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In order to track a targeted environment, concealed weapon detection, navigation and military require
various imaging modalities, for instance, visible image (VI) and infrared (IR) image. These modalities pro-
vide additional details. Complementary information from these images need to be fused into a single
image for improved situational awareness. Hence, an ideal fused image should assimilate the essential
bright information from the IR image and retain much of the original visual information from the VI.
To achieve this, a region based image fusion technique using an efficient adaptive transition region
extraction (ATRE) strategy is suggested in this paper. For the first time, the transition region extraction
based approach is brought into the context of visible and infrared image fusion. This method is beneficial
because it overcomes the problems of noise sensitivity, poor contrast and blurring effects associated with
the conventional pixel-based methods. The proposed ATRE technique is used to efficiently extract the
bright object regions from the IR image and retain much of the visual background regions from the VI.
An adaptive parameter is introduced for accurate segmentation. A region mapping process is followed
to get the fused image. Our technique is tested on standard fusion datasets. Image inspection and objec-
tive fusion indices are utilized to validate the results. They are compared with conventional and current
pixel based and region based fusion techniques. The outcomes reveal that the suggested technique is
comparable or better than state-of-the-art fusion techniques.
� 2021 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Image fusion is a promising research subject in the field of
image processing. It is a technique for combining reciprocal and
redundant details from multiple images, either of the same view
or of a different modality, into a single image. The fused image
obtained may yield an explicit visual perception and applied in
advanced image processing applications. With the invention of
advanced imaging devices for capturing images, many researchers
are attracted and applied the image fusion techniques to many
applications i.e. surveillance, disease diagnosis, remote sensing
etc. More specifically, the IR image and VI fusion techniques are
extensively utilized in many applications such as military surveil-
lance, object recognition, detection, image enhancement, remote
sensing etc. It is especially important in military technology for
automatic target detection and localization. The sensors used in
the VI capture reflected lights from the object with rich appearance
information. However, the images captured by the visible sensors
are influenced by many impairments such as bad weather condi-
tion, poor illumination, fog and night time. On the other hand,
the IR sensors capture images using the principle of thermal radi-
ation. IR images are unaffected by the above mentioned distur-
bances. Instead, they have low resolution and poor details. Thus,
a good image is obtained by combining the complementary infor-
mation of both the IR and visible images using various image
fusion techniques.

The image fusion is performed in three ways i.e. pixel level, fea-
ture level and decision level. Numerous studies are reported using
pixel level image fusion techniques [1–7]. The pixel level image
fusion techniques are simple and easy to implement. However,
they have several shortcomings such as misregistration, blurring
effect etc. These shortcomings can be eliminated by the use of
region based approaches which belong to feature level image
fusion. In region based approach, the regions (i.e. group of corre-
lated pixels) are considered for fusion instead of individual pixels.
The decision level image fusion is the highest level of fusion. This
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method is based on the outputs of initial object detection and clas-
sification. Generally, an initial decision is made from the feature
level fusion. The outcome of the initial decision is taken as the
input for the decision level fusion. Many image fusion processes
have incorporated region based approach due to its advantages
over pixel based approach. A thorough study on region based
image fusion techniques is reported in Meher et al. [8]. Further, a
detail review on IR and VI fusion is undertaken in [9,10]. In this
paper, we have developed a region based fusion technique for IR
and VI fusion and compared our results with various pixel based
and region based fusion techniques.

In region based fusion techniques, the segmentation task is
vital. The researchers have used various techniques for segmenta-
tion. In recent years, transition region based thresholding has been
successfully investigated for image binarization. The conventional
gradient based transition region extraction techniques are highly
affected by noise. The transition region descriptor (a key compo-
nent in the process) affects the region extraction and then thresh-
olding. The local entropy (LE) (a descriptor) [11] considers only the
frequency of gray level variations. This results in inaccurate classi-
fication of non-transition regions with frequent but minor gray
level variations into the transition regions. To overcome this prob-
lem, a modified descriptor (modified local entropy (MLE)) consid-
ering both the frequency and the degree of gray level variations
is implemented in Li et al. [12]. This concept of image segmenta-
tion has not been used for fusion before.

This has motivated us to develop a region based IR and VI fusion
scheme using the idea of transition region extraction. The MLE con-
cept of image binarization is used for the object region extraction.
In this context, we suggest a novel efficient adaptive transition
region extraction (ATRE) method for fusion. It is to be noted that
the efficiency of the proposed method does not mean fusion time
efficiency. Here, we have extracted the object region from the IR
image introducing the ATRE based segmentation approach. The
ATRE approach is used to determine the threshold values. In Li
et al. [12], the threshold values are determined from a randomly
chosen coefficient in the range [0,1]. However, we have suggested
an adaptive coefficient to determine the threshold value which
plays a key role in segmentation. The coefficient is expressed in
terms of the maximum and the average value of the transition
region descriptor matrix. This results in an accurate delineation of
the transition region leading to exact object region and background
region extraction for fusion. Then the background regions from
both the VI and IR image is extracted using the inverted binarized
image obtained from ATRE. Next a suitable patch based fusion rule
is applied to get the fused background image. Finally, the output
image is obtained by using region mapping. The proposed method
is experimented with a number of test images from standard data-
base [13]. The results are compared with state-of-the-art tradi-
tional and modern pixel level and region level fusion techniques.
It is observed that our results are encouraging and may set the path
for future research in this area. Themajor contributions of this work
are: i) to use the idea of transition region extraction for object
region delineation for fusion, ii) an adaptive coefficient is intro-
duced to determine the threshold values for accurate segmentation.

The rest of this paper is structured as follows: The related work
is discussed in Section 2. The suggested work is described in Sec-
tion 3 including the object region extraction and fusion rules.
The result comparisons and discussions are given in Section 4.
Lastly, the conclusion is given in Section 5.
2. Related work

Many researchers have presented the fusion processes for VI
and IR images. Most of the methods used are pixel based. The com-
2

monly used pixel based methods for VI and IR image fusion
includes – multi-scale transform (MST), saliency based methods,
sparse representation, neural network, subspace, hybrid models
etc. [10].

The authors in Liu et al. [14] suggested the fusion of VI and IR
images based on discrete wavelet transform (DWT). The DWT pro-
vides a good time–frequency representation compared to the pyra-
mid transform. However, the DWT produces pseudo-Gibbs effect
because of the down sampling process at every decomposition
level. Further, it lacks shift invariance and directionality properties.
This is overcome by the use of dual tree complex wavelet trans-
form (DT-CWT). Lewis et al. [15] employed the DT-CWT to get a
multi resolution decomposition of the source images. However,
this transform cannot detect the curves and edges of the images
in fusion. The curvelet transform (CVT) is used to solve the problem
of DT-CWT method. Quan et al. [16] used CVT for the decomposi-
tion of the VI and IR image and obtained two groups of coefficients
i.e. high frequency and low frequency components. However, the
visual quality of the fused image is degraded due to the shift vari-
ant character of the curvelets. Naidu [17] used multiscale singular
value decomposition (MSVD) for the fusion of VI and IR image,
which does not have fixed set of basis vectors. Bavirisetti and Dhuli
[18] proposed a new edge preserving image fusion technique for VI
and IR images. The input images are decomposed into two layers:
approximation and detail layers using anisotropic diffusion based
fusion (ADF). However, this method suffers from blocky effects or
artefacts. The authors in Bavirisetti et al. [19] suggested a fusion
scheme based on the fourth order partial differential equation
(FPDE) and principal component analysis (PCA). It is observed that
the MST based fusion methods suffer from the following difficul-
ties. The determination of number of decomposition levels is diffi-
cult. The size of the decomposition levels is a compromise between
getting the spatial details and sensitivity to noise and transform
artefacts. Further, the problems of choosing the MST and the pre-
defined fusion rules are always there.

The researchers have also used saliency based methods for the
same. In Bavirisetti and Dhuli [20], the authors suggested a two-
scale image fusion based on visual saliency (TSIFVS) algorithm
for the fusion of IR and visible images. However, the dimension
of the mean and median filters used to find the visual saliency
affects the performance of their method. In Zhan et al. [21], the
authors suggested multimodal image seamless fusion (MISF) for
fusion. However, their method produces gradient reversal
artefacts.

In Jin et al. [22], the authors proposed a VI and IR image fusion
using a pixel based hybrid technique stationary wavelet transform-
discrete cosine transform-spatial frequency (SWT-DCT-SF). They
used discrete cosine transform (DCT) and local spatial frequency
(LSF) in discrete stationary wavelet transform (SWT) domain. The
selection of window size is also very important for DCT and may
affect the quality of the output image. In Ma et al. [23], the authors
proposed a procedure utilizing gradient transfer fusion (GTF) and
total variation minimization. However, the authors did not take
into account the intensity information of the VI, which could lead
to a low dynamic range and detail loss.

In Zhang et al. [24], the authors used pixel based infrared fea-
ture extraction and visual information preservation (IFEVIP)
method to extract the important bright features from the IR image
and merged with the original visual features of VI. However, their
algorithm is suited to low light IR image and VI pairs only. Further,
the contrast of the fused image is degraded as the IR features are
extracted with much background information. It is to be noted that
all the above mentioned techniques are based on pixel level fusion.

Mitianoudis and Stathaki [25] proposed the region based image
fusion using ICA. The source images are segmented into two
regions: (i) active and (ii) non-active. The active regions contain
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the detail information and the non-active regions contain the back-
ground information. The authors in [25] extended their work to a
more sophisticated region-based image fusion [26]. The method
may not be suitable for multi-modality images as the several
modality images have diverse texture characteristics. We have also
suggested a region based method for fusion using the idea of tran-
sition region extraction for object region delineation.

Recently, deep learning methods have been widely used in the
direction of visible and infrared image fusion [27–32]. The authors
in [27] used deep learning for IR and VI fusion. They used deep
learning for feature extraction from the detail part of the images.
Ma et al. [28] proposed FusionGAN for the problem on hand. They
further improvised their work in [29]. The authors in [30] proposed
a fusion method via dual-discriminator conditional generative
adversarial network (DDcGAN) improve the losses in the thermal
and visible images. Li and Wu [31] proposed a novel deep learning
architecture, which is constructed by encoding network and
decoding network. The encoding network extracts the features
and the decoding network gives the fused image. Zhao et al. [32]
proposed a novel auto-encoder (AE) based network for the fusion
of VI and IR image. It is observed that most of the methods used
deep learning for feature extraction and classification. It is known
that a large number of input data is required for training deep net-
works. Hence, the authors used patches and the deep networks to
generate the large number of inputs. A comparison of the proposed
method and the deep learning based methods is shown later in the
results section.
3. Proposed fusion scheme

The VI and the IR image contain different image features. The
VI sensor detects the textural information. The IR sensor detects
objects that are not perceptible to the human eye. The VI contains
clear background region. The IR image contains clear object
region.

Figure 1 shows the schematic block diagram of the suggested
technique. The object region is extracted from the IR image using
the proposed ATRE technique. Then a segmentation threshold is
found using the proposed method. Next, the IR image is binarized
using this threshold to get the object region. Next, the binarized
image is inverted to get the background regions from both the IR
image and the VI. Both the regions are decomposed into patches.
Then the fused background region is found by using a suitable
fusion rule. Finally, it is mapped to the object region of IR image
to obtain the output image. In this paper, the input images are
assumed to be registered.
3.1. Object and background region extraction using ATRE

The transition region is present between the object and the
background in an image. It is characterized on the basis of region,
boundary and variations of gray levels. The change of gray level
plays an important role in the determination of the transition
region. The gray level of pixels changes frequently and intensively
in the transition region, which brings rich information for its
description. To get the transition region accurately, both the
occurrence and degree of gray level variations are required. To
find the gray level variations, a transition region descriptor (i.e.
LE) is suggested in Yan et al. [11]. To explain the concept of LE,
let I represent an image having L intensity levels ½0;1; :::; L� 1�,
of dimension M � N. Let ni denotes the count of pixels having
intensity level i. Assume U ¼ fðm;nÞ : m ¼ 1;2; :::;M;n ¼ 1;2;
:::;Ng represent the size of the image. Let f ðm;nÞ be the gray level
of a pixel atðm;nÞ. The entropy (E) of an image is stated
as [33,34]
3

E ¼ �
XL�1

i¼0

PilogPi ð1Þ

where Pi ¼ ni=ðM � NÞ represent the probability of occurrence of
gray level i in the image. Now the local entropy ðLEðWkÞÞ of a pixel
can be defined by taking a neighbourhood Wk of window size u� v
within the image and is expressed as

LEðWkÞ ¼ �
XL�1

r¼0

PrlogPr ð2Þ

where Pr ¼ nr=ðu� vÞ denotes the probability of occurrence of gray
level r existing in the neighbourhood Wk , nr represents the number
of pixels with gray level r in the neighbourhood. It is studied from
the literature that this process is computationally intensive as it
computes every gray level’s probability of occurrence in its neigh-
bourhood. In order to decrease the computational intensity, a sim-
ilar parameter, local complexity (LC) as in [35], is utilized to
represent the frequency of gray level variations as,

LCðm;nÞ ¼ CðWkÞ ¼
XL�1

r¼0

sgnðrÞ ð3Þ

where sgnðrÞ ¼ 1; if 9f ðx; yÞ ¼ r
0; else

�
and ðx; yÞ denotes the pixel loca-

tion in the neighbourhood Wk.
It is to be noted that both LE and LC considers only the occur-

rence of intensity level variations. It does not consider the degree
of the changes. Hence, local variance (LV) is employed to define
the degree gray level variations and for a neighbourhoodWk, it
can be expressed as

LVðm;nÞ ¼ r2ðWkÞ ¼ 1
u� v � 1

Xu
x¼1

Xv
y¼1

f ðx; yÞ � f
�� �2

ð4Þ

Note that f
�
is the mean intensity level ofWk. Accordingly, when

the neighborhood windowmoves within the image (pixel by pixel)
we get each pixel’s LC and LV matrices. To find the gray level vari-
ations more accurately, a new transition region descriptor is sug-
gested by using the normalized local complexity (NLC) and
normalized local variance (NLV) computed as [12],

NLCðm;nÞ ¼
LCðm;nÞ �min

8 x;yð Þ
LCðx; yÞ

max
8 x;yð Þ

LCðx; yÞ �min
8 x;yð Þ

LCðx; yÞ ð5Þ

NLVðm;nÞ ¼
LVðm;nÞ �min

8 x;yð Þ
LVðx; yÞ

max
8 x;yð Þ

LVðx; yÞ �min
8 x;yð Þ

LVðx; yÞ ð6Þ

The new transition region descriptor ðSÞ is thus formed using
both the normalized factors as

Sðm;nÞ ¼ b� NLCðm;nÞ þ ð1� bÞ � NLVðm;nÞ ð7Þ
where bis a weight factor which balances the contributions of NLV
and NLC. From the equation, it is obvious that the transition region
descriptor is equal to NLC when b ¼ 1 and is equal to NLV when
b ¼ 0. Hence, the value of b should be in the range [0, 1]. The
Sðm;nÞ value obtained from Eqn. (7) for each pixel at location
ðm; nÞwill form an image matrix S. The transition region pixels have
higher Sðm;nÞ values as compared to the non-transition region pix-
els. The threshold ST for the transition region extraction is obtained
as:

ST ¼ c� Smax ð8Þ
where Smax ¼ max

8 m;nð Þ
S m;nð Þ and c is a random coefficient between

[0,1]. The value of c plays an important role in determining the



Fig. 1. Block diagram of the suggested fusion scheme.

B. Meher, S. Agrawal, R. Panda et al. Engineering Science and Technology, an International Journal 29 (2022) 101037

4



Fig. 2. Examples of object region extraction from different IR images.(a-d, i-l) input IR images, (e-h, m-p) extracted object regions.
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threshold and hence the transition region. Instead of taking it a ran-
dom value, we have computed the threshold ST as

ST ¼ ca � Smax ð9Þ
where ca ¼ ðSmax � SmeanÞ=ðSmax þ SmeanÞis an adaptive parameter
introduced, depending on the type of images. Note that
Smean ¼ mean

8ðm;nÞ
Sðm;nÞ. Then the transition region is extracted as

follows:
5

TRðm;nÞ ¼ 1 if Sðm;nÞ P ST
0 otherwise

�
ð10Þ

The final segmentation threshold Tf is then calculated as the
average of the gray levels in the transition region using the formula
as given below:

Tf ¼ ð
X
m

X
n

TRðm;nÞ � f ðm;nÞÞ=
X
m

X
n

TRðm;nÞ ð11Þ



Table 1
Objective performance metrics comparison for ‘Bunker’ image.

Domain Method QPQ/F E MI FMI VIFF

MST based DWT 0.3198 6.7134 2.1252 0.8873 0.2085
DT-CWT 0.6359 7.0776 2.1233 0.9051 0.2230
CVT 0.6044 7.0937 2.1180 0.8987 0.2335
MSVD 0.3896 6.7381 2.1093 0.8924 0.2181
ADF 0.5668 6.8880 2.1068 0.8359 0.1781
FPDE 0.5040 6.8197 2.1200 0.8520 0.1761

Saliency based TSIFVS 0.5843 7.2115 2.1339 0.8839 0.3446
MISF 0.7123 7.5056 2.7169 0.9162 0.2464

Subspace based ICA-Region 0.3286 6.6782 2.2191 0.8934 0.2039
ICA-Textr-std 0.5722 6.5874 2.2047 0.8890 0.2525

Hybrid method SWT-DCT-SF 0.6274 7.2127 2.2717 0.9046 0.2427

Other methods GTF 0.5962 6.9413 2.0655 0.8897 0.1774
IFEVIP 0.6291 7.0707 2.3282 0.8526 0.2835

ATRE Proposed 0.7250 7.5108 2.7045 0.9095 0.3607

Table 2
Objective performance metrics comparison for ‘Tank’ image.

Domain Method QPQ/F E MI FMI VIFF

MST based DWT 0.2075 7.2756 2.1852 0.7953 0.1930
DT-CWT 0.4910 7.4132 2.1587 0.8183 0.1856
CVT 0.4445 7.4097 2.1515 0.8087 0.1878
MSVD 0.1710 7.2433 2.1728 0.7985 0.1851
ADF 0.3116 7.3459 2.1267 0.8216 0.1546
FPDE 0.4396 7.2984 2.1145 0.7667 0.1227

Saliency based TSIFVS 0.6193 7.4686 2.1692 0.7993 0.2360
MISF 0.6521 7.9576 2.5816 0.8320 0.0516

Subspace based ICA-Region 0.3820 7.2294 2.2327 0.8111 0.1905
ICA-Textr-std 0.6515 7.4549 2.1629 0.8104 0.2395

Hybrid method SWT-DCT-SF 0.5070 7.9495 2.2806 0.8192 0.1625

Other methods GTF 0.5419 6.3637 2.2139 0.7827 0.0993
IFEVIP 0.6625 7.8245 2.4755 0.8011 0.2124

ATRE Proposed 0.7577 7.9583 2.5578 0.8298 0.2856

Table 3
Objective performance metrics comparison for ‘Nato_camp10 image.

Domain Method QPQ/F E MI FMI VIFF

MST based DWT 0.3541 6.2599 2.1189 0.8695 0.3149
DT-CWT 0.4683 6.4918 2.1127 0.8959 0.3309
CVT 0.4251 6.5466 2.1074 0.8860 0.3528
MSVD 0.3518 6.2689 2.1174 0.8664 0.3179
ADF 0.4643 6.2759 2.1226 0.8688 0.2678
FPDE 0.3972 6.3237 2.1096 0.8621 0.2599

Saliency based TSIFVS 0.4626 6.6400 2.1152 0.8760 0.4613
MISF 0.5490 6.8869 2.2500 0.9016 0.2635

Subspace based ICA-Region 0.5020 6.3172 2.2642 0.8897 0.3515
ICA-Textr-std 0.5493 6.3913 2.2646 0.8946 0.3823

Hybrid method SWT-DCT-SF 0.4532 6.7909 2.1732 0.8823 0.3779

Other methods GTF 0.5817 6.6379 2.0625 0.8812 0.2393
IFEVIP 0.4637 6.7728 2.2187 0.8806 0.4049

ATRE Proposed 0.5979 7.1797 3.0281 0.9115 0.2522
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The image is binarized using Tf to extract the object region from
the different IR images. The binarized image is then inverted to
extract the background regions from both the IR image and the
VI. The extracted object region for different IR images is illustrated
in Fig. 2. It is observed that the proposed approach accurately
extracts the object regions from the different IR images. Because
of the difference between the intensity levels of the object and
the background region, the transition region extraction technique
successfully delineates the object region from the background.
6

3.2. Fusion rule

The background regions from both the IR image and the VI are
fused using a patch based fusion rule. The regions from both the IR
image and VI are decomposed into patches. The energy of each
patch is calculated and compared to get the fused background
region. Let the background region of the IR image be denoted
byIIRB , the background region of the VI be denoted byIVIB , the fused
background region be denoted asIFBand the fused image byIF .To



Table 4
Objective performance metrics comparison for ‘Nato_camp20 image.

Domain Method QPQ/F E MI FMI VIFF

MST based DWT 0.3500 6.2629 2.1226 0.8771 0.3129
DT-CWT 0.4679 6.5157 2.1075 0.8796 0.3301
CVT 0.4275 6.5607 2.1019 0.8763 0.3513
MSVD 0.3460 6.2689 2.1209 0.8745 0.3148
ADF 0.4624 6.2845 2.1244 0.8735 0.2698
FPDE 0.3857 6.3495 2.1105 0.8624 0.2507

Saliency based TSIFVS 0.4656 6.6310 2.1172 0.8848 0.4601
MISF 0.5515 6.9891 2.2590 0.9080 0.2908

Subspace based ICA-Region 0.5037 6.3247 2.2651 0.8984 0.3529
ICA-Textr-std 0.5503 6.3975 2.2690 0.8997 0.3854

Hybrid method SWT-DCT-SF 0.4583 6.7993 2.1758 0.8887 0.3820

Other methods GTF 0.3960 6.6940 2.3428 0.8853 0.2472
IFEVIP 0.4633 6.7753 2.2067 0.8906 0.4099

ATRE Proposed 0.5210 7.1473 2.8637 0.9137 0.3681

Table 5
Objective performance metrics comparison for ‘Sandpath’ image.

Domain Method QPQ/F E MI FMI VIFF

MST based DWT 0.3043 6.1005 2.0953 0.8441 0.2754
DT-CWT 0.5532 6.4813 2.0974 0.8792 0.2325
CVT 0.4993 6.5302 2.0950 0.8677 0.2476
MSVD 0.2961 6.1019 2.0941 0.8428 0.2711
ADF 0.5562 6.3294 2.0966 0.8446 0.1942
FPDE 0.5110 6.2463 2.0955 0.8369 0.1968

Saliency based TSIFVS 0.4813 6.6249 2.1007 0.8482 0.3727
MISF 0.6563 7.1347 2.8492 0.9006 0.2554

Subspace based ICA-Region 0.3339 6.1036 2.1555 0.8620 0.2876
ICA-Textr-std 0.4324 6.2324 2.1859 0.8645 0.3187

Hybrid method SWT-DCT-SF 0.4915 6.7592 2.1494 0.8697 0.2808

Other methods GTF 0.5273 6.5381 2.0214 0.8511 0.1788
IFEVIP 0.4194 6.6274 2.1972 0.8561 0.2318

ATRE Proposed 0.6595 7.1454 2.9105 0.8954 0.3805

Table 6
Objective performance metrics comparison for ‘Gun’ image.

Domain Method QPQ/F E MI FMI VIFF

MST based DWT 0.4430 6.5648 2.2364 0.9231 0.3072
DT-CWT 0.6753 6.7990 2.2104 0.9372 0.6087
CVT 0.6455 6.8250 2.2014 0.9309 0.5898
MSVD 0.4621 6.5736 2.2641 0.9189 0.3682
ADF 0.5929 6.5587 2.2500 0.9319 0.3448
FPDE 0.5627 6.5847 2.2617 0.9009 0.3932

Saliency based TSIFVS 0.6623 6.9472 2.2098 0.9181 0.7670
MISF 0.7363 7.1166 2.5836 0.9402 0.8357

Subspace based ICA-Region 0.5864 6.7816 2.1780 0.9321 0.4721
ICA-Textr-std 0.6652 6.8420 2.1916 0.9315 0.5927

Hybrid method SWT-DCT-SF 0.6745 7.0751 2.3695 0.9364 0.7071

Other methods GTF 0.6025 6.2678 2.1397 0.9221 0.4400
IFEVIP 0.6175 7.0818 2.4475 0.9307 0.6623

ATRE Proposed 0.7369 7.1479 2.8871 0.9377 0.8443
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obtain the fused background region,IIRB andIVIBare partitioned into
patches. The energy of each patch in both the regions is calculated
as:

EIRB ðPIRBi
Þ ¼

X
ðu;vÞ2w

P2
IRBi

ð12Þ

EVIB ðPVIBi
Þ ¼

X
ðu;vÞ2w

P2
VIBi

ð13Þ
7

where Pi is the ith patch of the image, EIRB is the energy of the back-
ground image patch from the IR image, EVIB is the energy of the back-
ground image patch from the VI. Here we have taken the patch size
of w ¼ 3� 3. It is to be noted that patch size of 5� 5, 7� 7 can also
be used. However, larger patch size may introduce blocking arte-
facts. It is noteworthy to mention here that the local energy of
the infrared object is significantly higher than other areas. The fused
background image IFB is obtained by utilizing the maximum rule
based on the comparison of EIRBand EVIBas illustrated below



Table 7
Objective performance metrics comparison for ‘Tree’ image.

Domain Method QPQ/F E MI FMI VIFF

MST based DWT 0.3955 5.6953 2.0064 0.8476 0.3878
DT-CWT 0.4997 5.8111 2.0286 0.8720 0.2878
CVT 0.4659 5.8434 2.0293 0.8650 0.3154
MSVD 0.3799 5.6977 2.1410 0.8441 0.2644
ADF 0.4036 5.6803 2.0065 0.8513 0.3650
FPDE 0.5160 5.7391 2.1364 0.8438 0.2029

Saliency based TSIFVS 0.5079 5.9292 2.1389 0.8585 0.4199
MISF 0.5501 6.3664 2.3297 0.8828 0.5058

Subspace based ICA-Region 0.4472 6.2988 2.0207 0.8606 0.5421
ICA-Textr-std 0.4637 6.3655 2.0190 0.8629 0.6000

Hybrid method SWT-DCT-SF 0.4669 6.2062 2.2101 0.8622 0.3044
Other methods GTF 0.4616 5.6830 2.1862 0.8657 0.2689

IFEVIP 0.5734 6.1491 2.8952 0.8763 0.1865
ATRE Proposed 0.5891 6.7818 2.6045 0.8831 0.2527

Table 8
Objective performance metrics comparison for ‘Two men in front of house’ image.

Domain Method QPQ/F E MI FMI VIFF

MST based DWT 0.4844 6.4563 2.1209 0.8801 0.2751
DT-CWT 0.5386 6.7724 2.1311 0.9032 0.2755
CVT 0.4999 6.7964 2.1248 0.8953 0.2945
MSVD 0.3434 6.4590 2.1492 0.8766 0.2620
ADF 0.5394 6.4579 2.1373 0.8873 0.2710
FPDE 0.4585 6.5006 2.1440 0.8497 0.2258

Saliency based TSIFVS 0.5071 6.9046 2.1295 0.8835 0.2686
MISF 0.5975 7.1159 2.3507 0.9084 0.2180

Subspace based ICA-Region 0.5156 6.4509 2.1142 0.8913 0.2998
ICA-Textr-std 0.6342 6.5813 2.1170 0.8821 0.3595

Hybrid method SWT-DCT-SF 0.5261 6.9326 2.2367 0.8989 0.2763

Other methods GTF 0.3049 7.0580 2.2852 0.8805 0.1756
IFEVIP 0.4892 6.6723 2.2824 0.8678 0.3363

ATRE Proposed 0.4694 7.1522 2.6588 0.9089 0.3969
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IFB ¼
IIRB ðPiÞ if EIRBðPiÞ > EVIBðPiÞ

IVIB ðPiÞ Otherwise

�
ð14Þ

At last, the fused image IF is obtained using the region mapping
process between the object region of the IR image and the fused
background region.

The pseudocode for the proposed method is given below:
Input: IR and visible images (assuming they are registered).
Initialize: patch size 3� 3, b ¼ 0:3.
Step 1: Apply ATRE approach to the IR image to extract the tran-

sition region.
Step 2: Find the final segmentation threshold Tf . Binarize the IR

image using Tf .

Step 3: Extract the object region from the IR image using the
binarized image.

Step 4: Extract the background regions from both the VI and the
IR image using the inverted binarized image.

Step 5: Find the fused background region by merging the back-
ground region of the IR image and the background region of VI
using the fusion rule in Eqn. (14).

Step 6: Find the output image by region mapping between the
object region of the IR image and fused background region.

Output: Fused image.
4. Results and discussions

In this work, different multimodal images (IR and visible) are
used to carry out the proposed fusion method. The image pairs
are publicly available in the image dataset [13]. We have selected
8

eight standard image sets namely Tank, Bunker, Nato_camp1,
Nato_camp2, Sandpath, Gun, Tree, and Two men in front of house
for both qualitative and quantitative comparisons. The simulations
are performed in MATLAB using core i5 processor with 8 GB RAM.

Generally, the performance of the output image is assessed in
two methods i.e. qualitatively and quantitatively. Many perfor-
mance metrics are reported in the literature for the assessment
of fusion results. Usually, these metrics measure the amount of info
conveyed from the source images to the output. In this work, we
use the evaluation indices – Petrovic (QPQ=F) [36], entropy (E)
[37], mutual information (MI) [38], feature mutual information
(FMI) [39], and visual information fidelity for fusion (VIFF) [40].
The best in class results are displayed in bold. The details of the
metrics are available in the respective literature.

In this study, we have initialized b and the neighbourhood size.
The value of b is chosen as 0.3 after exhaustive experiments. It is
employed to stabilize the contribution of local variance and com-
plexity. A neighbourhood size of 3� 3 is selected in our proposed
scheme. The benefit of choosing this neighbourhood size is to
decrease the blocking artefacts.

The visual results of the suggested method and the other meth-
ods for all the image pairs are shown in Figure (3) – (10). In all the
figures, (a), (b) are the source images (VI and IR image respec-
tively). The rest images from (c) – (p) are the output from various
methods including the proposed technique. The visible images
comprise the details of the background, while the IR images focus
the objects i.e. bunker, tank, person etc. The objective of our sug-
gested method is that the fused image should keep much of the
thermal radiation information from the IR images along with the



Fig. 3. Fusion results for Bunker images.
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details of the background information from the visible images. The
objective comparison of the different methods is depicted in Tables
1-8.

In Fig. 3, the bunker object is clearly visible in the fused images
in (i), (j), (l), (o) and (p). In the image (h) the middle part of the
bunker is visibly clear, however, the background looks blurry. Sim-
ilarly, the other methods fail to retain the object info. In compar-
ison to the other techniques, the output image found with the
proposed technique highlights both the bunker and its background
clearly. The contrast of the VI is also retained. The images with the
rest of the methods are either dark or having poor contrast, espe-
cially in (c), (f), (g), (k) and (m). The reason may be the ATRE
9

method used in the proposed technique effectively thresholds
due to the adaptive parameter and extracts the object region in
the IR image more accurately. Furthermore, most of the
background information is retained in the fused image as we
merged the background regions of the VI and IR image.

From Table 1, it is seen that the suggested technique is better

than the other methods in terms of QPQ=F , E and VIFF. Nonetheless,
the MI and FMI values of the proposed technique are close to the
best value. As the bunker object is bigger in size, the proposed
method is able to localize it efficiently. The adaptive nature of
the technique accurately extracts the object region. The entropy
obtained is highest as our approach is based on MLE concept for



Fig. 4. Fusion results for Tank images.
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segmentation. The information transferred to the output is also
highest in the proposed method. Thus, the metrics show a better
value as compared to the other methods.

It is observed in Fig. 4 that the visual performance is identical
to that of the bunker image. The tank image and its background
are not clearly visible in Fig. 4(g) and (k). In (c) and (h) the tank
image looks clear, however, the background looks darker. The
image obtained with ADF and FPDE is having poor contrast. How-
ever, the contrast of the fused image is retained in proposed
method.

From Table 2, it is perceived that the suggested method does

better than the other approaches in terms of QPQ=F , E and VIFF.
The MISF method shows a high MI and FMI value. Still, the MI
10
and FMI values obtained using our method is close. The reason
may be the input images contain more texture and edge features.

From Fig. 5, it is seen that, the output images in (c), (f), (g)
and (h) do not preserve the information of the source images.
For instance, the person image is not detected clearly. The roof,
tree and fence objects are also not clearly visible. The distinction
between the object and the background is not clear. Some
images are even having overlapped regions. On the other hand,
the fused image in (p) from our proposed method looks visually
clear.

From Table 3, it is observed that the suggested technique shows

the best results for QPQ=F , E, MI, and FMI. However, the TSIFVS
method leads in VIFF value. The reason may be the use of two-scale



Fig. 5. Fusion results for Nato_camp1 images.
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decomposition technique, which reduces the distortion leading to
a better value of VIFF.

In Fig. 6, a similar trend is observed. The person image is not
properly traced in (f), (g) and (h). The roof, tree and fence images
are also not clearly identifiable. However, in (c), (d), (e), (k), (m)
and (n) the person is detected. The fused image (p) shows good
result. The road, tree, fence and the roof are looking prominent.
For Nato_camp2 image, the quantitative comparison is shown in
Table 4. It is seen that the E, MI and FMI values are better for the
suggested technique. It is interesting to note that the proposed
method is close to the best value in case of QPQ=Fvalue. In Fig. 7,
the person image is not detected properly, especially in (c), (d),
(e), (g), (h), (k), and (m). However, the person, tree and the path
are clearly visible in the fused image (p). Moreover, the fused
images obtained with other methods are having poor contrast.
11
The quantitative values in Table 5 show that the proposed tech-

nique outperforms in terms of QPQ=F , E, MI and VIFF. The reason
may be the use of ATRE based approach for extracting the object
region. The output images of Gun for different approaches are
shown in Fig. 8. It is perceived that the gun image is clearly
detected in our proposed method in (p). However, in (g), (h) and
(m), the gun image is not properly detected. The boundary
between the gun and the background is seen overlapped. The per-

formance metrics QPQ=F , MI, E, and VIFF shown in Table 6 are higher
in case of our method in comparison to the other methods except-
ing the value of FMI. Still, the value of FMI obtained with our
method is very close to the best value.

In Fig. 9, the object i.e. the person in (p) is extracted properly
using the suggested method. The visible quality of the fused image
(p) is not clear as the background and the person image has less



Fig. 6. Fusion results for Nato_camp2 images.
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intensity variations. Our proposed method retains most of the VI
information. That is why during region mapping, the intensity of
the object matches with the intensity of the background leading
to an unclear image. This can be improved if we include some
pre-processing operation (to widen the intensity difference) before
the fusion. A possible solution may be to enhance the contrast of
the object region.

The QPQ=F , E and FMI indices are higher for our technique as
compared to the other approaches as given in Table 7. In Fig. 10,
it is seen that persons in the fused images (f), (g) and (h) are visu-
ally not prominent. The persons are clearly visible in the fused
images (i) and (j). However, the background is not so prominent.
There are some dark patches visible in the sky in (l). In (p) the per-
sons and the house are visually clear as compared to the other
12
methods. The window and the tree are also being prominently
perceptible.

Similarly, from Table 8, it is seen that the proposed technique
leads the E, MI, FMI and VIFF values. It is to be noted that most
of the methods for comparison used pixel level fusion approach.
The pixel-based methods introduce the blocking artifact in the
fused images and the background is not clear. Further, the texture
features of the VI is not properly transferred to the fused image. On
the other hand, the region based approaches extract important
region of interest by considering patches from both the IR and VI.
In this process, the objects and the textural information are pre-
served resulting in better fused images.

A comparison of the proposed method with the recent deep
learning based methods in shown in Table 9. The values indicated



Fig. 7. Fusion results for Sandpath images.
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for different metrics are average values. The methods using deep
learning used different set of images for experiment. Hence, for a
comparison we have shown the average values. The fusion meth-
ods use the deep networks for feature extraction and classification.
The computational complexity and the hardware requirements
employing deep network is very high. The deep networks require
a large number of inputs for training. It is observed from the table
that the DDcGAN method gives a better entropy value. Nonethe-
less, our proposed method gives values closer to the best in class
values.

The experimental results on the selection of hyper-parameter b
and patch size k are given in Table 10. For an illustration, we have
considered the entropy value for different values of b from 0.1 to
0.9. A high value of entropy decides the b value. It is observed that
13
the value of entropy is maximum at b = 0.3 for both the sample
images. Hence, we have chosen the b value to be 0.3. Similarly,
the entropy value is computed for k = 3, 5, 7. It is found maximum
for k = 3 � 3.

A graphical comparison of different performance metrics of var-
ious methods is illustrated in Fig. 11. It is to be noted that the aver-
age value of the metrics is displayed in the figure. The proposed
method is able to obtain the largest average values on the four-
evaluation metrics, i.e., E, QPQ/F, MI and FMI. Nonetheless, it gives
comparable results in terms of VIFF. The largest E value demon-
strates that the fused image obtained with the proposed method
has more abundant information than the other comparing meth-
ods. The largest QPQ/F value shows that more edge information is
retained with our method. Similarly, the MI and FMI values



Fig. 8. Fusion results for Gun images.
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obtained with our method outperforms the other methods demon-
strating that it preserves the most useful information and features
of the source images.
5. Conclusion

In this paper, we have suggested a region based approach for
the fusion of IR image and VI. The proposed approach shows its
14
ability to identify the objects precisely. The benefit of using adap-
tive transition region extraction based segmentation is to outline
the object region in the IR image clearly. The proposed ATRE
approach is suitable for the determination of a better segmentation
threshold value using the adaptive parameter (ca). The parameter
(ca) adapts itself to change in the input images. The benefit of
the region mapping approach is to integrate the object region with
the background information efficiently. The experimental results



Fig. 9. Fusion results for Tree images.
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reveal that the suggested technique has improved fusion results as
compared to state-of-the-art fusion techniques. Although our
15
method performed better, it has some limitations as well. Specifi-
cally, when the background near the object region in the VI is more



Fig. 10. Fusion results for Two men in front of house images.

Table 9
Comparison with deep learning based methods.

Method E VIFF MI

FusionGAN [28] 6.8416 0.3162 2.3410
GAN [29] 7.0546 0.4034 –
DDcGAN [30] 7.3493 0.3192 –
Densefuse [30] 6.8248 0.3980 2.3020
DIDFuse [32] 7.0060 0.6230 2.3470
Proposed 7.1933 0.3683 2.7665

‘-‘indicates data unavailability.

Table 10
Entropy (E) values for selection of b and patch size k.

Parameters Images

Sandpath Two men in front of house

b 0.1 7.0886 6.9753
0.2 7.0662 7.1384
0.3 7.1454 7.1522
0.4 7.0722 6.9007
0.5 7.1437 7.1342
0.6 7.0730 6.9253
0.7 7.0665 7.1193
0.8 7.0820 7.0235
0.9 7.0957 7.0463

k 3 � 3 7.1454 7.1522
5 � 5 6.5111 6.1299
7 � 7 6.4897 6.1122
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prominent than the corresponding region in the IR image, the
object may not be traced well. In future studies, the proposed
scheme may be experimented with video data.
16



Fig. 11. Quantitative comparison of the performance metrics of different VI and IR image pairs, (a) QPQ/F, (b) E, (c) MI, (d) FMI, (e) VIFF.
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Fig. 11 (continued)
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[36] C.S. Xydeas, V. Petrović, Objective image fusion performance measure, Electron.
Lett. 36 (4) (2000) 308, https://doi.org/10.1049/el:20000267.

[37] W. Wang, F. Chang, A multi-focus image fusion method based on Laplacian
pyramid, J. Comput. 6 (12) (2011) 2559–2566.

[38] G. Qu, D. Zhang, P. Yan, Information measure for performance of image fusion,
Electron. Lett. 38 (7) (2002) 313–315.

[39] M.B.A. Haghighat, A. Aghagolzadeh, H. Seyedarabi, A non-reference image
fusion metric based on mutual information of image features, Comput. Electr.
Eng. 37 (5) (2011) 744–756.

[40] Y. Han, Y. Cai, Y. Cao, X. Xu, A new image fusion performance metric based on
visual information fidelity, Inf. Fusion 14 (2) (2013) 127–135.

http://refhub.elsevier.com/S2215-0986(21)00158-0/h0050
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0050
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0055
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0055
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0060
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0060
http://figshare.com/articles/TNO_Image_Fusion_dataset/1008029
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0070
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0070
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0075
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0075
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0075
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0085
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0085
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0090
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0090
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0090
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0095
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0095
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0095
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0095
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0095
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0100
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0100
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0110
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0110
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0110
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0110
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0115
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0115
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0120
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0120
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0120
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0125
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0125
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0135
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0135
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0135
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0135
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0140
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0140
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0145
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0145
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0150
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0150
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0150
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0155
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0155
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0165
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0165
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0170
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0170
https://doi.org/10.1049/el:20000267
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0185
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0185
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0190
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0190
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0195
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0195
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0195
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0200
http://refhub.elsevier.com/S2215-0986(21)00158-0/h0200

	Visible and infrared image fusion using an efficient adaptive transition region extraction technique
	1 Introduction
	2 Related work
	3 Proposed fusion scheme
	3.1 Object and background region extraction using ATRE
	3.2 Fusion rule

	4 Results and discussions
	5 Conclusion
	Declaration of Competing Interest
	References


