Expert Systems With Applications 140 (2020) 112916

Expert Systems With Applications

Expert
Systems g
with
Applications g%

Contents lists available at ScienceDirect

Eatorin-Chiet
Bivhan

journal homepage: www.elsevier.com/locate/eswa

Text-line extraction from handwritten document images using GAN n

Soumyadeep Kundu?, Sayantan Paul?, Suman Kumar Bera®* Ajith Abraham <,

Ram Sarkar?

Check for
updates

3 Computer Science and Engineering Department, Jadavpur University, Kolkata, India
b Department of Computer Science, University of Pretoria, South Africa
¢ Scientific Network for Innovation and Research Excellence, Machine Intelligence Research Labs (MIR Labs), WA, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 17 March 2019

Revised 3 August 2019

Accepted 31 August 2019
Available online 2 September 2019

Keywords:

GAN

Deep Learning

Text-line extraction
Handwritten documents
HIT-MW dataset

ICDAR dataset

Text-line extraction (TLE) from unconstrained handwritten document images is still considered an open
research problem. Literature survey reveals that use of various rule-based methods is commonplace in
this regard. But these methods mostly fail when the document images have touching and/or multi-
skewed text lines or overlapping words/characters and non-uniform inter-line space. To encounter this
problem, in this paper, we have used a deep learning-based method. In doing so, we have, for the first
time in the literature, applied Generative Adversarial Networks (GANs) where we have considered TLE
as image-to-image translation task. We have used U-Net architecture for the Generator, and Patch GAN
architecture for the discriminator with different combinations of loss functions namely GAN loss, L1 loss
and L2 loss. Evaluation is done on two datasets: handwritten Chinese text dataset HIT-MW and ICDAR
2013 Handwritten Segmentation Contest dataset. After exhaustive experimentations, it has been observed
that U-Net architecture with combination of the said three losses not only produces impressive results
but also outperforms some state-of-the-art methods.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

We live in such an electronic era where the development of
information technology is really omnipresent in day-to-day life.
The rapid growth of electronic media thus emphasizes the digital
transcript of paper documents. There is an abundance of ethos in
the form of old manuscripts, texts and books that provide a lot
of information over the years. Such documents become unusable
while searching an information among thousands of documents.
Thus, a necessity arises to store the paper documents in machine
editable format for better storage and quick information retrieval.
The performance of a document analysis and recognition (DAR)
system depends on a series of stages like text non-text separation
(Bhowmik, Sarkar, Nasipuri, & Doermann, 2018), text-line or word
extraction (Malakar et al., 2012; Shi & Govindaraju, 2004) and
their skew and slant correction (Bera et al., 2017; Kar et al., 2019),
character and/or word recognition (Das, Singh, Bhowmik, Sarkar,
& Nasipuri, 2016) etc. This type of pre-processing becomes more
challenging for free-style handwritten documents in comparison
with printed documents. In this work, we focus only on TLE from
unconstrained handwritten document images. Text-line extraction
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(TLE) is thus an important part of the document image processing
and is used in the text conversion process to identify lines of
text for subsequent processing. Therefore, a large number of ap-
proaches to TLE have been published in the literature over the last
few decades but most of them suffer from the inward structure
of the documents pages which includes mainly the skewedness
of text-lines, uneven inter line space and word gaps and irregular
paragraph starting.

As the TLE in free-style environment is a challenging task, and
hence many researchers have put their best effort to come up with
some good solutions to this problem since few decades. It has
been seen that the conventional approaches like Hough transform,
projection profile, component grouping are not adequate for all
types of documents due to the simplicity of these methods. The
current trend in this regard, thus focuses on the learning-based
methods. The learning-based methods generally use Artificial
Intelligence (Al) in order to learn the significant features from a
given dataset. Deep learning discovers a rich feature set through
hierarchical models that actually learn probability distribution
from the data encountered in particular applications. Applying a
deep learning-based approach for TLE thus allows the model to
learn the required features of its own, and with this we would
intend to explore the task of TLE in a whole new perspective
previously undiscovered. In this context, we use Generative Ad-
versarial Network (GAN) (Goodfellow et al., 2014) to visualize


https://doi.org/10.1016/j.eswa.2019.112916
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.112916&domain=pdf
mailto:berasuman007@gmail.com
mailto:ajith.abraham@ieee.org
https://doi.org/10.1016/j.eswa.2019.112916

2 S. Kundu, S. Paul and S. Kumar Bera et al./Expert Systems With Applications 140 (2020) 112916

the problem of TLE in a different dimension, i.e. as a generative
modeling problem. We frame TLE as an image-to-image translation
task, where the model can impose the text-line separators in an
input handwritten document to produce the desired output.

Multiple problems in image processing, computer vision and
computer graphics have been about translating an input image
into a corresponding output image using various transformations
that include images, speech signals, or text data. In the recent
past, deep discriminative models (Krizhevsky, Sutskever, & Hinton,
2012) are formed that mainly focused on supervised learning and
mapped a feature-rich, sensory input to a class label. These are
mainly based on the back-propagation algorithm that propagates
information through the hidden layers, using piecewise linear
units, and generally have a well-behaved gradient. Deep genera-
tive models have much less prominence, as it encounters severe
problems of approximating many incomprehensible probabilistic
computations that are generally found in maximum likelihood and
similar strategies, where leveraging the linear units to fit into a
generative context is extremely difficult.

GAN is now considered as one of the predominant models
to learn generative model from complex real-world data. GANs
generally use a generator to synthesize some semantically mean-
ingful data matrices from some random signal distributions, and a
discriminator to separate between the real and fake distributions.
The generator is pitted against the adversary, the discriminator
where each tries to out-do each another, and thus the generator
model improves enough to mimic indistinguishable real data
sample and the discriminator develops a keen eye on segregating
the data generated by the generator and the real data samples.
Generally, the training procedure continues till the generator
wins the adversarial game, i.e. the discriminator is completely
outperformed and has to make random guesses whether an image
is real or fake. GAN has been successfully applied in many fields
as image editing (Isola, Zhu, Zhou, & Efros, 2017; Wang, Wang, Xu,
& Tao, 2017), image generation (Chen et al., 2016; Nguyen, Clune,
Bengio, Dosovitskiy, & Yosinski, 2017), video prediction (Liang, Lee,
Dai, & Xing, 2017) and multiple other tasks. The key contributions
of the work can be summarized as:

i. GAN based architecture is used for the first time to ex-
tract the text lines from unconstrained handwritten docu-
ment images.

ii. Two architectures of the generator namely U-Net and
Encoder-Decoder, and PatchGAN architecture for the dis-
criminator have been explored.

iii. Superiority of U-Net architecture over Encoder-Decoder
framework has been shown.

iv. Effect of three different kinds of loss functions - GAN loss,
L1 loss and L2 loss have been tested. Also a suitable merger
of the 3 losses have been shown which outperforms some
state-of-the-art methods.

v. Impressive outcomes are observed when the models have
been evaluated on two standard datasets, called HIT-MW
and ICDAR 2013 handwritten segmentation contest dataset.

The rest of the paper is organized as follows: The following
section briefly describes the existing methods related to TLE,
whereas Section 3 gives the overview of GANs and its variants.
Section 4 presents the proposed methodology, followed by exper-
imental results and discussion in Section 5. Finally, we conclude
the paper in Section 6, where we also mention the future scope.

2. Related works
Till date, a lot of works have been proposed in the literature for

TLE. In this section, we look at the brief history of TLE methods.
The existing TLE methods can be broadly classified into a few

categories - Hough transform based methods, projection profile
based methods, smearing based methods, grouping based methods
and learning based methods.

Hough transformation based methods are very powerful tech-
niques to hypothesize the text-lines (horizontal or skewed) where
most of the pixels are located in a document page. But the prob-
lem with this method is that, it is very time consuming when we
deal with large set of inputs. The subsequent researches in this
regard are thus focused on choosing the most relevant points for
the voting procedure of Hough transform. Likforman-Sulem, Han-
imyan, and Faure (1995) have used a hypothesis-validation strategy
in an iterative way till the end of extractions where a text-line
is imagined first depending on the best alignment of connected
components (CCs) in the Hough domain and then its validation is
tested using the contextual information in image domain. A nat-
ural learning algorithm based on the Hough transform is exploited
to extract handwritten text-lines by Pu, Shi, and others (1998),
where the Hough domain depends on the minima points of the
CCs. Louloudis, Gatos, Pratikakis, and Halatsis (2006) have used
a block-based Hough transform technique where the CC space is
split into three subsets and each of the CCs is split into equal
width and subsequently their Center Of Gravity (COG) helps in
voting for Hough domain.

Vertical projection profile is considered as the most easy way
(Shafait, Keysers, & Breuel, 2008; Shapiro, Gluhchev, & Sgurev,
1993) to extract text-lines from a document page with horizontal
lines each having sufficient words. But it cannot achieve satisfac-
tory results for multi-skewed and overlapping text-lines. To get
the more smoothen vertical profile curve, several algorithms are
designed by using different approaches like number of text pixels,
black-white transitions (Marti & Bunke, 2001) or CCs. Manmatha
and Srimal, 1999) have used Gaussian filter to smooth the curve
by eliminating the local maxima. In Wong, Casey and Wahl (1982),
the authors have partitioned the page into vertical column strips
so that the curved lines break up into nearly straight lines, and
then they have used vertical projection profile analysis. One of the
major parameters for this process is the width of partitioning.

Run-length smoothing algorithm (RLSA) (Wong et al., 1982)
is nothing but a smearing algorithm that actually fills up the
blank space horizontally between two consecutive black (text)
based on a certain threshold. Fuzzy RLSA proposed in Shi and
Govindaraju (2004) is an extension of RLSA, where each entry in
fuzzy run length matrix corresponds to the maximal extend of the
background along the horizontal direction. DUTH-ARLSA proposed
in Gatos, Antonacopoulos, and Stamatopoulos (2007) is based
on an adaptive RLSA (ARLSA) that sets an additional smoothing
constraint with respect to the geometrical properties of neigh-
boring CCs. Malakar et al. (2012) has used the concept of spiral
RLSA to detect the text lines in complex documents. Though the
above-mentioned smearing based algorithms provide good results
in most of the cases, but it fails in case of skewed text-lines.

In bottom up grouping strategy, the primitive components are
clustered based on the positional relationship in order to achieve
text-line alignments. In case of touching text-lines, choosing
neighbors and factual alignment of each component is a critical
issue. Some of these issues are taken care in Likforman-Sulem and
Faure (1994) by applying a perceptual grouping scheme in an
iterative way. Koo and Cho (2012) have considered it as a grouping
problem of CCs and developed a cost function to minimize the
fitting error of each text-line and the distances between two
text-lines to extract the text-lines from handwritten Chinese doc-
uments. This method fails while handling Indic script documents
containing text in cursive nature. In Ryu, Koo and Cho (2014),
the authors have modified the method, but still it suffers from
the merge of very close neighboring text-lines or a text-line with
few number of components. In spite of the various challenges,
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some novel advancements (Du, Pan, & Bui, 2009b,a), (Li, Zheng,
Doermann, & Jaeger, 2008), (Chen, Hong, & Chuang, 2012) have
provided impressive results for multi-script documents, even in
noisy environments but the computational complexity of the
methods remains high. Jamuna and Haribabu (2015) developed
the energy minimization framework to group the CCs where
they have used two classifiers; one for text pixels and another
one for non-text pixels. Basu, Chaudhuri, Kundu, Nasipuri, and
Basu, (2007) have used the hypothetical water flows, from both
left and right sides of the image frame where the stripes of
un-wetted areas identifies the text lines. This is extended in
piece-wise Water-flow technique by Sarkar et al. (2009).

The above-mentioned techniques are mostly rule based meth-
ods where they suffer from the inward structure of the documents
pages. This includes mainly the skewedness of text-lines, uneven
inter line space and word gaps and irregular paragraph starting.
Recently, the trend is shifting towards using learning based meth-
ods. In Renton, Chatelain, Adam, Kermorvant and Paquet (2018),
authors have proposed a method to segment text-lines based on
an X-height labeling to provide representation of the text-lines
and a Fully Convolutional Network (FCN) which is designed using
the concept of dilated convolutions. Observing the advantages of
learning based methods for different image processing work, in
this paper, we attempt to apply a deep learning based method to
solve the problem of TLE from handwritten document images. For
this we have used GAN based architectures - U-Net architecture
for generator and Patch GAN architecture for discriminator. We
have also used a combination of three different losses, namely
GAN loss, L1 loss and L2 loss.

The proposed text-line extraction method can be a useful
application towards betterment of a generalized DAR system
in many ways. Some of the important applications are briefly
mentioned hereafter. In developing a comprehensive OCR system
which can be applicable even if the input image is noisy, skewed,
degraded and moreover for a multi-language environment. Our
TLE method may also be a crucial part for the subsequent stages
in a DAR system like de-warping, perspective distortion correction,
word recognition, word spotting, script recognition and in general,
recognition and indexing. In addition to these, it can be applied for
any complex documents in free style environment like touching
texts and overlapping texts or in case of sparse documents. Most
importantly it can be useful for those complex images where the
general rule based methods may fail to extract the text-lines.

3. GAN and its variants

In this section, we look at the basic GAN and its variants that
are dedicated to removing training instability and improving the
generative performance of the model. GAN provides an outstand-
ing framework for learning generative models, which encapsulates
probability distribution over predetermined real-world data. Model
is easily trained by updating the generator and discriminator
sub-networks using backpropagation algorithm which also results
in better outcome in various generative tasks compared to other
models.

In the GAN architecture, we have a generator G and discrimina-
tor D, which are trained in an adversarial manner as the generator
is trained to generate realistic images from noise input z, and the
discriminator is to differentiate between the real images x and
those produced by the generator G(x). Using the feedback from
the D, generator and discriminator losses are calculated and
G learns to replicate real valued data. GAN, first proposed in
Goodfellow et al. (2014), is basically a 2-player minimax game
between G and D. G and D (use equation editor consistently) are
two neural networks competing against each other in order to
improve itself and the solution is a Nash Equilibrium.

Given some random noise, the data are assumed to be gener-
ated by a deterministic function of that noise. We can represent
the generative process as z ~ pg(z), X ~ G(z), where z is some ran-
dom noisy sample, and pg(z) denotes the distribution of z. G is ac-
tually a neural network which takes the sample z as input and pro-
duces data X. GANs are motivated to use likelihood free algorithms
(Marin, Pudlo, Robert, & Ryder, 2012), methods which assume that
one can only sample from the model. Likelihood-free algorithms
are based on the idea of learning from comparison (Gretton, Borg-
wardt, Rasch, Schélkopf, & Smola, 2012; Rubin, 1984), by analyzing
differences between the generated samples from the model and
those from the true data distribution, i.e. real-world samples. D is
used to distinguish between the generated sample G(z) ~ pg(G(2))
and the true data sample x ~ pgqq(X). So, D takes data x as input
(either generated samples from the model or data points from
the dataset), and it calculates the probability that x came from
the true data. The minimax objective, i.e. the value function as
described in Goodfellow et al. (2014) is mentioned in Eq. (1).

mGin mngprdam[logD(x)] + E;-p,[log(1 — D(G(2))] (1)

This optimization problem is bi-level; it requires a minima
solution with respect to generative parameters and a maxima so-
lution with respect to discriminative parameters. This is addressed
by alternatively optimizing the generator and the discriminator.
The corresponding optimization goal for the discriminator and the
generator are given in Eqs. (2) and (3) respectively.

Max Ey-p,,, [10g D(X)] + Ez-p,[log(1 - D(G(2))] )

min E;.p,[log(1 - D(G(2))] (3)

When GAN was introduced in Goodfellow (2016), training
the generator was equivalent to minimizing the Jensen-Shannon
divergence between the generated distribution and the real data
distribution. But it easily resulted in a vanishing gradient prob-
lem. As, optimizing the minimax problem was difficult and often
unstable, the non-saturating heuristic objective function was in-
troduced in Goodfellow et al. (2014) (i.e. * — log D’ mechanism) to
replace the minimax objective function that was previously used
to penalize the generator. In Salimans et al. (2016), authors have
introduced network architectures (DCGAN) and proposed different
heuristic tricks as virtual batch normalization, one side smoothing,
feature matching, etc. to improve training accuracy. Least squares
GAN (Mao et al., 2016) has improved training accuracy by deploy-
ing different kinds of training accuracies which partly increased
training stability but still required a great deal of hyper parameter
optimization.

DCGAN (Radford, Metz, & Chintala, 2015) is one of most suc-
cessful network designs that was implemented based on GAN, and
this architecture is base for many recent architectures. The DCGAN
architecture consists of convolutional layers only and uses convo-
lutional strides for down sampling and also transposes convolution
in up sampling. Conditional GAN (cGAN) which was introduced
(Mirza & Osindero, 2014), was to act like a conditional model, as
both the generator and discriminator networks are conditioned
on some information y. For the generator, y is combined with
pz(z) to from hidden representations with some added flexibilities,
while in discriminator, it is directly fed along with the input x.
The resulting objective function of the minimax game as given in
Mirza and Osindero (2014) is shown in Eq. (4).

mGinmgx V(D, G) = Ex~py,[108 D(x|y)]

+ Ex~p,[log(1 — D(G(z|y))] (4)

Pix2Pix was first developed by Isola et al. (2017) for image-
to-image translation for paired images, whose model was based
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Fig. 1. (a) Input image, and (b) corresponding output image.

on cGAN, to learn the mapping between an input image and
an output image. Image-to-image translation is transforming an
image from one domain to an image in other domain, like black-
and-white images to color images, aerial to map, edges to photo,
day scene to night scene, etc.

This image-to-image translation is adopted in this paper to
perform TLE from handwritten documents. The qualities of the
input images, i.e. the handwritten documents are captured de
facto, like CCs and vertical projection by the proposed model and
an output image with separator lines is produced as the generated
output. The model self-learns important factors of text-lines such
as inter-line distance, handwriting patterns, continuity of text, and
the paragraph separations. The ultimate goal here is to make use
of the generative prowess of the GAN architecture and use it to
perform a script independent TLE method that can work on any
handwritten documents.

4. Proposed method

Acknowledging the dominance of deep learning based models
in the field of computer vision, here we explore GAN based models
to extract text-lines from handwritten document images. In this
paper, the problem of TLE is visualized as an image-to-image
translation task. Fig. 1 represents both the input image and its
corresponding target image. Process of generating target image is
described in Section 4.1. The task of TLE is described herewith
as an image-to-image translation task where the model needs to
learn the mapping of the red separator lines in the output image,
given an input image. A red separator line separates two text-lines
from one another accurately. The GAN architecture used for the
present work is shown in Fig. 2.

4.1. Architectures used

Our model is inspired from the Pix2Pix model for paired
image-to-image translation (Isola et al., 2017). The Pix2Pix model
is based on cGAN (Mirza & Osindero, 2014). It contains two net-
works - the generator and the discriminator. Theoretically, in the
said paper, translation is stated between two domains of images
if they maintain the similar structure. Here, the input and output
images have exactly the same structure with the addition of the
separator lines. L1 loss along with the normal GAN losses are
considered in the Pix2Pix model in Isola et al. (2017), where, L1

Input/output
paired database

| Input I

Generator Discriminator
G D
: 3

| Noise I Il Loss I

Fig. 2. Basic GAN architecture.

loss prevents GAN from producing completely new results, as the
output image is related with the input image, while, the GAN loss
accounts for accurate, non-blurry translation of the image.

L11(G) = Exy. [l (v — G(x. 2)) l4] (3)

In this paper, we have explored the Encoder-Decoder archi-
tecture and the U-Net architecture, as an improvement over the
former architecture, for the generator. In the Encoder-Decoder
architecture, the generator takes an input and tries to reduce it
with a series of encoders, which encode into a smaller represen-
tation and the decode layers reverse the action of the encoder
layers, to get the output. The encode layers contain convolution
layers, whereas the decode layers contain deconvolution layers.
The U-Net is an Encoder-Decoder architecture with skip connec-
tions. The outputs from the encoder are concatenated with their
mirrored counterparts in the decoder. These skip connections
when included, prevent network to be bottlenecked. The skip
connections also give the network an option of bypassing the
encoding/decoding part decisively.

The discriminator architecture is a Deep CNN (DCNN) network
applying the concept of PatchGAN, i.e. the scores of the Discrimi-
nator is calculated in patches of the output image and an average
of the scores is considered as the final output. This ensures
the image has a higher and uniform resolution. The generator
architectures are shown in Figs. 3 and 4, and the discriminator
architecture is shown in Fig. 5.
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Fig. 5. Architecture of the discriminator.

As shown in Fig. 3, the Encoder-Decoder architecture takes
an input image of size 256 x 256 x 3. The value 3 resembles the
three-color channels of an image i.e. red, green and blue. Af-
ter a series of encode layers (convolution, batch normalization,
ReLU), the model gives a representation of the image in the form
of a vector of size 1x1x512. This vector is fed into the de-
coder framework which applies a series of decode layers (de-
convolution, batch normalization, ReLU), and finally the decoder
framework outputs a generated image of the same size as that
of the input image i.e. 256 x 256 x 3. Also, the first and the
last layers in the Encoder-Decoder framework do not have the
batch normalization, and dropout (Srivastava, Hinton, Krizhevsky,
Sutskever, & Salakhutdinov, 2014) has been used in the middle
layers in both the encoder and decoder frameworks to prevent
overfitting.

The U-Net architecture used in our model is shown in Fig. 4.
The skip connections connect the encode layers to the decode lay-
ers and are shown using arrows in Fig. 4. It helps the proper flow
of information across the bottleneck from the encoder to the de-
coder. Other details are same as that of the Encoder-Decoder archi-
tecture.

The discriminator architecture shown in Fig. 5 is actually a
DCNN containing 5 encode layers, i.e. 5 convolution layers. The
input to this architecture is an image (from the training set) and
its corresponding generated image. These two images are concate-
nated and then fed to the series of encode layers which produce an
output vector of size 30 x 30 x 1. This vector consists of Os and 1’s,
which represent whether the corresponding patch is fake or real
respectively. The average of all the values is considered to decide
the overall image as real or fake as in PatchGAN.
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Fig. 6. (a) Sample document page, (b) Text-lines are separated using the method (Saabni et al., 2014); over and under segmentation cases are represented by green and
purple ellipses respectively, (c) Accurately generated line separators after manually corrected error cases to prepare the corresponding GT image.

4.2. Objective

The objective function of cGAN can be expressed as
Eq. (6) where G tries to minimize the objective against an
adversarial D that tries to maximize it.

Legan (G, D) = Exyllog D(x, ¥)]+ Ex:[log(1 — D(x, G(x, 2))]. (6)

G* = arg mingmaxp Legan (G, D). (7)

Previous approaches have found it beneficial to mix the GAN
losses with some traditional losses such as L1 loss (Isola et al.,
2017). So, in this work, we apply L1 loss and L2 loss as two
additional losses apart from cGAN losses. L1-norm is also known
as least absolute deviations (LAD), least absolute errors (LAE).
L1-norm minimizes the sum of the absolute differences between
the target values and the estimated values. L2-norm is known
as least squares, and it minimizes the sum of the square of the
differences between the target values and the estimated values.
The discriminator’s task remains the same, whereas the genera-
tor’s task is not only to outwit the discriminator but also to stay
near the ground truth in L1 and L2 senses. The mathematical
representations for L1 and L2 losses are shown in Eq. (8) and
Eq. (9) respectively. The final objective function of the G can be
represented as shown in Eq. (10).

L11(G) = Exy. [l (y — G(x. 2)) |I1] (8)

Li12(G) = Exy. [l (y = G(x. 2)) I,] (9)

G* = argming maxp [ (€M yeighe * Lecan (G, D))
+ (Lweighe * (L11(G) +Li2(G)) ] (10)

where, ganyeigne and gy are the corresponding ratios in which
the GAN losses and the normalization losses are considered.

5. Experimental results and discussion

This section presents the dataset description and the perfor-
mance of our proposed method. The comparison with different
state-of-the-art methods is also followed subsequently. We have
experimented the GAN based architectures on several conditions.

5.1. Database and ground-truth (GT) preparation
Our proposed method has been tested on two benchmark

datasets. First one is the recent handwritten segmentation con-
test ICDAR 2013 Handwritten Segmentation Contest dataset

(Stamatopoulos, Gatos, Louloudis, Pal, & Alaei, 2013) and second
one is the HIT-MW dataset (Su, Zhang, & Guan, 2007), prepared by
Harbin Institute of Technology. The ICDAR 2013 dataset consists of
150 binary images written in English, Greek and Bangla languages
where each language contributes equal number of pages. The
HIT-MW is a handwritten Chinese text dataset that consists of 853
images containing Chinese handwritten documents, with 8664
text-lines. According to the database, the images are scanned at
300 dpi and were binarized using Otsu’s algorithm (Otsu, 2008)
and saved as bmp images without any compression. As our deep
learning based method requires paired images (e.g. original and
GT image) for the training of proposed model, we have used a
traditional method proposed by Saabni, Asi, and El-Sana (2014) for
generating the initial level line separators in a document page. The
failure cases of this method due to the irregular starting points of
text lines as well as uneven word gap, are handled manually. Such
a failure case and its corresponding correction are shown in Fig. 6.
The red lines throughout the document page correspond the line
separators between two consecutive text-lines.

5.2. Preparation of training and testing set

Our models are trained on Quadro M4000, with 16GB RAM
and 8GB GPU memory. The models are implemented in Python
and TensorFlow (Abadi et al., 2016) is used as the deep learning
framework. We have trained the models considering a batch
size of 1, learning rate of 0.002 using Adam optimizer with 0.5
momentum. In encode and decode layers, dropout has been used
with 0.5 probability. The models have been trained for 200 epochs.
We have used 3-fold cross validation scheme for each dataset to
evaluate our proposed method. In case of HIT-MW dataset, a total
of 568 handwritten document pages are considered for training
the model whereas for testing the model, we have taken 285 doc-
ument pages. Similarly, for ICDAR2013 Handwritten Segmentation
Contest dataset, a set of 100 and 50 document images (written in
three different languages) are taken as the training set and test set
respectively.

In our model, we have considered two hyper parameters - one
for the weightage of the cGAN loss and another for the weightage
of L1 or L2 loss, i.e. gan_weight and 1_weight respectively. The
performance of the system depends on these two parameters. We
have conducted a few experiments by considering only L1 loss and
cGAN loss as shown in Table 1. Fig. 7 displays the sample results
of a particular image when evaluated with four combinations of
different losses. It is noticed that the optimal ratio between the
weightage of cGAN loss and L1 (or L2) loss is 1:100 and only
L1 loss has given the same output as the input image. So, some
weightage of cGAN loss is required. A ratio of 1:1 between cGAN
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Table 1

Different criteria of L1 loss and cGAN loss.

Only L1 loss considered.

Both L1 loss and cGAN loss given equal importance.
L1 loss and cGAN losses considered in the ratio of 10:1

I_weight  gan_weight  Loss
100 0

100 100

100 10

100 1

L1 loss and cGAN losses considered in the ratio of 100:1
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Fig. 7. Resultant images by varying the hyper parameters for a sample image taken from HIT-MW dataset.

weightage and L1 weightage has resulted in an image having
various color formation in an anomalous way, and a ratio of 1:10
has given relatively less color formation, but the red marks could
be seen to distinguish the text-lines in spite of the image being
unclear due to various other colors.

5.3. Why U-Net architectures?

We have implemented the Encoder-Decoder architecture
against the U-Net architecture for comparison, and shown that
U-Net architecture is an improvement over the Encoder-Decoder
architecture. Some results are shown in Fig. 8, which show the
outputs of the Encoder-Decoder and the U-Net architectures when
cGAN, L1 and L2 losses are considered.

It is noticed in Fig. 8 that the Encoder-Decoder architecture
does not work well for the task of TLE. Using Encoder-Decoder
architecture, the L1+cGAN model seems to diverge as it produces
exactly straight lines in a similar pattern. The L24+-cGAN model is

not able to get the exact mapping between the images; it also
produces straight lines, but still the straight lines are dependent
on the white spaces in the image. For the L1+L2+cGAN model, the
representation is better than the previous two loss functions but
still the model could not learn the mapping accurately. In U-Net
architecture, skip connections have been used for the proper flow
of information across the bottleneck of the GAN architecture. Be-
cause of this, the decoder output generates a better representation
of the translated image. The U-Net architecture performs better
than the Encoder-Decoder framework in the domain of the TLE
and has been thus used in this paper.

5.4. Results

We have implemented two GAN based architectures namely
Encoder-Decoder and U-Net, using a combination of three differ-
ent losses, i.e. cGAN loss, L1 loss and L2 loss. We have imple-
mented the U-Net architecture as the generator architecture and
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Fig. 8. Results of Encoder-Decoder and U-Net architectures for three sample images and different losses. (a-c) Results of Encoder-Decoder architecture, and (d-f) Results of
U-Net architecture.
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Fig. 9. Examples showing the results for various combination of losses (using U-Net architecture).

considered a PatchGAN in the discriminator architecture with a
patch size of 70 x 70. We have considered three different combi-
nations of the three losses to evaluate our system - cGAN + L1,
¢GAN +L2 and cGAN +L1 +L2. By illustrating some output images
in Fig. 9, we show the performance of the model for each of the
three combinations of losses. Also, the variation of the losses dur-

ing the training period can be visualized with the help of the
graphs shown in Fig. 10.

We have compared our method with other methods over
the two said databases. The results are shown in Tables 2 and
3 (for HIT-MW and ICDAR databases respectively). The detec-
tion rate (DR), recognition accuracy (RA)and error rate (ER)and
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Fig. 10. Graphs showing the variation of losses during training (using U-Net architecture).

F-measure (FM) are defined as

Fig. 10 interprets that in case of L1+L2+cGAN losses, the
training becomes quite accurate, as we can see from the nature

020 020 2DR -RA of the graphs. We also see that how L1 loss and L2 loss decrease

DR = N RA = ™ ER=1-RA, FM = DR+ RA (15) gradually over time, thus making the system stable, and producing
accurate image translation.

where 020 is one-to-one mapping, M and N are the number of The results provided in Table II and Table IIl imply that our

text-lines in detected resultant and GT images respectively.

method achieves highest accuracy for the said datasets. So, we can
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Table 2
Experimental results on HIT-MW dataset (using U-Net architecture).
Methods # Images DR (%) RA (%) ER (%) FM (%)
Energy Minimization Framework (Koo & Cho, 2012) 853 99.52 99.68 0.32 99.59
Distance Metric Learning (Yin & Liu, 2009) 803 98.02 97.53 2.47 97.77
Mumford-Shah model (Du et al., 2009b) 853 95.92 96.86 3.14 96.38
MST Clustering with Learned Metric (Yin & Liu, 2007) 803 95.02 - - -
Modified Piece-wise Projection (Pal & Datta, 2003) 803 92.07 92.28 7.72 92.17
Docstrum Method (O’Gorman, 2009) 803 65.38 55.62 44.38 60.10
Proposed cGAN+L1 Fold#1 98.89 99.57 0.43 99.22
Fold#2 99.19 99.60 0.40 99.39
Fold#3 99.43 99.69 0.31 99.55
Average 99.17 99.62 0.38 99.38
cGAN+L2 Fold#1 98.92 99.48 0.52 99.19
Fold#2 99.32 99.51 0.49 99.41
Fold#3 98.64 99.72 0.28 99.17
Average 98.96 99.57 0.43 99.25
CGAN+L1+L2 Fold#1 99.59 99.61 0.39 99.59
Fold#2 99.61 99.72 0.28 99.66
Fold#3 99.57 99.74 0.26 99.65
Average 99.59 99.69 0.31 99.63
Table 3
Experimental results on ICDAR 2013 Handwritten Segmentation Contest dataset (using U-net architecture).
Methods # Images DR (%) RA(%) ER(%) FM (%)
TEI(SoA) 150 97.77 96.82 3.18 97.30
CUBS 97.96 96.94 3.06 97.45
GOLESTAN 98.23 98.34 1.66 98.28
NUS 98.34 98.49 1.51 98.41
INMC 98.68 98.64 1.36 98.66
Proposed cGAN+L1 Fold#1 98.32 97.56 2.44 97.93
Fold#2 97.89 98.47 1.53 98.17
Fold#3 98.52 98.49 1.51 98.50
Average 98.24 98.27 1.73 98.20
cGAN-+L2 Fold#1 98.45 97.53 2.47 97.98
Fold#2 97.88 98.29 1.71 98.08
Fold#3 98.48 98.57 1.43 98.52
Average 98.27 98.19 1.81 98.19
cGAN-+L1+L2 Fold#1 98.65 98.65 135 98.65
Fold#2 98.70 98.66 1.34 98.67
Fold#3 98.72 98.69 1.31 98.70
Average 98.69 98.66 134 98.67
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Fig. 11. Output of our TLE method on three sample images taken from ICDAR 2013 handwritten competition dataset. (a) Greek document, (b) Bangla document, and (c)

English document. Overlapping and touching components are shown in circles.

conclude that GAN based architecture (using U-Net architecture)
performs quite well for the task of TLE, posed as an image-
to-image translation problem. The outputs of the three sample
images from ICDAR 2013 handwritten segmentation competition
dataset are displayed in Fig. 11. We have used three samples
having touching lines and overlapping characters. The outputs are
very promising to prove the robustness of our model.

6. Conclusion and future work

GANs have been a proven deep learning architecture to learn

probability distributions and mimic the same including all genera-
tive tasks. In this paper, we have explored GAN based architectures
for TLE from handwritten document images that have been shown
to outperform some state-of-the-art TLE methods when we have
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evaluated the same on the HIT-MW dataset and ICDAR 2013
Handwritten Segmentation Contest dataset. We have achieved a
maximum accuracy of 99.63% F-measure in HIT-MW dataset and
98.67% F-measure in ICDAR dataset on 3-fold cross validation over
entire datasets. Extensive testing has been performed on how the
behavior of the L1 and L2 loss functions in the current domain
correlates to improving the performance of the model along with
the preconceived cGAN loss. The tested GAN model is particularly
sensitive to input hyper parameters and a thorough study of the
same using the U-Net architecture has been carried out. U-Net
architecture is shown to perform better than the Encoder-Decoder
architecture on the same loss functions due to the presence of skip
connections in the former. In the future, we can use this model to
explore other datasets on TLE, and develop a loss function specific
to the domain of TLE rather than generalized loss functions.
We also plan to extend these GAN based architectures to other
domains of DAR as it remains vastly unexplored and GANs show
excellent promises to better understandings and approaches to
these unexplored domains.
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