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Abstract

Coronavirus outbreaks during the last couple of years created a huge health

disaster for human lives. Diagnosis of COVID-19 infections is, thus, very

important for the medical practitioners. For a quick detection, analysis of the

COVID-19 chest X-ray images is inevitable. Therefore, there is a strong need

for the development of a multiclass segmentation method for the purpose. Ear-

lier techniques used for multiclass segmentation of images are mostly based on

entropy measurements. Nonetheless, entropy methods are not efficient when

the gray-level distribution of the image is nonuniform. To address this prob-

lem, a novel adaptive class weight adjustment-based multiclass segmentation

error minimization technique for COVID-19 chest X-ray image analysis is

investigated. Theoretical investigations on the first-hand objective functions

are presented. The results on both the biclass and multiclass segmentation of

medical images are enlightened. The key to our success is the adjustment of

the pixel counts of different classes adaptively to reduce the error of segmenta-

tion. The COVID-19 chest X-ray images are taken from the Kaggle Radiogra-

phy database for the experiments. The proposed method is compared with the

state-of-the-art methods based on Tsallis, Kapur's, Masi, and Rényi entropy.

The well-known segmentation metrics are used for an empirical analysis. Our

method achieved a performance increase of around 8.03% in the case of PSNR

values, 3.01% for FSIM, and 4.16% for SSIM. The proposed technique would be

useful for extracting dots from micro-array images of DNA sequences and mul-

ticlass segmentation of the biomedical images such as MRI, CT, and PET.
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1 | INTRODUCTION

The World Health Organization (WHO) declared the epi-
demic of the COVID-19 infection as a pandemic. The

cause of the illness is SARS-CoV-2 (severe acute respira-
tory syndrome 2). Combating again the spread of corona-
virus (COVID-19) infection is an important task in
today's era. Therefore, there is a strong need for the early
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detection followed by an analysis to interpret the severity
of the infection. For detection, various methods used
are—the antigen test, reverse transcription-polymerase
chain reaction (RT-PCR), and serology testing.1 For inter-
pretation of the severity of the disease, chest X-ray images
from patients are used by the radiologists.2,3 Moreover,
the false-negative report of the RT-PCR test2 warrants
further analysis by using the chest X-ray images. Other
imaging techniques used by the radiologists are CT, MRI,
PET, etc. However, chest X-ray images are mostly pre-
ferred because these are easily available with low cost.
Commonly used for the analysis and interpretation, even
though X-ray images offer a lower sensitivity.

Multiclass segmentation is popular to divide the X-ray
image into different regions. The partitioning of the
image under consideration is crucial. The accuracy of
segmentation depends on the method used. Many recent
studies4–10 described different entropy-based methods
together with the machine intelligence for multiclass seg-
mentation of COVID-19 X-ray images. Liu et al.4 pre-
sented a multilevel COVID 19 X-ray image segmentation
technique by maximizing Kapur's entropy objective func-
tion. They claimed that Kapur's entropy is easy for com-
putation. Similarly, Kapur's entropy-based multiclass
segmentation method for COVID 19 X-ray images was
also presented in Reference [5] Sharma et al.6 discussed
Tsallis entropy-based multilevel thresholding method for
image segmentation. These authors claimed that Tsallis
entropy-based method yielded better results than Kapur's
entropy-based technique. Su et al.7 have also used
Kapur's entropy together with the multiverse optimiza-
tion for analysis of COVID-19 X-ray images. Murillo-
Olmos et al.8 also used Kapur's entropy for multilevel
thresholding of COVID-19 X-ray images. The reason of
the choice of using Kapur's entropy may be due to the
simplicity in implementation. The authors in Reference
[9] presented Kapur's entropy-based fitness function for
COVID-19 X-ray image segmentation.

The authors in Reference [10] have used the beta dif-
ferential evolution approach for maximizing Kapur's
entropy. They have presented interesting results on mul-
tilevel segmentation of color images. Masi entropy was
introduced in Reference [11] The authors in Reference
[12] suggested practical Masi entropy-based multiclass
segmentation of images. Rényi's entropy fitness function
is used in Reference [13] for multilevel image segmenta-
tion. A detail survey on image thresholding methods is
presented in Reference [14] Tsallis entropy-based optimal
multiclass segmentation was presented in Reference [15]
The authors in References [16–19] used Kapur's entropy
for multilevel threshold selection using an optimization
algorithm. Sarkar and das20 have used 2D Tsallis

entropy-based fitness function for multiclass segmenta-
tion of images. They have claimed regarding the preser-
vation of the contextual information. Rényi entropy-
based image thresholding technique was presented by
Sarkar et al.21 However, these entropy-based methods
yield inaccurate results due to their dependency on the
image histograms. Nonetheless, 1D, 2D, or 3D image his-
tograms are used to compute the entropic values. Usu-
ally, the gray-level spatial distributions are nonuniform
in these histograms.

This is the motivation behind our investigations. New
theoretical results are introduced in this work. The first-
hand objective functions are investigated. These func-
tions are minimized by using an optimizer called
opposition equilibrium optimizer OEO.22,23 The proposal
is first validated on two-class segmentation by extracting
dots from micro-array images of DNA sequences.24,25

Recently, the X-ray image analysis is found as a worth-
while subject of study.26,27 In this context, the multiclass
segmentation techniques may be very useful. In this
paper, the suggested methodology is also used for multi-
class segmentation of COVID-19 chest X-ray images.
Experiments are carried out considering COVID-19 chest
X-ray images from the Kaggle database.28 There is a need
for implementation of the administrative, physical, and
technical safeguards for the software platform handling
patient health information. Recently, Sanghvi et al.29 sug-
gested a model using deep learning (DenseNet201) to
analyze the Chest X-ray images of COVID-19-affected
patients with the Health Insurance Portability and
Accountability Act (HIPAA) compliance. Parmar et al.30

presented a comprehensive study on secured password-
less authentication protocol for mobile e-health system.

The rest of the paper is organized as follows. Section 2
describes the preliminary ideas on entropy-based tech-
niques. The proposed method is discussed in Section 3.
The results and discussions are presented in Section 4.
The concluding remark is given in Section 5.

2 | MATERIALS AND METHODS

2.1 | Tsallis entropy-based method

Tsallis nonextensive entropy-based technique used for
multiclass segmentation6 is discussed in this section. Let
us assume that there are L numbers of gray levels in the
image under consideration. Also, it is assumed that the
range of these gray levels is 1,2, � � �,Lf g. Note that the
probability distributions are pi ¼ p1,p2, � � �,pL. The proba-
bility distributions for two classes, class A and class B, are
derived as:
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pA ¼
p1
PA ,

p2
PA , � � �,

pT
PA andpB ¼

pTþ1

PB ,
pTþ2

PB , � � �, pL
PB ð1Þ

where,

PA ¼
XT

i¼1
pi andP

B ¼
XL

i¼Tþ1
pi ð2Þ

The optimum value of the threshold for two class seg-
mentation is given by:

T� ¼ argmax SAq Tð ÞþSBq Tð Þþ 1�qð Þ �SAq Tð Þ �SBq Tð Þ
h i

ð3Þ

where q is the Tsallis parameter, SAq Tð Þ and SBq Tð Þ are
estimated as:

SAq Tð Þ¼
1�PT

i¼1
pi
PA

� �q
q�1

andSBq Tð Þ¼
1�PL

i¼Tþ1
pi
PB

� �q
q�1

ð4Þ
The actual idea is to maximize the information mea-

sure between the two classes (object and background).
The corresponding gray value needed to maximize the
objective functions is coined as the optimum threshold.
The idea is then extended to the multiclass segmentation.

The optimum threshold selection criterion for solving
a multiclass segmentation problem is given by:

T�
1,T

�
2,T

�
3, � � �T�

K

� �¼ argmax
SAq Tð ÞþSBq Tð Þþ �� �þSKq Tð Þþ 1�qð Þ �SAq Tð Þ�

SBq Tð Þ� � �SKq Tð Þ

" #

ð5Þ
where,

SAq Tð Þ¼
1�PT1

i¼1
pi
P1

� �q
q�1

,

SBq Tð Þ¼
1�PT2

i¼T1þ1
pi
P2

� �q
q�1

and

SKq Tð Þ¼
1�PL

i¼TKþ1
pi
PK

� �q
q�1

:

The above objective function (5) is used for solving
the problem of the multiclass segmentation.

2.2 | Kapur's entropy-based technique

The Kapur's entropy function is used for multiclass seg-
mentation in References [7–9] This method is totally

dependent on the spatial domain distribution of the gray
levels. The scheme uses the histogram. The technique is
often used to compute the optimal thresholds by maxi-
mizing the total entropy. For a two-class image segmen-
tation, the objective function is given as:

T� ¼ argmax HAþHBð Þ ð6Þ

where, HA and HB are two different entropy values,
which are computed by:

HA ¼
XT

i¼1

pi
PA ln

pi
PA

� �
,andHB ¼

XL

i¼Tþ1

pi
PB ln

pi
PB

� �
ð7Þ

Note that, pi, P
A, and PB are the probability distribu-

tion of the gray values, class probability of A and B,
respectively, described in Equation (1) and Equation (2).
The idea is then extended to the multiclass segmentation.
The image is partitioned into Kþ1 classes. Note that the
K number of thresholds are used for the partition. For
the multiclass segmentation, Kapur's function is writ-
ten as:

T�
1,T

�
2,T

�
3, � � �,T�

K

� �¼ argmax
XK
k¼1

Hk

 !
ð8Þ

Here, T¼ T1,T2, � � � � ��,Tk½ �. Note that there are K
numbers of thresholds and Kþ1 numbers of classes. For
a gray-scale image, we need to compute K optimum
thresholds. This is a maximization problem. The entropy
values are computed separately as:

H1 ¼
XT1

i¼1

pi
P1 ln

pi
P1

� �
,HA ¼

XT2

i¼T1þ1

pi
P2 ln

pi
P2

� �
, � � �,

HK ¼
XL

i¼TKþ1

pi
PK ln

pi
PK

� �
ð9Þ

2.3 | Masi entropy-based method

The Masi entropy is used for multiclass image segmenta-
tion in References [11,12] The inherent property of the
Masi entropy is that it can deal with the additive/non-
extensive information. Assume that I is the image with
the dimension M�N . There are L number of gray levels.
The range of these levels is 0,L�1½ �. Note that the proba-
bility of each gray level is:
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pi ¼
ni

M�N
, i� 0,1, � � �,L�1½ � ð10Þ

Interestingly,

XL�1

i¼0

pi ¼ 1,where pi >0 ð11Þ

For the two-class segmentation, foreground (Cf ) and
background (Cb), it is needed to separate both the classes
by selecting a threshold T � 1,2, � � �,L�2½ �. The fore-
ground class probability (ωf ) is given as:

ωf ¼
XT
i¼1

pi, ð12Þ

and the background class probability (ωb) is given by:

ωb ¼
XL
i¼Tþ1

pi: ð13Þ

The foreground class Masi entropy (Hf ) is calcu-
lated as

Hf ¼ 1
1� r

log 1� 1� rð Þ
XT
i¼1

pi
ωf

� �
log

pi
ωf

� �" #
, ð14Þ

and the background class Masi entropy (Hb) is com-
puted as:

Hb ¼ 1
1� r

log 1� 1� rð Þ
XL
i¼Tþ1

pi
ωb

� �
log

pi
ωb

� �" #
ð15Þ

where r is the entropy parameter, which is chosen as 0:5.
The two-class segmentation using Masi entropy is

described by:

H Tð Þ ¼Hf þHb, ð16Þ

and the optimal threshold T� is computed as:

T� ¼ arg max
0<T < L�1

H Tð Þ
� 	

: ð17Þ

The authors in Reference [12] extended the idea to
multiclass segmentation. The number of thresholds is
greater than 1. The image is partitioned into Kþ1 clas-
ses, i.e., ¼ C0,C1, � � �,CK�1,CKf g . Here, K threshold

values T1,T2, � � �,TK are used. The intensity values of dis-
similar classes are assigned to:

0,T1�1½ ��C0

T1,T2�1½ ��C1

� � �
TK ,L�1½ ��CK

ð18Þ

where 0<T1 <T2 < � � �<TK <L�1.
The various class probabilities are given as:

ω0 ¼
XT1

i¼1

pi,ω1 ¼
XT2

i¼T1þ1

pi, � � �,ωK ¼
XL
i¼tKþ1

pi : ð19Þ

The Masi entropy Hj for the ith class is computed by:

Hj ¼ 1
1� r

log 1� 1� rð Þ
XTjþ1

i¼Tjþ1

pi
ωj

� �
log

pi
ωj

� �2
4

3
5,

where 0≤ j≤K:

ð20Þ

Thus, the multiclass segmentation problem using
Masi entropy is described as:

H T1,T2,���,TKð Þ ¼H0þH1þ�� �þHK ð21Þ

The optimal thresholds T�
1,T

�
2, � � �,T�

K


 �
using Masi

entropy is defined below:

T�
1,T

�
2, � � �,T�

K


 �¼ arg max
0<T1 <T2 < ���<TK < L�1

H T1,T2,���,TKð Þ
� 	

:

ð22Þ

Note that Equation (22) is used for solving the multi-
class segmentation problems.

2.4 | Rényi Entropy-based technique

Rényi entropy13 with order α is defined as given below:

Hα Xð Þ¼ 1
1�αð Þ log

Xn

i¼1
pαi

� �
ð23Þ

Note that X is a discrete random variable, n is an inte-
ger, pi is the i-th probability.

And 0 ≤ α ≤ ∞. Basically, Rényi entropy is a more
generalization to the Shannon type.

For a two-level segmentation, we consider only two
classes. i.e., the foreground (Cf ) and the background (Cb).
This partition is separated by a threshold

4 SAMANTARAY ET AL.



T � 1,2, � � �,L�2½ �. Then the foreground class probability
(ωf ) is given as:

ωf ¼
XT
i¼1

pi, ð24Þ

and the background class probability (ωb) is given by:

ωb ¼
XL
i¼Tþ1

pi: ð25Þ

The foreground class Rényi entropy (Hf ) is com-
puted as:

Hf ¼ 1
1�α

log
XT

i¼1

pi
wf

� �α

ð26Þ

and the background class Rényi entropy (Hb) is calcu-
lated as:

Hb ¼ 1
1�α

log
XL

i¼Tþ1

pi
wb

� �α

ð27Þ

The two-class segmentation using the Rényi entropy
is described by:

H Tð Þ ¼Hf þHb ð28Þ

The optimal threshold T� based on Rényi entropy can
be defined as

T� ¼ arg max
0<T < L�1

H Tð Þ
� 	 ð29Þ

The authors in Reference [13] extended the idea to
multiclass segmentation. In this case, the number of
thresholds is more than 1. Here, the image is partitioned
into Kþ1 classes, that is, C¼ C0,C1, � � �,CK�1,CKf g . The
foreground class is denoted as C0, the intermediate clas-
ses are represented as Ci¼1,2,���K�1, and the background
class is CK . It is important to note here that K thresholds
T1,T2, � � �,TK are used to generate these classes. The gray-
level assignments are shown below:

0,T1�1½ ��C0

T1,T2�1½ ��C1

� � �
TK ,L�1½ ��CK

ð30Þ

It may be noted that 0<T1 <T2 < � � �<TK <L�1.
The various class probabilities are:

ω0 ¼
XT1

i¼1

pi,ω1 ¼
XT2

i¼T1þ1

pi, � � �,ωK ¼
XL
i¼tKþ1

pi ð31Þ

Then, the Rényi entropy Hj for the ith class is com-
pute by:

Hj ¼ 1
1�α

log
XTjþ1

i¼Tjþ1

pi
wj

� �α

,where 0≤ j≤K ð32Þ

The multiclass segmentation using the Rényi entropy
is described as:

H T1,T2,���,TKð Þ ¼H0þH1þ�� �þHK ð33Þ

The optimal thresholds T�
1,T

�
2, � � �,T�

K


 �
using the

Rényi entropy are obtained as:

T�
1,T

�
2, � � �,T�

K


 �¼ arg max
0<T1 <T2 < ���<TK < L�1

H T1,T2,���,TKð Þ
� 	

ð34Þ

It may be noted that Equation (34) is used for solving
the multiclass segmentation problems.

3 | THE PROPOSED METHOD

In this section, a novel objective function is proposed.
The class weights are adaptively adjusted to compute
the optimal thresholds for multiclass segmentation. The
idea is to minimize the error in the segmented outputs.
The scheme is shown in Figure 1. The optimizer OEO is
used for minimizing the suggested objective (fitness)
function. The number of segmented classes is prede-
fined. The optimal threshold values are obtained by
minimizing the segmentation error (maximizing the
pixel counts of classes). Finally, the segmented output is
constructed using the image reconstruction rules as dis-
cussed below.

Let I be the image of size M�N . The pixel intensity
range is 0,L�1½ �: Let us first solve the problem for the
two-class segmentation of I as R� 0,1f gM�N . Let us
assume any gray value for the threshold T from the range
of values 1<T< (L-1). This value of T is used to divide
the image I into the two distinct classes, i.e., C0 and C1 .
The partitioned image is shown as:

IsT ¼
C0 0≤ Ii <T

C1 T ≤ Ii <L�1

�
ð35Þ
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Note that Ii denotes the intensity of the i-th pixel and
L= 256. The error of the two-class segmented output
(image IsT with s¼ 2) is defined below:

error Tð Þ ¼
XT
i¼1

Ii�μC0

L

� �2

þ
XL
i¼Tþ1

Ii�μC1

L

� �2

ð36Þ

Let S be the total number of pixels in an image, equal
to M�N . Interestingly, it is implicit in Equation (36) that
the error depends on the value of the threshold (T).
Therefore, the error is reduced iteratively changing the
class weights. The value of T, for which the error is mini-
mum, is called the optimal threshold. It is achieved using
the optimum class weights (NC0 andNC1 ) adaptively for
two different classes C0 and C1. These class weights play
the central role in this method. The focus here is to sim-
ply adjust the pixel counts (NC0 andNC1 ) to reduce the
error of segmentation. These counts are either maximized
or minimized by using an optimizer, even though an
exhaustive search strategy would solve the problem. The
reason is that the time requirement is more in the case of
an exhaustive search.

The mean value of the class C0 is defined by:

μC0
Tð Þ¼

PT
i¼1

Ii

NC0

ð37Þ

and the mean value of the class C1 is defined as:

μC1
Tð Þ¼

PL
i¼Tþ1

Ii

NC1

ð38Þ

where NC0 and NC1 denote the total number of pixels in
the classes C0 and C1, respectively. It is reiterated that
NC0 þNC1 ¼ S. Where, S is the total pixel count, NC0 and
NC1 are individual pixel counts. These counts are opti-
mized to minimize the error. The corresponding T is the
required threshold. Thus, the objective function for the
two-class segmentation is defined as:

error T�ð Þ ¼ arg min
0<T <L�1

errror Tð Þ ð39Þ

where T* represents the optimal threshold.
The idea is extended here for the multiclass segmen-

tation. For a multiclass segmentation, K numbers of the
optimal thresholds are required. These thresholds are
used to divide the image I into a partitioned image
IsT1,T2,���,TKð Þ (with s=K+ 1). The partitioned image
IqT1,T2,���,TKð Þ has the Kþ1 number of classes,
i.e., C0,C1, � � �,CK ,CKþ1. It is described by:

IsT1,T2,���,TKð Þ ¼

C0 0≤ Ii <T1

C1 T1 ≤ Ii <T2

..

.

CKþ1

..

.

TK ≤ Ii <L�1

8>>>>><
>>>>>:

: ð40Þ

FIGURE 1 Proposed method.

(A) (B) (C) (D)

FIGURE 2 Four standard test

images. (A) Baboon, (B) Man,

(C) Pepper, (D) Lena.
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The error for the multiclass segmentation is
defined as:

error T1,T2,���,TKð Þ ¼
XT1

i¼1

Ii�μC0

L

� �2

þ
XT2

i¼T1þ1

Ii�μC1

L

� �2

þ���

þ
XL

i¼TKþ1

Ii�μCKþ1

L

� �2

ð41Þ

The mean value of the kth class is defined as:

μCk
T1,T2, � � �,TKð Þ¼

PTkþ1�1

i¼TKþ1
Ii

NCk

ð42Þ

The condition is that 0<T1 <T2� � �<TK < L�1ð Þ
and

PK
k¼0

NCk ¼ S.

Need to mention here that T�
1,T

�
2, � � �,T�

K

� 	
are the

optimal thresholds obtained by minimizing the following
objective function:

error T�
1,T

�
2,���,T�

Kð Þ ¼ arg min
0<T1 <T2���<TK < L�1ð Þ

error T1,T2,���,TKð Þ

ð43Þ

The optimal thresholds T�
1,T

�
2, � � �,T�

K are obtained
using the fitness function Equation (43). This is a mini-
mization problem. It is expected to achieve good results,

TABLE 1 Time required computing the optimal threshold(s).

Timetwo�class (sec) Timethree�class (sec)

Baboon 0.3401 86.2507

Man 0.3011 78.6051

Peppers 0.3305 84.1464

Lena 0.3230 82.4341

FIGURE 3 . Flowchart of the

suggested method.

SAMANTARAY ET AL. 7



because the error in the multiclass segmentation proce-
dure is minimized through the adjustment of the class
weights adaptively. It is noteworthy to mention here that
the proposed method needs not to be initialized with a
fixed class weight. The initial class weights are chosen
randomly within the range [2, L-2]. In addition, the
scheme is free from the distribution of the gray-level
values in the image histogram. Here, we need to optimize
the pixel counts NCk only in the different segmented clas-
ses, as opposed to other techniques based on the image
histogram (entropy-based). Therefore, the method is the
simplest one while considering the implementation.

For a better illustration, four standard test images,
namely the Baboon, Man, Peppers, and Lena with size

256�256, are considered. These images are displayed in
Figure 2.

The time complexity of the proposed method is
empirically illustrated in Table 1. The time taken in sec-
onds to compute the optimal threshold value(s) for two-
class and three-class segmentation is displayed in
Table 1. Note that the suggested fitness function
Equation (43) is used here for the computation of the
optimal threshold(s). This is the execution time complex-
ity of our method while considering the exhaustive
search. It may be noted that the MATLAB R2018b is used
for the implementation. The Intel Core i3 (5th genera-
tion) processor is used for processing. This is evident
from the time complexity values that the computation
time increases for increasing number of thresholds. The
order of the computational complexity for K numbers of
thresholds is O LK

� 	
.

From the empirical findings (see Table 1), it is
described by the relation timethree�class ≈L� timetwo�class:
It is noteworthy to mention here that we need two
(K= 2) numbers of thresholds for three-class segmenta-
tion. Therefore, the order of the computational time com-
plexity for three-class segmentation is O L2ð Þ, whereas for
two-class segmentation is O Lð Þ. This is empirically
proved through the exhaustive search process. Need to
mention here that the computation time increases expo-
nentially with an increase in the threshold number.
Hence, when we talk about the multiclass segmentation,
there is a strong need to reduce the time complexity.
Obtaining the optimal thresholds through an exhaustive
search for multiclass segmentation is quite difficult. To
reduce the computational burden, an efficient optimizer
is recommended. A flow chart for the proposed method is
shown in Figure 3.

4 | RESULTS AND DISCUSSION

In this work, the method is implemented using the
MATLAB R2018b. The Intel Core i3 (5th generation) pro-
cessor is used for both the experiments. The opposition
equilibrium optimization (OEO)22,23 algorithm is used for

FIGURE 4 Sample test images and their respective histograms.

TABLE 2 Threshold (T) value obtained for two-class

segmentation using various methods.

Image Proposed Tsallis Kapur's Masi Rényi

Img-1 66 80 89 92 80

Img-2 81 82 102 105 82

Img-3 79 80 100 102 81

Img-4 98 105 133 137 106

Img-5 67 81 96 100 80

8 SAMANTARAY ET AL.



minimizing the objective function proposed above. The
OEO parameters are taken same as in References [22,23]
Note that the test image bit length of each pixel is 8-bit
(with 256 gray levels). In these experiments, we reduce
the number of gray levels (for output segmented images)
to K + 1 with K threshold values. However, the pixel
length is still 8-bit.

4.1 | Experiment 1

In this section, the results on two-class segmentation
using our method are presented. In practice, two-class
and multiclass segmentation methods have their own
application advantages, although the primary focus of
this work is the multiclass segmentation. Here, the fun-
damental idea of the two-class segmentation is
highlighted through exemplary experiments. It is note-
worthy to mention here that a method needs to perform
well for the two-class segmentation first. It requires vali-
dation. Therefore, we have considered the validation of
our method for the use in Bioinformatics analysis and
data interpretation. Its performances are compared with
the existing entropy-based techniques.

Recently research is concentrated on the next-
generation sequencing (NGS) used for DNA variant/
mutation detection.24 This, in turn, helps medical practi-
tioners for disease diagnosis, prognosis, therapeutic deci-
sion, and follow-up action. Extraction of dots from the
background of the gene images of micro-arrays24,25 is a

critical task. Nonetheless, these dots have diffused
boundaries. Therefore, to achieve good results, it is neces-
sary to make the method free from the gray level distribu-
tion. The following results with an in-depth analysis may
create interest among the readers.

Five different sample images (Img-1, Img-2, Img-3,
Img-4, and Img-5), taken in this experiment, are dis-
played in Figure 4. Their corresponding histograms
with two intensity classes are also shown in the right-
hand side. Sometimes, the background intensity class is
found dominant over the object. For instance, the back-
ground class is dominant over the object displayed in
Img-4 (see the corresponding image histogram with a
dominant peak on the higher side of the gray levels). In
Img-5, the object is dominant over the background (see
the corresponding image histogram with a dominant
peak on the lower side of the gray levels). Moreover, at
the boundary, the dots are diffused. Therefore, it is cru-
cial to find a fair threshold value to detect the intensity
change.

Dots are separated by using our methodology. First,
the optimal threshold values of five different images are
computed by minimizing the fitness function
Equation (39) using the OEO.23 Here, the pixel counts of
two different classes (NC0 and NC1Þ are optimized over
the sum, to achieve the optimal threshold values. These
optimal thresholds are shown in Table 2. Second, these
values are used to achieve the segmented outputs dis-
played in Figure 5. Note that the entire pixel values less
than or equal to the threshold (T) are assigned “0” while

FIGURE 5 Two-class segmented

outputs. Dots are separated from the

backgrounds.
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the other class's pixels are assigned to “255.” For a fair
comparison, Tsallis, Kapur's, Masi, and Rényi entropy-
based methods for two-class segmentation are also imple-
mented. The parameters for Tsallis, Masi, and Rényi are
chosen as 0.1, 0.5, and 0.1 corresponding for the
experiments.

In summary, the dots are extracted accurately using
our method. This is implicit in Figure 5. From a visual
comparison, it is observed that the proposed technique
yields better results compared to the Tsallis, Kapur's,
Masi, and Rényi entropy-based methods. Especially, the
boundaries are exactly located using the suggested
method. Other methods fail to detect the intensity change
near the boundaries. The reason may be since the
entropy-based methods depend on the gray level distribu-
tion, because these methods use the image histogram.
Particularly in the medical images, the distribution of the
gray values is not uniform. On the contrary, our sug-
gested method is efficient, because it does not depend on

the gray level distribution. It optimizes the pixel counts
of two different classes adaptively to minimize the seg-
mentation error efficiently.

4.2 | Experiment 2

In this section, the objective function Equation (43) pro-
posed for the multiclass segmentation is used. The idea of
minimization of the segmentation error is enlightened in
Section 3. The OEO is used for optimization. The optimal
threshold values T�

1,T
�
2, � � �,T�

K

� 	
are obtained. The output

segmented images are constructed using these values. It
is reiterated that the output consists of K+ 1 gray values
(classes). The proposal for multiclass segmentation is val-
idated here using 8 numbers of X-Ray chest images dis-
played in Figure 6. These are randomly chosen from the
Kaggle database.26–28 An identification number together
with its histogram is also displayed.

FIGURE 6 Sample X-Ray chest images.
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Other objective functions reported by Tsallis, Kapur,
Masi, and Rényi are also considered for a fair compari-
son. The same parameters reported for the OEO in23 are
used here to optimize the objective functions. In this
evaluation process, 11 numbers of independent runs are
considered for each scheme, to obtain the optimal
K numbers of threshold values. Subsequently, these opti-
mal thresholds are used to construct the (output) seg-
mented images. Three different popular metrics are used
for an assessment. These are PSNR, FSIM, and SSIM. The
higher the values, better the performance. The perfor-
mance of our method over others is shown in Tables 3–5.
The boldface numbers suggest the best results.

From the PSNR values shown in Table 3, it is explic-
itly clear that our method outperforms other four
methods. Similarly, from the FSIM values displayed in
Table 4 and the SSIM values shown in Table 5, it is
revealed that the proposed technique has dominated the
other methods. Additionally, from the quantitative
results shown in Table 3, the suggested technique's per-
formance is increased by around 8.03%, while consider-
ing the COVID-10 sample image with K = 2 with respect
to the Tsallis, Kapur, Masi, and Rényi entropy-based
schemes. Similarly, it could perform well while consider-
ing the data highlighted in Table 4 (FSIM values) and
shows an improvement of around 3.01% over other

TABLE 3 Optimal PSNR. Test image K Proposed Tsallis Kapur Masi Rényi

COVID-10 2 24.1998 22.3145 22.3999 22.3288 22.3322

3 26.149 25.0937 25.4408 22.2433 25.0502

4 27.6654 26.5159 27.3422 25.3026 26.576

5 29.0474 28.0941 28.5516 27.3399 28.0493

COVID-98 2 21.1681 20.5393 20.4982 20.4988 20.5084

3 23.5277 23.2 23.2588 23.2511 23.218

4 25.492 25.2949 24.9972 25.0911 25.3125

5 26.9138 26.9068 26.7594 26.7166 26.9062

COVID-192 2 22.2836 21.4133 21.6922 21.6732 21.4405

3 24.7076 23.9521 24.3707 24.3842 23.9708

4 26.5304 25.6415 25.6382 24.4361 25.6861

5 27.9939 27.3772 26.9816 25.5957 27.2067

COVID-557 2 22.4818 21.3342 22.2558 22.2158 21.392

3 24.8176 23.5965 22.9097 22.7099 23.6312

4 26.5985 25.4351 25.3648 25.0999 25.4323

5 28.0306 27.1036 26.7848 26.847 27.1439

COVID-994 2 24.1912 23.8693 23.9144 19.4999 23.9148

3 26.918 24.9961 24.9426 23.8098 25.0234

4 28.5403 26.9289 27.7928 24.8138 26.9289

5 29.9469 28.1973 28.3243 27.646 28.3221

COVID-1007 2 22.6229 22.4644 21.8805 18.318 22.4476

3 25.5327 25.1381 24.3499 21.8626 25.2213

4 27.5213 25.3098 24.4289 24.4348 25.2081

5 29.2176 27.1965 26.8737 26.513 27.2469

COVID-1081 2 22.6987 21.5394 22.4234 22.4069 21.5025

3 25.3811 23.0536 22.9196 22.3553 23.0314

4 27.3286 25.2938 24.8942 24.0839 25.3089

5 28.8456 27.5067 26.4319 24.7469 27.674

COVID-1157 2 23.5472 23.2614 23.1825 23.1368 23.2388

3 25.9943 25.6182 25.5581 23.0535 25.5525

4 27.7447 27.1087 26.7386 25.5395 27.1782

5 29.331 28.1354 28.1409 27.0823 27.8808
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schemes. In case of the optimal SSIM values reported in
Table 5, one can observe that our methodology domi-
nates the other schemes and reflects an improvement of
around 4.16%. The reason of such improvements may be
its inherent mechanism of reducing the segmentation
error. Furthermore, its performance is free from the dis-
tribution of the gray values. Precisely, our technique is
histogram independent.

To further strengthen our results, the entropy values
of the thresholded images (output segmented images) are
also presented in Table 6. It reveals that, in 81% cases,
the proposed scheme yields better entropy values than

the other entropy-based methods. Interestingly, it is seen
that, around 9.59% improvement is achieved over Tsallis
entropy-based technique while 9.40% improvement over
Kapur, 18.61% improvement over Masi, and 9.63%
improvement over Rényi entropy-based methods.

For further study, the output segmented images are
also presented in Figures 7–10. The segmented outputs
for the sample test image COVID-10 and COVID-98 with
K ¼ 2 are shown in Figure 7. The results for the sample
test image COVID-192 and COVID-557 with K= 3 is dis-
played in Figure 8. For the sample test images COVID-
994 and COVID-1007 with K= 4, the multiclass

TABLE 4 Optimal FSIM.Test image K Proposed Tsallis Kapur Masi Rényi

COVID-10 2 0.7273 0.7183 0.7183 0.7083 0.7187

3 0.7393 0.7419 0.7352 0.707 0.7414

4 0.7595 0.7346 0.7474 0.7266 0.7361

5 0.7682 0.7552 0.7626 0.7391 0.753

COVID-98 2 0.6326 0.6561 0.6642 0.6375 0.6548

3 0.6607 0.6636 0.674 0.6536 0.6644

4 0.6808 0.6912 0.6955 0.6852 0.69

5 0.719 0.7185 0.7283 0.7286 0.7203

COVID-192 2 0.6729 0.6854 0.6906 0.6746 0.6848

3 0.6969 0.6971 0.704 0.6965 0.697

4 0.7163 0.7166 0.7161 0.6976 0.7171

5 0.7588 0.7292 0.7383 0.7211 0.7338

COVID-557 2 0.6269 0.6074 0.6349 0.6387 0.6094

3 0.7087 0.6606 0.6486 0.644 0.6638

4 0.7588 0.718 0.7171 0.7158 0.7195

5 0.805 0.7646 0.7641 0.7664 0.765

COVID-994 2 0.7242 0.7442 0.7301 0.7052 0.7454

3 0.753 0.7345 0.7397 0.7179 0.7347

4 0.7888 0.7448 0.7574 0.7317 0.7448

5 0.8174 0.7531 0.7612 0.7569 0.7562

COVID-1007 2 0.6855 0.6986 0.7094 0.6711 0.699

3 0.7137 0.7168 0.7264 0.6933 0.7183

4 0.7439 0.7189 0.7246 0.7182 0.7189

5 0.7731 0.7479 0.7478 0.7521 0.7443

COVID-1081 2 0.7001 0.6986 0.7078 0.6962 0.699

3 0.7236 0.7084 0.7104 0.6956 0.7082

4 0.737 0.7146 0.7159 0.6939 0.7142

5 0.7663 0.7354 0.7297 0.7019 0.738

COVID-1157 2 0.6466 0.6521 0.6562 0.6472 0.6536

3 0.7013 0.6907 0.6996 0.6457 0.689

4 0.7457 0.7171 0.7248 0.698 0.7187

5 0.7907 0.7554 0.7693 0.7374 0.7525
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segmented images are shown in Figure 9. Similarly, the
outputs for the sample test images COVID-1081 and
COVID-1157 with threshold level K= 5 are presented in
Figure 10. It is noteworthy to mention here that some
important results are presented in this paper, to conserve
space. However, all results are analyzed. The results are
quite encouraging with quality multiclass segmented out-
puts. For a fair comparison, it is pertinent to mention
here that the label map images are constructed in this
experiment.

An in-depth analysis is made to justify the use of the
proposed method for COVID-19 chest X-ray image

analysis. It is important to mention here that the gray-
level distribution in spatial domain is nonuniform. This
is implicit in Figure 6. It is reiterated that the entropy-
based methods are dependent on the gray-level distribu-
tion. Therefore, the entropy-based methods yield less
accurate results. On the contrary, the suggested tech-
nique is free from the spatial distribution of gray values.
Hence, performs well in this situation. For instance, the
multiclass segmented output of the COVID-1157 X-ray
image with K = 5 proves its effectiveness. In this figure,
the class separation is better in our case. The reason of
the improvement is mainly due to its sensitivity toward

TABLE 5 Optimal SSIM. Test image K Proposed Tsallis Kapur Masi Rényi

COVID-10 2 0.7228 0.7289 0.7278 0.7059 0.7285

3 0.7446 0.7438 0.7395 0.7011 0.7432

4 0.7724 0.7456 0.7556 0.7237 0.7474

5 0.7748 0.7657 0.7732 0.7407 0.7625

COVID-98 2 0.6269 0.6393 0.6471 0.6297 0.6382

3 0.6631 0.6651 0.6721 0.6583 0.6651

4 0.6914 0.6982 0.7025 0.6967 0.6977

5 0.7242 0.7242 0.7324 0.7347 0.7261

COVID-192 2 0.6777 0.6908 0.696 0.6787 0.6895

3 0.718 0.7209 0.7263 0.7173 0.7216

4 0.739 0.7424 0.7423 0.7175 0.7427

5 0.7731 0.7589 0.7664 0.7418 0.7616

COVID-557 2 0.6438 0.6338 0.658 0.6599 0.636

3 0.7224 0.6775 0.6687 0.6618 0.6803

4 0.764 0.7318 0.7341 0.7311 0.7341

5 0.7988 0.7683 0.7658 0.7671 0.767

COVID-994 2 0.7295 0.7545 0.7405 0.7073 0.756

3 0.7636 0.7464 0.7535 0.7161 0.7474

4 0.7963 0.7593 0.7727 0.7341 0.7593

5 0.8168 0.7699 0.777 0.7629 0.7739

COVID-1007 2 0.6514 0.6562 0.6615 0.6099 0.6561

3 0.7027 0.6842 0.6872 0.6467 0.6882

4 0.7375 0.6993 0.6826 0.6794 0.7008

5 0.7676 0.7379 0.722 0.7184 0.7323

COVID-1081 2 0.6282 0.6147 0.6353 0.6171 0.6155

3 0.7143 0.6394 0.6397 0.6147 0.6388

4 0.7344 0.6711 0.6572 0.6242 0.6702

5 0.7662 0.7214 0.6854 0.6371 0.7314

COVID-1157 2 0.6897 0.6934 0.6992 0.6909 0.695

3 0.7361 0.7286 0.74 0.6891 0.7257

4 0.77 0.7499 0.7597 0.7338 0.7517

5 0.8059 0.7655 0.7898 0.7601 0.7615
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the intensity variations. The Average CPU time (in sec.)
comparison for one independent run is displayed in
Table 7.

From Table 7, it is seen that the computation time is
reduced significantly as compared to the exhaustive
search results shown in Table 1. The reason is that the
optimizer OEO is used here. Further, it is observed from
Table 7 that, the suggested method needs more time com-
pared to other entropy-based methods. The reason may
be due to the adjustment of the pixel counts by changing
the class weights iteratively. This may be the disadvan-
tage of the proposed method. However, it shows better

performances in terms of PSNR, SSIM, FSIM, entropy
values etc. displayed in Tables 3–6.

4.3 | Novelty of the proposed framework
and compliance

The novelty of the developed methodology is its ability to
adaptively adjust the class weights. To be specific, these
class weights are iteratively adjusted so that the segmen-
tation error gets minimized. The patient image data can
be divided into two or more segments. It would be useful

TABLE 6 Entropy of thresholded

image.
Test image Th Proposed Tsallis Kapur Masi Rényi

COVID-10 2 1.6096 1.1664 1.1904 1.1675 1.1766

3 1.9920 1.6578 1.7411 1.1187 1.6544

4 2.2396 1.9077 2.0875 1.6985 1.9162

5 2.3916 2.1657 2.3038 2.0677 2.1636

COVID-98 2 1.5924 1.6132 1.6039 1.6033 1.6117

3 1.9981 1.9933 2.0188 2.0209 1.9980

4 2.3204 2.2852 2.2908 2.3000 2.2808

5 2.5566 2.5431 2.5631 2.5509 2.5433

COVID-192 2 1.5772 1.4228 1.4633 1.4579 1.4254

3 1.9500 1.8138 1.8716 1.8705 1.8162

4 2.3062 2.0907 2.0915 1.8576 2.1034

5 2.5619 2.3840 2.3088 2.0675 2.3524

COVID-557 2 1.6224 1.4971 1.5981 1.5903 1.5042

3 2.0319 1.8261 1.7051 1.6637 1.8330

4 2.3446 2.1172 2.1021 2.0643 2.1188

5 2.6052 2.3951 2.3463 2.3576 2.4100

COVID-994 2 1.3652 1.2916 1.4108 0.4411 1.2960

3 1.8810 1.5154 1.5006 1.3377 1.5217

4 2.2458 1.8814 2.0029 1.4239 1.8814

5 2.5151 2.0691 2.0863 1.9317 2.0769

COVID-1007 2 1.4730 1.5379 1.5160 0.9589 1.5391

3 1.9006 1.9563 1.9233 1.4865 1.9521

4 2.2467 1.8778 1.8874 1.8797 1.8424

5 2.5497 2.1357 2.1499 2.1500 2.1590

COVID-1081 2 1.5992 1.4559 1.5700 1.5669 1.4474

3 2.0253 1.6601 1.6302 1.5363 1.6541

4 2.3359 2.0231 1.9978 1.8980 2.0300

5 2.5668 2.3255 2.2649 1.9859 2.3286

COVID-1157 2 1.2916 1.1357 1.1296 1.1199 1.1267

3 1.7166 1.5516 1.5140 1.0760 1.5549

4 1.9952 1.8923 1.6926 1.4906 1.8860

5 2.2856 2.2022 1.9506 1.7271 2.1611
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FIGURE 7 Results with Sample test images COVID-10 and COVID-98 with threshold level K = 2.

FIGURE 8 Results with Sample test images COVID-192 and COVID-557 with threshold level K = 3.

FIGURE 9 Results with Sample test images COVID-994 and COVID-1007 with threshold level K = 4.
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to the medical profession for analyzing the medical
images such as micro-array dots and chest X-ray images .
While developing the platform, we have also done our
best to comply with the Health Insurance Portability and
Accountability Act (HIPAA) standardizing best practices
for maintaining the security and privacy of healthcare
data. We have emphasized the need for implementation
and documentation of administrative, physical, and tech-
nical safeguards for the software platform handling
patient health information. This project is in the beta
phase and once it is decided to adopt in a real environ-
ment, we plan to add more security layers to prevent
cyberattacks and unauthorized access.

5 | CONCLUSION

The paper suggested a novel adaptive class weight
adjustment-based multiclass segmentation error mini-
mization method for analysis of the chest COVID-19 X-
ray images. The technique used mean intensity values
in a class. The novelty of the idea is that the mean value
is unbiased of the spatial distribution. The proposal is
very simple to implement and is the fastest of all the

methods based on the entropy computation using the
image histogram. It is also found better than others,
because it is not affected due to the nonuniform distri-
bution of the gray levels in the image histogram. It
yields better values, because the inherent mechanism is
quite effective to reduce the segmentation error. It has a
better sense of handling the intensity variation. The
opposition equilibrium optimizer is used for minimizing
the fitness values. The suggested methodology may be
the best option for the multiclass segmentation of bio-
medical images. The technique yields quality segmented
images for the COVID-19 X-ray images, due to the mini-
mization of the segmentation error. There are certain
merits in the proposed scheme. To figure out – (i) better
segmentation results, (ii) faster convergence, and
(iii) does not depend on the distribution of the gray level
values. It means, convincingly, this scheme would be
very useful for the analysis of the COVID-19 chest X-ray
images. It is believed that the two-class segmentation
idea would be well-suited for extracting the dots from
the DNA sequence images. It may also be used for the
document image analysis. Interestingly, this work may
also stretch a new direction to the multiclass segmenta-
tion of the medical images. There is enough scope for
extending the idea for multiclass segmentation of the
color images, brain MR images, and breast cancer
thermograms.
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ing resources available in the public domain: – COVID-19

FIGURE 10 Results with sample test images COVID-1081 and COVID-1157 with threshold level K = 5.

TABLE 7 Average CPU time (in sec.) comparison for one

independent run using the OEO.

Th Proposed Tsallis Kapur Masi Rényi

2 2.1311 1.5789 1.9577 1.5506 1.5456

3 2.6729 1.6869 1.9891 1.5936 1.6915

4 3.3667 1.7742 2.0033 1.6214 1.7190

5 3.8072 1.8763 2.0466 1.6528 1.7421
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