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Optimal multilevel thresholding for image segmentation got much importance in recent years. Several
entropic and non-entropic objective functions with evolutionary computing algorithms have been
successfully implemented to get the optimal multilevel thresholds for gray scale images. The problem
of multilevel thresholding becomes complex for color images. Because, the basic color components
(red, blue, green) of the color image are extracted and the multiple optimum threshold values are
calculated for each of the components separately. This makes the methods computationally intensive
and inaccurate. Further, the required color information is not retained in the thresholded output. To
solve these problems, an efficient technique is proposed in this paper, extracting only the dominant
color component (DCC) of an image, for optimal thresholding. A novel segmentation score is introduced
to justify the methodology. The optimum threshold values are obtained using a newly suggested
evolutionary computing technique named adaptive whale optimization algorithm (AWOA). The main
contributions are – (i) a novel DCC approach is introduced, (ii) an efficient optimizer AWOA is
proposed, (iii) a new segmentation score is introduced, (iv) experimental results on standard test color
images are explored. The outcomes are compared with all existing method’s approaches (using all the
RGB components) on color image thresholding. Its performance analysis using standard metrics is
deliberated in detail. Statistical analysis is also performed. From the outcomes, it is perceived that the
suggested DCC-AWOA concept yields high quality segmented images. The work may encourage further
research to explore its high dimensional applications.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

As we know, image segmentation separates an image into
istinct regions as per some inherent characteristic features. The
arious image segmentation techniques are classified based on

edge-based approach, region oriented approach, clustering
ased algorithms, histogram based thresholding, and so on [1].
ne of the simplest and most commonly utilized techniques of
egmentation is thresholding because of its accuracy and simplic-
ty. The thresholding approaches are classified into bi-level and
ultilevel thresholding. In the bi-level case, only one threshold
alue is used to partition the image into two regions. This is
ecause, it is believed that, the image comprises only two regions

background and object. However, real life images have mul-
iple regions. So in multilevel thresholding, multiple threshold
alues are required to divide the image into multiple classes. The
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implementation of multilevel thresholding yields more accurate
results than bi-level thresholding due to the use of the different
number of gray levels to denote the regions of the image. Hence,
the problem of multilevel image thresholding is of prime concern
among researchers working in the area of image processing.

There are two methods to find the optimum thresholds in the
multilevel thresholding problem: parametric and non-parametric.
The parametric method considers the distribution of probability
density to define each class of the image. This approach is com-
putationally intensive. On the other hand, the non-parametric
approaches utilize discriminated procedures to divide the pixels
into homogeneous regions [4]. Then a statistical criterion such as
entropy, variance, or edge magnitude is used to obtain the thresh-
olds. These criteria could also be used as optimization functions
because of their accuracy. In recent years, many such criteria are
proposed using between class variance (BCV) [5], minimum cross
entropy (MCE) [6], Shannon’s entropy [7], Tsallis entropy [8],
Kapur’s entropy [9], Renyi’s entropy [10], Edge magnitude [11],
Masi entropy [12], etc. A detailed survey on different thresholding
techniques is undertaken in [13].

As we know, the computational complexity with these ap-

proaches increases exponentially as per the increase in threshold
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Fig. 1. Flow chart of the suggested multilevel thresholding method using DCC-AWOA.
Fig. 2. Original test color images (a) Lena, (b) 35049, (c) 126007, (d) 124084, (e) 143090, (f) 65 033, (g) 12084, (h) 176019, (i) 300091, (j) 92 059, (k) a9 (TEST4)
Ref. [2].
levels. Thus, different optimization techniques such as gravita-
tional search algorithm (GSA) [14], differential evolution (DE)
2

[15], Darwinian particle swarm optimization (DPSO) [16], krill
herd optimization (KHO) [17], bird mating optimization (BMO)
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Fig. 3. Multilevel thresholded outputs of Lena image for level M = 2, 3, 4, and 5, images (a)–(d) using KET on DCC, (e)–(h) using KET on RGB components, (i)–(l)
sing EMBT on DCC, (m)–(p) using EMBT on RGB components.
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18], dragonfly optimization (DFO) [19], spherical search
ptimization (SSO) [20], etc. are utilized to overcome these lim-
tations. The optimal threshold values are obtained using differ-
nt optimization techniques based on different fitness functions
tated above.
Apart from the above optimization methods, Whale Optimiza-

ion Algorithm (WOA) [21] is also utilized to solve the problem
n hand [22]. The WOA as a modern and competitive population-
ased optimization procedure outclasses some other biologically
nspired procedures from a simplicity and efficiency perspective.
t is inspired by the social conduct of the humpback whales. The
uthors in [21] have claimed that WOA performs better in terms
f accuracy and stability as compared to the other optimization
ethods when tested on standard benchmark functions.
This has inspired us to use WOA for the problem on hand.

owever, for global optimization problems, WOA can get trapped
n local optima and degrade precision. Hence, an Adaptive Whale
ptimization Algorithm (AWOA) for solving these problems is
roposed in this paper. The investigation outcomes show the en-
anced performance of AWOA w.r.t. solution precision and con-
ergence speed in comparison with WOA. The suggested AWOA
ay be useful in the world of knowledge based systems.
3

It is well recognized that in practical engineering problems, a
ast majority of images are color images, which are often com-
licated and have much detail. Hence, the problem of multilevel
hresholding becomes more complex in the case of color images.
ver the years, many works have been published in the area
f multilevel thresholding of color images, suggesting a reduc-
ion in the computational complexity, for searching the optimal
hresholds [23–32]. The authors in [1] proposed a modified firefly
lgorithm (MFA) for color image thresholding using all three com-
onents. They used BCV, MCE, and Kapur’s entropy as their fitness
unctions. Their results were compared with various variations
f the firefly technique. They used the chaotic map to initialize
he firefly population for enhancing diversification. Further, the
lobal search feature of PSO was used in the movement phase of
ireflies.

The authors in [2] suggested Masi entropy based norm for
olor satellite image thresholding. They compared their suggested
ethod with other entropy-based techniques such as Kapur’s,
sallis and Renyi’s entropy. Besides satellite images, the authors
lso tested their method with various color images involving
igher threshold levels. The authors in [33] proposed an efficient
rill herd (EKH) method for color image thresholding utilizing all
he RGB (R (red), G (green), B (blue)) color components. They used
sallis, Kapur’s entropy and Otsu’s criteria as the cost functions.
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Fig. 4. Multilevel thresholded outputs of 35049 image for level M = 2, 3, 4, and 5, images (a)–(d) using KET on DCC, (e)–(h) using KET on RGB components, (i)–(l)
using EMBT on DCC, (m)–(p) using EMBT on RGB components.
The authors used seven more algorithms for comparison. Pare
et al. [34] proposed their approach using Renyi’s entropy as the
cost function and bat algorithm for optimization. The authors
in [35] proposed a multilevel thresholding technique for color im-
ages in which minimum class variance thresholding and the Otsu
technique are utilized to find the thresholds. Hussein et al. [36]
suggested a Patch-Levy-based Bees Algorithm (PLBA) based fast
procedure for multilevel thresholding. They used Kapur’s entropy
and Otsu’s criteria as the cost functions and compared their
results with bacteria foraging and quantum inspired schemes.
Xing [37] suggested an improved emperor penguin optimization
(EPO) based multi-threshold color image segmentation technique.
They also used Kapur’s entropy as the fitness function for com-
puting the multiple thresholds. Anitha et al. [3] suggested a
modified whale optimization algorithm (MWOA) for color image
thresholding. They used Kapur’s entropy and Otsu’s criteria as the
fitness function.

The color image contains three primary color components R
(red), G (green), and B (blue). It is observed from the above
discussions that all the three primary color components are used
for thresholding in all the methods. All the above mentioned
approaches search the optimal thresholds for each of the RGB
olor components separately and results are computed based on
heir average values. This increases the system complexity and
4

the computational load three times. Nevertheless, it is an injustice
to say that the earlier approaches are inaccurate because other
color components carry insignificant information required by the
entropic/non-entropic functions utilized for solving the multilevel
thresholding problem. In this context, it becomes a challenging
task to quickly obtain the required information from a multicolor
histogram.

This has inspired us to present an efficient method to meet
the requirements of color image segmentation. We propose the
dominant color component (DCC) based multilevel thresholding
technique using AWOA. In the suggested method, only the domi-
nant color component is extracted from the color image, which is
a novel concept in this domain. The optimum threshold values are
computed for the dominant component only using the suggested
AWOA. This results in a significant decrease in the computation
time together with better segmented images. In summary, the
proposal ensures better accuracy and speed.

The proposed idea of DCC-AWOA is validated using (i) an
entropic objective function such as Kapur’s entropy thresholding
(KET), (ii) a non-entropic objective function such as the edge mag-
nitude based thresholding (EMBT). A comprehensive experiment
is conducted with images from the BSDS500 dataset [38]. The
outcomes are compared with all the state-of-the-art method’s
approaches on color image thresholding employing the RGB color
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Fig. 5. Multilevel thresholded outputs of 126007 image for level M = 2, 3, 4, and 5, images (a)–(d) using KET on DCC, (e)–(h) using KET on RGB components, (i)–(l)
sing EMBT on DCC, (m)–(p) using EMBT on RGB components.
omponents separately. It is observed that thresholding the DCC
nly using DCC-AWOA yields high quality segmented images as
ompared to the RGB approach.
The contributions of this work are: (i) An efficient DCC based

ethod for multilevel thresholding of color images is proposed
esulting in improved accuracy. The original color information
s retained in the thresholded image. (ii) A novel segmentation
core to justify the contribution is investigated. (iii) The optimiza-
ion capability of WOA is enhanced by introducing Levy flight
eature and updating the coefficient vectors using self-adaptive
trategy based on the fitness function value to obtain the optimal
hresholds. (iii) The adaptability of the proposed AWOA to color
mage segmentation is investigated. (iv) The effectiveness of the
roposal is justified through extensive experimental results. The
ovelties are: (i) For the first time the DCC based approach
or color image thresholding is proposed. (ii) A new parameter

segmentation score is defined to compare the DCC based ap-
roach with the RGB based approach. (iii) The WOA is improved
y introducing Levy flight feature and adaptive coefficient vectors
or enhanced convergence and faster computation.

The structure of the paper is: Section 2 presents the material
nd methods. Section 3 illustrates the suggested methodology.
5

The numerical and the statistical results of the suggested tech-
nique followed by a detailed discussion are presented in Sec-
tion 4. Lastly, conclusive remarks with the future scope of the
work are drawn in Section 5.

2. Material and methods

2.1. Entropic method: Kapur’s entropy thresholding (KET)

Kapur’s entropy is one of the widely used entropy based cost
functions for multilevel thresholding. It has pulled the attention
of many researchers and is widely utilized for solving the mul-
tilevel thresholding problem. Let [T1, T2, . . . , Tn] represents the n
optimal thresholds that partition the image into different classes.
The relationship between the multiple thresholds and Kapur’s
entropy criterion is represented as:

H(T1, T2, . . . , Tn) = H0 + H1 + · · · + Hn (1)

where H0 = −

T1−1∑
g=0

p(g)
ω0

log
p(g)
ω0

, ω0 =

T1−1∑
g=0

p(g);

H1 = −

T2−1∑ p(g)
ω1

log
p(g)
ω1

, ω1 =

T2−1∑
p(g);
g=T1 g=T1
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Fig. 6. Multilevel thresholded outputs of 124084 image for level M = 2, 3, 4, and 5, images (a)–(d) using KET on DCC, (e)–(h) using KET on RGB components, (i)–(l)
sing EMBT on DCC, (m)–(p) using EMBT on RGB components.
...

T

...

Hn = −

L−1∑
g=Tn

p(g)
ωn

log
p(g)
ωn

, ωn =

L−1∑
g=Tn

p(g).

Here H0 +H1 + · · · +Hn represents the entropies of the different
classes, ω0, ω1, . . . , ωn denotes the probabilities of each class. The
optimum thresholds are found when Eq. (2) is maximized [9].

fKET (T1, T2, . . . , Tn) = argmax{H(T1, T2, . . . , Tn)} (2)

2.2. Non-entropic method: Edge magnitude based thresholding
(EMBT)

One of the popular non-entropic objective functions utilized
for multilevel thresholding is edge magnitude based. The idea of
edge magnitude was discussed in [39] for bi-level thresholding of
gray scale images. The extension to multilevel thresholding was
implemented in [11]. The edge magnitude q calculated from the
gray level co-occurrence matrix (GLCM) is considered for optimal
thresholding. It is calculated from the position of the pixel pair.
The image is optimally thresholded when the total edge infor-

mation is maximum. Here also [T1, T2, . . . , Tn] represents the n

6

optimal thresholds that partition the image into different classes.
The threshold values are obtained as:

T1 = argmax

⎛⎝ 1
η1

q1∑
i=0

q2∑
j=q1+1

i + j
2

G(i, j)

⎞⎠ ;

T2 = argmax

⎛⎝ 1
η2

q2∑
i=q1+1

q3∑
j=q2+1

i + j
2

G(i, j)

⎞⎠ ;

n = argmax

⎛⎝ 1
ηn

qn−1∑
i=qn−2+1

qn∑
j=qn−1+1

i + j
2

G(i, j)

⎞⎠ ,

where η1 =

q1∑
i=0

q2∑
j=q1+1

G(i, j);

η2 =

q2∑
i=q1+1

q3∑
j=q2+1

G(i, j);

ηn =

qn−1∑ qn∑
G(i, j).
i=qn−2+1 j=qn−1+1
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Fig. 7. Multilevel thresholded outputs of 143090 image for level M = 2, 3, 4, and 5, images (a)–(d) using KET on DCC, (e)–(h) using KET on RGB components, (i)–(l)
sing EMBT on DCC, (m)–(p) using EMBT on RGB components.
−

l

he variable η signifies the count of pixel pairs in the GLCM
whose magnitude is ≥ q. The variable G represents the overall
LCM obtained from the average of all GLCMs. The proper choice
f q is vital for the thresholding results. The thresholds obtained
re optimum when the objective function given in Eq. (3) is
aximized [11].

EMBT [T1, T2, . . . , Tn] = argmax {f (q1, q2, . . . , qn)} (3)

.3. Whale optimization algorithm (WOA)

The WOA suggested in [21] is a nature-inspired optimization
rocedure. It is a relatively new technique that imitates the
umpback whales chasing strategy. To hunt, the whales make
piral bubbles, then follow the trajectory to reach the prey. The
hales can identify the position of the target and enclose them.
here are two phases of the optimization process: (i) exploitation
hase includes encircling the prey and bubble net attacking and
ii) exploration phase includes a random search for the target.

In the first phase (exploitation stage), the whales find the cur-
ent best position as the target (global optimum) and change their
ocations towards the target using the given equations below.
→
D =

⏐⏐⏐−→C ·
−→
X (t)−

−→
X (t)

⏐⏐⏐ (4)
b

7

→
X (t + 1) =

−→
Xb (t) −

−→
A ·

−→
D (5)

where the variable t indicates the current iteration, the parame-
ters

−→
A and

−→
C are the coefficient vectors, the variable

−→
Xb is the

ocation vector of the best solution found so far, | · | denotes the
absolute value operation, ‘·’ denotes element-by-element mul-
tiplication, and the variable

−→
X is the location vector of the

whale [21]. It is to be noted that
−→
Xb needs to be updated in each

iteration if a better solution is reached. The parameters
−→
A and

−→
C are computed as follows:
−→
A = 2−→a ·

−→r 1 −
−→a (6)

−→
C = 2−→·r2 (7)

where values of −→a linearly decreases from two to zero through-
out the iterations (in both exploitation and exploration stages).
The variables r1, r2 signify random vectors within [0, 1]. The
parameters

−→
A and

−→
C signify the distance between the opti-

mal location and the updated location. In the bubble net attack
method, the whales attack their target utilizing the bubble net
strategy. This behavior is mathematically represented as:
−→
D′

=

⏐⏐⏐−→X (t)−
−→
X (t)

⏐⏐⏐ (8)
b
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Fig. 8. Multilevel thresholded outputs of 65033 image for level M = 2, 3, 4, and 5, images (a)–(d) using KET on DCC, (e)–(h) using KET on RGB components, (i)–(l)
using EMBT on DCC, (m)–(p) using EMBT on RGB components.
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−→
X (t + 1) =

−→
D′

· epl · cos (2π l)+
−→
Xb (t) (9)

here
−→
D′ indicates the location of the current whale location

from the target. The variable p is a constant. The variable l
ignifies a random quantity in the range [−1, 1]. It is worth
oting that, as the whales capture their prey, the encircling prey
tep and the bubble net attacking step is performed with a 50
ercent likelihood. Hence, the location of the search agents in the
xploitation phase is updated utilizing the given equation below.

→
X (t + 1) =

{ −→
Xb (t) −

−→
A ·

−→
D prob < 0.5

−→
D′

· epl · cos (2π l)+
−→
Xb (t) prob ≥ 0.5

(10)

here ‘prob’ is a random variable in the range [0, 1].
In the second phase (exploration stage), a global search to

improve the exploration capability is built. The whales hunt for
the target randomly. The location of the search agents is updated
as per a randomly selected agent. The equation for the random
search is:
−→
D = |

−→
C ·

−→
X rand −

−→
X | (11)

→
X (t + 1) =

−→
X rand −

−→
A ·

−→
D (12)
8

where
−→
X rand denotes a random location vector. Further, it is to

e noted that to update the location, the coefficient vector |
−→
A |

> 1 or |
−→
A | < −1 is used to select either the exploration or the

xploitation phase.

. Proposed methodology

In this work, a novel method to enhance the computational
fficiency and produce high quality segmented images using the
CC based optimal multilevel thresholding and AWOA is sug-
ested. Kapur’s entropy and edge magnitude are utilized as the
itness functions to find the optimal thresholds. Only the dom-
nant component of the color image is thresholded without the
eed to threshold the remaining two color components.

.1. Adaptive whale optimization algorithm (AWOA)

It is worth noting here that WOA quickly transitions between
he phases of exploration and exploitation, based on a single
arameter. While WOA is good compared to some conventional
ptimization algorithms mentioned above, it still has some draw-
acks in solving global optimization problems like low precision
nd early convergence. This section suggests an adaptive WOA
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using EMBT on DCC, (m)–(p) using EMBT on RGB components.
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(AWOA) inspired by Lévy flight and self-adaptive coefficient vec-
tors for global optimization problems. Owing to the frequent
search stage for short distances and sometimes the search stage
for longer distances, the Lévy flight enables WOA to hop out
of the local optima. Further, the self-adaptive coefficient vectors
increase the precision of the solution by improving its exploitabil-
ity. The following segment explains the adaptive WOA with a
stronger trade-off between exploitation and exploration.

It is presented in the literature that most of the optimization
techniques converge early towards local optima because of the
quick decline of diversity. This behavior is also seen in WOA.
Many authors have used the Lévy flight feature [40–42] to ac-
celerate the convergence speed. Therefore, Lévy flight is utilized
here also to enhance the convergence [43]. The authors in [43]
presented the Lévy distribution as:

L(λ) ∼ |λ|−1−β , 0 < β ≤ 2 (13)

Here, β denotes an index, the parameter λ signifies the step
size of the Lévy distribution. It is seen from the literature that
Mantegna’s algorithm is used to compute the value of λ. Because
f the infinite variation of the Lévy distribution, the Lévy flight
onducts the long-distance movement periodically to encourage
he exploration capability, while the short-distance movement
s performed to improve the exploitation capability. In AWOA,
 r

9

the shrinking encircling process is substituted by Lévy flight for
more effective exploration. The new location is revised as per the
amendment below.
−→
X (t + 1) =

−→
Xb (t) + sign(r − 0.5) ⊕ Levy (14)

where

Levy = rand(size(D)) ⊕ L(β) ∼ 0.01µ/|v|1/β (
−→
Xi (t)−

−→
Xb (t)).

ere, size (D) indicates the scale of the problem, ⊕ indicates
ointwise multiplication, Xi denotes the ith solution vector, t rep-
esents the current iteration, sign (·) represents the sign function
aving three values only [−1, 0, 1] resulting in a more random
earch, r indicates a random number within [0, 1]. The rest of the
ariables carry the same meaning as defined in [44]. Now Eq. (10)
s redefined as follows in AWOA.

→
X (t + 1) =

{−→
Xb (t) + sign(r − 0.5) ⊕ Levy prob < 0.5
−→
D′

· epl · cos (2π l)+
−→
Xb (t) prob ≥ 0.5

(15)

It is observed that the authors in WOA have varied the value
f
−→
A for achieving exploration and exploitation. As stated above,

−→
A | > 1 takes the algorithm to search space and |

−→
A | < 1

akes it for attacking the target. Note that the parameter −→a is
−→
educed from two to zero to vary | A |. But this cannot adjust
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Fig. 10. Multilevel thresholded outputs of 176019 image for level M = 2, 3, 4, and 5, images (a)–(d) using KET on DCC, (e)–(h) using KET on RGB components,
(i)–(l) using EMBT on DCC, (m)–(p) using EMBT on RGB components.
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to a complicated and non-linear search process. The proposed
AWOA includes features with less parameter dependency. The
value of the control parameter −→a and the coefficient vector

−→
C

is changed adaptively according to the objective function value
over the course of an iteration. So adaptive technique requires
less execution time to reach an optimum solution resulting in
faster convergence. Here the parameters −→a in Eq. (6) and

−→
C in

Eq. (7) are computed as:

−→a =
fmax − fmin

fmax + fmin
×

−→r1
t

(16)

→
C =

fmax − fmin

fmax + fmin
×

−→r2
t

(17)

here fmax is the maximum fitness value and fmin is the minimum
itness value of the search agents. The parameter t signifies the
ecent iteration number. In this context, during the early stages
hen t is small, a large range of search space can be explored
hereas a smaller range will be explored at a later stage when t

s large. Note that AWOA inherits all other features from WOA.
The parts of WOA which have changed are (i) A Lévy-flight

trategy for aiding the algorithm leap out of the local optima is
dopted [43,44], (ii) A self-adaptive strategy based on the fitness
10
unction value is proposed for updating the coefficient vectors to
nrich the exploration and exploitation capabilities.

.2. Proposed dominant color component (DCC) model

There are many ways of finding the dominant color in a color
mage [45]. All the pixels of individual color components (RGB)
re counted. Then the index of the maximum count correspond-
ng to a particular color gives the dominant color. An alternative
ay is to compute the average intensity values of each of the
olor components of the input image. The highest average value
mong them is considered as the dominant color. In this paper,
he latter approach is used to determine the dominant color.

To justify our claim that the suggested technique is better
han the RGB based approaches, a novel segmentation score is
ntroduced. Let I ∈ ℜ

N be a multimodal input image with N
ixels, having intensity values from 0 to 255, to be segmented.
et us compute the optimal threshold values of the segmenta-
ion process that, when applied to I , maximize the optimization
criteria with respect to the other areas (regions). Let us consider
bi-level thresholding of the input image I as S ∈ {0, 1}N using
Otsu’s optimization criteria. The optimal threshold T obtained
from Otsu’s criteria is used to divide the image I into two classes.

Class 0 contains the pixels from 0 to T, Class 1 contains the pixels



S. Agrawal, R. Panda, P. Choudhury et al. Knowledge-Based Systems 240 (2022) 108172

T
t

E

Fig. 11. Multilevel thresholded outputs of 300091 image for level M = 2, 3, 4, and 5, images (a)–(d) using KET on DCC, (e)–(h) using KET on RGB components,
(i)–(l) using EMBT on DCC, (m)–(p) using EMBT on RGB components.
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from T + 1 to 255. Note that Sk decides whether the kth pixel
belongs to class 0 or 1. The sum of the squared error for the
segmented image S is given as:

J =

∑
Sk=0

(Ik − µ0)2 +

∑
Sk=1

(Ik − µ1)2 (18)

where Ik denotes the intensity of the kth pixel in class 0 or 1,
µ0 =

∑
Sk=0

Ik
nS
, µ1 =

∑
Sk=1

Ik
(N−nS )

represents the mean values

of class 0 and 1 respectively, and nS represents the number of
pixels in class 0. Thus, the segmentation error is given as:

E = ∥I∥2
2
−

1
nS

(
∑
Sk=0

Ik)2 −
1

N − nS
(
∑
Sk=1

Ik)2 (19)

o further simplify Eq. (19), we assume the second and the third
erm to be equal, then it can be represented as:

= ∥I∥2
2
−

N
nS(N − nS)

(
∑
Sk=0

Ik)2 (20)

The error in segmentation in Eq. (20) can be minimized by max-
imizing the second term. Now we define the segmentation score
11
as:

ψI,T = max
S∈{0,1}N

N
nS(N − nS)

(
∑

Ik) (21)

t is essential to note here that the segmentation score is de-
ermined by the threshold value. Interestingly, the segmentation
core is more for the dominant color component based segmen-
ation as compared to the RGB components based segmenta-
ion methods. Simple computations, for example standard color
mage, are shown below.

Image 35049 Dominant color Segmentation score
DCC based RGB based

GREEN 667.2330 362.4446

The image 35049 is taken here for demonstration. The domi-
nant color is green. The segmentation score for the DCC based
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Fig. 12. Multilevel thresholded outputs of 92059 image for level M = 2, 3, 4, and 5, images (a)–(d) using KET on DCC, (e)–(h) using KET on RGB components, (i)–(l)
using EMBT on DCC, (m)–(p) using EMBT on RGB components.

Fig. 13. Multilevel thresholded outputs of a9 (TEST4) image for level M = 3, 5, 8, and 12, images (a)–(d) using Kapur’s entropy in Ref. [2], (e)–(h) using proposed
method.

12
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Fig. 14. Multilevel thresholded outputs of flower image for level M = 2, 3, 4, and 5, images (a)–(d) using Kapur’s entropy in Ref. [3], (e)–(h) using proposed method.
Fig. 15. Convergence curves for DCC with KET for different threshold levels. (a) M = 2, (b) M = 3, (c) M = 4, (d) M = 5.
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pproach is found to be 667.2330, whereas it is 362.4446 for the
GB based approach. Note that the segmentation score for the
GB based approach is computed by averaging the scores of all
he three components R, G, B individually. These values implicit
he expected research outcomes.

.3. The suggested multilevel thresholding technique

The suggested multilevel thresholding process is investigated
o get the optimal thresholds for color image segmentation. The
echnique uses the objective functions defined in Eqs. (2) and (3).
he objective functions are maximized using the proposed AWOA.
onventionally, the optimal thresholds are searched for each
omponent. However, the proposed method extracts only the
ominant component. The optimal thresholds are searched for
his component only. The flow diagram of the suggested method
13
s presented in Fig. 1. It is interesting to note that the computa-
ional complexity of the suggested method is reduced from the
omplexity of O(3L2M ) to O(L2M ) for M-level thresholding.
The pseudo-code for the proposed procedure is shown below:

. Results and discussions

Segmentation of images or thresholding of a digital image can
e subjective. To claim that one approach provides a better image
f quality may vary from person to person. For this purpose,
uantitative/empirical measures must be developed to compare
he effects of image segmentation algorithms on image quality.
tilizing the same set of test images, various image segmentation
lgorithms can be systematically compared to determine whether
given algorithm is producing better results. If we can prove that
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a degraded known image can be improved by an algorithm or
group of algorithms to closely resemble the original image, then
we can conclude more confidently that it is a better method. Here,
four performance metrics: peak signal to noise ratio (PSNR) [45],
root mean square error (RMSE) [45], structured similarity index
(SSIM) [46] and feature similarity index (FSIM) [47] are used for
a comparison. A detailed discussion on these metrics is provided
in Appendix A.
14
4.1. Experimental setup

4.1.1. Test images
Two groups of images are used for the experiment as shown in

Fig. 2. The first group contains ten standard test color images in
Fig. 2(a–j) from publicly available Berkeley Segmentation Dataset,
BSDS500 [38]. All the images used are true color RGB of dimen-
sion 256 × 256. The second group contains one image in Fig. 2(k)
taken from Ref. [2] having high threshold levels for comparison.
The experiments are conducted using an Intel core i-7 processor
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Table 1
Parameters for AWOA.
Parameter Value

Number of Search agents 30
Number of Iterations 30
Lower bound 1
Upper bound 255

having 4 GB RAM, running under Windows 10 OS. The algorithms
are developed using MATLAB.

The choice of parameters is crucial. The parameters chosen
or AWOA from a pre-simulation study are presented in Table 1.
ach input image is processed utilizing an individual algorithm
0 times for checking stability.

.1.2. Experiment 1: Comparison with the existing approaches
In this experiment, the results are obtained utilizing DCC-

WOA with one entropic objective function i.e. Kapur’s entropy
hresholding (KET) and one non-entropic objective function i.e.
dge magnitude based thresholding (EMBT). The suggested tech-
ique is compared with our implementations of the existing
pproaches of all the methods, where the thresholding is ap-
lied to all three components of the color image separately.
our threshold levels are considered as M = 2, 3, 4, 5. The
ptimal thresholds for the dominant component as well as each
f the three color components R, G, B are found and displayed
n Appendix B in Tables B.1 and B.2. The performance metrics
MSE, PSNR, SSIM and FSIM are calculated and shown in Tables 2
nd 3. Note that the metrics computed in the case of RGB based
pproach are the average values of the three color components.
he thresholded images forM = 2, 3, 4, 5 are shown in Figs. 3–12.

The running time for DCC and RGB approaches is given in Table 4.
Note that the bold numbers indicate the best in class results.

4.1.3. Experiment 2: Comparison with the method used in Ref. [2]
To further strengthen the claim, comparison with a recently

published work in Ref. [2] on color image thresholding is done.
In fact, the authors in [2] used Masi entropy based fitness func-
tion for color satellite image thresholding. They compared their
method with other entropy-based techniques such as Kapur’s,
Tsallis and Renyi’s entropy. Besides satellite images, they also
tested their method with various color images. This approach
is chosen because higher threshold levels (M = 3, 5, 8, 12) are
onsidered in their experiment. The results utilizing the Kapur’s
ntropy as the fitness function only are considered here for com-
arison. For the sake of consistency, the parameter setting is
erived from the original article. The a9 (TEST4) image in [2]
s considered for comparison. The authors have computed the
esults using each of the three color components separately. The
SNR, SSIM, FSIM and Entropy values for different threshold levels
re given in Table 5. The corresponding thresholded images are
hown in Fig. 13. Note that the dominant color, in this case, is
reen.

.2. Experimental results

.2.1. Quantitative analysis
A detailed discussion on the quantitative results, displayed

n the tables is provided here. From Tables B.1 and B.2, it is
een that the DCC based optimal threshold values are close to
hat obtained for the RGB based separately. The reason may be
ue to the inherent randomness of the optimization techniques
sed. These values are displayed because the performance of a
ultilevel thresholding procedure solely depends on the choice of
ptimal threshold values. The color images are thresholded using
hese values only.
15
In Table B.1, for the Lena image, the dominant color is red.
The optimum thresholds obtained for the red component only
for level 2 are 60 and 170. Now the red component of the Lena
image is thresholded without thresholding the other two blue
and green components. Finally, they are combined to get the
output image. This approach does not disturb the original blue
and green components of the input image thereby producing
excellent output images. A similar process is followed for all the
other threshold levels. To test the robustness of the suggested
technique, different images with different dominant colors are
used in this experiment. This is reflected in Tables B.1 and B.2.
One can also visualize from the test images selected for the ex-
periment that the dominant colors obtained (shown in Tables B.1
and B.2) are correct.

PSNR, RMSE, SSIM and FSIM values are compared and shown
for different original and segmented images in Tables 2 and 3.
These tables reflect the values obtained using the DCC based
thresholded images and the traditional approach based on the
RGB components. Note that the performance metric values are
computed for each of the R, G, B components individually and the
average value is displayed in Tables 2 and 3. It is noticeable from
the tables that the RMSE and PSNR values obtained using DCC
based approach with both Kapur’s entropy and edge magnitude,
have shown remarkable differences as compared to the RGB
approach. From a close observation, it is evident that the im-
provement in PSNR values is quite encouraging while considering
the proposed method. To be precise, an improvement of about
36%–38% is obtained. This highlights the usage of our proposed
method. The reason behind this improvement is the color infor-
mation retaining capability of the method, which is one of the
main aims of this study. The introduction of adaptive coefficient
vectors and Levy flight approaches in the proposed AWOA further
help us to improve the selection of optimal solutions. Because
the exploitation and the exploration capabilities are improved. A
similar trend is perceived in the case of SSIM and FSIM values. It
is observed from Tables 2 and 3 that an improvement of about
11%–12% is achieved in both cases. It also indicates that more
color information is retained in the thresholded images.

In a nutshell, it is claimed that the DCC based approach using
AWOA either with Kapur’s entropy or with the edge magnitude
produces better results compared to the conventional RGB based
approaches. Therefore, the performance of the suggested method
is found encouraging, irrespective of the colors, in all the cases.
The quality further improves with an increase in the threshold
level. This depicts the suitability of our approach to color image
segmentation. Hence, we can claim that the DCC method is a
better substitute for color image segmentation.

The results showing the running time in Table 4 indicate that
the DCC based approach is faster than the conventional RGB based
approach. It is seen that about a 12% reduction in computation
time is achieved in the case of Lena image with Kapur’s entropy
at a threshold level M = 2. In the same way, about 30% reduction
is achieved with edge magnitude. A similar trend is also observed
while considering the case at the threshold level M = 5. In some
other cases, for instance, the image 176019 could be processed
with a noteworthy reduction in the computation time which is
about 32% with the Kapur’s entropy while 45% with the edge
magnitude. An observation of the data in Table 4 indicates that
the computation time increases proportionately with the increase
in the threshold levels as expected.

Table 5 depicts the comparison of PSNR, SSIM, FSIM and en-
tropy values for the proposed method and the method used in [2].
Note that the authors in [2] have used all the three primary color
components for thresholding. This comparison is done because
the method in [2] uses high threshold levels M = 3 to 12 using
Kapur’s entropy. Hence, we have considered our results of Kapur’s
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Table 2
Comparison of performance parameters obtained utilizing Kapur’s entropy thresholding.
Image M DCC RGB

RMSE PSNR SSIM FSIM RMSE PSNR SSIM FSIM

Lena 2 R 16.7638 23.3687 0.9612 0.9856 36.1525 16.8293 0.8736 0.7930
3 13.2264 26.5467 0.9779 0.9866 28.8715 18.2114 0.9322 0.7991
4 11.1702 28.0767 0.9882 0.9870 22.9992 20.1892 0.9533 0.8417
5 10.5706 29.8925 0.9933 0.9912 19.9484 21.6075 0.9718 0.8882

35049 2 G 22.4533 20.4557 0.8235 0.9158 50.1777 14.2963 0.7118 0.8006
3 21.3376 23.5340 0.8490 0.9200 39.0308 17.2440 0.7562 0.8305
4 20.0105 25.4169 0.9379 0.9272 26.7446 19.8338 0.8655 0.8727
5 10.6692 26.6183 0.9544 0.9300 24.7217 20.8690 0.8933 0.8820

126007 2 B 22.2839 21.1710 0.9063 0.9807 38.1471 16.4743 0.8533 0.7620
3 17.7577 23.1630 0.9439 0.9936 33.1753 17.3348 0.8927 0.7748
4 13.3413 25.4408 0.9694 0.9943 30.6438 19.6931 0.9236 0.8218
5 12.8527 26.1260 0.9697 0.9955 23.4760 20.3625 0.9492 0.8506

124084 2 R 31.4896 18.0840 0.8705 0.9303 47.9009 14.4413 0.7807 0.7131
3 20.8428 21.8296 0.9404 0.9508 44.3982 15.5072 0.8393 0.7312
4 16.4089 24.1902 0.9630 0.9576 31.1302 17.4465 0.8819 0.8198
5 15.0505 24.6572 0.9680 0.9651 28.6970 20.3852 0.9261 0.8535

143090 2 B 19.8641 22.1704 0.9443 0.9956 37.9434 16.5270 0.9234 0.7458
3 21.5176 20.8365 0.9428 0.9921 33.3886 17.3163 0.9225 0.8037
4 14.7685 24.5755 0.9720 0.9929 27.0020 18.1641 0.9330 0.8163
5 11.8618 26.1880 0.9798 0.9949 25.1655 20.7353 0.9587 0.8375

65033 2 G 29.3244 18.7882 0.9234 0.8283 49.1610 14.3402 0.7794 0.7522
3 19.6850 22.2156 0.9342 0.8852 37.4673 16.4976 0.8639 0.7924
4 15.0480 24.3589 0.9605 0.9223 29.8252 18.6687 0.9014 0.8468
5 11.9769 26.5149 0.9734 0.9431 22.9187 21.0586 0.9352 0.9000

12084 2 R 30.3815 20.1052 0.8712 0.9420 44.2188 14.5918 0.8041 0.7148
3 21.9141 21.2551 0.9074 0.9622 34.3875 17.2810 0.8881 0.8188
4 17.9143 23.2359 0.9396 0.9733 28.0119 19.0734 0.9045 0.8869
5 13.9637 25.1278 0.9593 0.9824 24.9017 20.4509 0.9376 0.9103

176019 2 G 24.6535 20.3881 0.8837 0.8669 44.2448 15.1062 0.7745 0.7226
3 19.5672 21.7387 0.9273 0.8975 35.2576 17.4291 0.8642 0.8049
4 15.8436 23.1981 0.9541 0.9238 27.4277 19.5917 0.9075 0.8530
5 13.5007 24.9262 0.9652 0.9421 22.8808 21.3464 0.9439 0.9069

30091 2 B 27.7027 19.4419 0.8794 0.9878 56.2050 13.3573 0.8207 0.7582
3 25.1903 20.2147 0.8980 0.9893 37.0486 16.9302 0.8771 0.7764
4 17.4741 23.9750 0.9554 0.9920 29.5158 18.9646 0.9159 0.7933
5 14.8680 24.6858 0.9664 0.9944 24.3004 20.3578 0.9431 0.8168

92059 2 G 26.1177 19.3464 0.8752 0.8931 36.6647 13.3245 0.6633 0.8525
3 20.8088 20.7563 0.8943 0.9432 30.0886 15.2345 0.8518 0.8734
4 16.6766 23.3542 0.9592 0.9891 26.0467 18.3435 0.8688 0.8843
5 11.4326 25.4563 0.9606 0.9921 22.8809 20.5321 0.8836 0.8892
entropy for a comparison. It is witnessed that most of the per-
formance metric values are best for the proposed method. Even
the PSNR value with our approach is better than that obtained at
threshold level 12. In fact, the rest of the PSNR values are close.
The entropy value obtained is much higher. In summary, the use
of the suggested method is implicit.

Table 6 depicts the comparison of PSNR, SSIM, FSIM and en-
ropy values for the proposed method and the method used in [3].
ote that the authors in [3] have used all the three primary
olor components RGB for thresholding. It is observed that all the
erformance metric values are best for the proposed method.
For statistical analysis, the t-test is conducted at a significance

evel of 0.05. The t-test considered the outcomes of finding the
ptimal thresholds on all the images used in the experiment as
er all the threshold levels. The number of comparisons is as per
0 variables (n×v×m = 10 × 4×2; n = 10; v = 4; m = 2, where

n signifies the number of images in the experiment, v denotes the
number of performance metrics (RMSE, PSNR, SSIM, FSIM) used
and m denotes the number of methods (KET, EMBT) used). The
null hypothesis presumes no substantial variation between the
two approaches. The alternate hypothesis presumes a significant
16
variation between the two approaches. The outcomes of the t-
test are displayed in Table 7 where the suggested DCC approach
clearly outperforms the RGB approach in all the cases.

4.2.2. Qualitative analysis
The results of thresholding on the test images are shown in

Figs. 3–13. A detailed discussion on the visual results is provided
here for qualitative analysis. In this experiment, images with
different dominant colors are chosen deliberately for a fair and
comprehensive study. The experiment covers all aspects of color
image processing. These test images are considered in most of
the color image segmentation experiments to validate different
methods. The suggested method is implemented successfully us-
ing these images producing encouraging results. The results are
provided for comparing the suggested method with RGB based
approach. It is wise to reiterate that the images are obtained using
the two different objective functions. The suggested DCC-AWOA
is used to compute the optimum thresholds at four different
levels M = 2, 3, 4, 5.

The Lena image in Fig. 2(a) has red color as the dominant
component. The corresponding thresholded results are displayed
in Fig. 3. The thresholded outputs using the suggested method
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Table 3
Comparison of performance parameters obtained utilizing edge magnitude based thresholding.
Image M DCC RGB

RMSE PSNR SSIM FSIM RMSE PSNR SSIM FSIM

Lena 2 R 21.4295 21.5818 0.9499 0.9673 39.9962 15.9083 0.8732 0.8436
3 20.8959 22.0867 0.9620 0.9688 35.5232 16.2917 0.8817 0.8580
4 18.5809 22.3739 0.9630 0.9693 35.6693 17.4921 0.8627 0.8330
5 15.5792 23.7085 0.9454 0.9677 34.0191 18.5774 0.9109 0.8453

35049 2 G 41.8306 19.2599 0.9343 0.9059 49.7534 13.7059 0.8657 0.8497
3 32.4962 23.4874 0.9351 0.9190 40.5771 14.9231 0.8406 0.8670
4 25.6819 24.9716 0.9362 0.9203 35.2307 16.8002 0.8457 0.8617
5 25.1279 26.5283 0.9382 0.9227 26.9394 19.2211 0.8575 0.8763

126007 2 B 28.0294 20.1534 0.9053 0.9819 39.0346 14.0165 0.8451 0.8840
3 27.6725 22.5473 0.9215 0.9899 35.5978 14.8867 0.8879 0.8576
4 26.7315 23.5603 0.9409 0.9887 28.7259 16.1805 0.8746 0.8955
5 19.3974 24.8578 0.9691 0.9937 24.6150 17.3549 0.8913 0.8931

124084 2 R 37.3028 17.2623 0.8211 0.9203 42.9814 11.6205 0.6734 0.7182
3 30.2130 18.8589 0.8427 0.9330 34.0573 13.3967 0.7439 0.7349
4 28.5017 20.7084 0.8985 0.9435 30.0541 15.2898 0.7989 0.7561
5 27.6570 22.3806 0.9567 0.9480 29.9304 16.0772 0.8270 0.7707

143090 2 B 30.4731 17.6203 0.8750 0.9899 41.2662 15.9119 0.7516 0.7848
3 29.1191 17.9854 0.9176 0.9860 39.5095 17.7167 0.7664 0.7901
4 27.3914 19.2983 0.9421 0.9897 36.3373 18.5166 0.7706 0.8405
5 25.2094 20.4368 0.9444 0.9913 35.2250 19.0178 0.8271 0.8453

65033 2 G 31.7348 16.9828 0.9176 0.8167 47.1339 14.7402 0.8376 0.7348
3 26.8410 19.2402 0.9256 0.8401 36.9892 17.2532 0.8678 0.7857
4 24.2046 20.0492 0.9387 0.8637 34.0191 18.7896 0.8926 0.8029
5 20.4460 22.7303 0.9574 0.8879 28.3161 20.1183 0.9051 0.8503

12084 2 R 34.2754 16.3548 0.7661 0.9521 28.0666 14.7100 0.7620 0.6348
3 26.8574 17.7985 0.8321 0.9569 38.0841 15.6370 0.7947 0.7168
4 25.9571 18.9951 0.8789 0.9678 28.5556 16.0323 0.8331 0.7624
5 24.7147 20.0058 0.8858 0.9746 28.1976 18.1970 0.8491 0.8089

176019 2 G 34.0279 17.8556 0.9056 0.8450 40.5561 14.1392 0.7436 0.7806
3 21.9860 21.3662 0.9184 0.8678 33.9175 15.9059 0.8137 0.8033
4 21.3806 22.3292 0.9249 0.8863 30.5682 17.6146 0.8661 0.8367
5 20.0047 22.9536 0.9256 0.8989 29.3551 18.9461 0.8948 0.8511

30091 2 B 31.4551 17.4362 0.8252 0.9834 59.4794 12.5624 0.7840 0.7541
3 27.2646 19.6422 0.8574 0.9867 48.4128 13.8763 0.8275 0.7643
4 25.9858 22.4754 0.9078 0.9894 39.3294 16.7435 0.8427 0.7843
5 13.3595 22.9566 0.9573 0.9906 30.5412 19.3756 0.8516 0.7989

92059 2 G 20.4384 24.7516 0.9257 0.9065 23.5121 12.9050 0.8226 0.7730
3 27.0358 22.9334 0.8935 0.8656 30.5339 14.2153 0.8352 0.7934
4 24.2988 23.5343 0.9264 0.8934 27.2441 16.3215 0.8670 0.8132
5 23.3131 24.2658 0.9499 0.9242 25.7806 18.5257 0.8814 0.8422
with KET at M = 2, 3, 4, 5 are displayed in Fig. 3(a–d). The
mages in Fig. 3(e–h) represent the thresholded outputs obtained
sing the RGB approach with Kapur’s entropy (the same fitness
unction). Note that the thresholded outputs using the suggested
ethod with EMBT at M = 2, 3, 4, 5 are also displayed in
ig. 3(i–l). The images in Fig. 3(m–p) represent the thresholded
mages got using the RGB approach with edge magnitude (the
ame objective function). It is visible from the figures that the
uality of images obtained with the suggested technique is better
han the images obtained with the conventional approaches. The
eason is that the proposed approach optimally thresholds the
ed color component only. It may be noted that the traditional
pproach (RGB based) measurably fails to show the original color
nformation.

Further, while thresholding using the suggested scheme, it
s seen that the red color of the original image is maintained
hroughout the levels of thresholding from M = 2 to M = 5.
n this context, the output obtained with the RGB based model
ails to retain the color information, because all the three pri-
ary color components are thresholded individually. Then they
re combined to get the thresholded image. This results in the
ntroduction of new colors in the output image as seen in Fig. 3(e–
). More specifically, artifacts are introduced on the face and hat
17
portions of the images. A similar trend is observed in all the
other figures. The original blue color is retained throughout, for
instance, in Fig. 5. The edges are also nicely visible.

The images in Fig. 13 show the superiority of our approach
over the method used in [2]. Note that the dominant green color
is retained throughout in Fig. 13(e–h). But a greenish and black
artifact is introduced in the water portion in Fig. 13(a–d). The
reason being all the three color components are thresholded in-
dividually and then combined to get the final thresholded image
in [2]. In summary, we can conclude that the suggested technique
yields notably better performance as compared to the traditional
methods using the RGB approach. It means, realistically, one
would be ready for the practical implementations.

The images in Fig. 14 compares our approach over the method
used in [3]. Note that the dominant red color is retained
throughout in our method.

Keeping a method constant, AWOA is faster than the WOA,
because the adaptive behavior of the proposed AWOA reduces the
computation time. The coefficient vectors in WOA are made adap-
tive and the introduction of Levy flight improves the exploitation
leading to a faster convergence. To justify this result, the con-
vergence curves are presented in Fig. 15 for all the threshold
levels M = 2, 3, 4, 5 with Kapur’s entropy as the cost function.
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Table 4
Comparison of running time (in secs) utilizing the proposed DCC-AWOA method.
Image M Kapur’s entropy thresholding Edge magnitude based thresholding

DCC RGB DCC RGB

Lena 2 R 1.7315 2.5843 R 2.1795 3.1135
3 1.7704 2.6036 2.1924 3.1320
4 1.7866 2.6126 2.2075 3.1535
5 1.7943 2.6183 2.2345 3.1922

35049 2 G 1.7333 2.5831 G 2.0909 2.9870
3 1.7631 2.5967 2.1032 3.0045
4 1.7781 2.6070 2.1118 3.0168
5 1.8052 2.6163 2.1331 3.0473

126007 2 B 1.7627 2.5692 B 2.1638 3.0911
3 1.7779 2.5902 2.2132 3.1617
4 1.7903 2.6033 2.2287 3.1838
5 1.8020 2.6271 2.3675 3.3822

124084 2 R 1.6563 2.4617 R 2.5346 3.6208
3 1.6965 2.4750 2.6279 3.7541
4 1.7090 2.5197 2.6384 3.7691
5 1.7414 2.5566 2.7236 3.8908

143090 2 B 1.6492 2.4615 B 2.5161 3.5944
3 1.6840 2.4765 2.5303 3.6147
4 1.6979 2.5192 2.5796 3.6851
5 1.7062 2.5466 2.5984 3.7120

65033 2 G 1.6490 2.4612 G 2.4142 3.4489
3 1.7075 2.4746 2.4601 3.5144
4 1.7131 2.5193 2.4944 3.5634
5 1.7243 2.5357 2.5119 3.5884

12084 2 R 1.6155 2.4113 R 2.5756 3.6794
3 1.7025 2.4675 2.6177 3.7396
4 1.7293 2.5062 2.6758 3.8226
5 1.7349 2.5367 2.7411 3.9159

176019 2 G 1.6783 2.4612 G 2.4000 3.4285
3 1.6830 2.4750 2.4425 3.4893
4 1.7079 2.5193 2.4623 3.5176
5 1.7375 2.5552 2.5196 3.5994

30091 2 B 1.7387 2.5488 B 2.3498 3.3568
3 1.7618 2.5679 2.3631 3.3758
4 1.7758 2.5967 2.3755 3.3936
5 1.7856 2.6168 2.4351 3.4787

92059 2 G 1.7242 2.5568 G 1.9937 2.8482
3 1.7341 2.5732 1.9982 2.8545
4 1.7567 2.5921 2.0057 2.8653
5 1.7918 2.6547 2.1795 2.8753
Table 5
Comparison of the proposed method with results from Ref. [2].
Image DCC M Proposed method using KET Ref. [2]

PSNR SSIM FSIM Entropy PSNR SSIM FSIM Entropy

a9 (TEST4) G 3 33.4646 0.9626 0.8887 15.6303 33.6538 0.6496 0.7776 3.2361
5 32.8774 0.9865 0.9235 21.2682 33.0153 0.6791 0.8045 4.0360
8 29.7196 0.9913 0.9590 28.2247 30.0213 0.8676 0.9115 5.0758
12 32.1279 0.9950 0.9794 36.9869 28.8919 0.8901 0.9218 5.9003
Table 6
Comparison of the proposed method with results from Ref. [3].
Image DCC M Proposed method using KET Ref. [3]

PSNR SSIM FSIM RMSE PSNR SSIM FSIM RMSE

Flower R 2 18.0840 0.8705 0.9303 31.4896 13.2048 0.5105 0.7122 55.7568
3 21.8296 0.9404 0.9508 20.8428 16.5358 0.6989 0.7489 37.9971
4 24.1902 0.9630 0.9576 16.4089 19.0378 0.7799 0.8166 28.4874
5 24.6572 0.9680 0.9651 15.0505 20.4588 0.7607 0.8336 24.1879
It is observed that AWOA converges faster than WOA in all the
cases due to the introduction of Levy flight and adaptive coeffi-
cient vectors. Note that the results are given for the DCC based
approach only. This behavior is seen across all the test images.
Hence, the results are shown for one image (Lena) only for the
18
sake of completion and to avoid repetition. It is noteworthy to
mention here that the convergence curves show the objective
function values vs number of iterations, does not depend upon
the input image. The characteristics of the curves do not change
(excepting the objective function values) even if we change the
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Table 7
Statistical analysis for all the images using KET and EMBT compared to DCC.
Image t-test statistical analysis

KET EMBT

RMSE PSNR SSIM FSIM RMSE PSNR SSIM FSIM

p h p h p h p h p h p h p h p h

Lena 0.0077 1 0.0003 1 0.0450 1 0.0049 1 0.0003 1 0.0001 1 0.0133 1 0.0002 1
35049 0.0322 1 ≪0.05 1 0.0048 1 0.0164 1 0.0283 1 0.0016 1 0.0007 1 0.0003 1
126007 0.0020 1 0.0003 1 0.0109 1 0.0019 1 0.0424 1 0.0003 1 0.0079 1 0.0013 1
124084 0.0046 1 0.0062 1 0.0088 1 0.0084 1 0.0356 1 0.0001 1 0.0022 1 0.0001 1
143090 0.0024 1 0.0034 1 0.0115 1 0.0023 1 0.0001 1 0.0481 1 0.0015 1 0.0015 1
65033 0.0038 1 0.0004 1 0.0429 1 0.0062 1 0.0068 1 0.0058 1 0.0041 1 0.0077 1
12084 0.0007 1 0.0009 1 0.0473 1 0.0329 1 0.0169 1 0.0053 1 0.0434 1 0.0055 1
176019 0.0084 1 0.0019 1 0.0476 1 0.0330 1 0.0036 1 0.0014 1 0.0246 1 0.0011 1
30091 0.0388 1 0.0042 1 0.0267 1 0.0003 1 0.0079 1 0.0023 1 0.0366 1 0.0001 1
92059 0.0003 1 0.0002 1 0.0117 1 0.0137 1 0.0008 1 0.0077 1 0.0063 1 0.0072 1
Table 8
Comparison of DCC based AWOA and WOA utilizing Kapur’s entropy thresholding.
Image M AWOA WOA

RMSE PSNR (dB) SSIM FSIM RMSE PSNR (dB) SSIM FSIM

Lena 2 R 281.0240 23.3687 0.9612 0.9856 R 299.3710 22.9671 0.9576 0.9830
3 174.9387 26.5467 0.9779 0.9866 194.0635 26.1605 0.9771 0.9845
4 124.7732 28.0767 0.9882 0.9870 147.3563 27.9165 0.9858 0.9850
5 111.7372 29.8925 0.9933 0.9912 119.6966 28.1432 0.9870 0.9866

35049 2 G 504.1529 20.4557 0.8235 0.9158 G 567.0070 19.8865 0.8139 0.9148
3 455.2937 23.5340 0.8490 0.9200 492.2559 22.5410 0.8608 0.9218
4 400.4185 25.4169 0.9379 0.9272 423.5262 24.6529 0.9363 0.9288
5 113.8315 26.6183 0.9544 0.9300 155.6129 26.5397 0.9470 0.9375

126007 2 B 496.5721 21.1710 0.9063 0.9807 B 500.1009 21.1641 0.9054 0.9921
3 315.3372 23.1630 0.9439 0.9936 356.0332 23.0836 0.9430 0.9935
4 177.9895 25.4408 0.9694 0.9943 207.5551 25.0101 0.9685 0.9945
5 165.1928 26.1260 0.9697 0.9955 168.4557 25.1967 0.9691 0.9950

124084 2 R 991.5922 18.0840 0.8705 0.9303 R 1012.500 18.0768 0.8691 0.9294
3 434.4231 21.8296 0.9404 0.9508 441.4366 21.4515 0.9399 0.9491
4 269.2522 24.1902 0.9630 0.9576 278.2697 23.9884 0.9619 0.9559
5 226.5186 24.6572 0.9680 0.9651 244.6078 24.6242 0.9678 0.9610

143090 2 B 394.5841 22.1704 0.9443 0.9956 B 395.4910 22.1593 0.9436 0.9955
3 463.0054 20.8365 0.9428 0.9921 467.2150 21.4570 0.9415 0.9914
4 218.1097 24.5755 0.9720 0.9929 237.8958 25.0345 0.9678 0.9920
5 140.7033 26.1880 0.9798 0.9949 167.4018 26.0653 0.9793 0.9945

65033 2 G 859.9218 18.7882 0.9234 0.8283 G 879.0748 18.6905 0.9172 0.8274
3 387.4987 22.2156 0.9342 0.8852 390.3158 22.0963 0.9326 0.8848
4 226.4411 24.3589 0.9605 0.9223 227.1466 23.8727 0.9581 0.9172
5 143.4459 26.5149 0.9734 0.9431 156.6661 26.4897 0.9732 0.9392

12084 2 R 923.0338 20.1052 0.8712 0.9420 R 933.0370 19.5014 0.8374 0.9413
3 480.2261 21.2551 0.9074 0.9622 516.7960 21.1301 0.9024 0.9588
4 320.9205 23.2359 0.9396 0.9733 327.1770 23.1340 0.9384 0.9690
5 194.9842 25.1278 0.9593 0.9824 224.6521 25.1011 0.9556 0.9791

176019 2 G 607.7952 20.3881 0.8837 0.8669 G 631.1178 20.2932 0.8773 0.8646
3 382.8748 21.7387 0.9273 0.8975 400.6911 21.2737 0.9247 0.8923
4 251.0201 23.1981 0.9541 0.9238 275.0466 22.9240 0.9535 0.9175
5 182.2679 24.9262 0.9652 0.9421 223.4342 24.6513 0.9622 0.9365

30091 2 B 767.4395 19.4419 0.8794 0.9878 B 778.9750 19.3725 0.8742 0.9872
3 634.5520 20.2147 0.8980 0.9893 691.6706 20.1342 0.8808 0.9876
4 305.3430 23.9750 0.9554 0.9920 310.9133 23.7571 0.9496 0.9908
5 221.0567 24.6858 0.9664 0.9944 242.8530 23.9324 0.9652 0.9934

92059 2 G 682.1321 19.3464 0.8752 0.8931 G 709.3324 19.2313 0.8714 0.8823
3 433.0054 20.7563 0.8943 0.9432 487.2150 20.5421 0.8890 0.9331
4 278.1097 23.3542 0.9592 0.9891 267.8958 23.2435 0.9455 0.9843
5 130.7033 25.4563 0.9606 0.9921 167.4018 25.1346 0.9594 0.9912
input image. Ultimately, it is found that AWOA exhibits faster
convergence compared to WOA.

To demonstrate the effectiveness of the improvement for the
roposed algorithm, comparison with the DCC based WOA with
apur’s entropy and Edge magnitude as the fitness function, is
hown in Tables 8 and 9. The performance parameters RMSE,
SNR, SSIM, and FSIM values are displayed. It is observed that
19
the proposed AWOA performed better than WOA using the DCC
based approach.

Table 10 shows the comparison of running time between
AWOA and WOA for both the objective functions. It is observed
that AWOA needs lesser running time as compared to WOA
in both the cases. Hence, it is confirmed that the introduction
of Lévy-flight strategy and the self-adaptive strategy based on
the fitness function value proposed for updating the coefficient
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Table 9
Comparison of DCC based AWOA and WOA utilizing edge magnitude based thresholding.
Image M AWOA WOA

RMSE PSNR SSIM FSIM RMSE PSNR SSIM FSIM

Lena 2 R 459.2228 21.5818 0.9499 0.9673 R 475.0767 21.4386 0.9473 0.9659
3 436.6389 22.0867 0.9620 0.9688 464.6823 21.7296 0.9593 0.9649
4 345.2494 22.3739 0.9630 0.9693 382.4914 22.1899 0.9361 0.9605
5 242.7123 23.7085 0.9454 0.9677 276.6506 22.6588 0.9268 0.9591

35049 2 G 1749.8000 19.2599 0.9343 0.9059 G 1844.2000 18.5555 0.9256 0.8987
3 1056.0000 23.4874 0.9351 0.9190 1375.6000 22.1762 0.9339 0.8932
4 659.5577 24.9716 0.9362 0.9203 775.7981 23.7778 0.9356 0.9037
5 631.4099 26.5283 0.9382 0.9227 693.8117 24.4928 0.9379 0.8894

126007 2 B 785.6464 20.1534 0.9053 0.9819 B 791.1350 19.8977 0.9033 0.9858
3 765.7688 22.5473 0.9215 0.9899 872.1460 21.6414 0.8951 0.9884
4 714.5726 23.5603 0.9409 0.9887 867.6896 22.6207 0.9353 0.9908
5 376.2579 24.8578 0.9691 0.9937 385.3020 23.9017 0.9466 0.9898

124084 2 R 1391.5000 17.2623 0.8211 0.9203 R 1910.0000 16.3016 0.8079 0.9002
3 912.8238 18.8589 0.8427 0.9330 977.6509 18.5184 0.8194 0.9199
4 812.3446 20.7084 0.8985 0.9435 839.2858 20.0998 0.8880 0.9356
5 764.9071 22.3806 0.9567 0.9480 812.9682 21.2899 0.9471 0.9427

143090 2 B 928.6094 17.6203 0.8750 0.9899 B 1033.2000 16.1929 0.8586 0.9888
3 847.9235 17.9854 0.9176 0.9860 970.7710 17.7856 0.8937 0.9844
4 750.2898 19.2983 0.9421 0.9897 800.5491 18.3177 0.9209 0.9878
5 635.5137 20.4368 0.9444 0.9913 758.6847 19.5279 0.9277 0.9890

65033 2 G 1007.1000 16.9828 0.9176 0.8167 G 1027.5000 15.9636 0.9128 0.8085
3 720.4394 19.2402 0.9256 0.8401 784.1153 19.1019 0.9218 0.8284
4 585.8623 20.0492 0.9387 0.8637 638.8717 19.8815 0.9321 0.8412
5 418.0389 22.7303 0.9574 0.8879 547.4710 22.3889 0.9427 0.8707

12084 2 R 1174.8000 16.3548 0.7661 0.9521 R 1294.6000 16.1909 0.7309 0.9482
3 721.3206 17.7985 0.8321 0.9569 893.5697 17.6531 0.8370 0.9542
4 673.7696 18.9951 0.8789 0.9678 797.2995 18.5722 0.8544 0.9623
5 610.8175 20.0058 0.8858 0.9746 777.8105 19.7843 0.8676 0.9715

176019 2 G 1157.9000 17.8556 0.9056 0.8450 G 1163.1000 17.4747 0.9000 0.8412
3 483.3847 21.3662 0.9184 0.8678 496.4462 21.1411 0.9130 0.8632
4 457.1312 22.3292 0.9249 0.8863 475.3765 21.6000 0.9198 0.8753
5 400.1892 22.9536 0.9256 0.8989 411.9038 22.3199 0.9240 0.8934

30091 2 B 989.4246 17.4362 0.8252 0.9834 B 1004.9000 16.3562 0.7932 0.9797
3 743.3576 19.6422 0.8574 0.9867 839.2542 18.5231 0.8425 0.9837
4 675.2643 22.4754 0.9078 0.9894 742.5166 21.7553 0.8967 0.9876
5 578.4765 22.9566 0.9573 0.9906 601.8489 22.6574 0.9452 0.9900

92059 2 G 417.7296 24.7516 0.9257 0.9065 G 467.3121 24.6712 0.8918 0.8931
3 730.9370 22.9334 0.8935 0.8656 760.2421 22.6742 0.8929 0.8523
4 590.4323 23.5343 0.9264 0.8934 505.3423 22.9832 0.9084 0.8834
5 543.5021 24.2658 0.9499 0.9242 478.7321 23.3423 0.9276 0.9189
vectors enriches the algorithm’s exploration and exploitation ca-
pabilities leading to faster convergence.

In summary, a significant speed improvement is achieved
ith the suggested approach, which is one of the main aims
f the proposal. The consideration of dominant component only
or thresholding purposes reduces the computation time because
here is no need to compute the optimal thresholds for individual
olor components (R, G and B). Further, thresholding only the
ominant color component in the image retains the original color
nformation. It is noteworthy to mention here that the contri-
ution of the information by non-dominant color components is
etained.

Further, the proposed concept may be improved in future
y including neural architecture search [48] for determining the
ptimal threshold values. The concept of compound rank-k pro-
ections for bilinear analysis [49] to reduce the dimension of the
eature representation for better performance of the proposed
ethod can also be explored in the future.

. Conclusion

Unlike earlier methods reported for multilevel color image
hresholding utilizing all the three color (RGB) components, our

uggested technique uses the dominant color only, which is an

20
innovative idea for color image processing. Nevertheless, an ex-
emplar idea is delivered for the color image thresholding. The
justification behind the use of two competent objective functions,
for the experiment, is for validation. The suggested segmentation
score enriches the image processing literature. The stability and
validity of the suggested technique are justified both qualita-
tively and quantitatively. The results with the proposed scheme
show remarkable differences as compared to the conventional
approaches and recently published research works. It is implicit
from the outputs that the true color information is retained. Even
more interesting is the significant reduction in computation time.
Therefore, the suggested method is quite competent and enforces
its application in color image processing. Its explicit use in the
high threshold level applications is also highlighted. In this work,
the method is implemented successfully for M = 2 to 12. The
method may be implemented for higher threshold levels. The idea
of neural architecture search may be used for determining the
optimal thresholds. To improve the performance of the suggested
method, the idea of compound rank-k projections for bilinear
analysis to lower the dimension of the feature representation may
be used. This needs to be explored in future studies. The method
would be useful for the segmentation of biomedical images using
data science methodologies for smart healthcare services. The
proposed method may be useful for color images having low-
contrast inhomogeneous visual features. This study may help
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Table 10
Comparison of running time (in secs) between DCC-AWOA and DCC-WOA.
Image M Kapur’s entropy thresholding Edge magnitude based thresholding

AWOA WOA AWOA WOA

Lena 2 R 1.7315 1.7422 R 2.1795 2.1890
3 1.7704 1.7806 2.1924 2.2610
4 1.7866 1.7969 2.2075 2.2686
5 1.7943 1.8005 2.2345 2.3232

35049 2 G 1.7333 1.7751 G 2.0909 2.1139
3 1.7631 1.7943 2.1032 2.1550
4 1.7781 1.8191 2.1118 2.1874
5 1.8052 1.8465 2.1331 2.2103

126007 2 B 1.7627 1.7866 B 2.1638 2.2377
3 1.7779 1.7963 2.2132 2.2490
4 1.7903 1.8234 2.2287 2.2791
5 1.8020 1.8520 2.3675 2.3736

124084 2 R 1.6563 1.6885 R 2.5346 2.6161
3 1.6965 1.7177 2.6279 2.6940
4 1.7090 1.7582 2.6384 2.7310
5 1.7414 1.7785 2.7236 2.7765

143090 2 B 1.6492 1.8522 B 2.5161 2.5403
3 1.6840 1.8807 2.5303 2.5474
4 1.6979 1.8945 2.5796 2.6418
5 1.7062 1.9095 2.5984 2.7263

65033 2 G 1.6490 1.8211 G 2.4142 2.4490
3 1.7075 1.8482 2.4601 2.4928
4 1.7131 1.8561 2.4944 2.5254
5 1.7243 1.9009 2.5119 2.5339

12084 2 R 1.6155 1.8224 R 2.5756 2.6373
3 1.7025 1.8401 2.6177 2.6718
4 1.7293 1.8616 2.6758 2.7453
5 1.7349 1.8777 2.7411 2.7849

176019 2 G 1.6783 1.6851 G 2.4000 2.4317
3 1.6830 1.6994 2.4425 2.4637
4 1.7079 1.7436 2.4623 2.5087
5 1.7375 1.8433 2.5196 2.5320

30091 2 B 1.7387 1.7551 B 2.3498 2.3638
3 1.7618 1.7794 2.3631 2.3727
4 1.7758 1.7837 2.3755 2.3830
5 1.7856 1.8045 2.4351 2.5115

92059 2 G 1.7242 1.7607 G 1.9937 1.9974
3 1.7341 1.7833 1.9982 2.0050
4 1.7567 1.7964 2.0057 2.0106
5 1.7918 1.8385 2.1795 2.0184
w

R

researchers to explore further ideas in the field of multilevel color
image thresholding.
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Appendix A

Performance metrics
RMSE and PSNR have significance in evaluating the operation

of different techniques [45]. The term PSNR in an image is the
ratio between the maximum possible value (power) and the
strength of distorting noise which influences its representation
21
quality. Because of the wide dynamic range in the images, the
PSNR is represented in dB (ratio between the largest and smallest
possible values of a changeable quantity). The PSNR is computed
as:

PSNR(in dB) = 20 log10(255/RMSE) (A.1)

here

MSE =

√∑M
i=1

∑N
j=1(I(i,j)−It (i,j))2/MN

MN
(A.2)

Here, MN is the image dimension, I denotes the input image and
It represents the thresholded image. The reason behind the choice
of PSNR as a performance metric is that it indicates the signal
content, which ultimately depends on the thresholded image
quality. PSNR and RMSE have an inverse relationship. So a larger
value of PSNR means the (better) higher quality of output image.
For a good segmented image, PSNR must increase and RMSE must
decrease.

Only concerning the ground truth, PSNR computes the quality
of a thresholded image. SSIM and FSIM are stronger measure-
ment indices that measure the image structure. The SSIM and
FSIM values close to ‘1’ indicate the image is of good quality.
Note that both are extensively used for quantitative analysis of
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Table B.1
Comparison of optimal thresholds obtained utilizing Kapur’s entropy thresholding.
Image M DCC R G B

Lena 2 R 60,170 60,172 84,156 129,196
3 60,147,196 60,152,201 65,141,203 95,135,196
4 60,121,172,205 31,60,130,176 59,100,146,203 17,98,155,198
5 20,58,127,172,208 33,60,110,170,204 50,90,137,168,203 52,93,128,172,198

35049 2 G 91,172 93,170 89,163 66,208
3 88,129,176 84,142,187 88,135,174 55,108,208
4 57,90,131,173 70,113,142,187 95,138,170,208 54,89,122,208
5 61,89,123,171,208 57,90,118,147,190 63,90,128,172,206 94,108,126,148,211

126007 2 B 89,173 93,155 88,155 93,173
3 62,118,174 84,142,197 87,155,209 67,121,173
4 39,92,130,175 77,121,160,210 72,104,155,213 54,95,134,174
5 60,103,137,173,206 52,90,128,160,207 72,103,140,175,216 38,93,133,173,204

124084 2 R 95,187 96,187 66,149 10, 222
3 59,120,189 59,128,187 69,135,209 60,143,222
4 47,94,142,191 52, 96, 141,191 41,88, 146,214 47,97, 168,222
5 49,94,137,180,217 43,86,133,180,217 42,86,124,168,214 44, 67,111,169,222

143090 2 B 109,180 83,155 65,150 113,179
3 69,136,212 69,115,163 50,105,157 79,137,211
4 75,125,171,214 41,83,124,163 60,120, 180,230 70,110,147,212
5 66,97,133,174,215 33,84,130,157,188 48,111,153,190,230 67,101,136,179,214

65033 2 G 121,199 90,164 125,199 91,160
3 86,144,202 59,112,168 88,143,202 91,145,200
4 75,111,157,205 63,105,169,213 67,132,168,205 74,113,160,208
5 71,99,131,167,205 41,76,128,169,224 65,104,121,165,219 31,85,120,170,217

12084 2 R 100,192 100,192 120,186 105,160
3 84,141,203 74,126,204 104,149,197 86,149,197
4 76,121,165,217 75,118,173,216 84,123,161,205 26,92,133,181
5 62,100,136,180,222 44,86,131,177,222 39,81,126,158,216 39,83,124,184,234

176019 2 G 117,181 104,171 98,172 96,169
3 78,144,193 72,134,192 78,141,190 85,141,195
4 71,119,161,213 56,105,153,204 69,117,161,207 53,103,149,200
5 72,102,140,180,218 35,83,129,167,211 66,94,134,180,218 53,92,131,169,211

30091 2 B 112,200 91,171 64,161 116,200
3 54,123,200 76,137,194 63,118,183 56,112,198
4 56,101,154,200 71,120,163,211 63,113,160,208 52,102,160,204
5 45,94,139,174,211 33,73,121,162,211 41,69,108,162,208 51,95,129,165,208

92059 2 G 71,134 103,162 70,134 107,171
3 77,132,180 58,108,162 73,132, 175 49,108, 168
4 67,103,137,178 58,108,160,206 47,81,132,180 52,107,144,191
5 66,103,134,170,204 47,101,136,162,198 74,105,132,173,208 54,106,145,180,237
r

w
s
F
r
m
p

A

color images. The SSIM is an index for measuring the observed
quality of digital images. It is utilized to calculate the similarity
between two images. It is a complete reference index i.e. im-
age quality measurement or estimation depends on an original
distortion-free image taken as a reference image. It is considered
as upgrades to conventional approaches of comparison metrics
like PSNR and RMSE. It is a perception-based metric that takes
into account image deterioration as the structural information
change. This also integrates important perceptual phenomena,
including criteria for masking the luminance and the contrast
parameters. It should be noted that structural information is the
indication of strong interdependence of the spatially close pixels.
These dependencies convey essential info about the object struc-
ture in the image. Luminance masking is a concept where image
deteriorations are likely to be less visible in bright regions. At
the same time, contrast masking is a process in which distortions
are less apparent where the image includes texture. The SSIM
between two images I and It is computed as [46]:

SIM(I, It ) =
(2µIµIt + c1)(2σIIt + c2)

(µ2
I + µ2

It + c1)(σ 2
I + σ 2

It + c2)
(A.3)

here µI denotes the mean value of I , µIt denotes the mean value
f It . σ represents the variance of both the images. σI It represents
he covariance of I and It . c1 and c2 are two variables determined
by the dynamic range of the pixel values. For a color image, SSIM
22
is specified as SSIM =
∑

c SSIM(xc, yc), where c represents the
channel number. For an RGB image, it is 1, 2, 3. The symbol x
epresents the cth channel of the input image and y represents
the cth channel of the thresholded image.

FSIM index is utilized to measure the segmentation perfor-
mance based on low-level features. It uses two important el-
ements: phase congruency (PC) and gradient magnitude (GM)
as first and second features respectively. The PC indicates the
significance of local structures. It is represented as [47]:

FSIM(x, y) =

∑
x ∈ Ω · SL(x) · PCm(x)∑

x ∈ Ω · PCm(x)
(A.4)

here the symbol Ω signifies the total image area, SL(x) is the
imilarity between the input and the thresholded output. A larger
SIM value indicates higher similarity. For an RGB image, it is rep-
esented as FSIM =

∑
c(x

c, yc), where the symbols carry the same
eaning as defined for SSIM. The elaborate definitions of the
erformance indices are mentioned in the respective references.

ppendix B

See Tables B.1 and B.2.
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Table B.2
Comparison of optimal thresholds obtained using edge magnitude based thresholding.
Image M DCC R G B

Lena 2 R 145,225 150,225 115,184 108,166
3 61,117,223 49,78,147 62,115,197 108,179,209
4 4,81,146,246 78,98,134,255 52,63,114,188 16,38,108,168
5 8,53,94,135,245 34,84,89,140,255 23,27,63,130,210 43,108,186,208,219

35049 2 G 108,140 136,178 68,102 71,113
3 68,105,188 84,108,136 68,101,202 42,74,118
4 68,103,117,172 3,92,118,131 69,105,121,255 49,53,69,124
5 68,97,136,154,239 9,23,80,106,139 42,61,105,131,143 43,102,153,196,200

126007 2 B 95,195 31,93 71,95 95,239
3 73,86,194 8,93,125 35,95,121 57,87,189
4 69,88,174,225 31,41,82,195 8,56,95,189 73,87,180,233
5 50,83,138,146,205 13,49,74,155,173 2,69,125,143,152 71,87,184,202,225

124084 2 R 78,227 78,255 70,99 89,250
3 78,160,219 43,78,195 4,66,97 2,89,245
4 78,157,197,243 44,78,201,226 21,34,57,99 62,73,138,216
5 27,42,78,151,162 78,169,204,208,251 4,20,23,62,97 61,72,85,220,252

143090 2 B 133,218 1,122 123,249 133,221
3 66,133,213 77,99,131 86,111,127 88,114,255
4 33,62,133,216 1,50,93,213 15,86,118,147 34,50,133,218
5 40,70,112,195,237 74,82,220,243,245 3,70,84,164,206 2,41,133,238,244

65033 2 G 106,142 113,138 104,144 110,138
3 112,157,225 94,111,138 16,106,142 26,96,184
4 112,157,217,238 93,111,143,152 112,157,176,240 17,61,80,127
5 27,112,157,170,211 37,93,135,181,233 60,116,132,211,255 19,59,80,93,177

12084 2 R 145,247 145,236 88,132 26,143
3 20,145,212 2,145,255 69,99,130 48,78,129
4 9,68,144,231 59,83,143,255 3,31,86,133 64,87,92,115
5 4,49,64,144,253 34,50,145,237,255 23,44,74,121,210 1,37,64,104,112

176019 2 G 94,145 102,133 106,155 1,149
3 30,106,155 94,134,158 98,152,167 65,77,147
4 84,124,212,216 88,106,113,132 20,69,112,195 43,48,90,144
5 41,106,155,198,244 29,77,113,197,223 106,155,179,183,207 24,62,89,106,200

30091 2 B 112,237 83,110 111,239 111,203
3 89,109,232 2,83,109 16,79,110 89,110,225
4 17,81,113,215 6,76,108,233 86,111,140,198 81,96,111,216
5 92,133,146,156,190 11,32,49,90,104 6,81,97,110,222 77,86,170,202,223

92059 2 G 91,125 75,95 91,123 73,77
3 91,123,245 74,92,171 91,123,138 57,73,133
4 91,124,157,160 71,88,102,194 91,120,159,243 33,71,107,149
5 91,122,154,185,247 74,93,117,172,193 91,120,178,197,199 17,54,74,130,155
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