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Abstract
This paper proposes a hybrid version of the Salp Swarm Algorithm (SSA) and the hill climbing (HC) technique using various 
selection schemes to solve engineering design problems. The proposed algorithm consists of two stages. In the first stage, the 
basic SSA is hybridized with HC local search to improve its exploitation capabilities; we refer to the hybridized algorithm as 
HSSA. In the second stage, a selection scheme is applied to enhance the exploration capabilities of the hybrid SSA. Six popular 
selection schemes were investigated, and the proportional selection scheme was selected as it yielded the best performance. We 
refer to the hybridized SSA along with the proportional selection scheme as PHSSA. To validate the performance of the proposed 
algorithms, a series of experiments were conducted using thirty benchmark functions and four engineering design problems. The 
investigations using benchmark functions revealed that HSSA overcame the weaknesses of the local search in the basic SSA. 
Moreover, PHSSA enhanced performance by providing an appropriate balance between exploration and exploitation as well as 
maintaining the diversity of the solutions and avoiding premature convergence. Finally, PHSSA produced results on engineer-
ing design problems that were at least comparable and in many cases superior to SSA and similar algorithms in the literature.

Keywords Salp Swarm Algorithm · Hill climbing · Selection schemes · Hybridization · Meta-heuristic algorithms · 
Optimization problems

1 Introduction

Optimization problems have garnered increased attention in 
the last years because of their different and complex nature; 
these problems have been observed in several areas such 
as computer science and engineering applications and even 

in finance applications and decision-making [1, 2]. Numer-
ous various meta-heuristic optimization algorithms (MOAs) 
have been introduced in the literature and employed to solve 
different kinds of problems (i.e., optimization and real-world 
problems). MOAs are designated by their nature and charac-
terized by their capability in solving optimization problems 
at low computational costs [3]. In the real-world applica-
tions, decision-makers seek for intelligent methods that can 
support their necessary works by providing optimal deci-
sions. Usually, any optimization problem requires optimal 
decision-making to be done efficiently by either determining 
the minimum cost value or even determining the maximum 
profit ratio [4].

MOAs are common techniques that tackle various kinds 
of optimization problems. They can transact with any opti-
mization problems using several learning parameters based 
on the natural selection methods controlled by special coef-
ficients to explore a wide-search space (global search) and to 
exploit an intensive-search space (local search) [5]. Based on 
these facts, many stochastic search methods such as Markov 
chains, swap mutation, differential evolution, Gaussian ran-
dom number, levy flights, hill-climbing, and other different 
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algorithms components have been engaged in a new version 
of the MOA to enhance its performance. MOAs are grouped 
into Evolutionary-Based Optimization Algorithms (EAs), 
Swarm-Based Optimization Algorithms (SAs), and Trajec-
tory-Based Optimization Algorithms (TAs) [6]. There are 
several new swarm-intelligence-based MOAs in the domain 
such as, but not limited to, Salp Swarm Algorithm (SSA) [7], 
Ant Lion Optimizer [8], Moth-Flame Optimization Algo-
rithm [9], and Sine Cosine Algorithm (SCA) [10].

SSA is a novel swarm optimization algorithm introduced 
in 2017 for solving several optimization problems with a 
single objective and multiple objectives [7]. The main moti-
vation of SSA is the swarming habits of salps while traveling 
and looking for supplies in oceans. This algorithm is experi-
mented on various mathematical optimization functions to 
prove their effective behaviors in determining the optimal 
solution for optimization problems. Yıldız and Yıldız [11] 
introduced several MOAs including SSA to address shape 
problems in the automotive industry. Abbassi et al. [12] 
introduced an efficient method based on SSA for extract-
ing the parameters of the electrical comparable line of PV 
cell-based double-diode design. Qais et al. [13] introduced 
a novel modification of the SSA tested by several common 
benchmark functions to validate its performance.

Singh et al. [14] proposed a new hybrid method based on 
using the Salp Swarm Algorithm with Sine Cosine Algo-
rithm, called HSSASCA. The proposed method is found to 
improve the convergence execution with the exploration and 
exploitation of search strategies. In the proposed method 
(HSSASCA), the position of SSA in the available search 
space is renewed utilizing the position locations of SCA; 
therefore, the optimal solutions are taken based on the sine 
or cosine use. Rizk-Allah et al. [15] introduced a new ver-
sion of the SSA based on a modified Arctan transformation. 
This version has two characteristics regarding the transfer 
function, namely multiplicity and mobility. By this version, 
the exploration and exploitation abilities are improved. The 
proposed algorithm acquired better performance compared 
with variants of transfer functions for determining global 
optimization problems. Kaur et al. [16] introduced a new 
multi-objective optimization method based on using Spot-
ted Hyena Optimizer (MOSHO) and Salp Swarm Algorithm 
(SSA), called HMOSHSSA. The proposed algorithm used 
the exploration ability of the basic MOSHO to examine the 
available search space thoroughly, and the follower selection 
approach of the basic SSA is used to obtain the global best 
solution, which can make the convergence faster. Twenty-
four benchmark test functions are utilized to evaluate the 
performance of the proposed HMOSHSSA. The obtained 
results are compared to the other seven multi-objective algo-
rithms. The results proved that the proposed HMOSHSSA 
acquires promising results and beats other methods. Moreo-
ver, the results showed that the performance of proposed 

HMOSHSSA toward addressing real-life multi-objective 
optimization problems is better than similar competitor 
methods.

In the literature, most MOAs stuck in local exploration 
and suffer from slow convergence speed [17, 18]. Abualigah 
et al. [19, 20] introduced a novel hybrid clustering method 
based on multi-objective Krill Herd Algorithm with a local 
search to address the clustering problem. As well, in [21] 
introduced hybrid Krill Herd Algorithm with the k-means 
clustering. Several different datasets taken from the Labo-
ratory of Computational Intelligence are used to evaluate 
the production of the proposed algorithms. The obtained 
results revealed that the proposed methods in both studies 
acquired better performance compared with other optimiza-
tion methods. Bairathi and Gopalani [22] introduced a new 
enhanced method using opposition-based SSA. To enhance 
the achievement of SSA, opposition-based learning is pro-
posed in SSA. The introduced algorithm is assessed on 
various numerical functions and is compared with similar 
optimization algorithms. Moghdani et al. [23] proposed a 
modified algorithm based on using volleyball premier league 
(VPL) and Sine Cosine Algorithm (SCA), called VPLSCA. 
The SCA operators are incorporated into the general pro-
cedure of the VPL to take the advantages of both search 
paradigms and tackle the limitations of the conventional 
VPL algorithm. The twenty-five benchmark functions and 
three optimization problems are used to validate the per-
formance of the proposed algorithm. The obtained results 
demonstrated that the proposed VPLSCA achieved very rea-
sonable and promising outcomes compared to other similar 
methods published in the literature.

Several aspects make global optimization problems hard 
to solve: the area of the search regions increases exponen-
tially as dimensionality increases, which is the main problem 
that encountered the optimization methods [24]. However, 
there is no theory to determine which algorithms can gain 
the best performance; indeed, combined algorithms (i.e., 
hybridized, modified, etc.) enhance the performance of the 
basic algorithms [25]. SSA has shown superior performance 
for solving several problems with small or even medium 
dimensionality. However, two main weaknesses are recog-
nized in the performance trajectory of the basic version of 
the SSA: loss of the solutions’ diversity, which produces 
tenacious premature convergence and slow convergence 
manner. Because of these weaknesses, SSA requires fur-
ther refinements, to be modified or hybridized with other 
algorithms components or local search techniques, to avert 
the early convergence (premature) for enhancing its per-
formance. As a result, an improved method, using several 
promising selection schemes for the hybridization of SSA 
and hill-climbing (HC) search strategy called HSSA, is pro-
posed and investigated using global optimization problems.
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In this paper, the main contributions are summarized as 
follows:

• A new hybridization method using SSA and HC (HSSA) 
is developed to improve the exploitation search.

• Alternative selection methods in the hybrid SSA for 
global optimization problems are investigated to maintain 
the diversity of the solutions.

• The performance of the proposed algorithms is tested on 
several global optimization problems.

• Experimental results proved that the proposed HSSA 
with the proportional selection scheme robustly solved 
the problems and produced superior performance.

The rest of this paper is organized as follows: Sect.  2 
explains the optimization problem, SSA, HC, and selection 
schemes. Section 3 shows the general structure of the pro-
posed algorithm. Section 4 shows experimental results and 
discussions. Finally, conclusions and future directions are 
presented in Sect. 5.

2  Materials and methods

In this section, the optimization problem, SSA, HC, and 
selection schemes are explained in the following subsections.

2.1  Problem de!nition

Generally, there is a mathematical representation for any 
optimization problem, which is presented in the follow-
ing equations [26, 27]. This presentation can be utilized to 
form the most optimization problems in a general design as 
follows:

where S denotes the solution space; gi(x) and hk(x) denote the 
difference constraints and balance constraints. J denotes the 
number of difference constraints, K denotes the number of 
balance constraints, and [ Li , Ui ] denotes the lower ( Li ) and 
upper ( Ui ) boundaries of the i th variable.

If the problem presentation was without constraints (i.e., 
J = 0 and K = 0 ), then the optimization is supposed to be an 
unconstrained optimization problem, when J > 0 or K > 0 , 
the problem is supposed to be a constrained optimization 
problem.

(1)minf (x), where x = {1, 2,… , k} ∈ S

(2)subject to ∶ gi(x) > 0, j = (1, 2,… , J)

(3)hk(x) = 0, k = (1, 2,… ,K)

(4)Li ≤ xi ≤ Ui, i = (1, 2,… , n)

2.2  The conventional salp swam algorithm

This section presents the SSA and describes its main ele-
ments. It also includes explanations on the convergence, 
exploitation, and exploration of this algorithm.

2.2.1  Inspiration of SSA

Over 1.2 million species of marine organisms are already 
cataloged in a central database [28]. Most of these species 
have the same behaviors and features, such as communicat-
ing methods, locomotor performance, and looking for food. 
Salp is a kind of marine organism which belongs to the 
family of Salpidae. Its shape is highly similar to jellyfishes, 
cylindrical shape with openings at the end which pump 
water through their gelatinous bodies to move and feed by 
internal feeding filters. Figure 1a shows the shape of a salp.

As mentioned above, the marine organisms share some 
behavior such as swarming behavior, for example, the school 
of fish [29], while for salps it is called a salp chain (see Fig. 1b). 
Although their living environments are extremely difficult to 
access, the biological researchers believe that the reasons for 
their behavior is to help the salps achieve better locomotion 
and foraging.

2.2.2  The procedure of basic Salp Swarm Algorithm

Salp Swarm Algorithm (SSA) is a population-based optimi-
zation method proposed by Mirjalili et al. [7]. The behavior 
of the SSA can be explored by computing it to the salp chain 
searching for optimal food sources (i.e., the target of this 
swarm is a food source in the search space called F). In 
SSA, according to the individuals’ (i.e., salps) positions in 
the chain, they are divided into either leaders or followers. 

Fig. 1  a Individual salp, b swarm of salps (salps chain)
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The chain is started with a leader and the followers follow it 
to guide them in their movements [30].

Algorithm 1 shows the pseudocode of SSA, where it can 
be noted the simplicity of SSA and its similarity to other 
swarm intelligent algorithms. Where it starts by initializing 
the salp population, the swarm X of n salps is represented 
in Eq. (5) as two-dimensional matrix. Then, it calculates the 
fitness of each salp to determine the salp with the best fitness 
(i.e., leader). The leader position is updated using Eq. (6).

where the x1
i
 is the position of the first salp in the ith dimen-

sion, and yi is the food position in the ith dimension. lbi and 
ubi represent the lower bound and the upper bound of the ith 
dimension, and the coefficient r1 is calculated by Eq. (7), r2 , 
r3 are random numbers between [0,1].

where L is the maximum iterations, l is the current iteration. 
It is worth to mention that the coefficient r1 is very impor-
tant in SSA because it balances exploration and exploitation 
during the entire search process. Regarding the followers, 
Eq. (8) shows the update of their positions:

where j ≥ 2 , xj
i
 refers to the position of the jth salp in the ith 

dimension, !0 is an initial speed t is the time, ! =
"final
"0

 , where 
! =

x−x0

t
 . In Optimization, the time indicates the iteration. 

So, the discrepancy between iterations is equal to 1. Consid-
ering the assumption that !0 = 0 , the following equation is 
employed for this issue.

where j ≥ 2 . In case some salps move outside of the search 
space, Eq. (10) illustrates how to bring them back to the 
search space.

(5)Xi =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x1
1
x1
2
… x1

d

x2
1
x2
2
… x2

d

⋮ ⋮ …

xn
1
xn
2
… xn

d

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(6)x1
i
=

{
yi + r1((ubi − lbi)r2 + lbi) r3 ≥ 0

yi + r1((ubi − lbi)r2 + lbi) r3 < 0

(7)r1 = 2e
−
(

4l

L

)2

(8)x
j

i
=

1

2
!t2 + "0t

(9)x
j

i
=

1

2
(x

j

i
+ x

j−1

i
)

(10)x
j

i
=

⎧
⎪
⎨
⎪
⎩

lj if x
j

i
≤ lj

uj if x
j

i
≥ uj

x
j

i
otherwise

.

2.2.3  Exploration and exploitation in SSA

Exploration and exploitation, global search and local search, 
and diversification and intensification [31]. These word pair-
ings are very common in the optimization algorithms, and 
there is no algorithm that doesn’t contain at least one of 
these pairs [32]. In general, the exploration aims to discover 
the promising areas of the search landscape, prevent solu-
tions from stagnating in a local optimum, and maximize 
the probability of detecting the global optimum, while the 
exploitation aims to obtain even better solutions from good 
ones through discovering the neighborhood of each solu-
tion [32].

In SSA, the responsible parameter of balance between 
exploration and exploitation is called coefficient r1 which 
has been calculated in Eq. (7). However, SSA suffers from a 
problem in exploitation which leads to the slow convergence 
rate [33, 34].

2.3  Hill climbing: local search technique

The hill climbing (HC) technique, called local search, is 
the most simplistic form of local development methods. 
It begins with one random initial solution (x), iteratively 
proceeds by moving from the current solution to a better 
neighboring solution till it reaches a local optimum (i.e., 
the local optimal solution does not have a better neighboring 
solution, no improvement in fitness function). It only takes 
downhill progress where the fitness function of a neigh-
boring solution should be better than the current solution. 
Consequently, it can converge to the local optima fast and 
suddenly. However, it can quickly get stuck in local optima, 
which in most situations is not satisfactory. Algorithm 2 pre-
sents the pseudocode of the HC technique. After creating 
the first solution x and through the iterative improvement 
process, a group of neighboring solutions is created utiliz-
ing the procedure Improve(N(x)). This procedure seeks to 
discover the enhanced neighboring solution from the group 
of the neighbors utilizing any used acceptance rule such as 
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first improvement, best improvement, sidewalk, and random 
walk. But, all of these rules are stopped in local optima.

2.4  Selection schemes

In this section, the selection schemes that are described that 
used in this paper.

2.4.1  Tournament selection scheme

Tournament selection is among the most popular selection 
methods in Genetic Algorithms. It was initially proposed 
by Grefenstette and Baker [35]. Algorithm 3 shows the 
principle of tournament selection work, which starts from 
the random selection of t individuals from P(t) population 
and then proceeds to the selection of the best individual 
from tournament t. This procedure is repeated N times. 
The best choice is frequently between two individuals, 
and this scheme is called binary tournament, where the 
choice is between t individuals called tournament size 
[36]. In other words, the efficiency of tournament selec-
tion scheme based on the value of t. For instance, increas-
ing the value of t will increase the diversity which leads 
to an increase in the quality of the selected solution, and 
vice versa [37].

There are several merits of the tournament selection 
scheme. For instance, low susceptibility to a takeover by 
dominant individuals [38], it has efficient time complexity 
[39], and no requirement for fitness scaling or sorting [37].

2.4.2  Proportional selection scheme

The proportional selection scheme or so-called Roulette 
wheel has been proposed in [40]. In other words, each ele-
ment reserves a section in the roulette wheel, where the sec-
tion’s size is proportional with the element’s fitness. The 

mechanism of this method is choosing the probability based 
on the comparison between the fitness values of any solution 
and the fitness value of the stored solution in SSA. As shown 
in Algorithm 4, r has been selected from U(0,1). Then, si has 
accumulative determined the probabilities,  and the follow-
ing equation shows the probability of solution x.

(11)Pi =
F(xi)

∑swarm size

j=1
f (xj)
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The advantage of proportional selection is that it offers a 
chance for each element to be chosen. In contrast, in popula-
tion converges, it suffers from selection pressure [39].

2.4.3  Linear ranking selection scheme

To overcome the limitation of the proportional selection 
scheme, Grefenstette and Baker proposed linear ranking 
selection scheme [35]. It arranges the solutions based on 
their fitness ranks. Equation (12) shows the mechanism of 

calculation and the selection probability by linear mapping 
of the solution ranks.

where i is the rank of solution location xj , !− is the expected 
value of the worst location, !+ is the expected value of the 
best location. Both of !− and !+ set the slope of the linear 
function. More details are shown in Algorithm 5.

(12)Pi =
1

N
×
(
!+ −

(
!+ − !−

)
×

i − 1

N − 1

)
, i ∈ 1,… ,N



Engineering with Computers 

1 3

The expected results of the linear ranking selection 
scheme with small !+ are close to the binary tournament 
selection. However, the linear ranking selection scheme with 
big !+ suffers from a stronger selection pressure (i.e., more 
efficient time complexity) [41].

2.4.4  Exponential ranking selection scheme

Unlike the linear ranking scheme, the exponential ranking 
selection arranges the probabilities of the ranked elements 
by exponentially weighted. The major of the exponent c 
which is situated between (0, 1), where it based on param-
eter s. For instance, the best solution has a value of c1 = 1 , 
followed by the second solution with c2 = s ( s = 0.99 ), the 
third solution has c3 = s2 , and so on until the worst solution 
has cswarm size = sswarm size−1 [42]. Probabilities of the indi-
viduals are calculated by

The ∑N

j−1
cN−j normalizes the probabilities to ensure that 

∑N

i=1
cN−jpi = 1 . As ∑N

j−1
cN−j =

cN−1

C−1
 it will be as the fol-

lowing equation:

Algorithm 6 illustrates the exponential ranking selection algo-
rithm; the similarity of structure between linear ranking selec-
tion and exponential ranking selection can be noticed, while the 
difference lies in the calculation of the selection probabilities.

(13)pi =
cN−i

∑N

j=1
cN−j

i ∈ {1, 2,… ,N}

(14)pi =
c − 1

cN − 1
CN−i i ∈ {1, 2,… ,N}

2.4.5  Greedy-based selection scheme

The greedy selection scheme is called global best which 
was  initially applied by Kennedy in PSO [43]. The 

technicality of greedy selection focuses to choose the three 
best solutions: x! , x" , and x! to avoid the local optima. 
Algorithm 7 shows the pseudocode of the greedy selection 
scheme.
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Table 1  Description of unimodal benchmark functions

No. Function Equation Range fmin

f1 Beale f1(x) = (1.5 − x1 + x1x2)
2 + (2.25 − x1 + x1x

2
2
)2 + (2.625 − x1 + x1x

3
2
)2 [−4.5, 4.5] 0

f2 Watson
f2(x) =

∑29

i=0

{
∑4

j=0
((j − 1)!j

i
xj+1) −

[∑5

j=0
!j

i
xj+1

]2
− 1

}2

+ x2
1

[−5, 5] 0.002288

f3 Dixon and Price f3(x) = (x1 − 1)2 +
∑d

i=2
i(2x2

i
− xi−1)

2 [−10, 10] 0
f4 Quartic with noise f4(x) =

∑30

i=1
ix4 + random[0, 1) [−1.28, 1.28] 0

f5 Schwefel 1.2
f5(x) =

∑n

i=1

(∑i

j=1
xj

)2 [−100, 100] 0

f6 Schwefel 2.22 f6(x) =
∑n

i=1
||xi|| +

∏n

i=1
||xi|| [−100, 100] 0

f7 Schwefel 2.21 f7(x) =
∑n

i=1
||xi|| [−100, 100] 0

f8 Sphere f8(x) =
∑d

i=1
x2
i

[−5.12, 5.12] 0
f9 Step f9(x) =

∑n

i=1

⌊
x2
i

⌋
[−100, 100] 0

f10 Zakharov
f10(x) =

∑d

i=1
x2
i
+
(∑d

i=1
0.5ixi

)2

+
(∑d

i=1
0.5ixi

)4 [−5, 10] 0

As mentioned above, the greedy scheme chooses the best 
three solutions and ignores the other solutions. Therefore, 
the diversity of the search space might be lost which leads to 
prematurely converge and quickly stagnate without efficient 
results.

2.4.6  Truncation selection scheme

Truncation selection is considered the simplest selection 
scheme compared to other selection schemes. The trunca-
tion chooses elements and saves a certain percentage until 
reaches the population size [44]. This selection is equal to 
(!, ")-selection utilized in development strategies with T =

!

"
 

[45].
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Table 2  Description of multimodal benchmark functions

∗∗ In f15 , ! = 20 , b = 0.2 , and c = 2!

In f17 , wi = 1 +
xi−1

4

No. Function Equation Range fmin

f11 Easom f11(x) = −cos(x1)cos(x2)exp(−(x1 − !)2 − (x2−!)
2) [−100, 100] 0

f12 Shubert f12(x) =
(∑5

i=1
i cos((i + 1)x1 + i)

)(∑5

i=1
i cos((i + 1)x2 + i)

)
[−10, 10] − 186.7309

f13 Wolfe f13(x) =
3

4
(x2

1
+ x2

2
− x1 ⋅ x2)

0.75 + x3 [0, 2] 0
f14 Colville f14(x) = 100(x2

1
− x2)

2 + (x1 − 1)2 + (x3 − 1)2 + 90(x2
3
− x4) + 10.1((x2 − 1)2) + 19.8(x2 − 1)(x4 − 1) [−10, 10] 0

f15 Ackley
f15(x) = −!exp

(
−b

√
1

d

∑d

i=1
x2
i

)
− exp

(
1

d

∑d

i=1
cos(cxi)

)
+ ! + exp(1))∗∗

[−32.768, 32.768] 0

f16 Griewank f16(x) =
∑d

i=1

x2
i

4000
−
∏d

i=1
cos

(
xi√
i

)
+ 1 [−600, 600] 0

f17 Levy f17(x) = sin2(!w1) +
∑d−1

i=1
(wi − 1)2[1 + 10sin2(!wi + 1)] + (wd − 1)2[1 + sin2(2!wd)]

∗∗ [−10, 10] 0
f18 Perm

f18(x) =
∑d

i=1

(∑d

j=1
(j + !)

(
xi
j
−

1

ji

))2 [−d, d] 0

f19 Rastrigin f19(x) = 10d +
∑d

i=1

[
x2
i
− 10cos(2!xi)

]
[−5.12, 5.12] 0

f20 Rosenbrock f20(x) =
∑d−1

i=1

[
100(xi+1 − x2

i
)2 + (xi − 1)2

]
[−5, 10] 0

f21 Egg Holder
f21(x) = −(x2 + 47)sin

(√|||x2 +
x1
2
+ 47

|||

)
− x1sin

(√
||x1 − (x2 + 47)||

)
[−5.12, 5.12] − 959.6407

f22 Michalewicz f22(x) = −
∑d

i=1
sin(xi)sin

2m
(

ix2
i

!

)
,m = 10 [ 0,! ] − 1.8013

Table 3  Description of fixed-dimension multimodal benchmark functions

∗∗! = [4, 2, 1, 1∕2, 1∕4, 1∕8, 1∕10, 1∕12, 1∕14, 1∕16]

b = [0.1957, 0.1947, 0.1735, 0.1600, 0.0844, 0.0627, 0.0456, 0.0342, 0.0323, 0.0235, 0.0246]

No. Function Equation Range fmin

f23 Branin
f23(x) =

(
x2 −

5.1

4!2
x2
1
+

5

!
x1 − 6

)2

+ 10
(
1 − 1

8!

)
cosx1 + 10

[x1 ∈ [−5, 10], x2 ∈ [0, 15]] 0.397887

f24 Goldstein Price f (x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1
− 14x2 + 6x1x2 + 3x2

2
)] [−2, 2] 3

×[30 + (2x1 − 3x2) × (18 − 32x1 + 12x2
1
+ 48x2 − 36x1x2 + 27x2

2
)]

f25 Hartman 1 f25(x) = −
∑4

i=1
ciexp

[
−
∑4

j=1
!ij(xj − pij)

2
]

[−1, 3] −3.86

f26 Hartman 2 f26(x) = −
∑4

i=1
ciexp

[
−
∑6

j=1
!ij(xj − pij)

2
] [0, 1] −3.32

f27 Kowalik
f27(x) =

∑10

i=0

[
!i −

x1(b
2
i
+bix2)

b2
i
+bix3+x4

]2

 ∗∗
[−5, 5] 0.0003074861

f28 Shekel 1 f28(x) = −
∑5

i=1

[
(x − !i)(x − !i)

T + ci
]−1 [0, 10] −10.1532

f29 Shekel 2 f29(x) = −
∑7

i=1

[
(x − !i)(x − !i)

T + ci
]−1 [0, 10] −10.4028

f30 Shekel 3 f30(x) = −
∑10

i=1

[
(x − !i)(x − !i)

T + ci
]−1 [0, 10] −10.5363



 Engineering with Computers

1 3

From Truncation’s pseudocode, it can be noticed the ease 
of implementation of this selection. However, it neglects 
the solutions with a low fitness value which have an abil-
ity to improve into better solutions. Therefore, may lead to 
premature convergence.

3  The proposed method

In the literature, the satisfactory effectiveness of the SSA 
has been tested in addressing various practical problems. 
The SSA has a satisfactory exploration (global search) abil-
ity because of the performance of random operators. These 
random operators can heighten the diversification (explo-
ration) of the solutions throughout the early stages of the 
search processes. However, basic SSA still needs further 
improvements in terms of either exploration directions or 

even exploitation direction. The main idea here is to main-
tain the unique simplicity of the SSA and also improve its 
searches (i.e., exploratory and exploitative) abilities and 
characteristics.

In this proposal as shown in Algorithm 9, two effective 
mechanisms have been studied to promote the effectiveness 
of SSA in solving the optimization problems. It is known as 
being a powerful optimization method acting in this domain. 
In the first part, a new hybridization method, based on using 
SSA with HC local search called HSSA, is developed to 
improve the exploitation search abilities of the SSA. In the 
second part, six selection schemes have been investigated 
and studied for the utilization purposes in SSA in order to 
improve the performance of the SSA and avoid the draw-
backs identified earlier. Generally, these two mechanisms are 
considered to decrease the likelihood of premature conver-
gence and trapped in local optima of the basic SSA.
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3.1  Computational complexity

Note that the computational complexity for running the 
proposed HSSA algorithm depends on the number of salp 
solutions (X), the dimensions (d), and the maximum num-
ber of repetitions (t). Hence, the computational complex-
ity is O(HSSA) = O(Initialization) + t × O((Salp Fitness))

+O(Updating process of all salps positionswith the used

mechanisms)) . The total computational complexity of 
computing the fitness value for all solutions is O(X × t) . 
Updating the values of the positions of all solutions with 
new mechanisms is O(( 1

6
) × X × d2) . Consequently, the 

overall computational complexity of the proposed HSSA 
algorithm is O(X × d + (

1

6
) × X × d2 + F × X) , where 

SSA = O(X × d + F × X) and HC = O(t(d × 1 + F × 1)).

4  Experimental results and discussions

4.1  Experiments using benchmark functions

In this section, the performance of the proposed HSSA 
method is tested on one side and from another side is com-
pared with various other well-known and new methods using 
two common optimization problems: various benchmark 
test problems and various engineering design problems. All 
implemented codes in this study have been conducted in the 
same custom using MATLAB 8.5.0.197613 (R2015a) and 
run on a computer machine with the Windows 10 64-bit pro-
fessional and 8 GB RAM. For fair comparisons, 50 search 
agents and 1000 iterations are employed. The reported 
results over 30 independent runs are recorded. Note, the SSA 
parameters have been taken from the first paper [7].

Table 4  The best normalized 
results for SSA with different 
dimensional spaces

Function Dimensional spaces
5 10 15 20 25 30 35 40

F1 1.00 1.73E+01 3.01E+01 1.88E+01 3.35E+00 5.18E+00 1.16E+01 2.82E+01
F2 6.91E+00 1.00 8.58E+00 3.38E+01 1.42E+01 1.64E+01 8.59E+00 4.22E+01
F3 1.00 1.15E+00 1.02E+00 1.11E+00 1.08E+00 1.17E+00 1.06E+00 1.23E+01
F4 1.06E+00 4.23E+00 1.22E+01 3.31E+01 5.11E+00 1.00 7.01E+00 5.17E+00
F5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F8 6.99E+00 1.13E+01 2.55E+00 1.00 7.63E+00 5.63E+00 1.40E+00 1.94E+00
F9 1.06E+01 1.06E+01 1.06E+01 1.06E+01 1.06E+01 1.00 1.06E+01 1.06E+01
F10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F11 1.00 3.46E+00 2.18E+00 2.18E+00 5.15E+00 1.10E+01 6.24E+00 3.67E+01
F12 1.00 2.02E+00 6.82E+00 2.54E+00 1.13E+01 4.86E+00 7.52E+00 1.12E+00
F13 3.97E+01 1.27+01 4.47E+00 1.00 1.46E+01 2.93E+01 1.08E+01 1.21E+01
F14 1.05E+00 1.19E+00 1.21E+00 1.00 1.28E+00 1.29E+00 1.25E+00 1.40E+00
F15 9.21E+00 1.00 1.32E+00 4.54E+00 5.25E+00 1.57E+00 8.78E+00 4.42E+00
F16 1.48E+00 9.72E+00 2.40E+00 1.00 4.28E+00 3.77E+00 4.69E+00 4.93E+00
F17 3.52E+03 3.01E+00 1.08E+00 1.00 1.41E+00 1.32E+00 1.09E+00 1.15E+00
F18 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F19 2.74E+00 1.00 1.96E+00 2.49E+01 5.31E+01 1.01E+01 3.90E+01 1.97E+00
F20 2.59E+00 4.71E+00 1.65E+00 1.00 6.83E+00 5.80E+01 3.08E+01 4.92E+01
F21 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F22 4.00E+00 1.00 2.09E+00 4.91E+00 2.51E+00 1.74E+00 6.99E+00 9.67E+00
F23 1.00 3.06E+00 4.97E+00 4.74E+00 1.37E+01 1.64E+01 4.92E+01 4.42E+01
F24 1.00 9.09E+00 7.58E+00 1.31E+01 3.94E+01 4.22E+01 5.24E+01 8.63E+01
F25 1.00 1.32E+00 1.32E+00 1.32E+00 1.32E+00 1.32E+00 1.32E+00 1.32E+00
F26 1.04E+00 1.00 1.74E+00 1.43E+00 1.34E+00 1.23E+00 1.12E+00 1.17E+00
F27 1.00 1.24E+00 1.34E+00 1.51E+00 1.73E+00 1.70E+00 1.74E+00 1.55E+00
F28 1.00 1.19E+00 1.24E+00 1.16E+00 1.13E+00 1.16E+00 1.08E+00 1.11E+00
F29 1.00 1.30E+00 1.23E+00 1.10E+00 1.24E+00 1.10E+00 1.02E+00 1.33E+00
F30 1.00 1.02E+00 1.01E+00 1.02E+00 1.03E+00 1.01E+00 1.01E+00 1.01E+00
Total best 17 11 6 12 6 8 6 6
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4.1.1  Experimental setting

The proposed HSSA method is verified based on using 30 
classical benchmark test functions listed in Tables 1, 2, and 
3. These well-known benchmarks include 30 test functions, 
which are classified into unimodal (optimization functions 
with only one local optimum) and multimodal (optimization 
functions that frequently contain multiple global and local 
optima) problems. Moreover, these functions are chosen 
with various dimensions and diverse difficulty levels includ-
ing 10 scalable unimodal functions, 12 scalable multimodal 
functions, and 8 fixed-dimension multimodal functions. 
These features make the investigation process more fitting 
for testing the exploration and exploitation functions in the 
proposed method.  

Table 5  The best normalized 
results for SSA with population 
sizes

Function Population sizes
5 10 15 20 50 100 250 500

F1 5.41E+01 1.00 1.17E+02 1.00 1.49E+01 9.91E+02 5.94E+02 1.93E+02
F2 5.23E+01 7.13E+00 1.00 1.00 2.56E+00 1.00 2.60E+01 5.16E+01
F3 1.04E+00 1.00 1.04E+00 1.00 1.17E+00 1.04E+00 1.04E+00 1.04E+00
F4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F5 2.41E+01 8.37E+00 1.00 1.93E+00 2.19E+01 3.70E+00 1.12E+01 4.90E+01
F6 1.74E+01 6.89E+00 2.39E+01 1.00 2.36E+01 6.65E+01 2.16E+01 3.22E+01
F7 1.23E+00 1.04E+00 1.09E+00 1.90E+00 1.00 1.04E+00 1.24E+00 1.14E+00
F8 1.01E+01 1.20E+01 1.09E+00 1.00 2.68E+01 3.80E+00 5.96E+00 1.62E+01
F9 1.04E+00 2.57E+00 2.27E+00 1.00 5.68E+00 1.24E+00 1.10E+00 2.55E+00
F10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F11 1.33E+01 1.05E+01 1.86E+00 1.86E+00 1.00 2.87E+01 6.39E+00 2.58E+01
F12 2.28E+00 7.58E+00 2.85E+00 1.00 2.53E+00 1.05E+00 5.00E+00 5.34E+00
F13 1.00 1.32E+00 8.20E+00 1.00 1.00 1.00 1.00 1.29E+00
F14 2.83E+01 2.49E+01 1.83E+00 1.00 1.66E+01 9.32E+01 1.08E+02 1.09E+02
F15 2.23E+01 3.87E+01 1.02E+01 1.00 1.49E+00 1.28E+00 1.10E+01 1.12E+01
F16 1.58E+00 1.53E+00 1.23E+00 1.00 1.15E+00 1.16E+00 1.20E+00 1.17E+00
F17 2.23E+00 1.60E+00 1.42E+00 1.00 1.00 1.02E+00 1.11E+00 1.18E+00
F18 2.69E+00 2.32E+00 2.54E+00 1.00 1.93E+00 1.81E+00 1.87E+00 1.66E+00
F19 1.02E+02 7.62E+01 1.00 1.00 7.62E+00 1.52E+01 2.62E+01 2.26E+01
F20 1.01E+00 1.04E+00 1.00 1.06E+00 1.02E+00 1.01E+00 1.02E+00 1.02E+00
F21 1.14E+00 1.29E+00 1.28E+00 1.00 1.00 1.29E+00 1.24E+00 1.21E+00
F22 1.42E+02 1.15E+01 1.16E+01 1.00 3.43E+00 2.79E+00 2.01E+00 1.24E+01
F23 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F24 1.32E+00 1.32E+00 1.00 1.27+00 1.35E+00 1.43E+00 1.22E+00 1.21E+00
F25 1.11E+00 7.58E+00 1.25E+00 1.00 1.19E+00 1.00 1.10E+00 1.02E+00
F26 1.00 1.02E+00 1.03E+00 1.00 1.00 1.02E+00 1.00 1.04E+00
F27 1.21E+00 1.33E+00 1.01E+00 1.00 1.38E+00 2.71E+00 1.07E+00 1.55E+01
F28 1.02E+00 1.16E+00 1.00 1.00 1.49E+00 1.60E+00 2.23E+00 1.44E+01
F29 1.00 1.00 1.00 1.01E+00 1.01E+00 1.01E+00 1.29E+00 1.06E+00
F30 1.60E+00 1.43E+00 1.01E+00 1.00 1.03E+00 1.03E+00 2.04E+00 6.81E+00
Total best 6 6 10 24 9 6 5 3

Table 6  The parameters values of the comparative algorithms

Algorithms Parameter

ABC Colony size = 50, limit = 1000
BA Fmin = 0 , Fmax = 2 , r = 0.5, A = 0.25, !, " = 0.9

MFO P = 0.01, ! = 1.5

DE CR = 0.9, F = 0.6
GA Crossover type is 1; crossover probability = 1; 

mutation probability = 0.01
HS HMCR = 0.9, PAR = 0.5, BW = 0.01
KH Nmax = 0.01 , Vf = 0.02 , Dmax = 0.005 , Ct = 0.4

GWO !0 = 2
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Table 7  Best, average (Avg), and standard deviation (Std) for comparing the proposed HSSA with basic SSA and other algorithms

Function Metric Comparative algorithms
ABC BA MFO DE GA HS KH GWO SSA HSSA

F1 Best 1.37E−05 3.00E−01 1.15E−01 7.77E−01 2.43E−05 4.27E+00 5.31E−02 3.13E−02 1.48E−04 3.28E−08
Avg 2.99E−01 8.46E+00 2.82E+00 9.36E+00 1.21E−03 2.02E+01 5.29E+00 2.38E+00 2.39E−02 1.17E−06
Std 1.07E−16 5.15E−01 5.68E+00 2.75E+02 1.08E−05 8.36E−01 2.37E+00 2.14E−02 1.87E+00 1.80E−06

F2 Best 4.89E−06 2.56E−01 2.20E−02 7.17E−03 4.09E−06 2.15E−01 1.22E−01 3.53E−01 5.44E−03 2.08E−06
Avg 2.85E−01 7.31E+00 1.49E+00 4.94E−01 1.55E−03 1.02E+00 1.03E+00 6.17E+00 3.92E−01 1.49E−04
Std 9.85E−17 7.35E−01 2.99E−01 1.90E+04 2.41E−04 5.70E+00 1.74E+01 2.24E−01 1.92E+02 2.65E−04

F3 Best 9.98E−01 2.31E+00 3.75E+00 1.03E+00 1.41E+00 9.98E−01 9.98E−01 2.99E+00 9.98E−01 6.57E−06
Avg 8.49E+00 9.14E+01 2.46E+01 6.87E+01 1.58E+01 1.62E+01 4.06E+00 1.20E+00 4.67E+00 2.07E−02
Std 0.00E+00 2.19E+00 3.30E+00 1.81E−01 5.54E−01 7.15E−07 3.63E−16 3.42E+00 8.07E−01 1.17E−02

F4 Best 3.42E−04 1.08E−03 4.25E−03 1.30E−03 7.24E−04 4.35E−04 5.33E−03 1.71E−03 8.92E−04 9.68E−06
Avg 1.42E−01 1.97E+00 4.68E−01 1.27E+00 3.52E−01 5.56E−01 8.40E+00 2.07E−01 9.34E−01 3.23E−02
Std 1.67E−04 4.81E−04 7.33E−03 4.44E−04 5.82E−05 9.62E−05 8.08E−03 5.08E−03 3.76E−04 1.74E−02

F5 Best 4.25E−04 2.68E−03 3.88E−03 1.18E−04 1.74E−02 5.77E−03 3.74E−02 2.65E−01 1.60E−03 8.51E−05
Avg 5.70E+00 5.70E+00 3.00E+00 3.00E+00 3.00E+00 1.48E+00 1.48E+00 2.25E+00 1.16E−01 4.50E−03
Std 5.66E−04 1.46E+07 1.11E+03 7.07E+04 3.47E+02 3.08E+03 3.88E+02 8.72E−01 2.97E+02 6.38E−02

F6 Best 1.05E−10 3.30E−02 1.37E−01 8.56E−02 2.69E−03 1.72E−02 1.45E−02 4.38E−03 4.42E−06 1.03E−07
Avg 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01 1.88E−14 1.62E+00 5.63E−01 2.21E−04 4.90E−07
Std 3.76E−15 1.81E+03 2.20E+00 4.29E+02 8.98E−04 5.30E+01 1.83E+00 3.09E−01 4.59E−01 2.55E−05

F7 Best 6.81E−05 1.74E+00 1.01E−01 2.49E−01 4.56E−03 1.36E−01 1.42E−02 6.54E−04 3.00E−05 3.99E−09
Avg 7.24E−02 4.35E+01 5.33E+00 1.71E+00 8.92E−01 5.82E+00 9.62E+00 8.08E−01 5.08E−03 2.90E−04
Std 8.69E−05 3.51E+00 8.11E+00 1.57E−01 1.74E−03 6.65E−02 6.85E−03 4.22E−04 3.40E−02 7.66E−02

F8 Best 0.00E+00 1.55E−06 2.58E−07 1.49E−12 0.00E+00 1.16E−12 8.69E−09 2.87E−11 0.00E+00 0.00E+00
Avg 1.22E−85 3.53E−01 5.44E−03 6.98E−04 1.05E−52 1.74E−03 2.24E−04 1.92E−02 3.41E−125 0.00E+00
Std 0.00E+00 3.83E−01 2.23E−01 3.20E−01 9.23E−14 2.09E−01 2.89E−01 1.57E+00 0.00E+00 0.00E+00

F9 Best 8.88E−14 1.37E−01 4.75E+00 7.83E+00 1.32E−16 9.49E+00 3.50E+00 1.39E−14 1.42E−14 1.01E−14
Avg 1.87E−04 3.07E+00 6.13E+01 1.02E+01 1.96E−06 3.57E+01 5.03E+01 1.58E−04 5.77E−06 2.00E−08
Std 0.00E+00 8.38E+00 2.56E+00 1.37E+00 2.00E−03 1.35E+00 1.11E+00 2.69E+00 2.49E+00 1.10E−09

F10 Best 0.00E+00 1.20E−21 5.53E−12 6.07E−17 0.00E+00 2.50E−11 5.39E−09 1.62E−13 0.00E+00 0.00E+00
Avg 1.48E−120 5.59E−02 4.48E−03 1.01E−01 1.67E−82 5.54E−02 4.65E−02 9.99E−03 2.43E−131 0.00E+00
Std 0.00E+00 3.12E−01 6.28E−02 2.80E+00 0.00E+00 5.16E−01 1.27E−01 4.32E−03 0.00E+00 0.00E+00

F11 Best 1.28E−02 9.36E−06 9.50E−01 1.73E−02 2.91E−02 6.06E−02 1.42E−01 2.00E−01 0.00E+00 0.00E+00
Avg 1.03E+00 1.03E+00 1.03E+00 1.03E+00 1.03E+00 1.85E+00 3.90E+00 2.14E+00 7.01E−15 0.00E+00
Std 3.40E−02 1.35E−06 9.61E+01 5.59E+01 1.12E+03 3.15E+02 1.49E+00 4.07E+03 0.00E+00 0.00E+00

F12 Best 5.32E−06 2.60E−12 6.96E+00 2.20E−01 1.19E−01 1.24E+01 1.67E+01 3.20E+01 2.43E−16 8.55E−20
Avg 4.72E+00 9.65E+00 3.20E+00 8.48E+00 1.05E+00 2.70E+00 1.55E+00 2.04E+00 2.90E−06 2.05E−07
Std 8.50E−06 2.83E−12 1.71E+00 7.90E+00 6.88E+00 5.77E+00 1.22E+00 2.15E+01 1.43E−07 0.00E+00

F13 Best 3.69E+01 1.82E−17 1.56E+00 3.26E+00 6.44E+01 7.33E−01 5.20E−01 1.52E−01 0.00E+00 0.00E+00
Avg 3.27E+00 3.30E−02 2.89E+01 3.24E+01 3.25E+00 6.04E+00 4.90E+00 3.32E+00 5.74E−12 0.00E+00
Std 4.63E+03 6.04E−17 9.16E+02 1.01E+02 3.02E+02 5.49E+03 1.17E+01 1.05E+04 0.00E+00 0.00E+00

F14 Best 3.17E−02 6.05E−01 1.71E+00 1.91E−01 5.66E−02 1.63E−01 9.11E+00 3.29E−16 1.37E−18 1.07E−22
Avg 3.80E+00 3.86E+00 3.85E+01 3.86E+00 3.86E+00 2.09E+00 1.65E+01 2.17E−03 1.36E−12 1.21E−18
Std 4.29E+00 1.15E+01 2.26E−01 7.20E+00 1.37E−02 2.20E+00 3.62E+00 4.14E−01 9.57E−04 2.46E−11

F15 Best 1.03E−02 3.25E−02 5.66E−02 6.33E−03 8.21E−02 6.01E−02 4.43E−03 6.87E−02 3.00E−03 2.99E−07
Avg 2.71E+00 2.39E+00 6.83E−01 2.69E+00 2.80E+00 4.90E+00 1.86E+01 5.96E−01 1.22E−01 2.99E−03
Std 6.78E−02 6.78E−02 3.94E−01 9.32E−02 1.44E−01 1.94E−01 1.85E−01 3.90E−01 2.14E−02 6.38E−03

F16 Best 3.98E−01 6.03E−01 2.21E−02 7.21E−01 8.01E−01 1.15E+00 7.91E−01 3.62E−02 1.47E−04 8.01E−10
Avg 1.75E+00 5.56E+00 9.88E−01 1.09E+00 4.59E+00 5.92E+01 3.71E+00 4.19E−01 4.22E−02 1.35E−06
Std 7.30E+00 2.04E+00 2.72E−01 5.42E−01 3.35E+00 3.01E+00 1.88E−01 1.62E−01 5.63E−01 1.97E−06
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Table 7  (continued)
Function Metric Comparative algorithms

ABC BA MFO DE GA HS KH GWO SSA HSSA

F17 Best 3.00E+00 4.85E−01 1.12E−02 5.23E+00 1.09E+00 6.36E+00 7.89E−01 1.12E−02 1.12E−02 3.54E−06
Avg 2.37E+01 6.91E+00 1.34E+00 6.96E+01 4.55E+01 2.09E+02 9.54E+00 8.35E−01 1.59E−01 1.13E−04
Std 2.18E+00 2.19E−01 2.69E−02 9.93E+00 1.36E+00 5.13E+00 1.48E+01 4.33E+01 2.25E−02 9.08E−03

F18 Best 3.86E−01 7.55E+00 2.46E−03 5.79E+00 8.24E−02 6.42E−01 7.68E−06 2.99E−01 1.08E−06 3.02E−08
Avg 3.40E+00 2.86E+01 2.06E−01 4.82E+01 4.44E+00 4.35E+00 2.73E−01 3.60E+00 2.60E−03 1.56E−05
Std 2.65E−01 2.71E+00 1.02E−02 4.00E+00 3.67E−01 1.42E−01 2.09E−02 1.65E−01 2.17E−02 9.09E−04

F19 Best 3.27E+00 3.23E+00 2.90E+00 3.27E+00 3.30E+00 3.32E+00 3.27E+00 3.30E+00 1.89E+00 6.82E−06
Avg 3.30E+02 7.39E+01 1.51E+01 1.44E+01 9.51E+01 2.50E+02 1.01E+01 1.24E+01 8.24E+00 2.32E−02
Std 6.03E−02 5.63E−02 1.20E−01 7.60E−02 4.84E−02 3.39E−05 6.04E−02 4.90E−02 3.32E−01 1.05E−02

F20 Best 4.59E−01 2.60E−09 1.01E−02 7.66E−02 8.79E−06 1.86E−12 1.84E−01 3.45E−11 2.71E−12 1.39E−14
Avg 1.02E+01 6.81E−02 5.14E+00 7.78E+00 8.66E−01 1.02E−01 4.72E+00 9.65E−02 3.20E−06 2.39E−08
Std 6.96E+00 3.50E+00 2.76E+00 2.56E+00 3.04E+00 1.05E−02 2.70E+00 1.55E+00 2.04E−02 3.06E−06

F21 Best 4.42E+00 1.05E−08 1.10E−02 2.34E−01 7.50E+00 4.52E−12 1.27E−02 3.10E−11 1.61E−12 3.33E−14
Avg 1.04E+01 7.45E−01 6.19E+00 8.34E+00 1.01E+01 1.04E−03 6.34E+00 1.02E−01 4.60E−05 1.47E−08
Std 1.19E+00 3.30E+00 3.16E+00 2.79E+00 1.40E+00 1.66E−04 3.69E+00 9.70E−01 1.38E−02 1.27E−08

F22 Best 1.05E−01 8.48E+00 5.24E+00 8.30E+00 1.05E−01 1.05E−01 6.94E+00 1.00E−01 3.82E−01 1.79E−06
Avg 1.60E+00 1.13E+02 2.68E+01 3.62E+02 2.87E+01 4.43E+01 1.34E+02 6.38E+00 1.55E+00 8.89E−03
Std 1.75E+00 3.26E+00 2.99E+00 2.81E+00 7.38E+00 8.24E−01 3.94E+00 1.98E+00 1.69E+00 8.59E−03

F23 Best 9.29E+00 9.69E+00 1.58E+00 3.73E+00 1.04E+01 4.86E+00 1.04E+01 1.04E+01 1.58E+00 4.04E−06
Avg 9.57E+02 2.37E+01 2.40E+01 3.12E+01 3.29E+02 3.30E+01 3.46E+01 3.76E+02 1.18E+01 4.82E−03
Std 2.58E+00 1.84E+00 3.02E+00 8.49E−01 1.07E+00 1.21E+00 7.00E+01 6.46E+00 4.24E+00 2.74E−03

F24 Best 9.22E+00 8.99E+00 9.73E+00 3.65E+00 1.05E−01 5.28E+00 1.05E−01 1.05E−01 1.05E−01 9.81E−03
Avg 1.37E+01 5.79E+01 3.19E+02 7.99E+01 8.80E+00 1.96E+01 4.42E+01 2.28E+01 2.87E+00 5.11E−03
Std 2.74E+00 2.93E+00 2.14E+00 7.74E+01 3.17E−01 1.25E+00 9.32E+00 6.92E+01 5.45E−01 2.38E−02

F25 Best 3.86E+00 3.85E−02 5.54E+00 2.91E−01 6.61E−01 4.44E+00 8.63E−01 7.99E−01 2.01E−02 3.55E−06
Avg 4.63E+03 8.26E+01 8.13E+03 7.95E+00 6.16E+00 4.04E+03 6.29E+01 2.57E+01 5.01E−01 3.68E−04
Std 1.36E+00 2.17E+00 6.63E+00 2.73E+00 2.71E+00 8.17E+00 2.26E+00 3.82E+00 1.18E−01 1.29E−04

F26 Best 3.24E+00 3.25E+00 3.26E+00 1.73E+00 3.32E+00 2.83E+00 3.32E+00 3.29E+00 1.73E+00 2.12E−02
Avg 3.69E+03 1.11E+02 1.47E+04 2.41E+01 7.32E+02 2.48E+02 3.67E+02 1.22E+01 3.14E+01 8.23E−01
Std 5.74E−02 8.74E−02 6.05E−02 4.12E−01 7.73E−04 2.25E−01 1.23E−03 1.31E−02 2.47E−02 4.81E−01

F27 Best 8.50E−01 7.02E−01 2.77E−16 7.69E−02 1.18E−05 1.30E−08 4.42E−01 5.79E−07 8.18E−13 3.25E−15
Avg 8.48E+00 9.22E+00 7.63E−03 3.92E+00 1.02E−01 4.83E−02 1.02E+01 1.01E−02 1.01E−06 3.37E−08
Std 2.90E+00 2.15E+00 2.81E+00 7.89E−01 1.18E−02 1.35E+00 4.91E−03 6.97E−03 2.62E−05 5.00E−06

F28 Best 1.03E+00 1.03E+00 1.03E+00 1.72E−01 1.03E+00 1.03E+00 1.03E+00 1.03E+00 1.72E−01 3.16E−03
Avg 5.32E+01 6.01E+01 6.60E+01 3.33E+00 2.64E+02 4.40E+01 7.93E+01 1.11E+01 3.38E+00 1.61E−02
Std 7.01E+00 8.16E+00 8.62E+00 1.62E+00 6.78E+00 1.16E+00 5.98E+00 1.03E+00 2.04E+00 5.67E−01

F29 Best 3.40E−02 2.22E−09 5.10E−02 2.03E−09 2.00E−12 1.70E−01 5.16E−11 4.55E−03 0.00E+00 0.00E+00
Avg 3.98E+00 3.98E−01 3.98E−01 1.37E−02 3.98E−03 3.98E+00 3.98E−03 3.98E−01 0.00E+00 0.00E+00
Std 2.21E−02 4.58E−07 2.46E−02 9.41E−04 4.93E−02 5.42E−01 2.48E−03 5.33E−01 0.00E+00 0.00E+00

F30 Best 6.98E−02 1.05E−01 5.05E−02 5.78E−01 2.38E−12 2.14E−01 6.39E−11 9.64E−02 7.20E−16 2.38E−18
Avg 1.28E−01 9.21E+00 5.80E+00 2.31E+00 2.32E−03 3.82E+00 1.22E−02 4.29E−01 8.30E−05 9.60E−07
Std 3.41E−01 9.04E−02 3.49E−02 8.29E−02 4.63E−12 3.89E+00 8.99E−11 8.47E−01 1.61E−05 3.45E−06
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Table 8  Best, average (Avg), 
and standard deviation (Std) 
for comparing the HSSA with 
the selection schemes (THSSA, 
PHSSA, LHSSA, EHSSA, 
GHSSA, and TrHSSA)

Function Metric Selection schemes
HSSA THSSA PHSSA LHSSA EHSSA GHSSA TrHSSA

F1 Best 3.28E−08 4.58E−10 1.26E−10 3.98E−10 2.02E−09 4.77E−10 1.11E−09
Avg 1.17E−06 4.32E−07 1.03E−07 5.24E−07 3.12E−07 3.36E−07 3.10E−07
Std 1.80E−06 1.46E−06 4.57E−07 1.75E−07 3.21E−07 4.20E−07 3.05E−07

F2 Best 2.08E−06 5.14E−07 7.29E−08 1.05E−07 5.66E−07 4.31E−06 1.79E−07
Avg 1.49E−04 7.63E−05 6.40E−05 5.37E−05 3.60E−05 1.95E−05 4.43E−05
Std 2.65E−04 1.51E−04 1.05E−04 1.03E−04 1.03E−04 2.97E−05 5.00E−05

F3 Best 6.57E−06 4.50E−06 4.61E−07 3.06E−07 5.99E−07 4.02E−06 1.09E−06
Avg 2.07E−02 3.05E−04 4.20E−04 3.30E−04 2.89E−04 2.83E−04 3.22E−04
Std 1.17E−02 4.24E−04 5.02E−04 5.21E−04 3.83E−04 4.04E−04 4.04E−04

F4 Best 9.68E−06 1.00E−09 1.70E−08 2.48E−06 2.20E−06 1.00E−07 9.63E−06
Avg 3.23E−02 1.11E−06 3.67E−05 8.30E−03 7.52E−03 7.80E−03 8.00E−03
Std 1.74E−02 5.87E−06 1.76E−05 1.56E−03 2.18E−03 2.10E−03 4.38E−02

F5 Best 8.51E−05 1.10E−06 2.60E−08 4.34E−08 6.17E−07 6.24E−08 5.72E−07
Avg 4.50E−03 3.02E−04 4.55E−03 7.60E−05 1.09E−04 7.39E−06 5.22E−04
Std 6.38E−02 1.89E−06 5.15E−02 3.98E−02 6.15E−02 7.52E−02 5.78E−02

F6 Best 1.03E−07 2.55E−09 7.16E−11 3.54E−10 1.54E−11 7.02E−13 4.82E−10
Avg 4.90E−07 7.24E−08 5.32E−08 1.81E−09 4.26E−11 4.37E−08 8.29E−09
Std 2.55E−05 3.99E−08 2.53E−06 1.08E−06 1.75E−05 2.07E−06 4.33E−06

F7 Best 3.99E−09 2.91E−10 2.77E−11 2.81E−11 2.77E−09 2.11E−10 5.72E−11
Avg 2.90E−04 3.01E−06 3.02E−06 3.02E−08 3.02E−05 3.09E−07 3.03E−06
Std  7.66E−02 3.84E−02 4.43E−03 3.52E−02 3.87E−04 2.50E−02 3.65E−02

F8 Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Avg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F9 Best 1.01E−14 2.08E−15 5.41E−17 5.78E−17 5.22E−17 8.85E−17 4.42E−15
Avg 2.00E−08 7.14E−12 3.11E−10 2.47E−11 6.06E−14 7.14E−12 5.25E−11
Std 1.10E−09 1.08E−12 4.35E−10 4.29E−11 2.14E−14 4.70E−12 2.91E−12

F10 Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Avg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F11 Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Avg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F12 Best 8.55E−20 6.42E−26 9.68E−27 3.17E−25 4.16E−22 8.38E−21 4.43E−22
Avg 2.05E−07 2.14E−09 2.17E−11 1.52E−10 1.62E−09 2.04E−09 1.64E−08
Std 1.43E−07 1.45E−08 1.30E−11 8.98E−09 8.63E−09 1.11E−07 1.04E−07

F13 Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Avg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F14 Best 1.07E−22 9.89E−25 0.00E+00 6.60E−27 8.35E−25 8.24E−26 8.56E−24
Avg 1.21E−18 6.61E−20 0.00E+00 5.21E−22 9.98E−20 7.59E−18 5.61E−20
Std 2.46E−11 3.57E−18 0.00E+00 4.68E−15 5.79E−17 1.24E−19 3.86E−17

F15 Best 2.99E−07 4.30E−10 1.81E−12 2.88E−12 5.31E−12 1.16E−10 3.22E−09
Avg 2.99E−03 3.30E−04 3.00E−04 3.81E−04 3.31E−04 2.55E−04 3.22E−04
Std 6.38E−03 4.58E−04 5.12E−04 5.02E−04 4.99E−04 3.83E−04 4.04E−04

F16 Best 8.01E−10 7.47E−12 1.07E−16 6.95E−16 1.82E−12 2.15E−13 1.21E−13
Avg 1.35E−06 4.10E−08 5.84E−09 9.91E−09 6.58E−11 3.82E−10 1.17E−10
Std 1.97E−06 5.81E−06 1.38E−07 1.79E−07 1.19E−06 7.83E−06 2.02E−06
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Table 8  (continued) Function Metric Selection schemes
HSSA THSSA PHSSA LHSSA EHSSA GHSSA TrHSSA

F17 Best 3.54E−06 1.53E−09 2.84E−09 1.13E−10 5.43E−09 9.03E−09 4.32E−08
Avg 1.13E−04 9.86E−06 7.54E−06 2.91E−06 1.03E−04 1.17E−06 1.07E−06
Std 9.08E−03 1.11E−06 7.41E−06 3.57E−06 5.87E−05 9.90E−04 9.84E−04

F18 Best 3.02E−08 2.42E−12 2.33E−16 4.48E−16 2.41E−15 2.92E−15 2.27E−14
Avg 1.56E−05 5.83E−09 6.73E−09 5.23E−11 5.91E−09 8.06E−08 7.28E−09
Std 9.09E−04 7.63E−06 1.70E−08 2.77E−06 7.67E−07 4.55E−06 2.65E−06

F19 Best 6.82E−06 2.00E−11 1.93E−12 2.06E−12 2.02E−10 1.98E−10 2.01E−10
Avg 2.32E−02 4.50E−06 2.54E−09 7.02E−07 4.22E−07 3.20E−06 6.33E−06
Std 1.05E−02 4.79E−04 4.94E−04 4.25E−03 5.60E−04 6.28E−04 4.54E−04

F20 Best 1.39E−14 1.02E−18 7.96E−22 7.97E−20 7.96E−19 4.07E−20 1.38E−20
Avg 2.39E−08 1.10E−11 1.80E−14 1.80E−10 1.80E−09 9.59E−12 1.14E−10
Std 3.06E−06 2.68E−08 6.94E−07 5.38E−09 6.99E−08 1.70E−09 3.08E−08

F21 Best 3.33E−14 4.23E−19 1.82E−25 2.77E−27 5.98E−26 3.18E−24 3.07E−24
Avg 1.47E−08 1.35E−12 1.77E−11 4.96E−13 3.01E−10 4.49E−10 2.62E−10
Std 1.27E−08 5.65E−10 2.49E−11 2.33E−10 3.52E−11 2.42E−10 2.47E−10

F22 Best 1.79E−06 3.21E−09 4.49E−10 4.68E−09 2.84E−08 3.26E−08 2.25E−08
Avg 8.89E−03 8.18E−05 1.11E−05 7.93E−07 1.34E−06 1.23E−05 1.21E−05
Std 8.59E−03 7.46E−04 1.15E−05 6.70E−05 5.37E−05 1.27E−04 9.09E−04

F23 Best 4.04E−06 4.27E−10 7.27E−10 8.56E−09 4.05E−08 7.14E−08 3.60E−08
Avg 4.82E−03 7.10E−06 9.45E−06 7.81E−07 6.71E−08 6.54E−07 8.06E−07
Std 2.74E−03 9.88E−05 1.18E−05 1.21E−05 8.77E−05 9.08E−05 9.76E−05

F24 Best 9.81E−03 1.45E−08 1.06E−09 3.62E−08 8.53E−07 8.74E−08 1.66E−09
Avg 5.11E−03 7.96E−07 5.04E−08 2.16E−08 3.50E−07 4.15E−08 8.65E−08
Std 2.38E−02 8.50E−05 5.36E−05 6.37E−05 1.48E−04 2.64E−05 3.80E−05

F25 Best 3.55E−06 2.16E−11 1.53E−12 8.32E−11 4.62E−09 6.73E−09 5.82E−09
Avg 3.68E−04 4.45E−07 4.46E−07 4.47E−07 4.44E−07 4.46E−07 4.47E−07
Std 1.29E−04 5.26E−05 6.21E−06 3.57E−05 2.12E−05 6.19E−05 2.99E−05

F26 Best 2.12E−02 1.32E−04 1.31E−04 1.31E−04 1.32E−04 1.32E−04 1.28E−04
Avg 8.23E−01 2.00E−03 1.20E−02 2.37E−02 1.76E−02 1.75E−02 1.39E−02
Std 4.81E−01 2.26E−02 1.18E−01 1.35E−01 3.05E−02 3.13E−02 3.40E−02

F27 Best 3.25E−15 9.18E−19 1.36E−21 2.39E−20 8.47E−20 2.83E−19 1.55E−19
Avg 3.37E−08 1.04E−10 1.48E−12 2.51E−11 9.67E−11 2.95E−11 1.67E−10
Std 5.00E−06 1.47E−09 3.50E−10 4.53E−09 1.98E−09 5.12E−09 3.01E−09

F28 Best 3.16E−03 2.93E−05 2.99E−07 3.01E−05 2.92E−07 2.96E−07 2.74E−06
Avg 1.61E−02 6.73E−04 1.84E−04 1.06E−03 7.80E−03 3.88E−03 2.57E−04
Std 5.67E−01 9.92E−03 2.20E−02 3.59E−02 9.98E−03 1.36E−02 3.45E−03

F29 Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Avg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F30 Best 2.38E−18 8.50E−21 2.64E−21 6.37E−21 1.48E−20 5.36E−21 3.80E−21
Avg 9.60E−07 2.46E−10 4.02E−10 4.02E−11 4.02E−10 2.14E−10 2.54E−10
Std 3.45E−06 5.98E−08 5.67E−09 4.08E−08 5.67E−09 3.78E−09 6.85E−09
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4.1.2  Performance measures

Normalization measure is the process of regularizing data 
with respect to the difference in values between samples. In 
the experiments, the effects of different values of the dimen-
sions and the search agents are compared with one another. 
This procedure is difficult due to the wide gap between solu-
tions. Therefore, normalization improves data integrity [46]. 
In this work, normalization is calculated based on the fol-
lowing equation:

where is x = (x1,… , xn) , n denotes the total number of data, 
zi denotes the normalized data for element ith, ! is the mean 
and S is the standard deviation. Finally, the minimum ele-
ment of the data will be 1 in the normalization results.

(15)zi =
xi − !

S

The best measure is utilized to calculate the best-obtained 
value by the algorithm to be evaluated for several predefined 
numbers of runs, which can be measured as follows:

where Nr denoted to the number of various runs and F∗
i
 

denoted to the best-obtained value.
The average measure (avg) is utilized to calculate the 

mean of the best-obtained values by the algorithm to be eval-
uated for several predefined numbers of runs, which can be 
measured as follows:

The standard deviation (std) is a measure utilized to test if 
the algorithm to be evaluated can obtain the same best value 

(16)Best = min
1≤i≤Nr

F∗
i

(17)!F =
1

Nr

Nr∑

i=1

F∗
i
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Fig. 2  Convergence graphs of the unimodal benchmark functions
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in several various runs and examine the repeatability test of 
the algorithm results, which can be measured as follows:

Also, convergence trajectories are shown to display the 
behavior of the comparative algorithms in order to give the 
optimal value.

4.1.3  Sensitivity analysis

In this section, comprehensive investigations are distrib-
uted into two experimental series; in the first series, a set of 
experiments are conducted to evaluate the influence of the 
dimensional spaces on the results of the SSA. In the second 

(18)STDF =

√√√√ 1

Nr − 1

Nr∑

i=1

(Fi − !F)
2

series, a set of experiments are conducted to evaluate the 
influence of the population sizes.

Experiment series 1: influence of the dimensional spaces
In this part, to analyze the influence of the problem dimen-

sional spaces, experiments are produced for several potential 
dimensional spaces (i.e., D = 5, 10, 15, 20, 25, 30, 35, 40, 45, 
and 50) as reported in the literature using the utilized 30 
benchmark functions. The results for 30 functions are illus-
trated in Table 4 using the best normalized values. The best 
results have been written in bold font.

As shown in Table 4, the SSA obtained the overall best 
results when D = 5 ; it got the best results on 17 cases. Fur-
thermore, for the10 scalable unimodal functions, the SSA 
got the most of the best results when D = 5 and 30; it got 
7 out of 10 best cases in both dimensions. For 12 scalable 
multimodal functions, the SSA got the most of the best 
results when D = 12 ; it got 7 out of 12 best cases. For the 
8 fixed-dimension multimodal functions, the SSA got the 
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Fig. 3  Convergence graphs of the multimodal benchmark functions
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most of the best results when D = 5 ; it got 7 out of 8 best 
cases. From these results, we concluded that increasing the 
overall performance of SSA is observed by increasing the 
problem dimensional space. Usually, the SSA is unable to 
solve the problem before getting the maximum number of 
iterations. However, as seen, SSA gives better results for 
high-dimensional problems.

Experiment series 2: influence of the population sizes
In order to demonstrate the influence of the population 

sizes, the experiments are produced using several values for 
population sizes (i.e., P = 5, 10, 15, 20, 50, 100, 250 , and 
500) for the utilized 30 benchmark functions. Table 5 shows 
the results for different population sizes.

As shown in Table 5, we can see that the best-normalized 
results for SSA with population sizes. The SSA obtained 
the best results (24 times) when the population size is equal 
to 20. Furthermore, for the10 scalable unimodal functions, 
the SSA got the most of the best results when P = 20 ; it got 
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Fig. 4  Convergence graphs of the fixed-dimension multimodal benchmark functions

Fig. 5  Welded beam design problem: a schematic of the weld; b 
stress pattern evaluated at the optimum design; c displacement 
appearance at the optimum design
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8 out of 10 best cases. For 12 scalable multimodal func-
tions, the SSA got the most of the best results when P = 20 ; 
it got 10 out of 12 best cases. For the 8 fixed-dimension 
multimodal functions, the SSA got the most of the best 
results when P = 20 ; it got 6 out of 8 best cases. It is clearly 
observed that when the population size is equal to 20, it is 
the more suitable size for all benchmark test functions

4.1.4  Comparative study

In this section, deeply comprehensive investigations are 
conducted to check the performance of the proposed meth-
ods by two experiments series: in the first series, a set of 
experiments are conducted to show the performance of the 
proposed HSSA compared to SSA and other similar optimi-
zation algorithms. In the second series, the influence of the 
proposed six selection schemes is investigated by conduct-
ing other experiments. Note, the parameters settings of the 
comparative algorithms are shown in Table 6.

Experiment series 1: comparisons between HSSA, SSA, 
and the other algorithms

For a clear comparison, as shown in Table 7, the pro-
posed HSSA is compared with the basic SSA [7] and other 

similar nine optimization algorithms, namely Ant Bee Col-
ony (ABC) Algorithm [47], Bat-inspired Algorithm (BA) 
[48], Moth Flame Optimization (MFO) Algorithm [49], 
Dragonfly Algorithm (DE) [50], Genetic Algorithm (GA) 
[51], Harmony Search (HS) Algorithm [52], Krill Herd 
(KH) Algorithm [53], and Grey Wolf Optimizer (GWO) 
Algorithm [54]. Table 7 shows the best, average (Avg), the 
standard division (Std) of fitness values obtained by all com-
parative algorithms over 30 runs, respectively.

As shown in Table 7, the basic SSA has some weakness 
(weak local search) in achieving excellent results in uni-
modal functions (i.e., F1, F2, F4, F5, F6, and F9). Conse-
quently, the hybrid SSA with HC is proposed to improve the 
exploitation searchability of SSA. Thus, functions F1–F10 
are scalable unimodal benchmarks since they have just one 
global optimum. These functions support assessing the 
exploitation ability of the examined optimization algorithms. 
It can be seen from Table 7 that HSSA is a very competitive 
algorithm compared to other similar algorithms. Mainly, it 
was the most effective algorithm for functions F1 and F10 
in most test problems. The proposed HSSA hence provides 
perfect exploitation. HSSA got better results in solving uni-
modal functions compared to the proposed HSSA, where 

Table 9  The algorithms results 
for solving the welded beam 
design problem

Algorithm Optimal values Optimal cost
h l t b

SIMPLEX [55] 0.2792 5.6256 7.7512 0.2796 2.5307
DAVID [55] 0.2434 6.2552 8.2915 0.2444 2.3841
APPROX [55] 0.2444 6.2189 8.2915 0.2444 2.3815
GA [56] 0.2489 6.1730 8.1789 0.2533 2.4300
HS [57] 0.2442 6.2231 8.2915 0.2400 2.3807
CSCA [58] 0.203137 3.542998 9.033498 0.206179 1.733461
CPSO [59] 0.202369 3.544214 9.04821 0.205723 1.72802
RO [60] 0.203687 3.528467 9.004233 0.207241 1.735344
WOA [61] 0.205396 3.484293 9.037426 0.206276 1.730499
GSA [62] 0.182129 3.856979 10.000 0.202376 1.87995
MVO [62] 0.205463 3.473193 9.044502 0.205695 1.72645
OBSCA [63] 0.230824 3.069152 8.988479 0.208795 1.722315
PHSSA 0.202369 3.544214 9.04821 0.205723 1.72802

Fig. 6  Tension/compres-
sion spring design problem: 
a schematic of the spring; b 
stress pattern evaluated at the 
optimum design; and c displace-
ment pattern evaluated at the 
optimum design
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it almost obtained all best results in unimodal functions as 
well in other test functions (i.e., multimodal F11–F22 and 
fixed-dimension multimodal F23–F30). Finally, although the 
results indicate that HSSA also has excellent exploration 
searchability, it is possible to further improve the exploration 
search to make a balance between exploitation and explora-
tion search. Moreover, performance, diversity, and the con-
vergence rate of HSSA can be enhanced.

Experiment series 2: comparison between selection 
schemes

In this part, as shown in the previous section that the 
HSSA can further improve its exploration search abili-
ties, new experiments series are conducted to investigate 
the skills of the selection schemes in enhancing the global 
search abilities. Various selection scheme mechanisms (tour-
nament selection scheme (THSSA), proportional selection 
scheme (PHSSA), linear ranking selection scheme (LHSSA), 

exponential ranking selection scheme (EHSSA), greedy-
based selection scheme (GHSSA), and truncation selec-
tion scheme (TrHSSA)) have been tested on the HSSA to 
improve its exploration search abilities.

Contrary to unimodal functions, multimodal functions 
cover many local optima, whose number grows exponen-
tially with the number of decision variables (problem size). 
Accordingly, this kind of benchmark functions becomes 
very beneficial if the objective is to evaluate the exploration 
searchability of an optimization algorithm.

Optimization of benchmark functions is a very challeng-
ing job because just a precise balance between exploration 
and exploitation supports local optima to be evaded. Optimi-
zation results listed in Table 8 show that the proposed hybrid 
SSA with HC using proportional selection scheme (PHSSA) 
is almost the best optimizer in all test problems and over-
comes other similar comparative algorithms. It is definitely 
demonstrated that the proposed PHSSA support exploration 
and exploitation phases to be balanced. Moreover, the results 
indicate that PHSSA also has excellent exploration search-
ability. However, the proposed PHSSA always is the most 
useful algorithm in the majority of function problems.

Figure 2 shows the convergence graphs of the unimodal 
benchmark functions ( F1 , F4 , and F7 ). The convergence 
graphs are plotted between the best solutions of each algo-
rithm and the number of iterations based on the results 
acquired through 30 independent runs. It is observed from 
the convergence graphs of the unimodal functions that the 
HSSA overcomes the weaknesses of the basic SSH. Also, 
PHSSA achieved good convergence performance in F1 and 
F7 in comparison with the other proposed algorithms, while 
the convergence performance of THSSA is the best at F4 
followed by PHSSA and the other proposed algorithms.

The convergence graphs of the multimodal functions ( F13 , 
F16 , and F20 ) are illustrated in Fig. 3. Similar to the mentioned 
above (i.e., unimodal functions) HSSA outperformed the basic 
SSA, clearly. On the other hand, the convergence performance 
of the PHSSA achieved best results in all functions [i.e., ( F13 , 
F16 , and F20)]. It is worth to mention that in F13 the PHSSA is 
the fastest method for finding the best solutions in the first part 
(i.e., until iteration 100) and in the last part (i.e, after iteration 
200), where the THSSA achieved the best solutions between 
100 and 200 iterations. While in F16 , the results of TrHSSA, 
LHSSA, and PHSSA are very close together until the iteration 
100, after that the PHSSA outperformed until the end. Almost 
the same results were repeated in F20.

Figure 4 illustrates that the results of the hybrid func-
tions ( F23 , F26 , and F30 ) which are nearly similar to the 
results shown in Fig. 3, for instance, the superiority of the 
HSSA over the basic SSA in determining the best solution. 
In addition, the results in F26 and F30 for most of the pro-
posed algorithms are very close together with preference to 
PHSSA, while the results in F23 shows the preference for the 

Table 10  The algorithms results for solving the tension/compression 
spring design problem

Algorithm Optimal values Optimal weight
d D N

CC [64] 70.050000 0.315900 14.250000 0.0128334
GA [65] 0.051480 0.351661 11.632201 0.01270478
HS [66] 0.051154 0.349871 12.076432 0.0126706
CSCA [58] 0.051609 0.354714 11.410831 0.0126702
PSO [59] 0.051728 0.357644 11.244543 0.0126747
CPSO [59] 0.051728 0.357644 11.244543 0.0126747
ES [67] 0.051643 0.355360 11.397926 0.012698
RO [60] 0.051370 0.349096 11.76279 0.0126788
WOA [61] 0.051207 0.345215 12.004032 0.0126763
GSA [62] 0.050276 0.323680 13.525410 0.0127022
MVO [62] 0.05251 0.37602 10.33513 0.012790
OBSCA [63] 0.05230 0.31728 12.54854 0.012625
PHSSA 0.331680 12.834269 0.0501910 0.0123947

Fig. 7  Pressure vessel design problem: a schematic of the vessel; b 
stress pattern assessed at the optimum design; and c displacement 
pattern assessed at the optimum design
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THSSA. The PHSSA was outperformed the other proposed 
algorithms.

4.2  The experiments using engineering 
optimization problems

In this section, we test the proposed algorithm with propor-
tional selection scheme (called PHSSA) using four engineering 
optimization problems: the welded beam design problem, ten-
sion/compression spring design problem, three-bar truss design 
problem, and pressure vessel design problem. The number of 
solutions in the experiments is 30 and the maximum number 
of iterations is 500 to address these problems. The following 
subsections show the results of the proposed PHSSA compared 
with the results of the state-of-the-art methods.

4.2.1  Welded beam design problem

The main objective of the welded beam design problem is to 
find the minimum fabrication cost by defining the optimal 
value of the given variables (four optimization variables as 
shown in Fig. 5), namely length of attached part of bar (l), 
thickness of weld (h), the height of the bar (t), and thickness 
of the bar (b). The given variables need to be satisfied with 
seven constraints. The mathematical representation of this 
problem is described as follows:

Consider ⃖⃗x = [x1x2x3x4] = [hltp],
Minimize f (⃖⃗x) = 1.10471x2

1
x1 + 0.04811x3x4(14.0 + x2)

Subject to g1(⃖⃗x) = #(⃖⃗x) − #max ≤ 0,
g2(⃖⃗x) = #(⃖⃗x) − #max ≤ 0,
g3(⃖⃗x) = #(⃖⃗x) − #max ≤ 0,
g4(⃖⃗x) = x1 − x4 ≤ 0,
g5(⃖⃗x) = p − pc(⃖⃗x) ≤ 0,
g6(⃖⃗x) = 0.125 − x1 ≤ 0,
g7(⃖⃗x) = 1.10471x2

1
+ 0.04811x3x4(14.0 + x2) − 0.5 ≤ 0,

Variables range (0.1 ≤ x1, x4 ≤ 2) , (0.1 ≤ x2, x3 ≤ 10),
where
!(⃖⃗x) =

√
(! ′
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Note that, P = 6000 lb, L = 14 in, !max = 0.25 in, 

E = 30 × 16 psi, G = 12 × 106 psi, !max = 13,600 psi, and 
!max = 30,000 psi.Fig. 8  Construction of a 15-bar truss

Table 11  The algorithms results 
for solving the pressure vessel 
design problem

Algorithm Optimal values Optimal cost
Ts Th R L

Branch-bound [68] 1.125 0.625 48.97 106.72 7982.5
GA [65] 0.81250 0.43750 42.097398 176.65405 6059.94634
HS [66] 1.125000 0.625000 58.29015 43.69268 7197.730
CSCA [58] 0.8125 0.4375 42.098411 176.63769 6059.7340
PSO-SCA [69] 0.8125 0.4375 42.098446 176.6366 6059.71433
CPSO [59] 0.8125 0.4375 42.091266 176.7465 6061.0777
HPSO [70] 0.8125 0.4375 42.0984 176.6366 6059.7143
ES [67] 0.8125 0.4375 42.098087 176.640518 6059.74560
ACO [71] 0.812500 0.437500 42.098353 176.637751 6059.7258
WOA [61] 0.812500 0.437500 42.0982699 176.638998 6059.7410
GSA [72] 1.125 0.625 55.9886598 84.4542025 8538.8359
MVO [62] 0.8125 0.4375 42.090738 176.73869 6060.8066
OBSCA [63] 1.2500 0.0625 59.1593 70.8437 5833.9892
PHSSA 0.815200 0.426501 42.091254 176.7423141 6043.9861
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The proposed algorithm (PHSSA) is applied for solving 
this engineering problem (welded beam design) and com-
pared it with several optimization algorithms, which are 
published in the literature; these works are Simplex method 
(SIMPLEX) [55], Davidon–Fletcher–Powell (DAVID) 
[55], Griffith and Stewarts successive linear approximation 
(APPROX) [55], Genetic Algorithm (GA) [56], Harmony 
Search (HS) [57], Co-evolutionary Differential Evolution 
(CSCA) [58], Co-evolutionary Particle Swarm Optimization 
(CPSO) [59], Ray Optimization (RO) [60], Whale Optimi-
zation Algorithm (WOA) [61], Gravitational Search Algo-
rithm (GSA) [62], Multi-verse Optimizer (MVO) [62], and 
Opposition-Based Sine Cosine Algorithm (OBSCA) [63], 
as shown in Table 9. From Table 9, we concluded that the 
results of the proposed algorithm are better than all other 
comparative algorithms. Hence, it can be declared that the 
proposed PHSSA can find the best possible optimal solution 
(design) for solving this problem (i.e., welded beam design).

4.2.2  Tension/compression spring design problem

The main objective of the tension/compression spring design 
problem is to find the minimum weight of the tension/com-
pression spring to satisfy its design constraints: shear stress, 
surge frequency, and deflection as shown in Fig. 6. Three 
design variables need to be taken into account: wire diam-
eter (d), mean coil diameter (D), and the number of active 
coils (N). The mathematical representation of this problem 
is described as follows:

Consider ⃖⃗x = [x1x2x3] = [dDN],
Minimize f (⃖⃗x) = (x3 + 2)x2x

2
1
,

Subject to g1(⃖⃗x) = 1 −
x3x

3
2

71785x4
1

≤ 0,

g2 = (⃖⃗x) =
4x2

2
−x1x1

12566(x2x
3
1
−x4

1
)
+

1

5108x2
1

≤ 0,
g3 = (⃖⃗x) = 1 −

140.54x1
x2
2
x3

≤ 0,
g4 = (⃖⃗x) =

x1x2
1.5

− 1 ≤ 0,
Variables range (0.05 ≤ x1 ≤ 2) , (0.25 ≤ x2 ≤ 1.30) , 

(2.00 ≤ x3 ≤ 15),
The proposed PHSSA is applied for solving this engi-

neering problem (tension/compression spring design) and 
compared it with a mathematical technique and optimiza-
tion algorithms, which are published in the literature; these 
works are Constraints Correction (CC) [64], Genetic Algo-
rithm (GA) [65], Improved Harmony Search (HS) [66], Co-
evolutionary Differential Evolution (CSCA) [58], Particle 
Swarm Optimization (PSO) [59], Co-evolutionary Parti-
cle Swarm Optimization (CPSO) [59], Evolution Strategy 
(ES) [67], Ray Optimization (RO) [60], Whale Optimiza-
tion Algorithm (WOA) [61], Gravitational Search Algo-
rithm (GSA) [62], Multi-verse Optimizer (MVO) [62], and 
Opposition-Based Sine Cosine Algorithm (OBSCA) [63], 
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as shown in Table 10. The obtained results of the proposed 
PHSSA are compared with the literature in Table 10. It can 
be observed that PHSSA outperforms all other algorithms 
except OBSCA.

4.2.3  Pressure vessel design problem

The main objective of the pressure vessel design problem 
is to find the overall cost of the cylindrical pressure ves-
sel to satisfy its design constraints: forming, material, and 
welding as shown in Fig. 7. Both edges of the vessel are 
capped while the top has a hemispherical shape. Four design 
variables need to be taken into account in the optimization 
operations to satisfy its four constraints: the inner radius (R), 
the thickness of the head ( Th ), thickness of the shell ( Ts ), 
and the length of the cylindrical part without examining the 
head (L). The mathematical representation of this problem 
is described as follows:

Consider ⃖⃗x = [x1x2x3x4] = [TsThRL],
Minimize f (⃖⃗x) = 0.6224x1x3x4 + 1.7781x2x

2

3
+ 3.1661x2

1
x4

+19.84x2
1
x3,

Subject to g1(⃖⃗x) = −x1 + 0.0193x3 ≤ 0,
g2(⃖⃗x) = −x3 + 0.000954x3 ≤ 0,
g3(⃖⃗x) = −#x2

3
x4 −

4

3
#x3

3
+ 1,296,000 ≤ 0,

g4(⃖⃗x) = x4 − 240 ≤ 0,
Variables range (0 ≤ x1, x2 ≤ 99) , (10 ≤ x3, x4 ≤ 200),
The obtained results by the proposed HHSA for solving 

this problem (pressure vessel design problem) are compared 
with other several optimization algorithms, which are pub-
lished in the literature; these works are Nonlinear Integer 
and Discrete Programming (Branch-bound) [68], Genetic 
Algorithm (GA) [65], Improved Harmony Search (HS) 
[66], Co-evolutionary Differential Evolution (CSCA) [58], 
Hybridizing Particle Swarm Optimization with Differen-
tial Evolution (PSO-SCA) [69], Co-evolutionary Particle 
Swarm Optimization (CPSO) [59], Hybrid Particle Swarm 
Optimization with a Feasibility-based Rule (HPSO) [70], 
Evolution Strategy (ES) [67], Improved Ant Colony Optimi-
zation (ACO) [71], Whale Optimization Algorithm (WOA) 
[61], Gravitational Search Algorithm (GSA) [72], Multi-
verse Optimizer (MVO) [62], and Opposition-Based Sine 
Cosine Algorithm (OBSCA) [63], as shown in Table 11. 
From this table, we concluded that the results of PHSSA are 
better than almost all other comparative algorithms. It can 
be observed that PHSSA outperforms all other algorithms 
except OBSCA.

4.2.4  15-Bar truss design problem

This main objective of this 15-bar truss design prob-
lem (it is considered as a discrete problem) is to find the 
minimum weight of a 15-bar truss to satisfy its 46 design 

constraints:15 compression, 15 tension, and 16 displacement 
constraints. There are also eight nodes and fifteen bars as 
shown in Fig. 8. Consequently, there are 15 variables. It also 
may be observed in this figure that three loads are connected 
to the nodes P1, P2, and P3. The mathematical representa-
tion of this problem is described as follows:

• ! = 7800 kg/m3

• E = 200 GPa
• Stress limitation = 120 MPa
• Maximum stress = 115.37 MPa
• Displacement limitation = 10 mm
• Maximum displacement = 4.24 mm

D e s i g n  v a r i a b l e  s e t  = {
113.2, 143.2, 145.9, 174.9, 185.9, 235.9, 265.9, 297.1

308.6, 334.3, 338.2, 497.8, 507.6, 736.7, 791.2, 1063.7

}

,

Three different sets of cases (loads) have been used in 
solving this problem as stated in the literature, which is as 
follows:

• Case 1: P1 = 35 kN, P2 = 35 kN, P3 = 35 kN
• Case 2: P1 = 35 kN, P2 = 0 kN, P3 = 35 kN
• Case 3: P1 = 35 kN, P2 = 0 kN, P3 = 0 kN

The obtained results by the proposed HHSA for solving 
this problem (15-bar truss design problem) are compared 
with other several optimization algorithms, which are pub-
lished in the literature; these works are Modified Simulated 
Annealing Algorithm (MSAA) [73], Ant Colony Algo-
rithm (ACA) [74], Teaching-Learning-Based Optimization 
(TLBO) [75], Improved Hybrid Genetic Algorithm (HGA) 
[76], Hybrid Harmony Search algorithm (HHS) [77], Parti-
cle Swarm Optimizer (PSO) [78], Particle Swarm Optimizer 
with Passive Congregation (PSOPC) [78], Heuristic Parti-
cle Swarm Optimizer (HPSO) [78], Mine Blast Algorithm 
(MBA) [79], Symbiotic Organisms Search (SOS) [80], and 
Whale Optimization Algorithm (WOA) [61], as shown in 
Table 12. As this problem is considered as a discrete prob-
lem, the search solutions of PHSSA were rounded to the 
nearest integer number through the optimization processes. 
In Table 12, we concluded that the results of PHSSA are 
better than almost all comparative algorithms. PHSSA can 
give very competitive results in addressing this problem as 
well as its results are similar to HPSO, MBA, SOS, and 
WOA. The proposed method got the advantages of SSA and 
HC, which increase the efficiency of the proposed method. 
The hybrid method got just the benefits of both combined 
algorithms with no disadvantage according to the effective-
ness measures.

For further observation, the results of HC-based selection 
schemes improved the candidate solutions of the SSA. The 
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obtained results showed how the SSA got promising results 
by applying the HC-based selection schemes to maximize 
capacity for both strategies. These results demonstrated the 
merits of the proposed hybrid method in solving complicated 
problems with wide search spaces. Hence, this robust opti-
mization method is offered as a mechanism for determining 
the optimal solutions of optimization problems in various 
areas of study.

5  Conclusions and future directions

We presented a new two-stage variant of the Salp Swarm 
Algorithm (SSA). In the first stage, the basic SSA is hybrid-
ized with hill climbing (HC) local search to improve its 
exploitation search, while in the second stage, a selection 
scheme is applied to enhance the exploration capabilities 
of the algorithm. Six selection schemes were considered, 
and the proportional was selected as it yielded the best 
performance.

Experiments were conducted using thirty benchmark 
functions and four engineering design problems. We com-
pared our algorithm to a number of similar algorithms pub-
lished in the literature. The effectiveness of each algorithm 
was evaluated based on three measures, the best, average, 
and standard deviation of the fitness values. The results 
showed that the proposed hybrid SSA method using the pro-
portional selection scheme (PHSSA) was the best optimizer 
on almost all test problems. In summary, by providing an 
appropriate balance between exploration and exploitation 
and by maintaining the diversity of solutions, our proposed 
PHSSA algorithm was able to demonstrate results on the 
engineering design problems that were at least comparable 
and in many cases superior to SSA and similar algorithms 
in the literature.

In future work, we will consider other algorithms to cre-
ate new hybrid versions, and we will apply them to different 
optimization problems, including multi-objective problems.
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