖 (𝑡) + 𝑣𝑑𝑖 (𝑡 + 1)𝐺𝑃𝑆 (18)

q. (15) and Eq. (16) have been taken from PSO formulation (Rashedi
t al., 2009) and GSA formulation (Eberhart and Kennedy, 1995)
espectively, while Eq. (17) is the GPS velocity update based on Eq. (15)
nd Eq. (16). Of which, 𝑟𝑖3 is a random variable lying uniformly within
0, 1] to create stochastic impacts of PSO velocity and GSA velocity
n GPS agent positions. 𝑐3 and 𝑐4 are two constants to determine the
egree to which PSO and GSA velocities influence GPS. GPS is defined
s GPS (𝑁, 𝑐3, 𝑐4). When both of 𝑐3 and 𝑐4 are valued at 1, GPS agents
re stochastically impacted by equal influences of PSO and GSA.

.3. Fuzzy logic

Since inception in 1965 through the fuzzy set theory concept by
adeh (1996), it has been widely used and applied to a variety of fields
ike cancer classification (Schaefer et al., 2009), image segmentation
Lim and Lee, 1990), optimization (Liu and Lampinen, 2005) and so on.
ost natural things cannot be defined by simple or convenient shapes

r distributions. Fuzzy logic is the characterization of the truth value
f a variable as a real number between [0, 1]. Membership Functions
MFs) are used to define the fuzziness in a graphical form for eventual
se in fuzzy set theory.

. Proposed model

The hybrid versions of PSO and GSA — PSOGSA and GPS suffer
rom premature convergence. This causes the algorithms to get trapped
n a local optimum and it deters us to get the optimal solution. Hence,
utation has been applied to these hybrid versions of PSO and GSA,

.e. PSOGSA and GPS, to get rid of the problem of premature conver-
ence. Due to the fast convergence nature of these hybrids, all the
oints tend to move fast towards the current best solution in each
teration. However, the point it converges to may not be the most
ptimal and to ensure that this does not occur, we propose a novel
utation approach called centroid based fuzzy mutation.

.1. Fuzzy logic-based mutation

The concept of Fuzzy logic has widely been used for solving dif-
erent research problems and it has applications from industry to
cademia. Following the concept of fuzzy logic, briefed in Section 2.3,
n MF gives a corresponding membership value of an operation. Any
uzzy set 𝐹 in the universal domain 𝑈 can be defined as a collection
f ordered pairs. The mathematical representation of such a set is
rovided below:

= {(𝑥, 𝜇𝐹 (𝑥))|𝑥𝜖𝑈}

here 𝜇𝐹 is the MF of 𝐹 with values in the range [0, 1] and 𝑥 is
n element of information in universal set 𝑈 . So, depending on the
ature of the MF, an element of information can have different de-
rees of membership in the present domain. The elements having full
embership form the core of the fuzzy set, the ones having non-

ero membership are called support and the ones having non-zero but
ncomplete membership (< 1) are said to be the boundary of the fuzzy
et.
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Formation of an MF
The MFs in Fuzzy logic has a crucial role in the overall performance

of the fuzzy representation of the underlying problem (Sadollah, 2018).
To be specific, the shape of a MF is important for a particular problem
as it takes the decisive role of the fuzzy inference system. MFs can
be of different shapes — Gaussian, triangular, trapezoidal etc. with
the condition that the values of a MF vary from 0 to 1. An MF
basically maps the given data with required degree of memberships.
Deep understanding about the underlying problem can give us notion to
know which shape of MF would fit the application under consideration.

There may be infinite number of ways to characterize fuzziness.
The choice of which depends on the problem type. Therefore, apart
from shape of a MF, deciding the interval as well as number of MFs
is very important. For example, to model a control system in terms
of temperature by fuzzy logic, it is vital to know how many MFs
are required (e.g., high, medium, and low) along with the interval of
membership values. These two parameters have a significant impact on
the inference of a fuzzy logic-based system. Besides, observing the data
distribution is another important factor. Many times, trial and error
methods are applied for selecting the shape of MF shape as there is no
exact method for selecting the MFs. The function may have an arbitrary
curve, and it suits us in terms of efficiency, simplicity, and speed.

However, the number of MF has greater influence as it determines
the computational time. Hence, the optimum model can be determined
by varying the number/type of MFs for achieving best system perfor-
mance. The work reported in Mitaim and Kosko (1996) gives some
idea about the shape which would be best if someone applies fuzzy
logic as a universal approximator. In another work (Chen and Otto,
1995), a constrained interpolations concept was designed to fit a MF to
a finite number of membership values. Some other works are found in
the literature giving some directions of choosing MF (Wu, 2012; Ross,
2005; Rutkowska, 2016; Czekalski, 2006). The main concern is to break
the 0–1 modeling, and it can be done by applying a triangular MF.
Nevertheless, if the situation is more complex, we may require special
type of MF. To make the best choice, a high-fidelity intuition based on
adequate experience can give a satisfactory answer.

Using metaheuristic optimization methods and evolutionary opti-
mization algorithms, fuzzy logic possesses the great flexibility toward
its initial parameters regarding MFs (El-Zonkoly et al., 2009). Interested
reader can find some useful information about MFs and some proce-
dures (e.g., GA and neural network) to assign memberships to fuzzy
variables (Ross, 2005).

This concept of fuzzy logic has been used for finding the probability
of mutation being performed for a particle. At any moment, muta-
tion is not completely certain or uncertain for a particle, instead, the
membership value provides the probability of mutation. The proposed
mutation-based model has been detailed in Section 3.2. Thus, incorpo-
ration of fuzziness allows us to perform mutation in PSOGSA and GPS
in a probabilistic manner.

3.2. Centroid based fuzzy mutation

This newly developed mutation helps the particles in the population
to drift when there is the chance to pre-mature convergence. We have
the following two important metrics when we consider a particle for
mutation.

• The overall distance of the particles from the other particles
• History of the particles i.e. the change in the accuracies of the

particles as a whole

First consideration checks the distance of a particle from the centroid
of population. If the particles come closer to each other (overall dis-
tance among them decreases), then there is a possibility of premature
convergence. To avoid this, we apply mutation to place the particles
away from each other. This helps the particles to circumvent the local

optimum and look for some other region in the search space. Instead

4

of calculating the distance of a particle from every other particle, it is
convenient to measure the distance of the particle from the centroid
of all the particles. If this distance is less, it implies that the particle
is close to the other particles and hence should be considered for
mutation. So, we can see that the probability of mutation is inversely
proportional to the distance of the particle from the centroid. In certain
situations, it may so happen that a particular particle is residing at
the centroid. This will make the distance to be 0 leading to infinite
chances of mutation which is unacceptable. That is why we need to
add 1 to the distance to ensure that this scenario never occurs. So,
the contribution of distance to the probability of mutation is presented
in Eq. (19) where 𝑑𝑖𝑠𝑡 is the distance of the particle from the centroid
nd 𝑃𝑑 is the estimated contribution.

𝑃𝑑 = 1
1 + 𝑑𝑖𝑠𝑡

(19)

Similar to distance, history of the particles may provide some
important insight into the mutation probability. When the global best
particle gets changed frequently over the iterations, it indicates that the
particles are still exploring and trying to reach better solutions in the
search space. But, on the other hand, if the global best particle is static
over a significant number of iterations, it gives an indication that the
particle might have gotten stuck in some local optima and is unable
to explore different parts of the search space. In these scenarios, it be-
comes important to perform mutation on the particles to provide some
perturbation to them, and thereby helping the particles to overcome
the local optima and to reach the global optima. Thus, the probability
of mutation should increase when the time for which the global best
particles remains constant increases. We estimate the contribution of
this historical information (𝑃𝑐) to the probability of mutation using
Eq. (20) where 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 is the number of iterations for which the
global best particle has remained unaffected. We take 𝛼 = 4 and 𝛽 = 5.
Following these values, the probability of mutation increases as the
value of 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 increases.

𝑃𝑐 = 𝑎 + 𝑏 ∗ 𝑡𝑎𝑛ℎ
((

𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑
𝛼

)

− 𝛽
)

(20)

here 𝑎 = 0.5 and 𝑏 = 0.5. Depending on the value of the 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑,
he hyperbolic tan function will return a value in [−1, 1] which when
ultiplied by 𝑏 will be restricted in the range of [−0.5, 0.5]. So, ulti-
ately the value of 𝑃𝑐 is in [0, 1]. We combine these two contributions
sing Eq. (21). Thus, if the 𝑔𝑏𝑒𝑠𝑡 is moving towards the optimal solution
nd the distance becomes large from the centroid then the point may
xplore an uncharted portion of the search space and hence the motion
f the point is not disturbed. On the other hand, if the point goes closer
o the centroid and 𝑔𝑏𝑒𝑠𝑡 remains unchanged for long duration then
he point approaches to a well-explored portion of the search space,
nd therefore mutation is applied to disrupt its movement in order to
xplore a different region of the search space. The parameters 𝜌 and

assign weight to the contributions of distance and history in the
robability equation. We have used 𝜌 as 0.6 and 𝜑 as 0.4. Distance
as been given more importance over history as there may be certain
ases where although 𝑔𝑏𝑒𝑠𝑡 does not change, other particles change
heir positions. In this scenario, the particles do not get stuck but the
pproach will consider a probable convergence. So, to avoid that, we
ave assigned a lesser weight to history.

𝑖 = 𝜌 ∗ 𝑃𝑑 + 𝜑 ∗ 𝑃𝑐 (21)

𝑃𝑖 denotes the probability of mutation for the 𝑖th particle of pop-
ulation. If 𝑃𝑖 is greater than a generated random value, the particle
gets mutated, else no mutation takes place. In the proposed model, the
term 𝑃𝑖 acts as membership value for fuzzy mutation. Mutation is not
applicable for every particle. Instead 𝑃𝑖 helps us to find a set of fuzzy
elements similar to the fuzzy set denoted as 𝐹 in Section 2.3. After

obtaining this set of fuzzy particles, if for particle 𝑖, 𝑃𝑖 is greater than
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a generated random value, the particle gets mutated, else no mutation
takes place. We perform mutation using the following functions:

𝛥𝑞 = 0.5 ∗ 𝑟𝑎𝑛𝑔𝑒 ∗
(

(

1 − 𝑐𝑜𝑢𝑛𝑡
𝑖𝑡𝑒𝑟

)2
)

(22)

𝛥𝑝 = min(𝛥𝑞, 𝑃𝑖𝑗 ) (23)

where 𝛥𝑝 is the change in 𝑗th dimension’s value of the particle, 𝑟𝑎𝑛𝑔𝑒 is
the difference between the upper and lower limits of the domain of the
benchmark function under consideration, 𝑐𝑜𝑢𝑛𝑡 denotes the current iter-
ation number and 𝑖𝑡𝑒𝑟 is the total number of iterations to be performed
and 𝑃𝑖𝑗 is the value of the 𝑖th particle in the 𝑗th dimension of the entire
population. The value of 𝛥𝑞 gradually decreases over time to allow less
disruption as the points converge. 𝛥𝑝 is restricted (in Eq. (23)) to ensure
the disruption in the motion of an agent is limited.

Mutation occurs alternatively subtracting or adding 𝛥𝑝 to 𝑋𝑖𝑗 with
the probability of addition and subtraction being half. This allows the
point to move by a value of 𝛥𝑝 in any direction in the 𝐷 dimensional
space. 𝛥𝑝 is evaluated D times as well as performed subtraction or
addition of the value 𝛥𝑝 to each of the 𝑋𝑖𝑗 for all 𝑗 ∈ 1𝐷.

Trivially the importance of the fuzzy mutation is described in
Fig. 1(A–D). Consider the scenario when there are two local minima
— one having lesser value (desirable) than the other for a minimization
problem. The particles are moving according to the motion defined by
PSOGSA or GPS. There is a high chance that the particles will converge
to a local minimum without even considering the other one. Fig. 1A
represents the force diagram of three particles M1, M2 and M3 when
they are closer to local minimum 1. The progression of the particles is
shown in Fig. 1B where they are almost converged to local minimum 1.
To avoid further convergence, fuzzy mutation is used. Say only M1 and
M2 pass the mutation criteria. The mutation direction of both particles
are shown in Fig. 1C. Depending on the extent of mutation, the particles
may land into the final state described in Fig. 1D where M1 and M2
have successfully avoided local minimum 1 and moved towards local
minimum 2. We know that there are a lot of assumptions regarding
this scenario but if we compare the GPS or PSOGSA with their mutated
versions, the latter ones will always have better chances of avoiding
such convergence problems.

4. Experimental results

The experiments in this work were performed on MATLAB in a PC
having 4GB RAM. The proposed fuzzy mutation-based hybrid versions
of PSOGSA and GPS, MPSOGSA and MGPS respectively, have been
tested on several benchmark functions as given in Tables 1–3 in the
following section. The results obtained for these benchmark functions
are provided in Section 4.1 while graphical depictions of convergence
of the points are shown in Section 4.2. The computation complexity of
the fuzzy mutation algorithm is low and so our proposed algorithm has
the same complexity as GPS and PSOGSA.

Three categories of functions used in Rashedi et al. (2009) are
adopted to test MGPS and MPSOGSA. These categories include seven
unimodal high-dimensional functions (F1–F7 in Table 1); six multi-
modal high-dimensional functions (F8–F13 in Table 2), and ten mul-
timodal low-dimensional functions (F13–F23 in Table 3). Usually, the
optimization of unimodal functions focus on the algorithm’s rate of
convergence to a global optimum. On the other hand, due to the
presence of multiple functional valleys, multimodal functions test the
ability of the algorithm to cricumvent local optima to reach the global
optimum. So, we can say, in a way, unimodal functions help to evaluate
exploitation and multimodal functions investigate exploration abilities
of the algorithm under consideration.

4.1. Results on benchmark functions

This section illustrates the results obtained by the proposed al-
gorithms over 23 benchmark functions from unimodal, multimodal
and multimodal with fixed dimension categories. The final results
are also compared with some state-of-the-art algorithms to justify the

applicability of the proposed mutation models.

5

Table 1
Description of unimodal functions used in present work.

Function Domain Optimum Position

𝐹1 =
∑𝑛

𝑖=1 𝑥
2
𝑖 [−100, 100]30 0 (0)30

𝐹2 =
∑𝑛

𝑖=1 𝑥𝑖 ∨ +
∏𝑛

𝑖=1 𝑥𝑖∨ [−10, 10]30 0 (0)30

𝐹3 =
∑𝑛

𝑖=1

(

∑𝑖
𝑗=1 𝑥𝑗

)2
[−100, 100]30 0 (0)30

𝐹4 = 𝑚𝑎𝑥
{

|

|

𝑥𝑖|| , 1 ≤ 𝑖 ≤ 𝑛
}

[−100, 100]30 0 (0)30

𝐹5 =
∑𝑛−1

𝑖=1

[

100
(

𝑥𝑖+1 − 𝑥2𝑖
)2 +

(

𝑥𝑖 − 1
)2
]

[−30, 30]30 0 (1)30

𝐹6 =
∑𝑛

𝑖=1
(

𝑥𝑖 + 0.5
)2 [−100, 100]30 0 (0)30

𝐹7 =
∑𝑛

𝑖=1 𝑖𝑥
4
𝑖 + 𝑟𝑎𝑛𝑑𝑜𝑚 [0, 1] [−1.28, 1.28]30 0 (0)30

4.1.1. Parameter tuning
In order to obtain proper results of the proposed models, some

experimentations have been performed to fine-tune the parameters
present in the algorithms. There are mainly four parameters — 𝛼, 𝛽 as
iven in Eq. (20) and 𝜌, 𝜑 as given in Eq. (21). Apart from these four
arameters, there are number of iterations and population size which
hould have a fixed value for a uniform testing environment. For all
he experimentations and comparisons, we have fixed the population
ize to be 50 and used 500 iterations for F1–F7, 1000 iterations for
8–F23. For the previously mentioned four parameters, the qualities of
he solutions are checked by varying their values and finally the most
ptimal combination out of them is selected.

In order to select the optimal values of the parameters, one function
rom each category of the benchmark functions has been selected —
1 from the set of unimodal functions, F10 from the set of multimodal

functions, and F15 from the set of multimodal functions with fixed
dimension category. The testing is done for MGPS algorithm. At first,
𝛼, 𝛽 values of the model have been varied and tested on these three
functions followed by the testing of 𝜌, 𝜑 values over the same three
functions. Graphical representations of the results obtained through the
testing are provided in Fig. 2.

After testing, the final values for the parameters are selected as
mentioned in Table 4. For rest of the experimentations, these values
have been used.

4.1.2. Comparison with state-of-the-art
The results of our two optimization models have been tabulated in

Tables 5–7 against four other optimization approaches namely, PSO,
GSA, PSOGSA and GPS. PSO is used to represent PSO (50); the value
50 signifies the population size, i.e., the number of population points.
GSA represents GSA (50); GPS represents GPS (50, 1.0, 1.0) with equal
influences from PSO and GSA. PSOGSA as well as our proposed models,
MGPS and MPSOGSA use the same parameter values. All the used
algorithms have been run independently for 25 times out of which only
the best 20 results have been used to measure the average, best, worst
and standard deviation (Sd.) values. The least value obtained for the
corresponding fitness function is taken to be the better result here. The
performance of each algorithm has been determined by comparing the
average fitness value given by the corresponding algorithm for each
function and then, if need be, the best (minimum) value returned by
an algorithm for that function and then the standard deviation (Sd.)
value (if the average and best values are same). The most optimum
value has been bolded and underlined. The second-best value has been
only bolded (not underlined). MGPS outperforms GPS 13 out of 23
times (56.52%) and MPSOGSA outperforms PSOGSA 17 times out of
23 (73.91%).

We have further used the results of contemporary optimization algo-
rithms including SSO (Social Spider Optimization, 2013) (Cuevas et al.,
2013), SLC (Soccer League Championship Algorithm, 2014) (Moosa-
vian and Roodsari, 2014), SCA (Sine Cosine Algorithm, 2016) (Mirjalili,
2016), OBSCA (Opposition-based SCA, 2017) (Abd Elaziz et al., 2017)
and VPL (Volleyball Premier League Algorithm, 2018) (Moghdani and
Salimifard, 2018) for comparison. The fitness values for the algorithms
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Fig. 1. (A–D) Example illustrating the utility of mutation in PSOGSA and GPS to avoid convergence to local minima.
CA (Sine Cosine Algorithm), OBSCA (Opposition-based SCA), OBPSO
Opposition-based PSO) and SSO (Social Spider Optimization) have
een taken from the paper on OBSCA (2017) (Abd Elaziz et al., 2017)
o construct Tables 8–10 and those of Tables 5–7 for LCA (League
hampionship Algorithm) and SLC (Soccer League Competition Algo-
ithm) have been taken from the paper on VPL(2018) (Moghdani and
6

Salimifard, 2018). Our algorithms collectively outperform OBPSO in
over 85% cases, SCA in over 85% cases, SSO in nearly 70% cases,
OBSCA in 70% cases. The values for the algorithms VPL, LCA, SLC have
been referred from the paper on VPL (2018) (Moghdani and Salimifard,
2018). It can be seen that our algorithms collectively outperform SLC
in over 75% cases, LCA in nearly 60% cases and VPL in 56.52% cases.
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Fig. 1. (continued).
The results in Tables 6–7 show that the proposed algorithms per-
form well in the category of multimodal functions. Out of 16 functions,
the proposed algorithms outperform the others in 8 functions, which
show that the use of mutation has allowed the algorithms to avoid being
stuck in local optima. It should be noted that in case of unimodal func-
tions as well, the proposed algorithms perform quite well in comparison
7

to their parents GPS and PSOGSA. In total, the proposed algorithms are
the best in 9 cases and the second best in 4 cases. In comparison, VPL
is best in 6 cases and second best in 4 cases. LCA on the other hand is
best in 5 cases and second best in 2 cases. This shows that, rank-wise,
the proposed algorithms perform quite well.
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Table 2
Description of multimodal functions used in present work.

Function Domain Optimum Position

𝐹8 =
∑𝑛

𝑖=1 −𝑥𝑖𝑠𝑖𝑛
(

√

|

|

𝑥𝑖||

)

[−500, 500]30 −12569.5 (420.96)30

𝐹9 =
∑𝑛

𝑖=1
[

𝑥2𝑖 − 10𝑐𝑜𝑠
(

2𝜋𝑥𝑖
)

+ 10
]

[−5.12, 5.12]30 0 (0)30

𝐹10 = −20𝑒𝑥𝑝
(

−0.2
√

1
𝑛

∑𝑛
𝑖=1 𝑥

2
𝑖

)

− 𝑒𝑥𝑝
(

1
𝑛

∑𝑛
𝑖=1 𝑐𝑜𝑠

(

2𝜋𝑥𝑖
)

)

+ 20 + 𝑒 [−32, 32]30 0 (0)30

𝐹11 =
1

4000

∑𝑛
𝑖=1 𝑥

2
𝑖 −

∏𝑛
𝑖=1 𝑐𝑜𝑠

(

𝑥𝑖
√

𝑖

)

+ 1 [−600, 600]30 0 (0)30

𝐹12 =
𝜋
𝑛

{

10𝑠𝑖𝑛2
(

𝜋𝑦𝑖
)

+
𝑛−1
∑

𝑖=1

(

𝑦𝑖 − 1
)2 [1 + 10𝑠𝑖𝑛2

(

𝜋𝑦𝑖+1
)]

+
(

𝑦𝑛 − 1
)2
}

+
𝑛
∑

𝑖=1
𝑢
(

𝑥𝑖 , 10, 100, 4
)

𝑦𝑖 = 1 +
𝑥𝑖 + 1
4

𝑢
(

𝑥𝑖 , 𝑎, 𝑘, 𝑚
)

=

⎧

⎪

⎨

⎪

⎩

𝑘
(

𝑥𝑖 − 𝑎
)𝑚 , 𝑥𝑖 > 𝑎

0,−𝑎 ≤ 𝑥 ≤ 𝑎
𝑘
(

−𝑥𝑖 − 𝑎
)𝑚 , 𝑥𝑖 ← 𝑎

[−50, 50]30 0 (1)30

𝐹13 = 0.1
{

𝑠𝑖𝑛2
(

3𝜋𝑥1
)

+
∑𝑛

𝑖=1
(

𝑥𝑖 − 1
)2 [1 + 𝑠𝑖𝑛2

(

3𝜋𝑥𝑖
)]

+
(

𝑥𝑛 − 1
)2 [1 + 𝑠𝑖𝑛2

(

2𝜋𝑥𝑛
)]

}

+
∑𝑛

𝑖=1 𝑢
(

𝑥𝑖 , 5, 100, 4
)

[−50, 50]30 0 (1)30

Note: 𝑒 is Euler’s constant.
Table 3
Multimodal functions with fixed dimension used in present work.

Function Domain Optimum Position

𝐹14 =
(

1
500

+
∑25

𝑗=1
1

𝑗+
∑2

𝑖=1(𝑥𝑖−𝑎𝑖𝑗 )
6

)−1

[−65.53, 65.53]2 1 (−32,32)

𝐹15 =
∑11

𝑖=1

[

𝑎𝑖 −
𝑥1(𝑏21+𝑏1𝑥2)
𝑏21+𝑏1𝑥3+𝑥4

]2
[−5, 5]4 0.00030 (0.1928,0.1908,0.1231,0.1358)

𝐹16 = 4𝑥21 − 2.1𝑥41 +
1
3
𝑥61 + 𝑥1𝑥2 − 4𝑥22 + 4𝑥42 [−5, 5]2 −1.0316 (0.089,0.712),(−0.089,0.712),

𝐹17 =
(

𝑥2 −
5.1
4𝜋2 𝑥21 +

5
𝜋
𝑥1 − 6

)2
+ 10

(

1 − 1
8𝜋

)

𝑐𝑜𝑠𝑥1 + 10

[−5, 10] × [0, 15] 0.398 (−3.14,12.27), (3.14,12.275), (9.42,2.42)

𝐹18 =
[

1 +
(

𝑥1 + 𝑥2 + 1
)2 (19 − 14𝑥1 + 3𝑥21 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥22

)

]

×
[

30 +
(

2𝑥1 − 3𝑥2
)2 ×

(

18 − 32𝑥1 + 12𝑥21 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥22
)

]

[−5, 5]2 3 [0, −1]

𝐹19 = −
∑4

𝑖=1 𝑐𝑖𝑒𝑥𝑝
(

−
∑3

𝑗=1 𝑎𝑖𝑗
(

𝑥𝑗 − 𝑝𝑖𝑗
)2
)

[0, 1]3 −3.86 (0.114, 0.556, 0.852)

𝐹20 = −
∑4

𝑖=1 𝑐𝑖𝑒𝑥𝑝
(

−
∑6

𝑗=1 𝑎𝑖𝑗
(

𝑥𝑗 − 𝑝𝑖𝑗
)2
)

[0, 1]6 −3.32 (0.201, 0.15, 0.477, 0.275, 0.311, 0.657)

𝐹21 = −
∑5

𝑖=1

[

(

𝑋 − 𝑎𝑖
) (

𝑋 − 𝑎𝑖
)𝑇 + 𝑐𝑖

]−1
[0, 10]4 −10.1532 5aij

𝐹22 = −
∑7

𝑖=1

[

(

𝑋 − 𝑎𝑖
) (

𝑋 − 𝑎𝑖
)𝑇 + 𝑐𝑖

]−1
[0, 10]4 −10.4028 7aij

𝐹23 = −
∑10

𝑖=1

[

(

𝑋 − 𝑎𝑖
) (

𝑋 − 𝑎𝑖
)𝑇 + 𝑐𝑖

]−1
[0, 10]4 −10.5363 10aij

Note: For detailed description of the functions of Table 3 refer to Appendix A of Rashedi et al. (2009).
Table 4
Values of different parameters used in the proposed models.

Parameter Value

Population size 50
No. of iterations 500 iterations for F1–F7, 1000 iterations for F8–F23
𝛼 4
𝛽 5
𝜌 0.6
𝜑 0.4

In comparison with OBSCA, SCS, OBPSO and SSO in terms of only
est, average and standard deviation, it can be seen that proposed
lgorithms have performed quite well as well. The proposed algorithms
re best in 10 cases and second best in 12 cases. So, in all, except 2
unctions the proposed algorithms have rank of 1 or 2.

The proposed algorithms are very capable of avoiding local minima
nd thus perform quite well for the category of multimodal functions.
he mutation, though in some cases, causes fluctuation as seen in
ection 4.2 because it causes the particles to move in all directions
hich results into both increases and decreases in fitness value. The
ain applicability of the solution is for problems whose fitness function

orresponds to multimodal functions of fixed dimension. The No Free
unch theorem (Wolpert and Macready, 1997) points out the fact that
o one algorithm can outperform all others in all cases and this is what
eeps research alive in this field. However, the better performances in
 t

8

comparison to other algorithms in most cases shows the applicability
and effectiveness of the proposed algorithms.

4.2. Graphical depiction of the results

We use graphs to show the convergence of our algorithms for some
of the benchmark functions considered here. These graphs are plotted
using the values for the best-obtained fitness value in the population
for each iteration of the algorithm. For all the plots, 𝑔𝑏𝑒𝑠𝑡 refers to the
global best fitness value for all members in the population. For F15,
0.00030 is added to the fitness result before plotting and for F19, 3.8774
is added. We have shown one graph from each of the three categories
of functions.

Fig. 3(A, C and E; B, D and F) shows the variation of the 𝑔𝑏𝑒𝑠𝑡
value with the iterations for MGPS and MPSOGSA respectively. 𝑔𝑏𝑒𝑠𝑡
denotes the fitness of the best particle of the population. The graphs
show the convergence of the population. The spikes are due to mutation
which causes variations in the global fitness to prevent the method from
getting stuck in local optima. Some functions have wide fluctuation in
performance like F9 and F19. It should be noted that in Tables 8–10
he performance of the proposed algorithm for F is the best and for
19
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Fig. 2. (A–C) Graphical representations of the results obtained via varying 𝜌∕𝜙 for F1, F9, F15. (D–F) Graphical representations of the results obtained via varying 𝛼, 𝛽 for F1, F9,
15.
4

t

9 is second best. Similarly, for Tables 5–7 the performance for F19 is

econd best for the proposed algorithms. So, it can be concluded that

he fluctuation does not hamper performance but is rather helpful in

voidance of local minima and premature convergence.
 P

9

.3. Time requirement analysis

From the results and corresponding discussion provided in Sec-
ions 4.1 and 4.2, it is clear that the addition of mutation does help
SOGSA and GPS avoid premature convergence, thereby helping them
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Table 5
Comparison of results of optimization algorithms on unimodal functions. The best, average and standard deviation of different algorithms are provided.

Function Value heads GSA PSO GPS PSOGSA LCA VPL SLC Proposed algorithms

MGPS MPSOGSA

F1 Best Avg. Sd. 1.1E−17
2.0E−17
5.5E−18

1.1E−15
1.3E−11
8.8E−11

6.6E−19
1.2E−18
3.0E−19

3.29E−19
4.74E−19
8.04E−19

1.41E−48
3.25E−46
1.79E−46

0.00E+00
7.81E−132
4.20E−131

1.90E−166
4.40E−160
3.91E−80

4.12E−21
9.38E−19
1.57E−18

3.10E−13
1.92E−09
3.67E−09

F2 Best Avg. Sd. 1.4E−08
2.4E−08
4.4E−09

4.4E−09
2.9E−06
1.3E−05

3.3E−09
5.2E−09
9.0E−10

2.47E−09
2.93E−09
2.64E−10

4.58E−25
9.79E−25
1.49E−24

1.12E−102
1.13E−90
5.13E−90

1.12E−125
8.85E−06
9.84E+03

2.38E−22
1.40E−20
2.21E−20

2.11E−14
1.09E−10
4.48E−10

F3 Best Avg. Sd. 7.5E+01
2.3E+02
1.0E+02

1.9E+01
1.2E+02
7.5E+01

3.1E+00
9.7E+01
1.1E+02

2.92E+02
1.82E+03
4.82E+02

3.26E+03
1.12E+03
6.06E+03

1.93E−33
8.16E−04
2.85E−03

2.58E−25
2.11E−02
1.33E+01

1.17E−06
5.57E−07
5.52E−06

2.5E−02
9.98E−01
7.1E+01

F4 Best Avg. Sd. 2.1E−09
6.4E−02
2.5E−01

1.4E−01
4.2E−01
1.9E−01

8.2E−10
1.3E+00
9.8E−01

1.3E+01
2.2E+01
3.89E+00

1.49E+00
5.09E−01
2.63E+00

0.00E+00
1.54E−29
3.96E−29

8.96E−30
3.07E−04
1.03E+00

1.17E−06
5.52E−06
1.88E−06

8.30E−05
3.19E−04
2.74E−04

F5 Best Avg. Sd. 2.6E+01
2.8E+01
1.0E+01

2.5E+01
2.7E+01
8.4E+00

2.3E+01
2.6E+01
8.8E+00

1.6E+01
2.6E+01
2.5E+00

9.86E−03
8.42E−01
7.15E−01

2.58E+01
2.62E+01
2.76E−01

3.96E+01
3.00E+01
3.32E−01

4.19E+00
2.45E+01
9.47E+00

2.24E+01
2.51E+01
6.65E−01

F6 Best Avg. Sd. 7.4E−18
1.9E−17
6.4E−18

8.3E−16
1.3E−12
7.1E−12

6.0E−19
1.2E−18
3.3E−19

3.30E−19
5.05E−19
9.40E−20

0.00E+00
0.00E+00
0.00E+00

1.82E−05
4.09E−04
5.33E−04

1.02E+01
1.05E+01
1.12E−01

4.79E−06
2.21E−02
2.39E−02

1.75E−05
1.26E−02
5.59E−02

F7 Best Avg. Sd. 8.4E−03
2.8E−02
1.7E−02

1.7E−03
7.0E−03
2.5E−03

1.1E−03
3.1E−03
1.2E−03

1.5E−02
3.3E−02
9.3E−03

1.56E−02
9.48E−03
3.44E−03

4.67E−05
1.93E−03
1.36E−03

3.43E−01
3.76E−06
1.60E+01

8.51E−04
1.73E−02
1.01E−02

1.13E−04
1.6E−02
1.0E−02
Table 6
Comparison of results of optimization algorithms on multimodal functions. The best, average and standard deviation of different algorithms are provided.

Function Value heads GSA PSO GPS PSOGSA LCA VPL SLC Proposed algorithms

MGPS MPSOGSA

F8 Best Avg. Sd. −4.2E+03
−2.7E+03
4.7E+02

−1.0E+04
−9.0E+03
5.2E+02

−8.9E+03
−7.5E+03
7.7E+02

−8.85E+03
−8.09E+03
4.71E+02

−3.72E+03
−7.53E+02
2.21E+03

−1.19E+112
−4.68E+90
2.15E+111

−1.33E−25
−7.07E+03
1.24E+02

−9.11E+03
−7.46E+03
6.21E+02

−7.86E+03
−7.31E+03
4.76E+02

F9 Best Avg. Sd. 9.0E+00
1.7E+01
4.3E+00

1.8E+01
4.1E+01
1.5E+01

9.0E+00
2.1E+01
6.1E+00

4.48E+01
7.42E+01
1.1E+01

0.00E+00
0.00E+00
0.00E+00

0.00E+00
0.00E+00
0.00E+00

0.00E+00
0.00E+00
0.00E+00

1.14E−13
3.47E+00
2.84E+00

1.29E−11
2.89E−07
1.06E−06

F10 Best Avg. Sd. 2.2E−09
3.4E−09
4.1E−10

4.6E−09
9.1E−08
2.0E−07

5.4E−10
8.8E−10
1.3E−10

4.32E−10
5.07E−10
4.70E−11

2.22E−14
4.93E−15
3.74E−14

8.88E−16
8.88E−16
9.86E−32

7.08E−16
7.05E−14
1.86E−29

2.86E−11
1.42E−08
3.59E−08

5.62E−07
5.83E−05
5.28E−05

F11 Best Avg. Sd. 2.0E+00
4.3E+00
1.6E+00

5.1E−15
1.2E−02
1.2E−02

0.0E+00
2.3E−02
3.0E−02

2.86E−06
2.33E−01
3.5E−01

1.28E−13
5.84E−03
2.65E−03

0.00E+00
0.00E+00
0.00E+00

0.00E+00
0.00E+00
0.00E+00

0.0E+00
8.49E−05
2.96E−04

6.79E−14
1.09E−11
1.75E−11

F12 Best Avg. Sd. 6.2E−20
2.5E−02
6.1E−02

1.6E−18
1.5E−02
3.6E−02

4.7E−21
5.0E−02
1.3E−01

1.01E+00
4.46E+00
1.80E+00

1.57E−32
1.09E−47
1.57E−32

1.11E−06
2.58E−05
1.74E−05

0.00E+00
1.04E+01
8.46E−82

1.00E−03
1.9E−03
5.32E−04

2.66E−08
1.2E−02
2.4E−03

F13 Best Avg. Sd. 1.22E−18
2.1E−18
5.0E−19

9.9E−131
2.0E−31
4.3E−31

3.75E−08
8.48E−02
8.0E−02

9.29E−20
2.2E−03
4.5E−03

1.35E−32
5.47E−48
1.35E−32

2.63E−05
4.18E−04
4.84E−04

7.61E−01
1.00E+00
3.09E−01

2.56E−02
4.33E−01
3.1E−01

5.93E−01
9.73E−01
1.88E−01
to search for a global optimum solution. But, how computationally
expensive mutation operation is? To find that out, we have provided
the time requirements of both the algorithms before and after adding
mutation operation over the 23 benchmark functions. The graphical
representations of the time requirements are shown in Fig. 4(A, B).

From Fig. 4, it is clear that the mutation operation requires very
small amount of time to guide PSOGSA and GPS to a better solution. For
function 13 onwards, the time required by MPSOGSA or MGPS almost
coincides with that of PSOGSA and GPS respectively. For functions 1–
12, there is a small increase in the time requirement but considering
the improvement in the results, this amount of time increase is quite
insignificant.

5. Applications of the proposed algorithms to solve Engineering
Design Problems

Engineering design involves building and designing of products
and/or processes. It is a decision-making process requiring complex
objective function optimization. Meta-heuristic methods (Simulated
10
Annealing or Tabu search (Hussin and Stützle, 2014)) serve as a better
approach than traditional optimization methods like random walk, ex-
haustive search or steepest descent method. Meta-heuristics converge to
an optimal solution and can handle non-convex and non-differentiable
functions. Engineering design problems have large number of vari-
ables, whereas their influence on the objective function can be very
complicated. Therefore, in this paper, five classical engineering de-
sign problems viz. spring, gear train, welded beam, pressure vessel
and closed coil helical spring design have been considered which are
discussed in Sections 5.1, 5.2, 5.3, 5.4 and 5.5 respectively. These
problems contain various local optima, whereas only global optimum
is required. Hence, there is a need for effective and efficient opti-
mization methods for them. In this section, various experiments on
these benchmark problems are reported to verify the performance of
the proposed algorithms. All the experiments are performed over 30
independent runs for 1000 iterations. The constraints for the problems
can be found in Kohli and Arora (2017). The results for each of the
functions have been shown in Table 11 and they have been compared
with the hybrid algorithms, GPS and PSOGSA. The respective variable
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Table 7
Comparison of results of optimization algorithms on multimodal functions of fixed dimension. The best, average and standard deviation of different algorithms are provided.

Function Value heads GSA PSO GPS PSOGSA LCA VPL SLC Proposed algorithms

MGPS MPSOGSA

F14 Best Avg. Sd. 1.0E+00
3.8E+00
2.6E+00

1.0E+00
1.0E+00
3.2E−17

1.0E+00
1.0E+00
5.8E−01

1.0E+00
1.39E+00
8.75E−01

9.98E−01
3.33E−16
9.98E−01

9.98E−01
9.98E−01
2.32E−13

1.06E−04
0.00E+00
9.86E−32

1.0E+00
1.0E+00
2.84E−17

1.0E+00
1.51E+00
6.81E−01

F15 Best Avg. Sd. 1.4E−03
4.1E−03
3.2E−03

3.1E−04
1.2E−03
4.0E−03

3.1E−04
4.1E−04
3.4E−04

3.1E−04
7.16E−04
2.19E−04

9.95E−04
4.84E−04
1.29E−03

2.45E−05
1.25E−03
3.08E−04

0.00E+00
2.22E−03
6.66E−16

3.53E−04
9.05E−04
4.43E−14

3.23E−04
3.59E−04
4.07E−05

F16 Best Avg. Sd. −1.0E+00
−1.0E+00
4.0E−16

−1.0E+00
−1.0E+00
2.3E−16

−1.0E+00
−1.0E+00
2.8E−16

−1.3E+00
−1.3E+00
2.28E−16

−1.01E+00
3.26E−01
4.50E−01

−1.03E+00
−1.03E+00
2.56E−06

2.92E−04
4.49E−04
1.14E−06

−1.03E+00
−1.03E+00
0.00E+00

−1.03E+00
−1.03E+00
6.83E−17

F17 Best Avg. Sd. 4.0E−01
4.0E−01
3.4E−16

4.0E−01
4.0E−01
3.4E−16

4.0E−01
4.0E−01
3.4E−16

3.98E−01
3.98E−01
0.00E+00

3.98E−01
3.98E−01
1.11E−16

3.98E−01
3.98E−01
2.69E−06

0.00E+00
1.78E−15
0.00E+00

3.98E−01
3.98E−01
1.49E−05

3.98E−01
3.98E−01
0.00E+00

F18 Best Avg. Sd. 3.0E+00
3.0E+00
2.2E−15

3.0E+00
3.0E+00
3.1E−15

3.0E+00
3.0E+00
1.6E−15

3.00E+00
3.00E+00
8.40E−16

3.00E+00
3.00E+00
9.33E−07

3.00E+00
3.00E+00
7.58E−05

1.93E−14
4.81E−82
2.8E−152

3.00E+00
3.00E+00
6.09E−16

3.00E+00
3.00E+00
9.38E−15

F19 Best Avg. Sd. −3.9E+00
−3.6E+00
3.0E−01

−3.9E+00
−3.9E+00
3.1E−15

−3.9E+00
−3.9E+00
3.1E−15

−3.86E+00
−3.86E+00
2.19E−15

−1.96E−01
4.96E−02
2.81E−02

−3.85E+00
−3.77E+00
9.37EE-02

−4.10E−77
−1.36E+01
1.27E−04

−3.85E+00
−3.87E+00
2.70E−02

−3.88E+00
−3.88E+00
1.63E−16

F20 Best Avg. Sd. −3.3E+00
−1.9E+00
5.4E−01

−3.3E+00
−3.3E+00
5.5E−02

−3.31E+00
−3.3E+00
2.4E−02

−3.32E+00
−3.31E+00
6.07E−01

−3.00E+00
5.89E−01
1.54E+00

−3.32E+00
−3.28E+00
5.41E−02

−8.60E+03
8.88E−16
0.00E+00

−3.32E+00
−3.26E+00
4.75E−02

−3.32E+00
−3.32E+00
0.00E+00

F21 Best Avg. Sd. −5.1E+00
−5.1E+00
7.4E−03

−1.0E+01
−7.2E+00
3.3E+00

−1.0E+01
−8.5E+00
3.1E+00

−1.02E+01
−6.17E+00
3.74E+00

−3.40E+00
5.67E−01
5.23E−01

−1.02E+01
−9.30E+00
1.90E+00

3.00E−25
9.97E−01
8.89E−04

−4.99E+00
−3.61+00
9.93E−01

−1.02E+01
−7.90E+00
2.87E+00

F22 Best Avg. Sd. −1.0E+01
−7.5E+00
2.7E+00

−1.0E+01
−9.1E+00
2.8E+00

−1.0E+01
−1.0E+01
7.2E−15

−1.04E+01
−8.87E+00
3.14E+00

−2.09E+00
3.63E−01
7.00E−01

−1.04E+01
−8.99E+00
2.35E+00

−1.03E+00
3.00E+00
3.00E−01

−4.83E+00
−3.76+00
1.22E+00

−1.04E+01
−1.04E+01
2.40E−05

F23 Best Avg. Sd. −1.1E+01
−1.0E+01
7.8E−01

−1.1E+01
−9.4E+00
2.8E+00

−1.1E+01
−1.0E+01
1.6E+00

−1.05E+01
−7.9E+00
3.69E+00

−2.06E+00
4.22E−01
9.31E−01

−1.05E+00
−9.40E+00
2.28E+00

−3.27E+00
−1.04E+01
1.05E+01

−4.81E+00
−3.95E+00
9.55E−01

−1.05E+01
−1.05E+01
4.76E−06
Table 8
Comparing best, average and standard deviation of proposed algorithms for unimodal functions with OBSCA, SCA, OBPSO, SSO.

Function Value heads Proposed algorithms OBSCA SCA OBPSO SSO

MGPS MPSOGSA

F1 Best Avg. Sd. 4.12E−21
9.38E−19
1.57E−18

3.10E−13
1.92E−09
3.67E−09

1.75E−75
1.82E−74
2.90E−11

6.89E−01
5.43E+00
1.54E+01

1.85E−07
2.86E−06
1.23E−05

1.65E−01
1.90E−01
8.47E−17

F2 Best Avg. Sd. 1.40E−20
1.40E−20
2.21E−20

2.11E−14
1.09E−10
4.48E−10

3.84E−45
1.09E−42
2.90E−11

1.25E−02
2.37E−02
4.35E−02

6.27E−03
5.69E−02
6.95E−02

1.00E+00
2.05E+00
9.03E−16

F3 Best Avg. Sd. 1.17E−06
5.57E−07
5.52E−06

2.5E−02
9.98E−01
7.1E+01

2.00E+00
2.05E+01
2.64E+00

3.65E+03
1.02E+04
6.38E+02

5.45E+00
6.36E+01
6.76E+01

1.12E+02
1.14E+02
2.89E−14

F4 Best Avg. Sd. 1.17E−06
5.52E−06
1.88E−06

8.30E−05
3.19E−04
2.74E−04

4.5E−34
3.22E−32
1.19E−01

2.65E+00
3.63E+01
1.38E+01

1.89E+00
2.18E+00
1.03E+00

1.75E+00
2.09E+00
9.03E−16

F5 Best Avg. Sd. 4.19E+00
2.45E+01
9.47E+00

2.24E+01
2.51E+01
6.65E−01

1.87E+00
2.82E+01
1.80E−01

5.54E+02
6.30E+04
1.98E+05

3.56E+01
5.17E+01
3.04E+01

6.65E+00
4.54E+01
1.45E−14

F6 Best Avg. Sd. 4.79E−06
2.21E−02
2.39E−02

1.75E−05
1.26E−02
5.59E−02

3.75E+00
4.70E+00
3.32E−01

2.78E+02
6.30E+04
1.49E+01

1.05E−08
1.16E−06
3.92E−06

1.45E−01
1.91E−01
8.47E−17

F7 Best Avg. Sd. 8.51E−04
1.73E−02
1.01E−02

1.13E−04
1.6E−02
1.0E−02

1.25E−05
2.13E−04
2.87E−03

1.08E−01
1.35E−01
1.60E−01

2.35E−03
2.92E−02
1.60E−02

2.78E−01
3.82E−01
2.26E−16
values for each of the functions are given in Table 12. From the
comparison of the results obtained over benchmark functions presented
in Tables 5–10, we can see that VPL and LCA are two algorithms
which have performed quite well in the scenario. That is why we have
also applied them over engineering design problems and compared
their results with MBPSOGSA and MGPS in Table 11. Following are
specific engineering problems which can be solved using the proposed
algorithms efficiently.
11
5.1. Tension/compression spring design problem

The weight of the spring is based on three decision variables,
namely, the wire diameter (d), mean coil diameter (D) and the number
of active coils (N). The weight is minimized subjected to three inequal-
ity constraints and the objective function in Eq. (24). A population
particle is given as, 𝑥⃗ =

[

𝑥1𝑥2𝑥3
]

= [𝑑𝐷𝑁].

𝐸𝐹 =
(

𝑥 + 2
)

𝑥 𝑥2 (24)
1 3 2 1
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Table 9
Comparing best, average and standard deviation of proposed algorithms for multimodal functions with OBSCA, SCA, OBPSO, SSO.

Function Value heads Proposed algorithms OBSCA SCA OBPSO SSO

MGPS MPSOGSA

F8 Best Avg. Sd. −9.11E+03
−7.46E+03
6.21E+02

−7.86E+03
−7.31E+03
4.76E+02

−6.85E+03
−3.53E+03
2.74E+02

−7.00E+03
−3.70E+03
3.03E+02

−7.24E+03
−6.06E+03
1.00E+03

−9.89E+03
−8.90E+03
5.55E−12

F9 Best Avg. Sd. 1.14E−13
3.47E+00
2.84E+00

1.29E−11
2.89E−07
1.06E−06

0.00E+00
0.00E+00
2.08E−09

3.45E+01
4.90E+01
4.06E+01

2.45E+00
4.58E+01
1.35E+01

6.75E+01
7.53E+01
1.45E−14

F10 Best Avg. Sd. 2.86E−11
1.42E−08
3.59E−08

5.62E−07
5.83E−05
5.28E−05

3.84E−13
8.88E−16
2.07E+00

4.56E+00
1.66E+01
7.12E+00

1.15E+00
1.52E+00
8.02E−01

3.65E−01
4.85E−01
3.95E−16

F11 Best Avg. Sd. 0.0E+00
8.49E−05
2.96E−04

6.79E−14
1.09E−11
1.75E−11

2.25E−02
1.00E−01
7.00E−02

7.75E−02
8.88E−01
3.13E−01

3.26E−03
2.69E−02
3.84E−02

1.04E−02
1.04E−02
0.00E+00

F12 Best Avg. Sd. 1.00E−03
1.9E−03
5.32E−04

2.66E−08
1.2E−02
2.4E−03

4.73E−01
5.72E−01
1.80E−01

1.45E+04
2.89E+04
1.07E+05

1.54E−02
1.56E−01
2.85E−01

2.56E+00
3.27E+00
4.52E−16

F13 Best Avg. Sd. 2.56E−02
4.33E−01
3.1E−01

5.93E−01
9.73E−01
1.88E−01

1.75E+00
2.41E+00
1.69E−01

7.8E+03
6.75E+04
1.98E+05

3.45E−02
7.83E−02
2.00E−01

1.14E+01
1.14E−01
0.00E+00
Table 10
Comparing best, average and standard deviation of proposed algorithms for multimodal functions with a fixed dimension, with OBSCA, SCA, OBPSO, SSO.

Function Value heads Proposed algorithms OBSCA SCA OBPSO SSO

MGPS MPSOGSA

F14 Best Avg. Sd. 1.0E+00
1.0E+00
2.84E−11

1.0E+00
1.51E+00
6.81E−01

1.37E+00
2.64E+00
3.11E+00

2.09E+00
2.18E+00
2.49E+00

1.07E+00
3.40E+00
2.74E+00

1.45E+00
2.98E+00
4.52E−16

F15 Best Avg. Sd. 3.53E−04
9.05E−04
4.43E−14

3.23E−04
3.59E−04
4.07E−05

4.56E−04
6.58E−04
2.83E−04

2.89E−01
1.08E+00
3.78E−04

2.34E−04
1.88E−03
5.04E−03

3.45E−04
7.45E−04
3.31E−19

F16 Best Avg. Sd. −1.03E+00
−1.03E+00
0.00E+00

−1.03E+00
−1.03E+00
6.83E−17

−1.03E+00
−1.05E+00
8.51E−06

−1.03E+00
−1.01E+00
4.46E−05

−1.03E+00
−1.02E+00
6.45E−16

−1.03E+00
−1.04E+00
9.06E−16

F17 Best Avg. Sd. 3.98E−01
3.98E−01
1.49E−05

3.98E−01
3.98E−01
0.00E+00

3.98E−01
3.99E−01
6.55E−04

3.99E−01
4.00E−01
1.43E−03

3.98E−01
3.98E−01
0.00E+00

3.98E−01
3.98E−01
0.00E+00

F18 Best Avg. Sd. 3.00E+00
3.00E+00
6.09E−16

3.00E+00
3.01E+00
9.38E−15

3.00E+00
3.10E+00
6.54E−05

3.00E+00
3.13E+00
1.56E−04

3.00E+00
3.24E+00
1.22E−15

3.00E+00
3.00E+00
0.00E+00

F19 Best Avg. Sd. −3.85E+00
−3.87E+00
2.70E−02

−3.88E+00
−3.88E+00
1.63E−16

−3.81E+01
−3.00E−01
2.26E−16

−3.56E−01
−3.00E−01
2.26E−16

−3.45E−01
−3.00E−01
2.26E−16

−2.86E−01
−2.86E−01
0.00E+00

F20 Best Avg. Sd. −3.32E+00
−3.26E+00
4.75E−02

−3.32E+00
−3.32E+00
0.00E+00

−3.25E+00
−3.10E+00
3.94E−02

−3.20E+00
−3.04E+00
1.16E−01

−3.29E+00
−3.29E+00
5.35E−02

−3.31E+00
−3.31E+00
0.00E+00

F21 Best Avg. Sd. −4.99E+00
−3.61+00
9.93E−01

−1.02E+01
−7.90E+00
2.87E+00

−1.04E+01
−9.06E+00
1.76E+00

−6.57E+01
−2.20E+00
1.71E+00

−7.65E+01
−6.24E+00
3.74E+00

−1.05E+01
−9.49E+00
3.61E−15

F22 Best Avg. Sd. −4.83E+00
−3.76+00
1.22E+00

−1.04E+01
−1.04E+01
2.40E−05

−9.95E+00
−9.93E+00
2.73E−01

−6.78E+00
−4.27E+00
1.43E+00

−9.95E+00
−8.33E+00
3.26E+00

−1.04E+01
−1.04E+01
5.42E−15

F23 Best Avg. Sd. −4.81E+00
−3.95E+00
9.55E−01

−1.05E+01
−1.05E+01
4.76E−06

−1.02E+01
−1.01E+01
2.56E−01

−6.67E+00
−3.34E+00
1.78E+00

−9.87E+00
−8.21E+00
3.41E+00

−1.05E+01
−1.05E+01
0.00E+00
5

t

(

𝐸

5.2. Gear train design problem

Here the cost of gear ratio, of the gear train, is minimized. The
problem has no equality or inequality constraint except a boundary con-
straint. It consists of four decision variables 𝑛𝐴

(

𝑥1
)

, 𝑛𝐵
(

𝑥2
)

, 𝑛𝐷
(

𝑥3
)

,
𝐹
(

𝑥4
)

using which the gear ratio can be formulated as 𝑛𝐵𝑛𝐷∕𝑛𝐹 𝑛𝐴.
he objective function to be minimized is,

𝐹2 (𝑥) =
(

(1∕6.931) −
(

𝑥3𝑥2∕𝑥1𝑥4
))2

ubject to, 12 ≤ 𝑥𝑖 ≤ 60 (25)
12
.3. Welded beam design problem

This is a minimization problem having four variables namely weld
hickness (ℎ), length of the bar attached to the weld (𝑙), bar’s height

(𝑡), and bar’s thickness (𝑏). The constraints for this problem include
bending stress (𝜃), bean deflection (𝛿), shear stress (𝜏), buckling load
𝑃𝑐) and other constraints. The population point is taken as 𝑥⃗ =
[

𝑥1𝑥2𝑥3𝑥4
]

= [ℎ𝑙𝑡𝑏]. The objective function is,

𝐹 (𝑥) = 1.1047𝑥2𝑥 + 0.04811𝑥 𝑥
(

14.0 + 𝑥
)

(26)
3 1 2 3 4 2
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Fig. 3. (A–F) Variations of the value of 𝑔𝑏𝑒𝑠𝑡 of the particles in the population versus iterations for MGPS/MPSOGSA, along with their ancestors (GPS and PSOGSA), PSO and
GSA. A, C, E — contain the plots of the MGPS algorithm and B, D, F contain the plots of MPSOGSA algorithm.

13
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Fig. 3. (continued).

14
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T
F

Fig. 4. (A–B) The time required by PSOGSA and GPS before and after addition of mutation operation for optimizing benchmark functions.
able 11
unction values for the design problems — spring, gear train, welded beam, pressure vessel and closed coil helical spring design problem.
Function Value heads GPS PSOGSA VPL LCA MGPS MPSOGSA

EF1 Best Avg. Sd. 6.9E−03
1.07E−01
2.5E−03

2.5E−03
2.5E−03
8.64E−10

1.24E−3
2.37E−2
1.8E−03

1.26E−3
2.21E−2
3.88E−3

2.5E−03
2.5E−03
8.90E−19

2.5E−03
2.5E−03
8.90E−19

EF2 Best Avg. Sd. 2.88E−07
2.00E−03
4.0E−03

3.6E−03
2.00E−03
4.93E−09

2.8E−12
2.5E−09
3.9E−06

2.5E−11
3.8E−08
1.1E−09

5.01E−14
8.34E−04
1.80E−03

0.00E+00
0.00E+00
0.00E+00

EF3 Best Avg. Sd. 0.00E+00
0.00E+00
0.00E+00

0.00E+00
0.00E+00
0.00E+00

2.26E+0
3.21E+0
4.7E−16

1.72E+0
1.72E+0
7.1E−15

0.00E+00
0.00E+00
0.00E+00

0.00E+00
0.00E+00
0.00E+00

EF4 Best Avg. Sd. 0.00E+00
8.88E+03
4.48E+04

0.00E+00
3.33E+02
4.79E+02

6.04E+3
6.87E+3
1.32E+1

6.06E+3
6.07E+3
11.4E+0

0.00E+00
0.00E+00
0.00E+00

0.00E+00
0.00E+00
0.00E+00

EF5 Best Avg. Sd. 13.75E+00
13.75E+00

13.75E+00
13.75E+00

40.1E+0
41.9E+0

42.8E+0
43.7E+0

13.75E+00
13.75E+00

13.75E+00
13.75E+00
0.00E+00 0.00E+00 2.3E+00 1.7E+00 0.00E+00 0.00E+00
5.4. Pressure design vessel problem

Pressure vessel design problem involves minimization of the weld-
ing, manufacturing and material cost of the pressure vessel. There are
four decision variables involved in this problem which are the thickness
of shell (𝑇𝑆 ), the thickness of head (𝑇ℎ) which are discrete decision
variables, inner radius (𝑅) and length of the cylindrical section of the
vessel (𝐿) which are continuous decision variables. The population
point is taken as 𝑥⃗ =

[

𝑥 𝑥 𝑥 𝑥
]

=
[

𝑇 𝑇 𝑅𝐿
]

. The objective function
1 2 3 4 𝑠 ℎ

15
is,

𝐸𝐹4
(

𝑥⃗
)

= 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥23 + 3.1661𝑥21𝑥4 + 19.84𝑥21𝑥3 (27)

5.5. Closed coil helical spring design problem

The volume of the closed coil helical spring is minimized. Helical
spring is made up of closed coil wire having the shape of a helix and is
intended for the tensile and compressive load. The population point
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Table 12
Value of the parameters after optimization.

Function Algorithm 𝑥1 𝑥2 𝑥3 𝑥4 𝑓 (𝑥)

𝐸𝐹1
MGPS 0.05 0.25 2.00 N/A 2.5E−03
MPSOGSA 0.05 0.25 2.00 N/A 2.5E−03

𝐸𝐹2
MGPS 60 12 43.2837 60 0
MPSOGSA 29.2062 12 12.0749 34.3865 0

𝐸𝐹3
MGPS 0.1 0.1 0.1 0.1 0
MPSOGSA 0.1 0.1 0.1 0.1 0

𝐸𝐹4
MGPS 0 0 82.7991 10.6423 0
MPSOGSA 0 0 79.0777 10 0

𝐸𝐹5
MGPS 0.508 1.27 15 N/A 13.74738
MPSOGSA 0.508 1.27 15 N/A 13.74738

Note: In case of 𝐸𝐹4 in 5.4 since the lower boundary for both 𝑥1 and 𝑥2 is 0 the
algorithm converges towards 0.

is given as 𝑥⃗ =
[

𝑥1𝑥2𝑥3
]

=
[

𝑑𝐷𝑁𝑐
]

. There are chiefly two decision
variables to consider namely coil diameter(D) and wire diameter(d).
The number of coils (Nc) can be fixed beforehand. The volume of the
helical spring (U) is given as the minimization function,

𝐸𝐹5 =
𝜋2

4
(

𝑁𝑐 + 2
)

𝐷𝑑2 (28)

6. Conclusion and future work

The hybrids of GSA and PSO — GPS and PSOGSA are found to be
efficient in single-objective optimization but suffer from premature con-
vergence. This problem is addressed in the present work by the use of
mutation and hence better optimizations results are obtained. We have
proposed a model of fuzzy mutation based on the distances between the
points from the centroid and the population history, which helps the
proposed algorithms outperform their ancestors GPS and PSOGSA. The
evaluation of the models on benchmark functions provides impressive
results. To show the practical application of our proposed algorithms,
they have been evaluated on five classic engineering design problems.
The results are quite promising and our algorithms outperform their
ancestors in most cases or are shoulder to shoulder. This model of
mutation is not algorithm-specific and can be applied to any algorithm
which suffers from premature convergence like Whale optimization or
Harmony search algorithm. Future scope of this work might involve the
use of a local and a global change counters to perform mutation.
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