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ABSTRACT Background: Data prediction methods in wireless sensor networks (WSN) has emerged as
a significant way to reduce the redundant data transfers and in extending the overall network’s lifetime.
Nowadays, two types of data prediction algorithms are in use. The first focus on reassembling historical
data and providing backward models, resulting in unmanageable delays. The second is concerned with
future data forecasting and gives forward models, that involve increased data transmissions. Method:Here,
we developed a Combinational Data Prediction Model (CDPM) that can build prior data to control delays
as well as anticipate future data to reduce excessive data transmission. To implement this paradigm in WSN
applications two algorithms are implemented. The first algorithm creates step-by-step optimal models for
sensor nodes (SNs). The other predicts and regenerates readings of the sensed data by the base stations (BS).
Comparison: To evaluate the performance of our proposed CDPM data-prediction method, a WSN-based
real application is simulated using a real data set. The performance of CDPM is also compared with HLMS,
ELR, and P-PDA algorithms. Results:The CDPM model displayed significant transmission suppression
(16.49%, 19.51% and 20.57%%), reduced energy consumption (29.56%, 50.14%, 61.12%) and improved
accuracy (15.38%, 21.42%, 31.25%) when compared with HLMS, ELR and P-PDA algorithms respectively.
The delay caused by CDPM training is also controllable in data collection. Conclusion: Results advised
the efficacy of the proposed CDPM over a single forward or backward model in terms of decreased data
transmission, improved energy efficiency, and regulated latency.

INDEX TERMS Data prediction, energy efficiency, network lifetime, transmission suppression, wireless
sensor networks.

I. INTRODUCTION
In WSN applications, SNs usually sense the environmen-
tal data at high frequencies. Continuous data transmissions
cause SNs to consume a lot of energy. Since WSNs are
battery-equipped, energy conservation becomes a key con-
cern [1], [2]. Because radio communications require more
energy at SNs than any other activity [3], [4], data reduction
is becoming more popular as a means of conserving WSNs’
limited energy resources [5], [6]. By minimizing duplicate
data transfers, data prediction methods [7]–[9] will conserve
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constrained resources such as unnecessary communication
overheads, energy consumption, etc [10]–[13]. Every SN in
a prediction-based method trains prediction models based
on sensed data values and forwards them to the BS. Then,
the SN predicts and reconstructs sensed reading using the
same model as the BS. If the prediction threshold is lower
than the application in that case the data prediction model
is not acceptable, as the total communication overhead of
such models will be larger than the original application i.e.,
without data prediction [13], [15], [16]. Apart from these two
kinds of techniques, there are a few more methods that are
comparatively intricate in training data prediction models and
whose feasibility has yet to be determined and is discussed
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in detail in the work [17]. To summarize, data-prediction-
based techniques face three challenges: unpredictable latency,
increased transmission overheads, and difficulty in model
training. To the best of our knowledge, solving all these issues
and challenges is still is work in progress.

This research provides a combinational model that may
be used to reconstruct historical data as well as predict
future data. The number of data points used to train the
model is adjusted to meet predetermined upper constraints
on error and latency, ensuring that data quality and delay are
tightly regulated. To eliminate unnecessary transmissions and
enhance the energy efficiency, the model is used in both data
regeneration of previous data and data prediction of future
data. Two techniques are proposed in this work to imple-
ment the combinational model for real-world WSNs applica-
tion. To generate optimal combinational models, a step-wise
technique is developed for SNs. This approach can reduce
the combinational model’s computational load and increase
its viability. For the BS, another data prediction and data
regeneration technique are proposed. Extensive experiments
are simulated on real-world WSN applications to evaluate
the combinational model’s performance. The model’s energy
efficiency is compared to three already existing techniques.
Simulation findings demonstrate that the proposed method
can effectively suppress data transmissions, reduce overall
WSN energy consumption, and tightly limit the delay induced
by training. The objectives of this proposed work are as
follows:

• To eliminate unnecessary data transmissions by the
data-prediction models which can the number of redun-
dant data transfers and extend the overall network’s
lifetime.

• To enhance the energy efficiency, a combinationalmodel
is developed for both data regeneration of previous data
and data prediction of future data.

• To provide excellent proficiency in terms of reduced data
transmission, reduce energy consumption, and regulated
latency by implementing and simulating the proposed
combinational model.

The remainder of this proposed work is organized as fol-
lows. In Section II, we review the related research work.
Section III offers the overall framework of the proposed
combinational data prediction model (CDPM). Section IV
proposes the CDPM in WSN applications and Section V dis-
cusses the implementation of CDPM. Section VI presents the
energymodel for the proposed work. Section VII includes the
experimental setup, dataset, and performance metrics for the
proposed work. In Section VIII, the experimental results and
discussion is presented to demonstrate the effectiveness of the
framework. Finally, Section IX presents the conclusions and
further research.

II. RELATED WORKS
In many cases, transmitting all the sensed data is not a smart
idea. Data transmission reduction is crucial to resolve some

WSN issues, such as reducing energy consumption and elim-
inating redundant measurements. In this respect, this section
presents the related work based on data prediction to reduce
data transmission.

Zhao et al. [18] proposed a P-DPA algorithm that uses the
valuable information of the potential law contained in peri-
odicity as guidance to change the prediction values. P-DPA
effectively improves the accuracy, reduces communication
frequency, and prolongsWSN lifetime but it does not describe
how to find attribute correlation, and control delay was not
reduced. Tan et al. [19] proposed the predicting approach
can predict the measured values both at the SN and at the
BS. HLMS provides low energy consumption, reduced data
transmission, and high data accuracy but only the temporal
data prediction not spacial is predicted. The synchronization
of the filters at SN and BS is unexplored in this work.

Makhoul et al. [20] proposed a data reduction model (KW)
that allows SNs to adapt their sensing rates based on the
data variance to eradicate similar readings from the vec-
tor by a similar function. A local aggregation algorithm
was further introduced to reduce the size of the dataset
before transmitting it to the BS. This model minimizes
the data size for transmission over the WSN for energy
conservation but does not apply correlation between the
adjacent SNs. Al-Qurabat et al. [21] proposed an Adaptive
data gathering Dimensionality reduction using the adaptive-
piecewise constant-approximation (APCA) method, Sam-
pling rate adaptation based on dynamic time warping (DTW)
similarity, and Frequency reduction using symbolic aggregate
approximation (SAX) method. APCA removes the redundant
data and adapts the sampling rate following the environment
conditions, conserves energy, and also prolongs network life-
time but has high complexity and requires more processing
time.

Tayeh et. al. [22] proposed the Adaptive Sampling +
Transmission Reduction (AS+TR) based data prediction
technique which aims to reduce radio communication and
data sensing by combining adaptive sampling and dual pre-
diction mechanism techniques. AS+ TR reduces energy con-
sumption and extends the overall network lifetime. The AS
method does not compute the risk of data loss and replicated
data. This work does not control delay also. Cheng et. al. [23]
proposed a prediction model based on the two-directional
Long short-term memory (LSTM) is an artificial recurrent
neural network (RNN) which is named as multi-node mul-
tifeatured (MNMF) prediction model. MNMF overcomes the
issues of Spatial or Temporal correlations in the data col-
lection method as the redundant data impose unnecessary
burdens on both the SN and WSN. This method Reduces the
energy consumption of SNs and extends the WSN lifetime
with high prediction accuracy and reasonable prediction bias.
Although it considers only homogeneous WSN applications
and does not even control delay.

Jain et al. [24] proposed DA-AFM for reducing Correlated
Spatial-Temporal Data, one at the SNs for determining Tem-
poral Redundancies in data readings using both AFM and RD
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TABLE 1. Comparison of various existing data transmission methods in WSN.
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TABLE 1. (Continued.) Comparison of various existing data transmission methods in WSN.

and the other at the CHs for determining spatial redundancies
using AFM and RD. This method Exploits both spatial and
temporal correlations, reduces data transmissions and energy
consumption, and improves accuracy but it considers only
homogeneous WSN applications and does not control delay.
Jain and Kumar [25] in 2020 proposed an ECR model which
is based on a two-vector model to synchronize predicted data
in the intra-cluster transmissions to evade cumulative error
in continuous data predictions. In the initialization phase of
the data collection cycle, it generates future data approxi-
mation and computes its prediction threshold error. ECR is
a simple, structure-free and lightweight, and scalable data
prediction model. It reduces data transmission cycles and
energy consumption while maintaining accuracy but has high
complexity.

Al-Qurabat and Idrees [26] proposed a DGAST that gath-
ers sensor data periodically and divides the networks into
rounds. Each round in DGAST is divided into four stages:
data collection, data aggregation, selective transmissions,
and modifying the frequency of samples obtained for SNs.
DGAST preserves energy and extends the periodic sensor
network’s lifetime but has complex computation and high
memory usage. Jain et al. [27] in 2021 proposed an ELR
model which exempts the SN from the transmission of huge
volumes of data for a specific duration during which the
BS will predict the future data values and thus minimize
the energy consumption of WSN. ELR is an energy-efficient
model which reduces data transmission and extends network
lifetime but it does not consider cluster-based topology, scal-
ability, and control delay.

Agarwal et al. [28] proposed a DP-LRM model that
reduces the data transmission of redundant data by
developing a regression model on linear descriptors on con-
tinuous sensed data values and is built on top of any data
aggregation model. It uses a buffer-based linear filter algo-
rithm that compares all incoming values and establishes a
correlation between them. DP-LRM is an energy-efficient
model which successfully reduces the data transmission cost
and maintains accuracy and integrity in reduced data but
it is Complex computation and does not consider scala-
bility. Wang et al. [29] proposed a data reduction approach

based on the Kalman filter This method performs data
reduction through two phases: data reduction phase and
data prediction phase. This is an efficient and effective
data reduction that is reliable, energy-efficient, and extends
network lifetime but has large computation overhead and
it does not consider cluster-based topology and network
scalability.

Nels et al. [30] proposed the HFQKLMS filter was devel-
oped by integrating HFBLMS and QKLMS. The HFBLMS
model is devised by integrating FC theory and the HLMS
scheme. The prediction process is carried out using the
HFQKLMS filter approach for data aggregation. This work
is energy Efficient, maintains accuracy in reduced data, and
extends network lifetime but has Complex computation and
does not consider scalability. Famila et al [31] proposed
the RCHST-IETSMP integrates two critical parameters that
define energy and trust parameters via a Hyper—Erlang pro-
cess for successful CH selection assisted by the benefits of
Semi-Markoc prediction integrated with the Hyper Erlang
distribution process. This work is reliable and extends the
WSN lifetime but has complex computation and does not
consider scalability and control delay.

Jain and Kumar [32] in 2021 proposed a DTRM is imple-
mented on the CHs and can be used in combination with
most data aggregation algorithms. This study eliminates tem-
poral redundancies and correlations from data readings and
allows the SN to transmit only a few data values, which
increases data transmission effectiveness and reduces energy
consumption. DTRM provides data accuracy, reduced data
transmissions, low complexity costs, lightweight processing,
limited memory footprint, robustness, and effectiveness but it
is based on single value comparison. Table 1 compares all the
above-discussed data transmissionmethods inWSNswith the
well-known parameters.

Many methods have been proposed for data transmis-
sion reduction in WSNs, but the control delay is not yet
introduced. In comparison to the methods and techniques
discussed above, the strength of the proposed CDPM algo-
rithm lies in its ability to control delay, and reduce energy
consumption by achieving high data transmission suppres-
sion and reduced RMSE (improved data quality).
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III. SYSTEM MODEL AND ASSUMPTION
This section presents the overall framework which includes
the network model and assumption for the proposed combi-
national data prediction model (CDPM).

A. NETWORK MODEL
The WSN consists of N number of sensor nodes, S =
{S1, S2, S3, . . . , . . . , SN }, and B as a base station (BS)
positioned away from the sensing region. These SNs are
deployed randomly such that each SN Si senses and trans-
mits the measurement to the BS in each time slot t =
{t1, t2, t3, . . . , . . . , ti}. The Combinational Data-Prediction
Model suggests that the correlated and duplicate sensed val-
ues of the SNs will be flushed and not transmitted to the BS.
Thus, the sensed data which is deviated from the prediction
error will only be sent to the BS. Then, the BS will predict
the non-transmitted data. Thus, the task of the SNs is to sense
the environment parameters and transmit them to the BS if
it is outside the prediction budget and the task of the BS
is to receive the communicated data and predict the non-
transmitted values.

The data transmission protocol was not taken into account
in this study. Rather, we presumed that the data transmission
between the SN and the BS was device-to-device. As a result,
data transfers between SN and BS are accomplished on time.
So, at any time ti if no data is obtained, it will be believed
that it was discarded by the SN. Therefore, the CDPM will
predict the non-transmitted data. It will be used for both data
regeneration of previous data and data prediction of future
data.

B. NETWORK ASSUMPTION
We have considered followed assumption for the CDPM
model:

• The SNs are considered to be stationary and are ran-
domly deployed in the sensing region
• The BS is positioned away from the sensing region.
• All SNs have fixed data sampling rate.
• The data transmission between the SN and the BS is
considered device-to-device, which means, that the data
transfers between SN and BS reach without any delay.
• Dissimilar to SNs, the BS has no power, memory, or pro-
cessing constraints.

IV. COMBINATIONAL DATA-PREDICTION MODEL
In the case of slight variations in the data, recent research
has indicated that linear Data- Prediction models outper-
form the others. In line with that, this work provides
a linear Data- Prediction Technique based Combinational
Data-Prediction Model. A generic version of the linear
prediction model, as well as the proposed Combinational
Data-Prediction Model (CDPM), are explained in this
section.

A. GENERIC VERSION OF LINEAR
DATA-PREDICTION MODEL
The frequently changing environmental data are represented
as a function of time: f (t) = d in a specific area of the
physical world. Then the sensed readings of an SN can be
denoted by the time-series reading as follow in Equation (1)
below:

f (t i) = SRi, i∈ {1, 2, 3, . . . . . . ,N} (1)

where {1, 2, 3, . . . . . . ,N} is the epoch period in which the SN
senses the environmental parameters.

The SNwill send (t i, SRi) forN epochs without prediction.
Environmental data is assumed to follow a short-term linear
pattern in linear models. Then, as a linear function, sensor
readings can be approximated as follow in Equation (2)
below:

ŜR = f̂ (t) =


m1t + c1 step1 ≤ t < step2
m2t + c2 step2 ≤ t < step3

. . . . . .

(2)

We train to build the predictionmodel in each step function.
Some methods generate backward data prediction models
for past data re-construction at the end of each step, which
means they generate mj−1 and tj−1 when t = stepj. After
training, instead of using the original sensed reading in the
previous step for data regeneration, the model’s parameters
should be uploaded to the BS, which causes delays. While
some methods generate forward data prediction models at
the start of each step for future data prediction, which means
they generate mj and tj when t = stepj. After training, the
model’s parameters, as well as the original sensed reading,
are uploaded to the BS, resulting in new transmissions.

B. PROPOSED COMBINATIONAL DATA-PREDICTION
MODEL (CDPM)
We have considered followed assumption for the CDPM
model: The CDPM algorithm updates data in every step
which has two stages: the first stage is the training phase
and the second stage is the data prediction phase. During
the first phase, the proposed CDPM model is trained and
developed on d data values and the CDPM model is commu-
nicated to the BS. In the second phase, the BS will predict
the non-transmitted data. BS will re-construct sensor data
of the first phase. If the prediction threshold is more than
the predefined error, the CDPM model will be retrained,
i.e., the next step begins. The dj represents the training data
values in the jth step. At least two data points are needed to
develop a linear data-prediction model which implies dj ≥ 2.
Thus, we have expressed the CDPM model as

(
stepj,mj, cj

)
.

The CDPMmodel can be used to rebuild at least two data val-
ues, one of which has two points. In other words, three param-
eters of one model can represent at least four values of the
sensed reading without requiring any further transmission.
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In this model, the values obtained by regeneration are
usually deferred due to the time required in CDPM’s training
phase. In real-time WSN-based applications, the SNs sensed
the surroundings with a predefined frequency. The extreme
delay that can be produced during the training phase is
expressed in Equation (3). The delay in the jth step is directly
related to the number of data (dj) in training data

delayj =
(
dj − 1

)
1t (3)

Here delayj represents the maximum delay in the jth step
and 1t represents the sensing period. The maximum delay
can then be controlled by restricting the dj in the training
phase. Let us assume that the highest tolerable delay is delayc
and the maximum values for the training phase are delimited
as dc. It is predefined by the following Equation (4) below:

dc =

{
if (delayc ≥ 1t), dc =

⌊
(delayc
1t

⌋
+ 1

else, dc = 2
(4)

V. IMPLEMENTATION OF COMBINATIONAL
DATA-PREDICTION MODEL
The combinational data-prediction model is proposed for use
in real-worldWSNs in this section. For SN to train and update
the CDPM model, we present a stepwise approach. Another
technique for reconstructing and predicting the sensed read-
ings is also proposed for the BS.

A. TRAINING OF COMBINATIONAL
DATA-PREDICTION MODEL
We use the least square method (LMS) to reduce error to
create the best precise linear prediction model in the training
phase. We have calculated AbsoluteError (AE), which is the
difference between the sensed reading and the predicted data
as follows in Equation (5) below:

AE i = SRi − ŜRi (5)

Then we calculate the error in the training phase, we have
evaluated the residualSumofSquares (RSS) as follows in
Equation (6) below:

RSS =
∑

(AE i)
2 (6)

The RSS will attain its minimum value, when the ∂RSS
∂m = 0

and ∂RSS
∂C = 0 as per the LSM. Thus, the values of m and c

are computed as follow in Equation (6) and (7) below:

m =
dj
∑
(ti×SRi)−

∑
(ti)×

∑
(SRi)

dj(
∑

(t2i )−
∑

(t i)
2 (7)

c =
(
∑

(t2i )
∑
(SRi)−

∑
(ti)×

∑
(ti × SRi)

dj(
∑

(t2i )−
∑

(t i)
2 (8)

We can express least square method as a following function
of basic operations expressed in Equation (9) below:

(m, c) = {(t1, SR1), (t2, SR2), . . . . . .} (9)

Then, to decrease the error in the measurement by an SN,
we have expressed Root Mean Squared Error (RMSE) as
follows in Equation (10) below:

RMSE =

√√√√ 1
N

N∑
i=1

(AE i)
2 (10)

In the data-prediction phase, if the AE of the predicted data is
greater than the predefined threshold ε then the combinational
model will be reinstructed and updated. Since we have con-
sidered ε to be upper-bound of RMSE , the prediction error
will always be within the threshold. The threshold value of
RMSE j is calculated conferring the values of ε, where RMSE j
represents the RMSE of the jth training phase.

Lemma 1: For ∀ j if (RSS j ≤ ε
2dj) then RMSE ≤ ε

Since RMSE =

√
1
N (

N∑
i=1

RSS j +
∑
AE2

k ) ; ∀k and

AEk ≤ ε
therefore if (RSS j ≤ ε

2dj) then RMSE ≤ ε

Thus, according to lemma-1, the RSS threshold in the first
(training) phase is directly related to the dj. To create optimal
combinational models, we present a forward stepwisemethod
for SNs. Each training phase is divided into multiple steps
using this algorithm. The LMS is used only whenever new
data is sensed, to avoid a huge amount of concurrent compu-
tations. Algorithm-1 states that: If the value of RSS is greater
than the value of RSSc, then it will return an earlier outcome.
Whenever the value of d j matches dc, the Algorithm-1 will
return an up-to-date outcome.

Algorithm 1: CDPM Training Phase

Parameters: ε, t, dc,
{
SRt , SRt+1, SRt+2, . . . . . .

}
Procedure: (t,m, c)

1. ALGORITHM BEGIN
2. d = 1;
3. RSSc = 2ε2;
4. while new sensor′s reading is generated do
5. d ++;
6.

(
m′, c′

)
= lsm (t, SRt ) , . . . , . . . , (t + d−

1, SRt+d−1
)
;

7. RSS =
∑t+d−1

i=t
(
SRi − i× m′ − c′

)2
8. if (RSS > RSSc)
9. return (t,m, c);
10. else
11. m = m′; c = c′;RSSc+ = ε2;
12. end
13. if d == dc
14. return (t,m, c);
15. endif
16. end while
17. ALGORITHM END

The algorithmic complexity of the CDPM training phase
is low. The worst-case complexity when only one reading
is sensed will be O (db), which is easy enough for SNs.
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After the model is trained, it is then updated and forwarded
to the BS; and later the trained model will be used for data
prediction. Later, every predicted value will be compared
with the newly sensed value to determine AE . In case AE
exceeds ε, Algorithm-1will be iteratively called to retrain the
model and the latest data prediction model will be updated.

B. DATA PREDICTION AND REGENERATION PHASE
When the BS obtains the trained values of the CDPM model
from an arbitrary SN, the estimates of data in the first phase
are regenerated. The BS then predicts the sensed data based
on this. The Algorithm-2 for Data Prediction & Regeneration
phase is presented below.

Algorithm 2: CDPM Model for Data Prediction &
Regeneration phase
Procedure: (t,m, c) ,1t
Parameters: {SR1, SR2, SR3, . . . . . .}

1. ALGORITHM BEGIN
2. while new−model is obtained do
3. SRt = mt + c;
4. for (i = t + 1; i ≤ present − epoch; i++)
5. SRt+ = m;
6. endfor
7. while no model is obtained do
8. SRi+++ = m;
9. sleep(1t);
10. endwhile
11. end while
12. ALGORITHM END

Here t represents the epoch period of data sens-
ing. The outcome of data-regeneration is expressed as
SR1, SR2, SR3, . . . . . .}.

VI. ENERGY MODEL
The combinational data-prediction model is proposed for use
in real-worldWSNs in this section. For SN to train and update
the CDPM model, we present a stepwise approach. Another
technique for reconstructing and predicting the sensed read-
ings is also proposed for the BS. In this section, we propose
an energy model for CDPM: To calculate an SN’s energy
consumption, the energy consumed in each operation must
be considered. As shown in Equation (11), the total energy
consumption, in general, is related to four essential tasks:

i data sensing (ESEN ) which is the energy needed to sense
one data value,

ii data transmission (EDT ) is the energy required by each
SN per each communication round,

iii data aggregation (EDA) is the energy needed to aggregate
data, and

iv data prediction (ECDPM ) is the energy to perform data
prediction by CDPM.

To estimate the total energy consumption of an SN (ETot−SN ),
we have used employed the model as discussed in the

work [33].

ETot−SN = ESEN + EDT + EDA + ECDPM (11)

Equation (12) evaluates theESEN which is the energy required
to transform the physical data into digital one, where b is the
number of bits in the sensed data, V is the supply voltage, IS
is the total current required in data sensing, and TS is the total
duration of data sensing.

ESEN = bVISTS (12)

To evaluate the amount of energy dissipated by each SN
per round of communication, the classical first-order radio
energy model [33] has been employed for transmission and
reception energy. The energy ingesting of SNs depends on the
distance between the transmitter (SN) and the receptor (BS)
in both free space (fsp) and multipath (mph). A threshold
selects the channel, which is d2 energy loss for a small
distance and d4 energy loss for a large distance. If a b-bit
data has to be transmitted over a distance d , data transmission
ETX (b, d) will be expressed by Equation (13).

ETX (b, d) =

{
bEelec + bεfsd2, ifd < d0
bEelec + bεmpd4, ifd ≥ d0

(13)

On receiving b-bit data, the energy ingesting will be com-
puted by Equation (14).

ERX (b) = bEelec (14)

Eelec is the energy used to send electronics for a transceiver
which senses a single bit b. The coefficient of the free-space
amplifier and multipath are εfs and εmp respectively. The
threshold d0 determines the energy consumption which is
calculated as d0 =

√
εfs
εmp

.
The energy dissipation to aggregate b bits is represented in

Equation (15) as follows:

EAGG (b) = bEDA (15)

Equation (16) presents the energy consumption in data pre-
diction of CDPM (ECDPM ), where Nc is the number of data
communication cycles, Il is the leakage current, Cavg is the
average capacitance switched per cycle, np is a constant value
that depends on the SN capabilities, f is the frequency of data
sensing and Vt is the thermal voltage.

ECDPM = bVIl
Nc
f

V
np × Vt

+ bCavgNcV 2 (16)

VII. PROFICIENCY ASSESSMENT
In this section, we present the simulation setup and
proficiency metrics for the evaluation Combinational
Data-Prediction Model (CDPM) in terms of transmission
suppression, energy consumption, latency, and data quality.
The performance of CDPM is also compared with P-PDA
[15], HLMS [16], and ELR [22] algorithms.
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TABLE 2. Parameters of energy model.

A. SIMULATION SETUP
We have implemented CDPM in network simulator NS-2.34
[34] along with ELR, P-PDA, and HLMS algorithms.
NS-2.34 is an event-driven simulator that has aided in com-
prehending the dynamic nature of communication protocols.
NS2 supports TCP, UDP, routing algorithms, network topolo-
gies, and multicast protocols on both wired and wireless
networks [35]. NS2 is written in C++ and OTcl, which is
an Object-oriented version of Tcl. The simulation parameters
are shown in Table 3.

B. DATASET
The Intel Berkeley Research Laboratory (IBRL) [36] has
approximately 2.3 million sensor measurements. Each SNs
senses data after every 31 seconds. Several quantities are
included in this dataset like temperature in degrees Celsius
and humidity which ranges from 0-100%. The brightness is
measured in Lux, and the voltage varies between 2 to -3 volts.
The total readings in the dataset for temperature are 1048574,
and for humidity is 104845. This simulation runs at each SN
for five days to evaluate the performance of data prediction
algorithms in humidity and temperature only. Linear interpo-
lation is used to fill the missing values at different epochs.

C. PROFICIENCY METRIC
The proficiency of CDPM is evaluated by performing exhaus-
tive experiments on the IBRL dataset and the following met-
rics are defined for them. Moreover, according to [27], [32],
data transmission is the major issue for the energy depletion
of such a network. Therefore, in the proposed CDPM model
the energy consumption metric is estimated based on the
number of data transmitted from SNs to the BS.

1) TRANSMISSION SUPPRESSION
It is the estimate of the ratio of the transmitted data by using
any data prediction model with the actual sensed data without
implementing any data prediction method.

TS% =
(
Transmitteddatabyusingpredictionalgorithm

actualsenseddata

)
×100 (17)

2) ENERGY CONSUMPTION
The amount of energy consumed in a WSN is directly pro-
portional to the number of radio communications carried out

TABLE 3. Simulation parameter.

by the SNs. Reduced data delivered to the BS would con-
siderably boost WSN lifespan. The greater the transmission
suppression, the less data is transferred and the less energy
spent. The energy model of this work is explained in detail
in Section VI.

3) DATA QUALITY
Data quality is a critical element in defining excellence in
the WSN. We have already expressed Root Mean Squared
Error (RMSE) as a way to lessen the error of data sensed by
any SN (RMSE).

RMSE =

√√√√ 1
N

N∑
i=1

(AE i)
2 (18)

where AE i = SRi − ŜRi, SRi is the senses reading of ith SN
and ŜRi is the predicted values of that SN.

4) LATENCY
The latency is the measure of the delay. In WSN, it is defined
as the time taken by the data to transmit data from the SN and
reach the BS. It has a key impact on the performance of any
network.

5) ALGORITHMIC COMPLEXITY
An algorithm’s complexity is defined as how the algorithm
performs in different conditions. It is expressed numerically
as a function of T (n) time versus n input size [37]. Here
we have estimated the algorithm’s efficiency asymptotically.
T (n) time will be measured as the number of required
‘‘steps,’’ given that each such step takes constant time.

VIII. RESULTS AND ANALYSIS
In this section, we present the simulation setup and
performance metrics for the evaluation Combinational
Data-Prediction Model (CDPM) in terms of transmission
suppression, energy consumption, latency, data quality, and
algorithmic complexity. The performance of CDPM is also
compared with P-PDA [18], HLMS [19], and ELR [25]
algorithms.

A. COMPARISON OF TRANSMISSION SUPPRESSION %
For experiments, CDPM, P-PDA, HLMS, and ELR algo-
rithms are deployed to gather data for ten rounds of
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TABLE 4. Transmission suppression % of average temperatures and average humidity of SNs.

communication. Each round has a varying threshold ε from
0.0 to 0.5 with a step function of 0.5. We determine the trans-
mission suppression (TS%) of four algorithms for average
temperatures and average humidity of SNs as presented in
Section VII in Equation (17). The larger the TS% will be, the
fewer data will be transmitted and less energy will be con-
sumed. The TS%of four algorithms for IBRL data for average
temperatures and average humidity of SNs are visualized in
Figures 1 and 2 respectively and are illustrated in Table 4.
The Parameter settings of CDPM will be delayc is set to be
600 seconds. Since1t of the IBRL dataset is 31 seconds and
dc is set to be 20. The TS% of CDPM is always higher than
the TS% of P-PDA, HLMS, and ELR algorithms at any value
of threshold in any round of communication. Furthermore,
CDPM can guarantee that the TS% is always less than 100%
which means that the additional transmissions are avoided.
The network scales in IBRL applications are small enough
that each SN can directly transfer data to the BS. Although,
the default TCP packet size in NS2 is 12 packets which is
a bottleneck in data transmission and scaling in such WSN
applications. Thus, conferring to the message format of NS2,
the message size of P-PDA, HLMS, and ELR algorithms are
set to be 12 bytes each and for CDPM it is set to 10 bytes.

B. COMPARISON OF ENERGY CONSUMPTION
Most data prediction methods deliver reduced data trans-
mission, so we also compare the energy consumption of
CDPM with P-PDA, HLMS, and ELR algorithms. CDPM
along with these three algorithms is deployed to gather data
for ten rounds of communication where each round has a
varying threshold ε from 0.0 to 0.5 with a step function
of 0.5. We determine the energy consumption based on the
energy model for both average temperatures and average
humidity of SNs as described in section VI. The energy
consumption of four algorithms for IBRL data for average
temperatures and average humidity of SNs are illustrated in
Table 5. The Parameter settings of CDPM will be delayc

FIGURE 1. Transmission Suppression % (for Temperature) of CDPM,
HLMS, ELR, and P-PDA while the threshold varies (0.05 to 0.50). TS% of
CDPM is always high.

FIGURE 2. Transmission Suppression % (for Humidity) of CDPM, HLMS,
ELR, and P-PDA while the threshold varies (0.05 to 0.50). TS% of CDPM is
always high.

is set to be 10 minutes. Since 1t of the IBRL dataset is
31 seconds and dc is set to be 20. It is observed that the
energy consumption of CDPM is always higher than the
energy consumption of P-PDA, HLMS, and ELR algorithms
at any value of threshold in any round of communication.
In IBRL applications, the network scales are small enough for
every SN to transmit the data to the BS directly. The energy
consumption of each SN for sending one-byte data is set to
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TABLE 5. Energy efficiency of average temperatures and average humidity of SNs.

FIGURE 3. Energy consumption (for Temperature) of CDPM, HLMS, ELR,
and P-PDA while the threshold varies (0.05 to 0.50). The energy
consumption of CDPM is always low.

FIGURE 4. Energy consumption (for humidity) of CDPM, HLMS, ELR, and
P-PDA while the threshold varies (0.05 to 0.50). The energy consumption
of CDPM is always low.

be 0.0144mJ and for receiving one-byte data is 0.0057mJ
[38]. The cumulative energy consumption of algorithms after
every round of communication for temperature and humid-
ity are presented in Figures 3 and 4 respectively which
illustrates that CDPM’s energy consumption is much lower
than other algorithms. These experiments have demonstrated
that CDPM has greater data suppression rates and is more
energy-efficient.

FIGURE 5. MSE (for Temperature) of CDPM, HLMS, ELR, and P-PDA while
the threshold varies (0.05 to 0.50). Data Accuracy of CDPM is always high.

FIGURE 6. MSE (for Humidity) of CDPM, HLMS, ELR, and P-PDA while the
threshold varies (0.05 to 0.50). Data Accuracy of CDPM is always high.

C. COMPARISON OF DATA QUALITY
The preceding experiments demonstrate that CDPM has
greater energy efficiency and data suppression rates. There-
fore, we also conduct experiments on the data quality by
estimating the RMSE value as described in Section VII in
Equation (18). For experiments, CDPM, P-PDA, HLMS, and
ELR algorithms are deployed to gather data for ten rounds
of communication where each round has a varying threshold
ε from 0.0 to 0.5 with a step function of 0.5. The lower the
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TABLE 6. Energy efficiency of average temperatures and average humidity of SNs.

FIGURE 7. Latency caused by training in the IBRL dataset.

RMSE score, the more accurate the predicted data will be.
The RMSE of four algorithms for IBRL data for average
temperatures and average humidity of SNs are illustrated in
Table 6. The Parameter settings of CDPMwill be delayc is set
to be 600 seconds and dc is set to be 20. It has been observed
from Figures 5 and 6 that the RMSE of all four algorithms
for temperature and humidity are low while the threshold
varies (0.05 to 0.50) and thus provides high data accuracy.
Although the Data Accuracy of CDPM is always higher as it
has the lowest RMSE value for all thresholds. Thus, CDPM
provides higher data suppression rates and energy efficiency
while guaranteeing high data accuracy.

D. COMPARISON OF LATENCY
Two groups of experimentations are performed on IBRL data
to determine the efficiency of CDPM in terms of latency.
In the first set of experiments, ε varies from 0.05 to 0.5,
and delayc is set to be 600 seconds. While in other sets of
experiments, delayc varies from 60− 600 seconds and the ε
is set to be 0.5. Figures 7 and 8 illustrate that the maximum
delay created by CDPM’s training is always inside the upper
bound, while the mean value is much lower. These results
indicate that if a WSN application collects data via CDPM,
the delay caused by training is reasonable.

FIGURE 8. CDPM’s latency is strictly within the upper bound.

E. ALGORITHMIC COMPLEXITY OF CDPM
It is generally supposed that the greater the algorithm’s com-
plexity, the improved will be its performance. However, the
algorithmic complexity of CDPM’s training phase is low. The
worst-case complexity when only one reading is sensed will
beO (db), which is easy to handle for SNs. After the model is
trained, it is then updated and forwarded to the BS; and later
the trainedmodel will be used for data prediction. Then, every
predicted value will be compared with a newly sensed value
to determine AE . In case AE exceeds ε, Algorithm-1 will
be iteratively called to retrain the model and the latest data
prediction model will be updated. The Algorithm-2 for Data
Prediction&Regeneration phase has a linear time complexity
of O(m). When no model adjustment is required, only one
addition operation is required to predict the data value. When
an adjustment is required,m number of additions are required.
Hence, the proposed CDPM model has O (db) for the model
training phase and has a constant complexity of the order
O (m) for the data prediction and regeneration phase.

IX. CONCLUSION
This work presents a Combinational model for data predic-
tion (CDPM) that can build prior data to control delays as well
as predict future data to reduce excessive data transmission.
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To eliminate unnecessary data transmission and to control
delays, the proposed model is trained using an optimum
current data value and then used to reconstruct previous
values as well as anticipate future data. Two techniques
are used to implement this paradigm in real-world WSN
applications. The first technique generates step-by-step ideal
models for SNs to prevent large concurrent computations
and increase the model’s feasibility. The other predicts and
regenerates data readings of the sensed data is proposed
for the BS. To evaluate the performance of our proposed
CDPM data-prediction method, a WSN-based real applica-
tion is simulated using a real data set. The performance
of CDPM is also compared with ELR, P-PDA, and HLMS
algorithms. The results demonstrated that the proposedmodel
provides excellent proficiency in terms of reduced data
suppression and data transmission, and improved energy
efficiency as compared to the state-of-art algorithms. The
delay caused by CDPM training is also controllable in data
collection.

As future work, several improvements could be made to
this work. To begin, we propose implementing the effect of
transmission reduction in the real world by conducting exper-
iments in a variety of application-based scenarios. Second,
the reduction in data transmission affects bandwidth, energy
consumption, latency, and data quality in WSNs. The impact
of such methods determines the key performance indicators
of one’s interest in IoT applications. Third, the CDPMmodel
can be used to influence other network protocols at different
network layers, and thus it is critical to investigate the impact
of these schemes on the various network layers.
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