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Abstract

Recently, the sparse representation (SR) based algorithms have gained much

attention from the researchers in the area of image fusion (IF). The building of

a compact discriminative dictionary plays a vital role in the sparse-based IF

techniques. In this context, an efficient multimodal IF method based on

improved dictionary learning is investigated. The key contributions of this

paper are: (a) An improved KSVD algorithm is suggested for the dictionary

learning process, (b) to reduce the computational time, only the informative

patches are selected using energy feature, and (c) a novel region-based fusion

scheme is suggested for the first time for the problem on hand. The suggested

technique is tested with a number of multimodal images from Harvard Medi-

cal School brain database. The results are compared with state-of-the-art multi-

scale transform-based methods and modified SR-based methods. Unlike earlier

methods, our proposed technique generates an adaptive dictionary through

selection of informative patches only. This results in a compact dictionary with

improved computational efficiency. The experimental results reveal that our

approach outperforms other methods. The potential application of the

suggested method could be in pathological images for follow-up study and bet-

ter treatment planning.
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1 | INTRODUCTION

The development in emerging medical imaging tech-
niques has drawn attention of researchers in the field of
health care. The different imaging techniques provide
both complementary and redundant information. For
example, computed tomography (CT) can represent a
dense structure of bones and hard tissue with a smaller
amount of distortion, while MRI is better in visualizing
soft tissues. Similarly, positron emission tomography
(PET) image provides info regarding blood flow having

low spatial details. A single modality image does not give
complete and correct info. So, to get both the anatomical
and functional information in a single image, the differ-
ent modality images need to be merged. The multimodal
IF tries to combine info from manifold modality images
to get a more comprehensive and precise picture of the
source images. As we get a single medical image using
multimodal IF, it is not only useful for disease diagnosis
but also lowers the storage cost.

Numerous works have been reported so far on IF
techniques.1-3 Some of the methods are used for
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multimodal medical IF.4-6 These methods are classified
into three levels: pixel, feature, and decision.7 Most of the
existing multimodal medical IF is carried out on pixel
level.8,9 Pixel-level IF possess advantages like ease of
implementation, computational efficiency, and so on. But
it has certain disadvantages such as poor contrast and
blurring effect. To avoid these, a more convenient fusion
process which follows the systematic fusion rule is the
region-based IF.10 In this technique, it takes a block of
pixels in place of a sole pixel for the fusion process.

Usually, the IF methods are categorized into two
types: spatial domain and transform domain.11 In spatial
domain, fusion generally takes the spatial information of
pixels.12 This method is more appropriate for the fusion
of images which are taken from the same imaging sen-
sors, that is, multifocus 12 and multi-exposure fusion.13 In
transform domain technique, the information contained
in them is combined after transforming.14 The output
image is got by taking the inverse transformation of the
merged coefficients. A variety of transform domain tech-
niques have been suggested utilizing multiscale trans-
form (MST). These are Laplacian pyramid (LP),15 wavelet
transform,16 contourlet transform (CT),17 non-
subsampled contourlet transform (NSCT),18 sparse repre-
sentation (SR),20 and so on. As this image representation
approach is suitable for human visual perception, trans-
form domain techniques are found to be very useful in
multimodal medical IF.21 Here, the inputs are taken from
various imaging devices. But the disadvantage of
transform-based techniques is the fewer inclusion of spa-
tial info in their pixel coefficient selection. Because of
which the methods fail to preserve the edge and texture
info leading to distortion in the output images. Another
disadvantage of the method is the absence of a wavelet
kernel or overcomplete dictionary to process various
images. Further, it is necessary to predetermine the num-
ber of decomposition levels.

Lewis et al16 presented a transform-based fusion tech-
nique employing dual-tree complex wavelet transform
(DT-CWT). They used it for decomposition of the source
images and merge them employing the fusion rules. The
drawback of this transform is its poor ability to identify
the contours and edges of the image in fusion. Li et al22

suggested an IF technique using guided filter. The filter
uses an edge preserving smoothing process for the fusion.
However, the implementation of the filter is complex
and time consuming. Also, it produces a halo effect in
the fused images. Yin et al 23 presented a multimodal
medical IF scheme based on non-subsampled shearlet
transform (NSST). The authors used the NSST to decom-
pose the input images. The parameter-adaptive pulse-
coupled neural network (PA-PCNN) model is used for
the fusion of high-frequency components. The low-frequency

components are fused using energy preservation and
detail extraction. The fused image is then obtained using
inverse NSST. Zhu et al24 proposed a multimodality med-
ical IF using phage congruency and Laplacian energy in
NSCT domain. The authors decomposed the source
images into high-pass and low-pass bands using NSCT
domain. The high-pass bands are fused using phase con-
gruency and low-pass bands are fused using Laplacian
energy. The output image is obtained by taking the
inverse transform. However, the method has higher com-
putational cost than the NSST method. Further, it does
not give good fusion results for PET-MRI images.

The SR technique is an emerging technique success-
fully applied in various IF usages.24,25 It is perceived from
the works that the techniques employing SR tend to give
better fusion results than the traditional MST-based tech-
niques. In SR model, the design of an overcomplete dic-
tionary plays an important role. The dictionary can be
constructed in two ways: (a) preconstructed fixed dictio-
nary using the different analytical paradigms like wave-
let, discrete cosine transform (DCT), contourlet, and so
on; and (b) learned dictionary constructed using high-
quality natural images.

Liu et al26 presented an IF technique integrating MST
and SR. The dictionary is built using 40 high-resolution
natural images. The authors used MST method to get
low-pass and high-pass coefficients. The low-pass coeffi-
cients are fused with SR-based methods. However, the
selection of high-quality natural images is a difficult task.
Further, a large quantity of patches is needed for dictio-
nary learning. Yang and Li19 proposed a multifocus IF
scheme employing SR. The researchers utilized the DCT
dictionary which is a preconstructed dictionary. The dis-
advantage of such an approach is the production of a
large number of patches and dependence on the input
images.

Zong and Qiu27 presented a medical IF scheme utiliz-
ing SR and learned dictionary. The authors generated
sub-dictionaries using classified patches. They used
online dictionary approach and least angle regression
algorithm to get the sparse coefficients of each patch.
However, the authors are silent on the number of sub-
dictionaries created. In Reference,28 a joint sparsity
model is introduced for IF. The major problem with the
method was the use of total image patches obtained for
the dictionary learning process. So, the training process
took more execution time. Also, the dictionary became
very much redundant. Yin29 proposed a joint sparsity
method for fusion. However, the functioning of the
suggested technique strongly depended on external pre-
collected dataset for the construction of the dictionary.
Yang and Li30 expanded their method by proposing an
algorithm named as simultaneous orthogonal matching
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pursuit (SOMP). Their technique is experimented on vari-
ous types of images. However, the dictionary used in this
technique is image reliant, which limits the flexibility of
the method. In Reference,32 the authors introduced an
adaptive SR (ASR) scheme for IF. They used the histo-
gram of gradient information method for dictionary
learning. A group of six compact dictionaries is formed
using this method. High computation complexity is the
limitation of this technique. To decrease the computa-
tional complexity, Kim et al33 suggested K-means
method, PCA method for dictionary learning. The tech-
nique suggested by the authors produced a compact and
informative dictionary. However, the number of clusters
in the K-means technique has to be predefined. Liu
et al32 suggested convolutional sparse representation
based on morphological component analysis (CS-MCA)
for the medical IF at pixel level. In this method, for every
input image, first the convolutional sparse representa-
tions of cartoon and texture components are obtained by
CS-MCA model employing the pre-learned dictionaries.
Finally, the output image is computed as the superposi-
tion of the fused cartoon and texture components.

From the above discussions, it is observed that the
prevailing fusion procedures use either a prebuilt dictio-
nary (with less preprocessing time) or a learned dictio-
nary (with a priori information). So, the building of an
overcomplete dictionary is a vital section. Inspired from
the study, here a novel adaptive dictionary learning pro-
cess is suggested. In medical images, all the image pat-
ches may not contain useful information. So, it is not
wise to use all the image patches for the construction of a
dictionary, which may affect the fusion performance. In
order to get a good fused image, the informative patches
are selected from all the patches to form a good
dictionary.

Most of the SR-based IF approaches suggested till
now are based on the pixel level. Here, the fusion is per-
formed using the region-level approach, as it suppresses
the shortcomings of pixel-based IF described earlier. An
informative sampling procedure using the energy feature
of the patches from the input images is applied for the
dictionary learning procedure. The computation of vari-
ance of each patch helps in discarding the zero informa-
tive patches. A suitable threshold value is applied to
choose the useful patches for the dictionary learning.
Then the output image is found by using the region-
based fusion rule. The main contributions of this
work are:

1. Only the informative patches are selected using
energy feature which is used as a training data for dic-
tionary learning. The advantages of doing this is that
it increases the computation efficiency.

2. An improved KSVD algorithm is suggested. The dic-
tionary learning process is improved by modifying the
sparse coding stage.

3. A region-based instead of pixel-based fusion scheme is
suggested for the first time for the problem on hand.

The rest of the manuscript is arranged as follows:
Section 2 explains the sparse theory. Section 3 describes
the proposed scheme. Results and discussions are elabo-
rated in Section 4. Lastly, the conclusions are drawn in
Section 5.

2 | SPARSE THEORY

The SR is a tool for finding the sparsity in the natural
signals. The primary idea is that a natural signal
x ∈ Kn (K is real) is approximated by a linear summa-
tion of a few atoms from an overcomplete dictionary
D ∈ Kn × m(n < m), where n represents size of the sig-
nal x and m represents the size of the dictionary. So,
the signal x is represented as x ’ Dα, where α ∈ Km

represents sparse coefficient vector. SR goal is to
evaluate the sparsest coefficients α that consists of
least nonzero components amid all the possible solu-
tions. This is an optimization problem and is
expressed as

min
α

αk k0 subject to x−Dαk k2 < ε ð1Þ

where ε is the error (ε > 0) and k�k0 is the l0 norm of α
which counts the nonzero factors. This optimization
problem is solved using some pursuit algorithms. The
most popular technique is the orthogonal matching pur-
suit (OMP).35

In sparse modeling, the role of the dictionary is very
significant. The dictionary is constructed in two ways.
The first one is the analytical methods in which the dic-
tionary is constructed using the wavelet transform, DCT,
curvelet transform, and so on. The advantage of this tech-
nique is: simple and fast in execution. Nevertheless, this
dictionary is not applicable to an arbitrary signal. The
second category uses machine-learning approaches. The
dictionary is learned from a large number of sample pat-
ches taken from example images employing a specific
training algorithm. Most commonly, the K-singular value
decomposition method (KSVD)36 is preferred to solve this
type of problem. This algorithm is briefly explained
below. P image patches having size (

ffiffiffi
n

p
×

ffiffiffi
n

p
) are

extracted from the example images. The image patches
are arranged in a column vector in the Kn space. Then
the training database Z= zif gPi=1 is constructed with
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every zi∈Kn. The model of dictionary learning is
expressed as

min
D, αif gPi=1

XP
i=1

αik k0 subject to zi-Dαik k2 < ε i = 1,2,…,P ð2Þ

where ε is the error (ε > 0), D, αif gPi=1 is represented as
the unknown sparse vector corresponding to zif gPi=1 and
the unknown dictionary to be learned is represented as
D∈Kn×m. Conventionally, α (sparse coefficient) is taken
fixed or predetermined and then D (dictionary) is
updated. However, this updating is not optimal. An
improved KSVD approach is suggested in this paper,
where the variables D and α are updated following the
rules given in the next section.

3 | SUGGESTED FUSION
APPROACH

3.1 | Improved dictionary learning
process

A compact and discriminative overcomplete dictionary
used for the IF produces a better fused image. To build
such a dictionary, the image patches are selected using
the energy of the patches. The block diagram of the dic-
tionary learning process is shown in Figure 1. Assume
that the input images of size (M × N) are registered. The
patches are taken from the two input images using the
sliding window procedure using a unity step length. The
patch size is taken as w × w (w = 8). The selection of
patch size is decided from the test results. This is also dis-
cussed in various sources. Let the ith patch of the input
images A and B be PAi and PBi, respectively. The total
number of patches obtained using the sliding window
technique of patch size w × w is (M − w + 1)(N − w + 1).
Usually, all the image patches do not contain suitable
clinical info. So, utilizing all the image patches results in

a redundant dictionary and also takes more time for the
learning process. For these reasons, only the useful pat-
ches are chosen from the total image patches. The local
variance of the images is utilized to express the image
details. The patches having variance greater than or
equal to 5 are selected. It is to be noted that the threshold
value of 5 is taken after an exhaustive experiment with
different values ranging from 1 to 20. Let the selected pat-
ches obtained after this operation be denoted as
PA = �Pq

A

� �K1
q=1 and PB = �Pr

B

� �K2
r=1 , where K1 and K2 are

the remaining patches after discarding the zero informa-
tive patches. For the construction of a good quality dictio-
nary, the training data should contain informative
patches as it provides a richer data representation than a
dictionary constructed with a traditional procedure. In this
paper, the informative patches are selected by calculating
the energy of each patch. The energy (EP) is determined
using the following expression for ith informative patches.

EPi =
X

P2
i ð3Þ

The energy of every patch in the input images is cal-
culated using (3) and denoted as EA= Eq

A

� �K1
q=1 and

EB = Er
B

� �K2
r=1. A threshold value to improvise the perfor-

mance is defined below:

THv =0:1*max Evð Þ,v∈ A,Bð Þ ð4Þ

where Ev of the vth input image computes the energy of
the subsequent patches. The threshold value is selected
such that the blocks of PA and PB preserve the character-
istics (low and high level) of the subsequent input
images. The value of 0.1 is chosen empirically which
reduces the number of patches required. Appropriate rule
is utilized to get the patch with sufficient energy in
it. This set forms the training dataset for the dictionary
learning procedure. Let the training dataset be denoted
as TR, {TRl|l = 1, 2, 3, …, L}. The training dataset is
formed by comparing the energy of every patch of PA and

FIGURE 1 Block

diagram of the dictionary

learning approach
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PB with their corresponding threshold values. For exam-
ple, if Eq

A >ThA, select �P
q
A, else ignore �Pq

A.

TR=
select �Pq

A, if Eq
A >Th

Ignore �Pq
A, else:

(
ð5Þ

Equation (5) is utilized and iterated till all the useful
patches are obtained for the dictionary learning process.
The input images are of size (256 × 256). The patches are
of size (8 × 8) and the step size is unity. Each image pro-
duces 62 001 number of image blocks. So, the total num-
ber of patches for the dictionary learning will be 124 002.
Applying the proposed dictionary learning approach, the
training dataset is reduced to approximately 38 000 image
blocks (ie, 31%). The advantage is that the processing time
is reduced and more memory space is available. Further,
the average value of every block in the training dataset is
reduced to zero. Finally, to obtain an adaptive dictionary,
the improved K-SVD procedure is proposed. The dictio-
nary is formed initially by using the training data which is
obtained from the image patches. The KSVD algorithm
performs in two steps: (a) sparse coding and (b) dictionary
update. The algorithm follows the alternation between the
sparse coding stage and the dictionary update stage. In this
paper we have improved the sparse coefficient update
using some modification in the error tolerance. The OMP
algorithm is used to estimate the sparse vector.

The algorithm to show the process of updating D and
α is presented below.

1. Form the dictionary D using the training dataset TR.
2. Find the best sparse coefficient α using

α=argmin
α

TR−Dαk k2, ð6Þ

such that TR−Dαk k22 ≤ ε

where ε=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 log mð Þ

q
and m is the number of columns of

the dictionary D. The sparse coefficient is computed uti-
lizing the OMP35 technique.

3. For this value of α, compute D by

D=argmin
D

TR−Dαk k2 + β αk k1, ð7Þ

such that a≤ dik k22 ≤ b, i=1, � � �,P
where a, b is in the range [0,1] and β represents the regu-
larization parameter in the range [0,1]. The lower bound

of the errors in the signals is taken as proposed by Lee
et al.35

4. Iterate between steps 2 and 3 until convergence.

3.2 | Fusion method

The framework of the suggested fusion method is
depicted in Figure 2. In this process, the input images are
divided into overlapping patches. Using lexicographic
ordering, the patches are converted to column vectors.
The average value of each block is normalized to zero. To
get the sparse coefficients, the OMP procedure is used
with the dictionary. Then, the images are reconstructed
from the sparse coefficients.

Here, the region-based approach is introduced. The
following steps are employed:

1. The average image is obtained using the two regis-
tered source images.

2. The average image is partitioned into different regions
using the fuzzy c-means clustering (FCM) segmenta-
tion algorithm which is new in this application. Each
source image is segmented into three clusters.

3. The images A and B are divided utilizing the results of
step (2).

4. The energy of each segment of the source images is
computed based on the segmented images.

5. The image is reconstructed from the sparse coeffi-
cients (αA and αB). Each vector of the sparse matrix is
reshaped to w × w patch. Then the patches are moved
to their original respective position. The overlapping
of patches occurs during this process. So, a simple
mean operation is employed to all the overlapping
patches.

6. The energy of each region of the source images is
compared. The regions are selected for fusion follow-
ing Equation (7a).

ROFi =
ROαAi EA

i ≤ EB
i

ROαBi EA
i > EB

i

(
ð7aÞ

where ROFi is the ith region of the fused image, ROαAi
and ROαBi are the regions of the image reconstructed
from the sparse coefficients αA and αB, respectively, EA

i

and EB
i are the energy of the ith region of the source

images A and B, respectively.
7. All the regions obtained are integrated to get the

fused image.
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4 | RESULTS AND DISCUSSIONS

To validate the suggested method, benchmark image
datasets are used. In this paper, we have used the differ-
ent multimodality image pairs like CT and MRI,
T1-weighted MRI (MR-T1) and T2-weighted MRI (MR-
T2), MRI and PET, and MRI and SPECT (see Figure 3).
The input images comprise two groups of CT and MRI
images, three groups of MR-T1 and MR-T2 images, one
group of MRI and SPECT images, and one group of

MRI and PET images. All the input images are taken
from www.med.harvard.edu/aanlib/home.37 The input
images are of the same size, that is, 256 × 256 pixels.
The image patch size is taken as 8 × 8. The dictionary
size is fixed as 256. The values of a and b are set as 0.4
and 1, respectively. The parameter β is fixed at 0.02 and
the number of iterations for improved KSVD algorithm
is set to 50. The experiments are executed in core i5 pro-
cessor having 8 GB RAM using MATLAB simulating
environment.

FIGURE 2 The framework of the

proposed scheme

FIGURE 3 Input multimodal medical images: {((A1), (B1)), ((A2), (B2))} group 1 (CT and MRI); {((A3), (B3)), ((A4), (B4)), ((A5), (B5))}

group 2 (MR-T1 and MR-T2); ((A6), (B6)) group 3 (MRI and SPECT); and ((A7), (B7)) group 4 (MRI and PET) [Color figure can be viewed at

wileyonlinelibrary.com]
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Different metrics for the assessment of the quality of the
fused image are used. These are Petrovic metric (QRS/F),38

Piella's metrics,39 entropy (E),15 mutual information (MI)40,
feature mutual information (FMI),41 and visual information
fidelity for fusion (VIFF).42 The fusion metrics are briefly
explained below:

Petrovic (QRS/F): It calculates the quantity of the edge
information conveyed from the input images to the out-
put. It is expressed as

QRS=F =

PY
y=1

PZ
z=1

QRF y,zð ÞwR y,zð Þ+QSF y,zð ÞwS y,zð Þ
PY
y=1

PZ
z=1

wR y,zð Þ+wS y,zð Þð Þ
ð8Þ

where QRF y,zð Þ= QRF
g y,zð ÞQSF

α y,zð Þ
h i1=2

; QRF
g y,zð Þ is the

edge strength and QRF
α y,zð Þ is the orientation preservation

values at the location (y,z); Y and Z represent the size of
the images; wR and wS represent the weight factors of
QRF(y, z) and QSF(y, z), respectively. The QSF is similarly
defined as QRF. The values of QRS/F vary in the range
[0,1]. The QRS/F value should be nearer to 1.

4.1 | Entropy (E)

It calculates the quantity of information contained in the
fused image. The output image comprising a large
amount of information has high entropy value. It is
stated as

FIGURE 4 Results of fusion for

group 1 images. A, CT; B, MRI; C to K,

fused images
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E= −
XL−1

r=0

PrlogPr ð9Þ

where Pr is the probability value of the rth gray level in
an image.

4.2 | Mutual information (MI)

It computes the quantity of info conveyed from the input
images to the output image. The mathematical expression
of MI is

MIRSF =MIFR f ,að Þ+MIFS f ,bð Þ ð10Þ

where

MIFR f ,að Þ=
X
f ,a

pFR f ,að Þ log2
pFR f ,að Þ

pF fð ÞpR að Þ

MIFS f ,bð Þ=
X
f ,b

pFS f ,bð Þlog2
pFS f ,bð Þ

pF fð ÞpS bð Þ

where MIFR(f, a) and MIFS(f, b) are the normalized MI
value between the source images and the output image;
pR, pS, and pF represent the gray-level histograms of the
input images and the output image, respectively. pFR(f, a)
and pFS(f, b) are the normalized joint histograms between
the output and the input images. MI value should be high.

4.3 | FMI

The FMI metric calculates the mutual information available
in all the image characteristics. The most suitable feature is
selected for making this procedure more adaptable. The gra-
dient map is very suitable and often utilized as a feature of
an image. This map comprises information such as texture,
gradients or edge strength, and orientations. The value of
FMI varies in the range [0,1] and it should be high.

4.4 | VIFF

The VIFF metric calculates how much distortion is pre-
sent between the input and the output image. It is based
on the consistency of the human visual system.

TABLE 1 Objective evaluation performance comparison of group 1 (CT and MRI) images with MST-based methods

Method E MI QRS/F FMI VIFF Q QE QW

DT-CWT 6.2725 2.1933 0.6062 0.9040 0.3488 0.6138 0.5111 0.6832

GFF 6.7971 2.5411 0.8003 0.9033 0.4865 0.9220 0.6932 0.8575

NSST-PAPCNN 6.9552 2.0553 0.7664 0.9037 0.5566 0.9967 0.9921 0.9931

NSCT 6.3275 2.5711 0.7843 0.9089 0.5694 0.9968 0.9919 0.9930

Proposed 6.8606 3.0177 0.7987 0.8801 0.5503 0.9969 0.9801 0.9932

Note: The bold values indicates the best values.

TABLE 2 Objective evaluation

performance comparison of group

1 (CT and MRI) images with SR-based

methods

Method E MI QRS/F FMI VIFF Q QE QW

DWT-SR 6.1928 2.1068 0.5986 0.8920 0.3576 0.5393 0.4369 0.6499

DTCWT-SR 6.7317 2.0873 0.6293 0.9224 0.3837 0.7372 0.5253 0.7214

CVT-SR 6.7921 2.0785 0.5838 0.9227 0.3786 0.7003 0.4439 0.6701

NSCT-SR 6.5892 2.1145 0.7461 0.9185 0.4850 0.8388 0.6371 0.8201

SR 6.2388 2.6375 0.7452 0.8971 0.4267 0.9160 0.6220 0.8367

LP-SR 6.8601 2.3236 0.7672 0.9084 0.4912 0.8319 0.7009 0.8383

ASR 6.1778 2.7118 0.7747 0.9028 0.3744 0.7237 0.5935 0.7526

CSMCA 6.3275 2.0353 0.7643 0.9089 0.4752 0.6670 0.6592 0.8030

Proposed 6.8606 3.0177 0.7987 0.8801 0.4603 0.9969 0.9701 0.9932

Note: The bold values indicates the best values.
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FIGURE 5 Results of fusion for

group 1 images. A, CT; B, MRI; C to K,

fused images

TABLE 3 Objective evaluation performance comparison of group 1 (CT and MRI) images with MST-based methods

Method E MI QRS/F FMI VIFF Q QE QW

DT-CWT 5.1557 2.3611 0.5856 0.7849 0.2338 0.9754 0.9118 0.9615

GFF 4.4949 2.1760 0.6448 0.8872 0.2614 0.9935 0.9890 0.9990

NSST-PAPCNN 5.0525 2.1355 0.6446 0.9091 0.4118 0.9928 0.9876 0.9991

NSCT 4.7033 2.3510 0.5873 0.9025 0.6279 0.9922 0.9922 0.9993

Proposed 4.6548 2.9936 0.6418 0.8951 0.4835 0.9965 0.9869 0.9995

Note: The bold values indicates the best values.
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TABLE 4 Objective evaluation

performance comparison of group

1 (CT and MRI) images with SR-based

methods

Method E MI QRS/F FMI VIFF Q QE QW

DWT-SR 4.3812 2.3727 0.6223 0.8812 0.3480 0.9959 0.9842 0.9958

DTCWT-SR 4.5488 2.9886 0.5782 0.8363 0.2379 0.9944 0.9681 0.9926

CVT-SR 4.5037 2.3530 0.5910 0.6893 0.1625 0.9767 0.8940 0.9569

NSCT-SR 4.5701 2.7701 0.6613 0.8257 0.1835 0.9883 0.9635 0.9834

SR 4.5480 2.5573 0.6304 0.8393 0.5477 0.9851 0.9553 0.9964

LP-SR 4.5865 3.2189 0.6822 0.8092 0.3985 0.9958 0.9588 0.9966

ASR 4.5531 2.9340 0.6637 0.8094 0.5432 0.9815 0.9578 0.9970

CSMCA 3.9945 2.3958 0.5575 0.9218 0.3586 0.7768 0.5594 0.7106

Proposed 4.6548 2.9936 0.6418 0.8951 0.4835 0.9965 0.9869 0.9995

Note: The bold values indicates the best values.

FIGURE 6 Results of fusion for

group 2 images. A, MR-T1; B, MR-T2; C

to K, fused images
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The VIFF is mathematically expressed as

VIFF IS1 , IS2 , IFð Þ= VIF IS1 , IFð Þ+VIF IS2 , IFð Þ
2

ð11Þ
where

VIF IS,IFð Þ= VINDl,c IS,IFð Þ
VIDl,c IS, IFð Þ

=

1
2
log2

s2l,cCU + σ2NI
�� ��

σ2NI
�� ��

 !

1
2
log2

g2l,cs
2
l,cCU + σ2Vc,l

+ σ2N

� �
I

��� ���
σ2Vl,c

+ σ2N

� �
I

0
@

1
A

where c,l denotes the cth block and lth sub-band of
images, respectively, VINDc, l(IS, IF) is the visual
info without distortion for the source IS and output IF.
VIDc, l(IS, IF) is the visual info with distortion for the
source IS and output IF, gl,c, and sl,c are the scalar gain
and random +ve scalar, respectively, CU is the variance
of Gaussian vector random field Ul,c, σ2N is the covariance
of noise N, σ2Vl,c

is the stationary additive zero Gaussian
noise. A high value of VIFF is preferred.

4.5 | Piella's metric (Q, QW, QE)

It calculates the salient information obtainable in the out-
put image utilizing the local measurement such as corre-
lation coefficient, mean luminance, edge information,
and contrast. The dynamic range of Piella's metric is
[0 1]. The values close to 1 are considered as better fusion
performance. It is expressed as

Q a,b, fð Þ= 1
Wj j
X
w∈W

λ wð ÞQ0 a, f wjð Þ+ 1−λ wð Þð ÞQ0 b, f wjð Þð Þ,

ð12Þ

where λ(w) is the local weight and computed as
λ wð Þ= s a wjð Þ

s a wjð Þ+ s b wjð Þ .The s(a|w) and s(b|w) are the local
saliency of the two input images a and b, respectively.
The value of Q0 is defined by Wang and Bovik.43

The weighted fusion quality index is expressed as

QW a,b, fð Þ
=
X
w∈W

c wð Þ λ wð ÞQ0 a,b, f wjð Þ+ 1−λ wð Þð ÞQ0 b, f wjð Þð Þ,

ð13Þ

TABLE 5 Objective evaluation performance comparison of group 2 (MR-T1 and MR-T2) images with non-SR-based methods

Method E MI QRS/F FMI VIFF Q QE QW

DT-CWT 5.2133 2.3992 0.6954 0.8748 0.4579 0.8108 0.3593 0.6518

GFF 5.0910 2.7838 0.7304 0.8838 0.4816 0.8941 0.4192 0.6801

NSST-PAPCNN 5.3330 2.0684 0.7091 0.8836 0.6433 0.9992 0.9919 0.9961

NSCT 5.3827 2.3601 0.6970 0.8674 0.6898 0.9992 0.9908 0.9962

Proposed 5.6935 3.1077 0.7637 0.8642 0.4288 0.9992 0.9899 0.9963

Note: The bold values indicates the best values.

TABLE 6 Objective evaluation

performance comparison of group

2 (MR-T1 and MR-T2) images with SR-

based methods

Method E MI QRS/F FMI VIFF Q QE QW

DWT-SR 5.2020 2.4601 0.5826 0.8548 0.5053 0.6909 0.3419 0.5721

DT-CWT-SR 5.2849 2.3971 0.5383 0.8567 0.5161 0.6533 0.3608 0.4901

CVT-SR 5.7932 2.3485 0.5047 0.8479 0.5208 0.4027 0.3344 0.4728

NSCT-SR 5.2909 2.3485 0.6253 0.8628 0.6030 0.6857 0.4319 0.6744

SR 5.2748 2.6713 0.6982 0.8795 0.5029 0.8830 0.4059 0.6772

LP-SR 5.1415 2.7705 0.7457 0.8827 0.6073 0.8416 0.4219 0.6919

ASR 5.1067 2.6482 0.6923 0.8693 0.4845 0.8833 0.3748 0.6777

CSMCA 5.0043 2.1742 0.7250 0.8926 0.5402 0.8616 0.4477 0.6954

Proposed 5.6935 3.1077 0.7637 0.8642 0.4288 0.9992 0.9899 0.9963

Note: The bold values indicates the best values.
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where c wð Þ=C wð Þ= P
w0∈W

C w0ð Þ
 !

and C(w) is denoted as

C(w) = s(a|w) + s(b|w).

The edge-dependent fusion quality is expressed as

QE a,b, fð Þ=QW a,b, fð Þ�QW a0,b0, f 0ð Þα, ð14Þ

where α is a factor which determines the impact of the
edge images in comparison to the source images.

FIGURE 7 Results of fusion for

group 2 images. A, MR-T1; B, MR-T2; C

to K, fused images

TABLE 7 Objective evaluation performance comparison of group 2 (MR-T1 and MR-T2) images with non-SR-based methods

Method E MI QRS/F FMI VIFF Q QE QW

DT-CWT 4.6626 2.3611 0.7247 0.9042 0.4842 0.7096 0.6228 0.7596

GFF 4.4081 2.1760 0.7211 0.9048 0.4961 0.8497 0.6920 0.8477

NSST-PAPCNN 5.0599 2.1357 0.7215 0.8967 0.6859 0.9979 0.9978 0.9997

NSCT 5.1026 2.3406 0.7484 0.9023 0.6248 0.9983 0.9980 0.9997

Proposed 4.8304 2.8360 0.6916 0.8916 0.5476 0.9985 0.9944 0.9998

Note: The bold values indicates the best values.
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TABLE 8 Objective evaluation

performance comparison of group

4 (MR-T1 and MR-T2) images with SR-

based methods

Method E MI QRS/F FMI VIFF Q QE QW

DWT-SR 4.4736 2.4606 0.5727 0.9341 0.4304 0.6768 0.6168 0.7004

DTCWT-SR 4.0368 2.3646 0.6111 0.9481 0.4810 0.6614 0.7246 0.7819

CVT-SR 4.577 2.364 0.5811 0.9395 0.4531 0.5628 0.5485 0.6060

NSCT-SR 4.8770 2.4377 0.6578 0.9408 0.4408 0.6845 0.7761 0.8424

SR 4.5306 2.5573 0.7048 0.9058 0.4842 0.8351 0.6858 0.8469

LP-SR 4.3361 2.5189 0.7622 0.9054 0.5123 0.6356 0.6037 0.7185

ASR 4.9560 2.5272 0.6861 0.8981 0.4860 0.8668 0.6748 0.6777

CSMCA 4.3905 2.3719 0.7294 0.9027 0.4940 0.8722 0.7000 0.8444

Proposed 4.8304 2.8360 0.6916 0.8916 0.5476 0.9985 0.9944 0.9998

Note: The bold values indicates the best values.

FIGURE 8 Results of fusion for

group 2 images. A, MR-T1; B, MR-T2; C

to K, fused images
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To show the potency of the suggested technique, our
results are compared with DT-CWT,16 GFF,21 NSST-
PAPCNN,22 NSCT,23 LP-SR,26 DWT-SR,26 DTCWT-SR,26

CVT-SR,26 NSCT-SR,26 SR,27 ASR32 and CSMCA34

methods. The quantitative results are shown in two
groups. The first group compares the proposed method
with the MST-based methods. The second group com-
pares our method with the variations of SR-based
methods. It is to be noted that the results shown are
obtained from our implementations of the methods
used for comparison. In this paper, the decomposition
level is taken four in MST method. The qualitative
results are shown for MST-based and SR-based
methods only. For CSMCA method, we have only
taken the gray images as inputs. It is observed that
similar results are obtained with other SR-based
methods also.

From Figure 4, it is observed that the fused image
obtained in (D) and (F) have better visual quality but the
local information preservation is not so good. The GFF,
LP-SR, ASR, and CSMCA approaches fail to represent
the original info of input images and non-natural traces
are introduced in the output image. The fused images
found in (I) and (J) are very similar to the fused image of
the suggested method. The tissue is clearly visible in the
fused image got from the proposed method. Compared to
the source images, the output image found with the

suggested technique retains more tissue information con-
tent. From Table 1, it is seen that the indices MI, Q, and
QW of the suggested technique are high as compared to
the other methods. Nevertheless, the rest of the values
show a comparable result. Further, it is seen that the
GFF method outperforms in terms of QRS/F. From
Table 2, it is observed that the proposed method leads
other methods in terms of E, QRS/F, Q, QW, QE, and
MI. The CVT-SR method shows high value in terms of
FMI. The VIFF value is high in LP-SR method. As the
proposed technique uses the region-based fusion and the
dictionary is learned using the improved KSVD approach,
the overall performance may be better as compared to
the other methods.

It is observed from Figure 5D–F that the middle part
of the fused image looks darker as compared to the rest
of the methods. The Figure 5F,I,J appears brighter. The
bone part is visually more prominent. The soft tissue as
well as the bone structure is visually sharp. Figure 5K
retains both the tissue and bone structure information. It
looks visually clear. From Table 3, it is seen that the pro-
posed method gives higher MI, Q, and QW values. Fur-
ther, the QRS/F and QE values of the proposed technique
are close to the values obtained from the other methods.
In Table 4, it is seen that better E, Q, QE, and QW values
are obtained using the proposed technique. Nevertheless,
the other indices are close to the values found from the

TABLE 9 Objective evaluation performance comparison of group 2 (MR-T1 and MR-T2) images with non-SR-based methods

Method E MI QRS/F FMI VIFF Q QE QW

DT-CWT 5.0133 2.3939 0.5116 0.7616 0.3661 0.9851 0.9255 0.9740

GFF 4.9577 2.1966 0.5345 0.8906 0.5006 0.9966 0.9982 0.9996

NSST-PAPCNN 5.0197 2.1661 0.7141 0.8709 0.8177 0.9974 0.9968 0.9991

NSCT 5.0364 2.5068 0.7147 0.8773 0.7892 0.9977 0.9968 0.9996

Proposed 5.0691 3.1974 0.5851 0.8413 0.4516 0.9982 0.9937 0.9998

Note: The bold values indicates the best values.

TABLE 10 Objective evaluation

performance comparison of group

2 (MR-T1 and MR-T2) images with SR-

based methods

Method E MI QRS/F FMI VIFF Q QE QW

DWT-SR 4.7424 3.0821 0.4767 0.8525 0.4537 0.9982 0.9784 0.9981

DTCWT-SR 5.1109 3.1434 0.5578 0.8623 0.4042 0.9974 0.9720 0.9972

CVT-SR 5.4896 2.4273 0.4839 0.7076 0.2026 0.9814 0.9076 0.9638

NSCT-SR 5.0167 2.8395 0.5608 0.8184 0.2890 0.9929 0.9652 0.9915

SR 4.9612 2.5142 0.6040 0.7509 0.6065 0.9784 0.9267 0.9913

LP-SR 4.7100 3.1588 0.5613 0.8525 0.4537 0.9981 0.9784 0.9981

ASR 4.8413 2.5008 0.6047 0.7749 0.6151 0.9784 0.9653 0.9962

CSMCA 4.6821 2.3276 0.7010 0.8782 0.6044 0.8386 0.6486 0.8124

Proposed 5.0691 3.1974 0.5851 0.8413 0.4516 0.9982 0.9937 0.9998

Note: The bold values indicates the best values.
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other methods. However, the LP-SR leads the MI and
QRS/F values. The SR method outperforms in terms of
VIFF values, whereas the CSMCA method shows high
value in terms of FMI.

Figure 6F,I,J,K seems brighter than other methods.
The top portion of the output image of the suggested
technique is visibly clear as compared to other methods.
Figure 6C looks darker than the rest of the images. The

FIGURE 9 Results of fusion for

group 3 images. A, MRI; B, SPECT; C

to J, fused images [Color figure can be

viewed at wileyonlinelibrary.com]

TABLE 11 Objective evaluation performance comparison of group 3 (MRI and SPECT) images with non-SR-based methods

Method E MI QRS/F FMI VIFF Q QE QW

DT-CWT 5.2707 2.3363 0.6360 0.8369 0.2651 0.9894 0.9347 0.9874

GFF 4.9763 2.1553 0.3693 0.8129 0.1284 0.9345 0.9054 0.9439

NSST-PAPCNN 5.2230 2.4750 0.7331 0.8348 0.7059 0.9971 0.9581 0.9985

NSCT 5.1396 2.7762 0.7442 0.8588 0.7679 0.9970 0.9793 0.9989

Proposed 5.2770 2.9426 0.6044 0.8848 0.4842 0.9991 0.9967 0.9999

Note: The bold values indicates the best values.
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quantitative comparison in Table 5 shows that the E, MI,
QRS/F, Q, and QW values of the proposed method out-
perform other methods. Nevertheless, the QE value of the

suggested scheme is close to the values obtained with the
NSST-PAPCNN and NSCT methods. The proposed
method also shows a comparable value in terms of FMI.

TABLE 12 Objective evaluation

performance comparison of group

3 (MRI and SPECT) images with SR-

based methods

Method E MI QRS/F FMI VIFF Q QE QW

DWT-SR 5.0382 2.7864 0.5438 0.8291 0.2690 0.9895 0.9336 0.9856

DTCWT-SR 5.3117 2.7122 0.4914 0.8347 0.1990 0.9870 0.9195 0.9804

CVT-SR 5.3604 2.4003 0.3393 0.7485 0.1434 0.9774 0.8771 0.9642

NSCT-SR 5.2372 2.8186 0.4853 0.8527 0.2486 0.9887 0.9260 0.9822

SR 4.6211 2.6354 0.5348 0.8411 0.3291 0.9724 0.9226 0.9930

LP-SR 4.9768 2.3515 0.5829 0.8840 0.3948 0.9933 0.9428 0.9901

ASR 4.8446 2.4291 0.7765 0.8537 0.3253 0.9743 0.9610 0.9977

Proposed 5.2770 2.9426 0.6044 0.8848 0.4842 0.9991 0.9967 0.9999

Note: The bold values indicates the best values.

FIGURE 10 Results of fusion for

group 4 images. A, MRI; B, PET; C to J,

fused images [Color figure can be

viewed at wileyonlinelibrary.com]
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From Table 6, it is seen the suggested technique shows
best results in terms of MI, QRS/F, Q, QW, and QE values.
The CVT-SR method shows the best value in terms of
E and the CSMCA method outperforms in terms of FMI.
The MST-based method shows good results in terms of
some indices. The reason may be the sparse technique is
applied to the low-pass band where the patches are
suitably represented by the OMP method.

It is seen from Figure 7D,E that the soft tissue is
not visible properly, that is, some dark spots are pre-
sent. The fused image in Figure 7E,J has good contrast
and the tissue portion looks brighter. The fused image
of the proposed technique shows a comparable result
with the other methods. The lower part of the fused

image is visibly sharp as compared to the other
methods. Figure 7G,J,K are almost similar. From
Table 7, it is observed that, the proposed technique
gives the best results in terms of MI, Q, and QW. The
NSCT method leads in terms of E, QRS/F, and QE. The
GFF shows high FMI value and the NSCT-PAPCNN
lead in terms of VIFF. From Table 8, it is seen that the
proposed technique gives best results in terms of MI,
VIFF, Q, QE, and QW. The LP-SR method leads in
terms of QRS/F. It is seen that the E value obtained
with ASR technique is the best, whereas the DTCWT-
SR shows the best value in terms of FMI.

From Figure 8D,E, it is seen that the brightness is not
so good as compared to other fused images. The upper
part looks blurry. Figure 8F,H,I,J looks brighter. The tis-
sue and bone structure are visually good. The proposed
technique shows detail preservation of the original
images. Figure 8C,G retains most of the visual informa-
tion. It is observed from Table 9 that the metrics E, MI,
Q, and QW of the proposed method gives the best result
as compared to other methods. The GFF method outper-
forms in terms of FMI and QE, whereas the NSCT-
PAPCNN shows high value in terms of VIFF. The reason
may be the ability of the filter in preserving the edges.
The FMI and QE value of the proposed technique pro-
duces comparable results with other methods. From
Table 10, it is observed that the proposed technique out-
performs in terms of MI, Q, QE, and QW. The CSMCA

TABLE 13 Objective evaluation performance comparison of group 4 (MRI and PET) images with non-SR-based methods

Method E MI QRS/F FMI VIFF Q QE QW

DT-CWT 4.6463 2.3458 0.6811 0.6904 0.2993 0.9893 0.9326 0.9660

GFF 5.1088 2.0497 0.4662 0.8187 0.2106 0.9386 0.8632 0.9306

NSST-PAPCNN 5.2808 2.5771 0.6072 0.9455 0.6816 0.9989 0.9953 0.9999

NSCT 5.1934 2.3622 0.6401 0.8793 0.7063 0.9844 0.9996 0.9994

Proposed 5.3624 2.4596 0.6904 0.8502 0.4834 0.9990 0.9926 0.9684

Note: The bold values indicates the best values.

TABLE 14 Objective evaluation

performance comparison of group

4 (MRI and PET) images with SR-based

methods

Method E MI QRS/F FMI VIFF Q QE QW

DWT-SR 4.9892 2.7921 0.7124 0.6556 0.2434 0.9963 0.9772 0.9962

DTCWT-SR 4.8515 2.4964 0.5879 0.6357 0.2377 0.9911 0.9543 0.9898

CVT-SR 4.8417 2.2546 0.5328 0.5567 0.2590 0.9854 0.9282 0.9828

NSCT-SR 5.1234 3.0375 0.7300 0.7517 0.2517 0.9980 0.9824 0.9980

SR 5.2044 2.7123 07850 0.7234 0.3287 0.9254 0.7314 0.9257

LP-SR 4.3255 2.3636 0.8051 0.6016 0.2930 0.9789 0.9193 0.9728

ASR 4.5729 2.5643 0.7373 0.6062 0.3062 0.9209 0.7473 0.9211

Proposed 5.3624 2.4596 0.6904 0.8502 0.4834 0.9990 0.9926 0.9984

Note: The bold values indicates the best values.

FIGURE 11 Test results of the suggested technique with

different patch size

574 MEHER ET AL.



method shows high value in terms of QRS/F and FMI. The
E value of CVT-SR method is high whereas the SR out-
performs in terms of VIFF.

From Figure 9, it is seen that the soft tissue info is not
well defined in (D). The remaining images are almost
appearing the same. The spatial information is not clear
in Figure 9E,G. The brightness near the edges is not
sharp in Figure 9C. In contrast, the output image of the
suggested technique retains both the spatial and spectral
information and visually looks more prominent than the
other fused images. From Table 11, it is observed that the
quantitative indices E, MI, FMI, Q, QE, and QW for the
suggested technique are superior as compared to the
other methods. It is observed from Table 12 that the pro-
posed technique shows better performance in terms of
MI, FMI, VIFF, Q, QE, and QW. The value of the rest of
the metrics of the proposed method is very close to the
other methods. The ASR method leads in terms of QRS/F,
whereas the CVT-SR shows high E value.

Figure 10E,G shows clear tissue information. The soft
tissue in Figure 10D,E is appearing dark. All the fused
images have good color content but the structural info is
absent in the fused images. The suggested approach
shows good visual appearance and it preserves more
color information of the soft tissue. From Table 13, it is
observed that the metrics E,QRS/Fand Q of the proposed
method show the best results. The NSCT-PAPCNN out-
performs in terms of MI, FMI, and QW. In Table 14, it is
seen that the indices E, FMI, VIFF, Q, QE, and QW show
the best result using the suggested approach. The MI of
the proposed method produces comparable value with
the other methods. The LP-SR shows high QRS/F value.
As the proposed technique uses the adaptive dictionary
for the sparse representation and the region-based fusion
rule, it exhibits good fusion results.

The patch size used for the suggested method is inves-
tigated and the test results are shown in Figure 11. The
effect of different patch size on QPQ/F is shown. It is
observed that the performance of the proposed technique
improves as the patch size increases. However, it
decreases for patch size of 10. Hence, we conclude to set
the patch size to 8 × 8.

5 | CONCLUSION

A multimodal IF technique is suggested using the
improved dictionary learning and the region-based
fusion. An adaptive dictionary is constructed with the
selected informative patches only that increase the com-
pactness together with the computational efficiency. The
proposed technique does not require the prior informa-
tion of the training image patches, which is desirable.

The experimental results reveal that the proposed proce-
dure successfully integrates the complementary info from
the input images to generate the output. The output
images successfully preserve the texture, edge, and color
information of the input. Both the qualitative and quanti-
tative outcomes show that our technique competes with
state-of-the-art IF techniques. This work may set the path
for further research in the area of IF. In future, the exper-
iments may be carried out using different medical images
such as X-ray and ultrasound.
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