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A B S T R A C T

Smart-grid (SG) is a new revolution in the electrical utility industry (EUI) over the past decade. With each
moving day, some new advanced technologies are coming into the picture which forces the utility engineers to
think about its application to make the electrical grid become smarter. Artificial intelligence (AI) techniques
such as machine learning (ML), artificial neural network (ANN), deep learning (DL), reinforcement learning
(RL), and deep-reinforcement learning (DRL) are the few examples of above-mentioned advanced technologies
by which large volume of collected information being processed, and deliver the solution to the complex
problems associated with EUI. In recent times, DL for artificial intelligence applications has gained huge
attention in the diverse research area. The traditional ML techniques have several constrained for processing
the data in raw form. However, the DL provides the options to process the raw data without extracting and
selecting the feature vector. The DL techniques belong to a new era of AI development. This article presents the
taxonomy of DL algorithms available in the literature applied to different problems in EUI. The main objective
of this survey is to provide a comprehensive idea to the researcher/utility engineer about the applications and
future research scope of DL methods for power systems studies.
. Introduction

The electrical utility industry (EUI) is a very complex artificial
ystem. The EUI has involved constantly in exploring ways to upgrade
he efficacy and dependability by means of which it delivers energy.
ven if the elemental technologies of energy generation, transmission,
nd distribution revolutionize very gradually, the EUI has been hurried
o explore novel tools that may possibly help to show the benefits
Warwick et al., 1997; Madan and Bollinger, 1997). The EUI is a sector
hat ensures a consistent production and supply access of electricity to
onsumers. To achieve this, the utility companies are also adapted a
rendy strategy called as Digitalization. In digitalization process, several
odifications have been employed to yield the capability to generate
ew path of EUI for value creation. The fourth industrial revolution
as also begun to provide a shape that enables the decentralized
ntelligence in manufacturing and production. The electrical power
ystem is in the focus of a revolution, as technology and modernization
isturb conventional models from generation to afar the matter. The
lobal electrical power sector is in a process of changing its tradi-
ional technologies for the generation, transmission and distribution
f electrical power through integrating new digitally-advanced and
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green technologies. In this regards, the following are the major three
trends in particular to achieving the game-changing revolutions: (i)
Electrification (ii) Decentralization (iii) Digitalization. The main goal
of electrification tend is to achieve a long-term carbon goal through
triggering the relevant distributed resources and electrifying the large
sector of economy through heating and transport. This can be realized
through the technologies such as electric vehicle, vehicle to home/grid,
smart charging etc. The decentralization trend leads to a changeover
to a more digital and interconnected power system that will handle
the central generation in concert with distributed energy resources
(DERs). Once the industry seems to explore possibilities outside the
conventional electrical-grid, DERs like wind energy system (WES), solar
photovoltaic system (SPV), and hi-tech energy storage system, it can
makeover an old-fashioned power-grid into a smarter, interconnected
system named as smart-grid (SG). Similarly, the digitalization of electri-
cal energy system allows for open, real-time automated communication
and automation of the system (Angelopoulos et al., 2019).

The main objective of EUI can be summarized as follows: optimum
resource utilization, higher energy efficiency, higher system reliabil-
ity, higher system security and economical electricity distribution to
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consumers. The traditional methods for electrical power system (EPS)
analysis, control and decision making are mostly supported by physical
modelling and numerical calculations. But, this procedure usually faces
difficulty in addressing uncertainty and partial observability problems,
and therefore, they cannot come across the necessities of future growth
of SGs. In the area of EPS, one of the highly rousing and possibly cost-
effective latest advances is the increasing use of artificial intelligence
(AI) techniques. The AI techniques, such as expert systems (ESs), ma-
chine learning (ML), fuzzy logic (FL), artificial neural networks (ANNs),
and reinforcement learning (RL) are the few examples of cutting-edge
technologies by which large volume of collected information being
processed, and deliver the solution to the complex problems associated
with SG. These technologies support effective tools for design, simula-
tion, control, estimation, fault diagnostics, and fault-tolerant control in
modern EPS (Bose, 2017).

Under the umbrella of AI, deep learning (DL) and deep-
reinforcement learning (DRL) are the newest technology in the last few
years. Recently, deep learning (DL) concept in artificial intelligence
(AI) application has gained huge attention. The DL/DRL techniques
belong to a new era of AI development (Zhang et al., 2018). DL states
about the architectures which comprise numerous hidden layers (deep
networks) to learn several distinct features with multiple levels of
perception. The traditional ML techniques have several constrained for
processing the data in raw form. However, the DL provides the options
to process the raw data without extracting and selecting the feature
vector (Wani et al., 2020). Fig. 1shows this concept in pictorial form. In
place of handcrafting numerous rules and procedures for the extraction
of feature vector from raw natural data, DL involves learning these
features automatically at the time of the training period (Wani et al.,
2020; LeCun et al., 2015; Goodfellow et al., 2016). Hence, DL, RL,
and DRL seem to be some of the facilitating tools for the forthcoming
progress and achievement of EUI.

The manuscript offers an organized and comprehensive overview
of the DL study on the electrical utility industry (EUI), which covers
several application fields. Previously published articles on this subject
either emphasized on a specific application domain or a particular
research field. Most of the accessible works that have published ear-
lier focuses its efforts on image processing applications; there is an
increased concern from the electro-mechanical domain. Therefore, this
manuscript provides a comprehensive literature review on develop-
ments of DL techniques and its variant’s, and application of DL in
several electrical domains (such as, power system fault detection and
classification, load and power forecasting, wind speed and irradiance
forecasting for wind and PV system respectively, power quality detec-
tion, power system state estimation, etc. . . ). The previously reported
research articles have been distributed in many databases. We have
chosen some standard electronic databanks to generate a comprehen-
sive bibliography of a research paper on DL architectures in EUI.
The objective of this article has been fulfilled by reviewing several
journal articles and conference papers, which are directly related to
the DL applications in the electrical power domain. The major goal
of this study is to recognize the recent research of DL in EUI. This is
achieved by means of exploring obtainable printed articles that provide
understandings of prospective applications and researcher concerns on
the foremost leanings, substantial works, and future research scope.
Thus, we have tried to gather an organized reference opinion for
booming literature of this emergent research area. As the studies within
this topic have practical significance, the scope of this search includes
the year span of 2010–2020. This objective of this article has been
fulfilled by reviewing several journal and conference articles those are
straightforward related to the DL applications in the electrical power
domain. With this regard, the literature search was accomplished via
electronic databases such as Science Direct, IEEE Xplorer, Scopus, IET
Digital Library, Springer, Willy, etc... The principal descriptor applied
is ‘‘deep learning’’, clustered with the following: ‘‘electrical power
system’’, ‘‘electrical utility’’, ‘‘electrical fault identification’’, ‘‘power
2

quality’’, and ‘‘microgrid’’, ‘‘energy management’’. Over-All, the authors
have recognized 115 articles that were published especially on DL
application to the electrical utility industry. A remarkable observation
is the lack of survey articles on this particular area. Therefore, we
have considered this as a superior opportunity to help the researchers
working on this particular domain through imparting a comprehensive
up-to-date survey article. This article may act as a reference point of
the relevant future research carried out by the reader.

With an intention to provide a comprehensive and most relevant
review a proper article selection approach (ASA) is highly necessary.
Therefore, we have designed an ASA for this particular review, where
several inclusions and exclusion criteria are considered for designing
the ASA which as follows:
The inclusion criteria for selecting the most appropriate publications as:
1. Addressing the types of deep learning architectures applied in EUI.
2. Addressing the DL architectures in electrical research domains
3. Addressing the major impact and open research issues of DL appli-
cation in EUI.
The exclusion criteria for removing unwanted publications as follows:
1. Articles published in books, Ph.D. and/or Masters’ dissertations,
meta-analysis, and other types of literature reviews.
2. Articles those are not related to EUI and concentrated on DL appli-
cation for different domains such as agricultural engineering, aquacul-
ture, transportation technology, traffic management, smart cities, home
automation, computer vision, healthcare management, and medical
image classification.
3. Abstracts or full manuscripts are not accessible.

In this work, a total of 2378 technical research articles have been
collected to synthesize a comprehensive review article on DL applica-
tion to EUI. In the initial stage, all the duplicate articles were removed
from the database, which yields 522 potentially relevant articles. Sub-
sequently, the titles and abstracts of each article were evaluated and
most relevant articles were differentiated based on our objective. The
outcome of this stage provides 254 articles. Lastly, the full-text reviews
of the residual documents were carried out and 115 articles were
selected regarding DL application in the electrical domain.

Moreover, the article discusses the computational complexity of
each DL technique, taking note of their strong points and weakness.

Lastly, it is valuable to draw out the objective and significant
contributions from the article:

• This manuscript presents a general idea for the academia/research
society of the several architectures along with allied implementation
challenges.

• This article offers an organized review of increasing literature on
the application of DL in electrical domains.

• A large spared DL research scope or application area within electri-
al power engineering domain such as power system fault detection and
lassification, load and power forecasting, renewable power generation
orecasting, power quality detection, power system state estimation,
tc. . . are considered in this study.

• The main objective of this survey is to provide comprehensive
dea to the researcher/utility engineer about the applications and future
esearch scope of DL methods for power systems studies.

The rest parts of the articles are organized as follows: Section 2
escribes a brief taxonomy of Deep Learning Techniques. Section 3
resents the taxonomy of the DL application domain corresponding to
lectrical engineering. Section 4 reviews the DL application to advanced
orecasting problems. Section 5 reviews the literature of DL application
n automatic power quality monitoring. Sections 6 and 7 studies the
L application feasibility in Microgrid and Electric vehicle area respec-

ively. In Section 8, several miscellaneous areas under the electrical
omain are analysed regarding the DL application. Section 9 discussed
he outcomes from this survey, challenges and future scope. Section 10
oncludes this survey with several concluding remarks.
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Fig. 1. Conventional ML vs. DL.
2. Taxonomy of deep learning techniques

Deep learning techniques are belonging to a new era of artificial
intelligence (AI-2.0) (Zhang et al., 2018). Under the umbrella of AI, DL
is the newest approach in the ML framework (Mishra et al., 2020). Deep
learning applies either deep or hierarchical learning approaches, which
is a class of ML renovated mostly from 2006 onwards. In recent times,
the DL concept in AI applications’ has gained huge attention. In contrast
to conventional ML, the DL uses multiple layers for the extraction of
a higher-level feature vector progressively from the raw input data.
Fig. 1 portrays the general conceptual difference between conventional
ML and DL. Considering the advantages DL architecture over ML, the
same has been successfully used in diverse fields of applications such
as speech processing (Wang et al., 2016a), image processing (Wu et al.,
2018), natural language processing (Deng and Liu, 2018), visual art
processing (Xie et al., 2017), health care management (Khan and Yairi,
2018), military (Dijk et al., 2019), etc.

DL methods can be classified (Alom et al., 2019) as: (i) super-
vised, (ii) semi-supervised, and (iii) unsupervised. Furthermore, there
is one more class of DL approach named Reinforcement Learning
(RL) or Deep reinforcement learning (DRL). Fig. 2 presents the picto-
graphic representation of taxonomy of DL architecture available in the
literature.

2.1. Deep Supervised Learning (DSL)

The DSL technique generally uses labelled data in their algorithm. In
this type of learning process, the algorithm handles a set of inputs and
corresponding outputs

(

𝑥𝑡, 𝑦𝑡
)

∼ 𝜌. Let us consider an example where
the input to the algorithm is ‘𝑥𝑡’, prediction output is �̂�𝑡 = 𝑓

(

𝑥𝑡
)

, and
the subsequent loss value is 𝑙(𝑦 , �̂� ). Afterwards, intelligent agent of the
𝑡 𝑡

3

DSL will adjust the network parameters for an improved approximation
of the required outputs, and this has been achieved through several
iterations. After successful training, the algorithm will be able to get
the correct prediction with less error. In DSL framework; Deep Neural
Networks (DNN), Convolutional Neural Networks (CNN), Recurrent
Neural Networks (RNN), including Long Short Term Memory (LSTM),
and Gated Recurrent Units (GRU) are the different DL techniques
available in literature. The detail mathematical analysis about all these
DL networks can be extracted from several previously published articles
such as DNN (Miikkulainen et al., 2019; Bouwmans et al., 2019), CNN
(Yao et al., 2019; Zhou, 2019), RNN (Ding et al., 2018; López et al.,
2016), LSTM (López et al., 2016; Wang and Li, 2018a) and GRU (Wani
et al., 2020; LeCun et al., 2015; Goodfellow et al., 2016).

2.2. Deep Semi-supervised Learning (Deep-SSL)

The SSL process has been designed for partially labelled data. In
a few instances, deep reinforcement learning (DRL) and Generative
Adversarial Networks (GAN) have been used as Deep-SSL methods.
The mathematical analysis of GAN was detailed in Mao et al. (2017).
Section 2.4 provides a summary of DRL methods. Moreover, RNN,
including LSTM and GRU, can also be used as Deep-SSL techniques.

2.3. Deep Unsupervised Learning (Deep-USL)

The Deep-USL systems are such types of learning that do not depen-
dent on data labels. In this type of learning approach, the agent learns
the internal characteristics or key features to determine unknown inter-
actions or structure within the input datasets. In the case of clustering
approach, the dimensionality reduction, and generative approaches are
contemplated as USL methods. There are numerous agents under the
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Fig. 2. Taxonomy of DL architecture available in literature.
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mbrella of DL framework that are worthy at clustering and non-linear
imensionality reduction, such as Auto-Encoders (AE), Restricted Boltz-
ann Machines (RBM), and GAN. The mathematical analysis of AE

nd its’ variants, and BM and its’ variants were detailed in Wani et al.
2020), LeCun et al. (2015) and Goodfellow et al. (2016). Furthermore,
NN networks, for example LSTM and reinforcement learning may also
onsider in different USL application fields.

.4. Deep Reinforcement Learning (DRL)

RL is a subset of ML supported with sequential decision making
nder uncertainty. The major objective of RL is for the agent to max-
mize the cumulative reward by taking a series of actions in response
o a vibrant environment. Like supervised and unsupervised learning,
he DL is also a basic ML model. The Q-learning, SARSA (State–
ction–Reward–State–Action), DQN (Deep Q Net) and DDPG (Deep
eterministic Policy Gradients) are few examples of RL approaches.

n addition, the RL approach combined with the perception of DL
as led to an advanced technique called as DRL. It is mostly used
or unknown environments, and can be implemented for a variety of
asks involving both rich perception of high dimensional raw inputs
nd strategy control. The initial development of DRL was initiated
n 2013 with Google Deep Mind. Thenceforth, numerous innovative
pproaches have been suggested using RL. Let us consider an example
f reinforcement learning: If environment input samples: 𝑥𝑡 ∼ 𝜌,

agent forecast: �̂�𝑡 = 𝑓
(

𝑥𝑡
)

, agent receive cost: 𝑐𝑡 ∼ 𝑃
(

𝑐𝑡 ||𝑥𝑡, 𝑦𝑡
)

, the
nvironment requests to an agents for the response of a question, and
ased on the received answer a noisy score is allotted. This approach
an be stated as semi-supervised learning in few cases. Considering
iversified scope and complexity of problem, the suitability between RL
nd DRL has been chosen to solve the particular problem. For example,
f the problem needs to optimize a massive number of parameters then
RL will be the effective one. The detail mathematical analysis of RL
nd DRL techniques can be from Yu and He (2019), Xu et al. (2019)
nd Botvinick et al. (2019). Table 1 provides a brief survey of the NNs
haping the DL architectures applied to the electrical utility industry in
he literature.

. DL for electrical power domain

Several research articles/magazine/dissertations have been pub-
ished, comprising deep learning, reinforcement learning and deep-
einforcement learning applications in electrical engineering domains.
4

he majority of publications were indexed by journals/conferences
ssues since 2014. The application area or necessary functional/services
nclude advanced power system monitoring and diagnostics, adoptive
rotection schemes, distributed power system management, islanding
ossibilities in microgrids, advanced forecasting support, electric ve-
icle, power quality monitoring and almost all the technical fields of
UI. Fig. 3 shows a pictorial representation of the taxonomy of the
pplication area where the DL has successfully applied till date. The
etails reviews related to DL application on each mentioned area are
resented comprehensively in the subsequent sections.

Table 1 summarizes several application fields stated by authors of
reviously published papers related to different deep learning architec-
ures in electrical domain.

. Advanced forecasting support

Advanced forecasting support is a vital feature for the EUI and
ighly essential for optimized grid operation. Several sub-areas within
he electrical domain related to forecasting provisions are includes
i) load/demand prediction (ii) Power system state forecasting (iii)
enewable energy generation forecasting such as wind speed, wind
ower, and solar irradiance, etc. The importance of AI, implementation
hallenges and solutions for all aforementioned application domains are
lready reviewed by the researchers in the last couple of decades, such
s load/demand prediction in Baliyan et al. (2015), Metaxiotis et al.
2003) and Raza and Khosravi (2015), Power system state forecasting
n Vankayala and Rao (1993) and Kumar and Srivastava (1999) and
enewable energy generation forecasting in Kalogirou (2001), Lei et al.
2009), Elsheikh et al. (2019) and Das et al. (2018). Although the scope
f DL application in these domains is not fully explored yet, the authors
n this article have tried to frame the outcomes and challenges related
o the research work that are already published in the same domain
sing deep learning techniques.

.1. Load/demand prediction

Although the perception of SG is to upgrade the existing grid
owards a more robust, reliable and well-organized grid, reducing the
roduction cost is also an important feature. This can be achieved
y proper planning and operating of EUI. Moreover, the high perpe-
ration of DERs into the existing grid also increases the uncertainty
nd challenges to SG operations and scheduling. Hence, the correct
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Table 1
Brief literature review on neural networks shaping the DL architectures applied to the electrical utility industry (Mnih et al., 2015; Yoo et al., 2014).

(continued on next page)
prediction of energy/load demands at different levels is highly essen-
tial for the EUI in economic aspects. The accurate load forecasting
generally depends on the knowledge of influencing factors for increas-
ing/decreasing demands. Authors in Khatoon and Singh (2014) studied
several influencing factors on electrical load forecasting. These factors
are classified as: Meteorological Factors (Climate, weather, temper-
ature, humidity, solar radiation etc.), Temporal or Calendar factors
(Hours of day, days of week, and timings of year etc.), Economy
5

Factors (Industrial development, GDP, etc.), Random Factors (Activ-
ities, Festival etc.), Customer Factors (Type of consumption, Size of
building, Electric appliances, Number of employees etc.) etc. Cavallaro
(2005). Authors in Xue and Geng (2012) categorized the influencing
factors on electrical load forecasting into three categories, such as short-
term influence factors, middle-term influence factors, and long-term
influence factors.

Considering these time horizon factors, the types of load forecasting
can be divided into three categories, namely Short-term forecasting
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Table 1 (continued).

. . .
(STLF), Mid-term forecasting (MTLF) and Long-term forecasting (LTLF)
(Almalaq and Edwards, 2017; Haque and Kashtiban, 2000). Fig. 4
shows the details about the objective and time spans involved in these
types of time horizon forecasting approaches. Several methods were
already reported earlier for electricity load forecasting using AI-1.0 that
is ML algorithms. The ML models such as different variants’ of ANN
and SVM were widely used for load forecasting in a couple of decades
(Khuntia et al., 2016; Metaxiotis et al., 2003; Daut et al., 2017). These
methods were based on small datasets without considering the larger
dimensions of dataset extracted by smart meters (SMs). Moreover,
the ML techniques may be treated as inefficient learning models for
larger volumes of the dataset (Wani et al., 2020). In contrast to this
DL, algorithms are highly efficient for handling high dimensional data
(Wani et al., 2020). Therefore, this template presents a synopsis on the
DL based methods used in SG load forecasting (Almalaq and Zhang,
2020).

4.1.1. Short-term load forecasting using DL overview
The main objective of accurate STLF is mentioned in Fig. 4 with

forecasting time-period. Generation scheduling can be achieved by
the STLF to determine the generation resource allocations, working
limits, environmental and apparatus handling constraints, and optimal
operational state of EPS. The STLF is used for ensuring the EPS security,

stability and reliability. In this regards, although several work have

6

already reported for STLF problem using conventional ML techniques,
the popularity of DL application have increased in few years.

Authors in Guo et al. (2018) presented a DNN based approach
for STLF. Here, the data or patterns of electricity consumption were
extracted with respect to temperatures, months of the year and days
of the week. Afterwards, the probability density of load consumption
was forecasted by means of DNN combined with quantile regression
(QR). Lastly, the outcome of the suggested approach was compared
with popular ML tools such as random forest (RF) and gradient boosting
machine. Authors in Hossen et al. (2017) suggested a DNN based
methodology for day-ahead electricity consumption prediction. Ninety
days of Iberian utility market data was used for the training of multi-
layer DNN. A number of activation functions set (comprising different
types of activation functions) were tested to obtain an improved Mean
Absolute percentage error (MAPE) considering the weekday and week-
end variants. The outcome of the study shows that the grouping of an
Exponential linear unit (ELU) with ELU has better performances than
other combinations when assessed via MAPE standards for weekday
data-sets; while for weekend data-sets, the ReLU–ReLU (Rectifier linear
unit) combination outperforms the other combinations. In Din and
Marnerides (2017), Authors have studied the application feasibility
and compares the prediction accuracy of the Feed-forward DNN and
Recurrent-DNN models utilizing time-variants STLF data.

Researchers in Dong et al. (2017) used the combination of CNN
and K-Means algorithms to predict hourly load demands. The K-means
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Fig. 3. Different research areas of deep learning application under the umbrella of electrical engineering domain.
algorithm was applied to culture bulky data-sets (which comprise
above 1.4 million of electricity loads records) into subsets. Afterwards,
these subsets were used as input to CNN for training and testing
purposes. The experimental outcome of the suggested approach has
clearly shown its effectiveness. Author in He (2017) proposed novel
DNN architectures to predict one day-ahead hourly electricity loads.
The authors use multiple CNN modules to learn deep features from
the historical load dataset. Here, the max-pooling was carried out with
size 2 and stride 2 and the combined outputs in one array fed into the
LSTM based RNN module. Correspondingly, some other features like
temperature and holidays are projected into vector representation using
dense components. Lastly, all the features concatenated via dense layers
to guess load amount. The stated method was evaluated using the three
years of hourly data in a north China city and proven its effectiveness
through experimental results.

Authors in He et al. (2017) proposed DBN combined with para-
metric Copula models to predict the load demand in an hourly basis
in an electrical grid. A couple of forecasting scenarios such as 1-day
in advance and 1-week in advance were conducted employing the
stated approach. One year of electricity load consumption data in an
urban area in Texas, United State was considered for the experimental
validation. Experimental results, as well as a comparative analysis
with other contemporary techniques (such as ANN, SVR, and ELM),
proved that the approach outperforms by means of MAPE and RSME.
Researchers in (Dedinec et al., 2016) suggested a DBN based method for
electric load forecasting. Here, the DBN was simulated from multiple
layers of restricted Boltzmann machines (RMBs) and the layer-by-layer
unsupervised training process was avid by fine-tuning of the parameters
by using a supervised back-propagation training method. The valida-
tion of the stated approach was successfully tested by Macedonian
hourly electricity consumption data in the period 2008–2014.

Authors in Wen et al. (2020) presented an approach using DRNN–
GRU models for STLF and MTLF. The France metropolitan’s electricity
consumption data were used for testing and validation of the stated
approach. The work was accomplished by training numerous linear and
non-linear ML algorithms and selecting the best as a reference point,
opting the finest features sourcing wrapper and embedded feature

selection techniques and lastly using a genetic algorithm (GA) to find

7

optimal time lags and a number of layers for LSTM model predic-
tive performance optimization. Authors (Bedi and Toshniwal, 2018)
have proposed empirical mode decomposition (EMD) based DL method
which combines the EMD technique with the LSTM architecture model
to predict the electric load consumptions demand for a definite time
interval such as day-ahead, hour-ahead, etc. In this work, the EMD
process decomposes the load data basically a time-series signal into
a number of intrinsic mode functions (IMFs) and residue. Afterwards,
each IMF is used as input for training the LSTM separately. At last,
the prediction outcomes of all IMFs are pooled together to decide a
combined output for electricity demand. The EMD method combined
with DBN comprising two RBMs was used to predict the load demand
of Australian Energy Market in Qiu et al. (2017) by Qiu et al. Here
the effectiveness of the proposed approach was proven by comparing
the obtained results with other nine existing forecasting methods such
as Persistence, SVR, ANN, DBN, RF, EDBN, EMD–SVR, EMD-SLFN, and
EMD-RF. Estebsari and Rajabi (2020) have proposed a single residential
Load Forecasting using DL especially CNN. Here, the authors have used
image encoding technique integrated with CNN to decrease the mean
absolute percentage error up to 40%. They have also compared their
technique with other baseline approaches like SVM and ANN.

Authors (Tong et al., 2018) have proposed a DL based model for
day-ahead electricity forecasting. In the initial stage, the historical
load data, as well as corresponding temperature data, were refined by
stacked denoising auto-encoders (SDAs). In the next stage, the output of
SDAs data was used as input for the training process of support vector
regression (SVR) model. The validation of the stated model was carried
out by a comparative performance analysis with plain SVR and ANNs
models.

The STLF at the individual building (residential customers’ levels)
can considerably support the smooth operations of EUI. Including
accurate load forecasting strategies, the peak load shaving can be
accomplished through co-operatively employing energy storage sys-
tems (ESS) or smart demand response technologies. From the EUI’s
viewpoint, if the exact load predictions at the residential customer’s
level are accessible, then the utility suppliers can target the appropriate
groups of customers based on the extracted forecasting information for
the active participation in demand response scheduling in the actions

of energy shortage. In the meantime, SMs are available in the market
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Fig. 4. Taxonomy of Load and demand forecasting methods based on time horizon.
for the collection of large energy consumption datasets at residential
customer’s levels, which facilitate DL based load/demand forecasting.
Authors in Marino et al. (2016) proposed two LSTM architecture based
hourly ahead and minute-ahead load demand prediction. Here, the
result analysis proves that a standard LSTM architecture cannot accu-
rately predict a one-minute load while the S2S LSTM-based architecture
attains outstanding prediction in each case. Similarly, in Amarasinghe
et al. (2017) similar authors used CNN for load demand predictions
at residential building levels using historical data. Prediction outputs
form the CNN are compared with those obtained by S2S based LSTM,
FCRBM, ‘‘shallow’’ ANN and SVM for the same dataset and it shows
that CNN outperforms SVR while producing comparable results to the
ANN and DL methodologies.

Kong et al. addressed the STLF problem at the individual building
level (Kong et al., 2019). Initially, the electrical load demand on such
granular level and substation levels were compared. Afterwards, a
density-based clustering method was used to calculate and compare
the inconsistency between the combined load and individual loads.
Generally, the lifestyle of the utility customers decides the energy con-
sumption pattern, which is very inconsistent in nature. For that reason,
the author proposed an LSTM–RNN based load forecasting structure
for this type of extremely challenging load demand dataset (Kong
8

et al., 2019). The prediction outcomes clearly prove its effectiveness
by showing better results compared to other contemporary methods
applied to similar datasets.

Authors in Mnih et al. (2012), Taylor et al. (2011) and Mocanu
et al. (2016a) used the Conditional-RBM (CRBM) and Factored-CRBM
(FCBRM) techniques to forecast residential levels loads/demand.

Shi et al. have proposed an innovative pooling-based deep-RNN
for household load forecasting (Shi et al., 2017). In essence, the pro-
posed work addressed the over-fitting issue caused by increasing data
diversity and dimensions. The suggested STLF model was employed on
Tensor-flow deep learning boards and tested on 920 Ireland residential
datasets extracted by SMs. Compared with the other related algorithms
in residential load/demand forecasting, the suggested approach out-
does ARIMA by 19.5%, SVR by 13.1% and classical deep RNN by 6.5%
in terms of RMSE.

4.1.2. Mid-term and long-term load forecasting using DL overview
The main objective of MTLF and LTLF with the time span is pre-

sented in Fig. 4. The main goal of MTLF is to maintain the balance be-
tween demand and generation by proper maintenance scheduling, coor-
dination of load dispatch and price settlement. Similarly, the objective

of LTLF is to expand the EPS units.
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From the 60s of 19th century, most of the load forecasting meth-
ds established till-date is committed to STLF, and not much for
TLF/LTLF. The MTLF and LTLF are much more complex than easily

itting a mathematical model to certain data, and it necessitates a great
eal of knowledge about the ‘substantive’ problem. In comparison to
TLF that usages several workout on data modelling (for instance,
itting prototypes to data-sets and concluding from them, deprived of
dditional knowledge on the working of EPS), the MTLF and LTLF are
inged on enriched expertise on modelling, and working skill with EPS,
nd an in-depth insight of EPS working, and in what way the electrical
lectricity industry may get affected by the fluctuations in a national
conomy all over the years, or by modifications in technology and so
n.

Therefore, the current availability of research work based on MTLF
nd LTLF as compared with STLF is hard to notices because of un-
ertainty, complexity and difficulty in collecting as well as processing
f dataset. Authors (Khuntia et al., 2016) have presented a detail
nalysis of these issues with few available approaches to forecast
id- and long-term load demand. The paper analysed the forecasting

pproaches based on parametric and non-parametric (or AI based).
inear regression, autoregressive integrated moving average (ARIMA),
nd grey dynamic models are few examples of parametric forecasting
pproaches that reported for MTLF and LTLF in past (Abdel-Aal and
l-Garni, 1997; Barakat, 2001; Filik et al., 2011; Kang and Zhao,
012). Similarly, the non-parametric or AI based approaches like fuzzy
ogic clustering neural network, fuzzy linear regression model, support
ector regression, optimization algorithm based model etc. are reported
or MTLF and LTLF in You et al. (2006), Yue et al. (2007), Wang et al.
2012) and Lee et al. (1997).

In the meantime, the current applications of DL based algorithm in
TLF and LTLF problem have reported in few articles as follows. Au-

hors in Bouktif et al. (2018) presented an approach using ML and LSTM
odels for STLF and MTLF. The validation of the suggested approach
as tested with the data related to France metropolitan’s electricity

onsumption. The comparative results obtained from this study indicate
he superiority of LSTM model compared to other baseline approaches.
uthors in Kumar et al. (2018) used LSTM and GRU for forecasting

ong-time electricity load demands. The electric power consumption
n household with a one–minute interval data is used for the training,
alidation and testing of the stated approaches.

The reader can refer Table 2 for details about the dataset and
omparative benchmark models used as well as obtained results with
emark in the direction of DL applications in MTSF and LTSF.

.2. Renewable Energy Generation (REG) forecasting

The output energy prediction of non-conventional/renewable en-
rgy generation is very essential for their expansion and development.
he improved output energy is always dependent on the input sources.
owever, the input sources of renewable energy systems (like wind
nergy systems and photovoltaic systems) have very uncertain and in-
ermittent characteristics. Therefore, intelligent and accurate prediction
lgorithms are essential for planning and smooth operation of EUI.

.2.1. Wind power or wind speed prediction
Out of REG systems, the wind energy conversion system (WECS)

lays an important role in providing green energy and an alternative
ption to fossil fuel-based generations. The output of WES is directly
ssociated with wind speed and therefore, an accurate wind speed fore-
asting (WSF) algorithm will act as an important feature for maximizing
ower output through a proper operating strategy, capacity planning
nd load balancing (Santamaría-Bonfil et al., 2016). The output power
f a WECS is depended on the speed of wind flow near the wind turbine.
he wind speed varies with time, weather and landscape types. The
elationship between wind power and wind speed is cubic in nature
nonlinear), which can be analysed from Eq. (1). As a result, a small
9

error in wind speed forecasting can lead to larger errors in wind
power prediction (Wani et al., 2020). Therefore, accurate WSF is highly
essential for optimal operation and integration of WECS in the power
grid.

𝑃 = 𝜌𝐴𝜈3 (1)

where, the notation 𝑃 , 𝜌, 𝐴 and 𝜈 represents wind power (in watt), swept
area of wind turbine (m2), density of air (kg/m3) and wind speed (m/s)
respectively.

The WSF solutions are also classified in accordance with forecasting
horizons and time-scales. Fig. 5 shows this classification and por-
trays the importance of each type (Chen and Folly, 2018). The wind
power/speed forecasting methods are also divided into three types: (i)
Persistence method (Soman et al., 2010) (It is a benchmark method
and highly accurate for STWF Potter and Negnevitsky, 2006), (ii)
Physical method (Use of climatological data for example wind speed
and direction, pressure, temperature, humidity, terrain structure etc.
and very accurate for LTWF) and (iii) Statistical model based such
as ML and expert system based (It is simple, low-cost, and provides
appropriate predictions for all STWF, MTWF, and LTWF).

Although several intelligent ML and expert systems based WSF
methodologies were devolved and presented recently (Liu and Chen,
2019; Zafirakis et al., 2019; Liu et al., 2019), the DL based approaches
for WSF problems are shown to be more impactful as per the following
referred articles such as Ref. Tascikaraoglu and Uzunoglu (2014), Liu
et al. (2019), Wang et al. (2019a), Lytras and Chui (2019) and Marugán
et al. (2018). The main aim of this section is to present a detailed review
of wind power/speed forecasting considering DL methods.

Authors in Wang et al. (2016b) proposed a hybrid model using
wavelet transform, DBN and spine-QR for short-term wind speed fore-
casting. The wavelet transform (WT) was applied to decompose the
natural wind speed time-series data into several frequency series having
improved features characteristics. Afterwards, the non-linear features
and invariant structures of each frequency were obtained by layer-
wise pre-training of deep belief network. Finally, the uncertainties in
wind speed were statistically synthesized through the QR technique.
Validation of the proposed approach was conducted employing the real-
time data extracted from the wind farm located in China (Shangchuan
Island wind farm, Guangdong Province) and Australia (Cathedral Rocks
wind farm). A comparative result analysis was also conducted between
the proposed WT+DBN+QR approach, Auto-Regressive and Moving
Average Model (ARMA), the well-tuned Back-propagation Neural Net-
work (BPNN), and the Morlet Wavelet Neural Network (MWNN). The
outcome of the study proves the supremacy of the stated approach.
Authors in Wang et al. (2017a) suggested a novel STWF model based
on WT and CNN. WT was employed for decomposing the raw input
data into different frequency band. Then, the nonlinear features from
each frequency band were extracted and learned by CNN network to
provide an improved prediction result. Similarly,

Liu et al. in 2018 have combined three different approaches
empirical-WT, LSTM and Elman neural network (ENN) to forecast
wind speed (Liu et al., 2018a). The stated work was accomplished
in three steps: (i) empirical-WT was implemented to decompose the
original wind speed time-series data into numerous sub-bands with
different frequency; (ii) the LSTM network was used to forecast the
low-frequency sub-bands, whereas the ENN was used to forecast the
high-frequency sub-bands; (c) the forecast outcomes of each sub-band
were summed up to acquire the final results for the raw wind speed
data. Moreover, other seven types of existing wind speed forecasting
(WSF) methods were compared and analysed to show the effectiveness
of the suggested approach. Liu et al. proposed a similar types of
approach for STWF, where they (Liu et al., 2018b) utilized the wavelet
packet decomposition (WPD) techniques to decompose the raw wind
speed time-series data into different frequency sub-layer, and then
employed CNN with 1D convolution operator to forecast the wind speed
high frequency sub-layers and CNNLSTM for forecasting wind speed
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Table 2
Summary of some selected DL application in load forecasting.

Proposed model
(DL based)

Data sources Forecasting
horizon

Benchmark
model

Result Remark Ref.

Benchmark model Proposed Model

DRNN–GRU Residential load
data in Austin,
Texas, USA
(Dataport
website)
https://dataport.
cloud/

1-h resolution
1–2 Month

MLP,
ARIMA,
SVM,
MLR

For instance:
MLP: 2.206
(RMSE) 1.672
(MAE) 14.496%
(MAPE)

DRNN–GRU: 0.510
(RMSE) 0.345
(MAE) 3.504%
(MAPE)

The proposed approach is
suitable for forecasting of load
demand for short to medium
period. The suggested
DRNN–GRU model can
include time dependencies in
the load-data and attain a
greater predicting accuracy as
compared to the other
baseline approaches. The
method also proven to be
effective for filling the missing
values by learning from
historical-data, as it can
achieve high forecasting
accuracy. Nevertheless, the
proposed approach has a little
restriction like it needs the
information of the upcoming
climate-data for accurate
prediction

Wen et al.
(2020)

CNN Dataset contains
2,075,259
samples
measured by a
smart meter
installed at a
house near
Sceaux, Paris,
France.
(Data Retrieved
from UCI
Machine
Learning
Repository.
https://archive.
ics.uci.edu/ml/
datasets.html)

15 min SVM,
ANN

SVM: 1.12 (MAE),
1.25 (RMSE),
25.56 (MAPE)
ANN: 1.08 (MAE),
1.15 (RMSE),
23.25 (MAPE)

CNN-2D: 0.59
(MAE), 0.79
(RMSE), 12.54
(MAPE)

The performance based on
MAE, RMSE, and MAPE
criteria presented that the
stated method using CBB-2D
achieved better result (MAPE
of 12.54%) in comparison
with 1-D CNN and other
traditional ML approaches.

Estebsari
and
Rajabi
(2020)

MLP based DL Three cities in
Jiangsu
province, China,
(Data source link
is not available)

NA Random Forrest
(RF),
Gradient
boosting tree
(GBT)

RF 0.05925
(MAPE %)
0.170209
(MRPE%)
1060.406 (MAE
(kWh))
GBT 0.043692
(MAPE %)
0.077298
(MRPE%)
775.1881 (MAE
(kWh))

MLP:
0.03550405925
(MAPE %)
0.057273
(MRPE%)
620.0159 (MAE
(kWh))

The output results prove that
the DL method achieves better
than
RF and GBT approaches with
respect to prediction errors.

Guo et al.
(2018)

GA based LSTM Réseau de
Transport
d’Électricité
(RTE) power
consumption
data
http://www.
rtefrance.com/fr/
article/
bilanselectriques-
nationaux

2 Weeks,
Between 2–4
Weeks,
Between 2–3
Months,
Between 3–4
Months

Extra Trees,
Ridge
Regression,
k-Nearest
Neighbour,
Random Forest,
Gradient
Boosting,
Neural network

For instance of
Extra tree:
RMSE Extra Trees:
513.8 (Mean),
90.9 (Std.
Deviation)
MAE Extra Trees:
344 (Mean), 55.8
(Std. Deviation)

RMSE LSTM: 378
(Mean), 59.8 (Std.
Deviation)
MAE LSTM: 270.4
(Mean), 45.4 (Std.
Deviation)

The proposed approach was
found to be suitable for
forecasting of load demand in
both short and mid-term time
horizon. The accuracy of the
proposed approach was also
compared with many other
baseline approaches to prove
the efficiency.

Bouktif
et al.
(2018)

(continued on next page)
low frequency sub-layers. Authors (Zhou et al., 2018) proposed a hybrid
approach for STWF model based on variational mode decomposition
(VMD) and CNN.

Researchers (Chen et al., 2018) proposed a novel technique called
EnsemLSTM by using a nonlinear-learning ensemble of DL time series
forecast based on LSTMs, support vector regression machine (SVRM)
10
and extremal optimization (EO) algorithm. Initially, with the inten-
tion to prevent the disadvantage of low generalization capability and
robustness of a single DL approach when handling the diversiform
dataset, a group of LSTMs with various hidden layers and neurons are
utilized to discover and deed the hidden info of wind speed time-series.
Afterwards, predictions of LSTMs were combined into a nonlinear-

learning regression top-layer composed of SVRM, and the EO was

https://dataport.cloud/
https://dataport.cloud/
https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html
http://www.rtefrance.com/fr/article/bilanselectriques-nationaux
http://www.rtefrance.com/fr/article/bilanselectriques-nationaux
http://www.rtefrance.com/fr/article/bilanselectriques-nationaux
http://www.rtefrance.com/fr/article/bilanselectriques-nationaux
http://www.rtefrance.com/fr/article/bilanselectriques-nationaux
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Table 2 (continued).
Proposed model
(DL based)

Data sources Forecasting
horizon

Benchmark
model

Result Remark Ref.

Benchmark model Proposed Model

GRU (Data source link
is not available)

1 min RNN, LSTM RNN:0.623 (MAE)
LSTM:0.602
(MAE)

GRU: 0.589 (MAE) The accuracy of load
forecasting with the original
set of hyper-parameters is
99.10%. However, the top
selected structure of LSTM &
GRU has 99.38% accuracy on
the test-data-set, which is
around 34% decreased
testing-error. The result shows
that the GRU model was
outperform to LSTM and RNN.

Kumar
et al.
(2018)

SAD Electricity
consumption
data of city Los
Angeles, New
York and Florida
(Data source link
is not available)

1 h SVR
ANN

SVR: 1.7153
ANN: 3.2878

SAD: 0.9552 Although the output
performance (MAPE) of the
proposed stack auto-denoising
method perform well
compared to ANN and SVM,
the work need to revalidated
with considering a larger
sampled dataset with other
performance indices.

Tong
et al.
(2018)

DBN Australian
Energy Market
Operator
(AEMO)
Especially, New
South Wales
(NSW),
Tasmania (TAS),
Queensland
(QLD), South
Australia (SA)
and Vic-toria
(VIC)
(AEMO,
Australian
Energy Market
Operator 2013,
2013.
http://www.
aemo.com.au/.)

0.5 h
1 h

Persistence
SVR
ANN
RF

For Example:
Data: (NSW)
Month: January
Method:
Persistence
RSME: 978.24
MAE: 8.55%
Method: SVR
RSME: 703.43
MAE: 6.23%
Method: ANN
RSME: 750.53
MAE: 7.2%

Method: DBN
RSME: 639.75
MAE: 5.95%
Method:
EMD+DBN
RSME: 541.53
MAE: 4.62%

The DBN based deep learning
method is outperform to other
baseline method. Moreover,
the ensemble deep learning
model with empirical mode
decomposition has shown
more improved result. But, it
consume more time as
compared to the single
structure model.

Qiu et al.
(2017)

DRNN
pooling-based-
DNN
(PDRNN)

Electricity
Customer
Behaviour Trials
(CBTs) initiated
by Commission
for Energy
Regulation (CER)
in Ireland. (CER,
2011)

0.5 h ARIMA
SVR

ARIMA: 0.5593
(RMSE, ‘kWh’)
0.2998 (MAE,
‘kWh’)
SVR: 0.5180
(RMSE, ‘kWh’)
0.2855 (MAE,
‘kWh’)

DRNN: 0.4815
(RMSE, ‘kWh’)
0.2698 (MAE,
‘kWh’)
PDRNN: 0.4505
(RMSE, ‘kWh’)
0.2510 (MAE,
‘kWh’)

The proposed PDRNN method
was outperform to several
other baseline method. The
proposed PDRNN have shown
an improved result (RMSE &
MAE) with respect to ARIMA
and DRNN with the following
value respectively: (19.45% &
16.28%) and (6.45% &
6.96%).

Shi et al.
(2017)

DNN,
DNN–RNN
Parallel-CNN–
RNN

Load values of a
city in North
China. (Data
source link is
not available)

Hour-ahead
Day-ahead
Week-ahead

LR,
SVR

LR:
2.761 (% MAPE),
SVR:
1.650 (% MAPE),

DNN:
2.761 (% MAPE),
DNN–RNN:
1.650 (% MAPE),
Parallel-CNN–
RNN:
1.349 (% MAPE),

The hybrid CNN–RNN
approach have shown better
result compared to other
baseline ML model and also
some other DL method such
as DNN and RNN.

He (2017)

DNN 90-days hourly
data of Iberian
Energy
Market Operator
(MIBEL).
http://imagenet.
org/challenges/
LSVRC/2016/
index

1 day NA NA DNN with ReLU
activation
function:
1.3 (% MAPE),
DNN with ELU
activation
function:
1.52 (% MAPE),

In this work, authors have
used multiple activation
function and its combination
to train the DNN. Although
the approach perform nicely
to predict the one-day ahead
load data of MIBEL data, the
comparative analysis with
other baseline approaches are
missing in this paper.

Hossen
et al.
(2017)

(continued on next page)
presented to optimize the parameters of the top-layer. Finally, the final

ensemble WSF was specified by the fine-tuning top-layer.
11
Zhu et al. investigated the issues of forecasting wind speed for

multiple sites simultaneously and provided a solution/prediction model

http://www.aemo.com.au/
http://www.aemo.com.au/
http://imagenet.org/challenges/LSVRC/2016/index
http://imagenet.org/challenges/LSVRC/2016/index
http://imagenet.org/challenges/LSVRC/2016/index
http://imagenet.org/challenges/LSVRC/2016/index
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Table 2 (continued).
Proposed model
(DL based)

Data sources Forecasting
horizon

Benchmark
model

Result Remark Ref.

Benchmark model Proposed Model

DBN urbanized area in Texas,
United States (Data source
link is not available)

Day-ahead,
Week-ahead

NN,
SVR,
ELM,

For example (In
Summer and
day-ahead):
NN:
6.36 (% MAPE),
1729.13 (RMSE)
SVR:
6.52 (% MAPE),
1734.81 (RMSE)
ELM:
6.55 (% MAPE),
1735.96 (RMSE)

For example (In
Summer and
day-ahead):
DBN:
5.22 (% MAPE),
1517 (RMSE)

Although the DBN based DL
approach was performed well
in term of RMSE and MAPE to
forecast the load demand, the
author have integrated the
Copula model with DBN to
decrease the error further.

He et al.
(2017)

LSTM Data collected from Smart
Grid Smart City project
initiated by the Australian
Government
http:
//www.industry.gov.au/
ENERGY/PROGRAMMES/
SMARTGRIDSMRTCITY/
Pages/default.aspx

Day-ahead,
Week-ahead

BPNN,
KNN,
ELM

For example
(Average
individual forecast
day-ahead):
BPNN: MAPE of
49.49%.
KNN: MAPE of
81.13%.
ELM: MAPE of
123.45%

LSTM: MAPE of
44.06%

In this work, author have
carried out the load
forecasting task with different
time step such as 2,6,12 etc.
Here it can be noticed that
although individual load
forecasting is far good than
aggregating all individual
forecasts. Moreover, the it can
be noticed that the LSTM
shows better result compared
to the conventional strategy of
directly forecasting the
aggregated load.

Kong
et al.
(2019)
Fig. 5. Taxonomy of Wind power/ speed forecasting methods based on time horizons.
for the same (Zhu et al., 2018). The author’s suggested WSF model
was based on spatiotemporal correlation i.e. predictive-DCNN. The
experimental outcomes via handling the real-time dataset confirmed
that predictive-DCNN was able to capture the spatiotemporal correla-
tion efficiently, and it outperforms the traditional ML tools, comprising
MLP, SVR, DT, etc.
12
A data-driven multi-model WSF procedure was suggested in Feng
et al. (2017). The stated approach was based on a two-layer ensemble
ML method. The initial layer was comprised of manifold ML models
that provide distinct predictions. A deep FS framework was built to
decide the best suitable inputs to the initial layer ML models. Subse-
quently, a blending method was operated in the succeeding layer to

http://www.industry.gov.au/ENERGY/PROGRAMMES/SMARTGRIDSMRTCITY/Pages/default.aspx
http://www.industry.gov.au/ENERGY/PROGRAMMES/SMARTGRIDSMRTCITY/Pages/default.aspx
http://www.industry.gov.au/ENERGY/PROGRAMMES/SMARTGRIDSMRTCITY/Pages/default.aspx
http://www.industry.gov.au/ENERGY/PROGRAMMES/SMARTGRIDSMRTCITY/Pages/default.aspx
http://www.industry.gov.au/ENERGY/PROGRAMMES/SMARTGRIDSMRTCITY/Pages/default.aspx
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Table 3
Summary of some selected DL application in wind power forecasting.

Proposed
model (DL
based)

Data sources Forecasting
horizon

Benchmark model Result Remark Ref.

Benchmark model Proposed model

DBN Northeastern
region of Brazil
(Source data link
is not available)

1 h MLP For wind farm-1
(BJD)
0.6190 (MSE),
0.6068 (MAE)
For wind farm-5
(TRI)
1.815 (MSE),
1.011 (MAE),

For wind farm-1
(BJD)
0.6731 (MSE),
0.632, (MAE),
For wind farm-5
(TRI)
1.52 (MSE),
0.935 (MAE),

Although in some
dataset the proposed
model shown to be
outperforming to
benchmark
model,there was no
strong evidence
about the
pre-eminent method
for each datasets.

Sergio and
Ludermir
(2015)

SVR, ELM Four wind
Farms are located
in Ningxia, Jilin,
Inner Mongolia
and Gansu,
respectively.
(Source data link
is not available)

10 min, 30 min,
1 h, 2 h

SHL-DNN For example,
10-min Forecasting
horizon
SVR: 0.8545 (MAE)
20.23 (MAPE)
ELM: .6578 (MAE)
12.33 (MAPE)

For example,
10-min Forecasting
Horizon
0.5348 (MAE)
10.35 (MAPE)

The suggested wind
forecasting model
shown as effective
one for different
predication horizon.
However, it can be
noticed from the
result that a
significant reduction
in the performance
of prediction rate as
a result of
increasing
forecasting horizon.

Hu et al.
(2016)

CNNLSTM Xinjiang Uygur
Autonomous
Region, northwest
of China (Source
data link is not
available)

10–30 min ARIMA,
SVM,
BP,
RBF, ENN, ELM

For example,
(ARIMA):
10.07 (MAPE), 1.07
(MAE), 1.34 (RMSE)
(ELM):
10.89 (MAPE), 1.21
(MAE), 1.70 (RMSE)

5.07 (MAPE), 0.58
(MAE), 0.37 (RMSE)

The method can
perform better
compared to other
benchmark models
under extremely
disturbed condition
(for example, the
wind speed
experiences
impulsive variation).

Liu et al.
(2018b)

Predictive-
DBM
(PDBM)

Southern
China(Source data
link is not
available)

10 min–120 min AR,
ANFIS,
SVR

For example,
10-min Forecasting
horizon
AR: 0.3451 (MAE)
7.57 (MAPE)
ANFIS: 0.34 (MAE)
10.84 (MAPE)
SVR: 0.6340 (MAE)
14.55 (MAPE)

0.2951 (MAE), 7.05
(RMSE)

One open problem
for the PDBM model
is that it
necessitates longer
learning time,
particularly when it
has more hidden
feature layers and
more hidden units.
On the other hand,
the larger scale
PDBM possibly will
offer improved
interpretation.

Zhang et al.
(2015)

VMD–CNN Inner Mongolia,
China and
Sotavento Galicia,
Spain
(Lydia et al.,
2016)

16 h SVR, ELM SVR: 0.8545 (MAE)
20.23 (MAPE)
ELM: .6578 (MAE)
12.33 (MAPE)

SVR: 0.8545 (MAE)
20.23 (MAPE)
ELM: .6578 (MAE)
12.33 (MAPE)

The suggested
VMD–CNN based
model has shown
improved
percentage of 72.22
and 79.33 compared
to SVR and ELM
respectively,
regarding RMSE.
Similarly, 74.12 and
80.88 improved
percentage shown
by stated method
compared to SVR
and ELM
respectfully,
regarding MAE.

Zhou et al.
(2018)

(continued on next page)
generate a group of the predictions given by primary layer models and

produce both deterministic and probabilistic predictions. This two-layer
13
model seeks to employ the statistically dissimilar characteristics of each

ML technique.
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Table 3 (continued).
Proposed
model (DL
based)

Data sources Forecasting
horizon

Benchmark model Result Remark Ref.

Benchmark model Proposed model

DBN Shangchuan Island
wind farm and the
Cathedral Rocks
wind farm
(Wan et al., 2013)

1 h ARMA, BPNN,
MWNN

In comparison to Compared to ARMA, BPNN, and
MWNN, the MAE index has been improved by
44.18%, 48.99%, and 48.47%, respectively.

Some cream points
related to this
model are (i) the
performance of the
model is insensitive
to number of
simulation (ii) the
model have a
invariant structure
for high level
feature extraction

Wang et al.
(2016b)

RSDAE Idalia, Colorado
(Source data link
is not available)

10 min, 30 min,
1–3 h

PR, FFNN, TDNN,
NARNN

For example, 10-min
Forecasting horizon
PR: 0.317 (MAE)
0.631 (RMSE)
FFNN: 0.308 (MAE)
0.627 (RMSE)
TDNN: 0.298 (MAE) 0.619
(RMSE)
NARNN: 0.281 (MAE)0.603
(RMSE)

For example,
10-min Forecasting
horizon
RSDAE: 0.317
(MAE)
0.631 (RMSE)

The suggested
model shown to be
more effective
compared to other
benchmark model
(for example, the
average improved
performance
exhibited by the
stated approach was
13.6%–4.5%
(RMSE),
24.2%–11.2%
(MAE)). However, it
can be noticed from
the result that a
significant reduction
in the performance
of prediction rate as
a result of
increasing
forecasting horizon.

Khodayar
et al. (2017)

LSTM Inner Mongolia,
China
(Source data link
is not available)

10 min ARIMA, SVR, KNN,
GBRT

ARIMA: 1.37 (MAE), 20.73
(MAPE), 1.83 (RMSE)
SVR: 1.18 (MAE), 17.75
(MAPE), 1.57 (RMSE)
KNN: 1.22 (MAE), 17.92
(MAPE), 1.62 (RMSE)

LSTM: 1.14 (MAE),
17.10 (MAPE), 1.53
(RMSE)

The suggested
model shown to be
more effective
compared to other
benchmark model
(for example, the
average improved
performance
exhibited by the
stated approach
were 8.74% (MAE),
1.36% (MAPE)).

Chen et al.
(2018)

LSTM Dataset 1: real-life
data from
Sotavento that is
located in the
south-west of
Europe, in Galicia,
Spain,
Dataset 2: Kerman
that is located in
the Middle East,
in the southeast of
Iran
(http://www.
sotaventogalicia.
com/)

1 h MLP For instance:
Dataset 1:
MLP:
2.6867 (MAE) 3.4945
(RSME) 38.4705 (MAPE)
Dataset 2:
MLP:
2.1418 (MAE) 2.6213
(RSME) 70.7681 (MAPE)

Dataset 1:
LSTM:
2.0018 (MAE)
2.6535 (RSME)
28.0287 (MAPE)
Dataset 2:
LSTM
1.8017 (MAE)
2.1735 (RSME)
57.4884 (MAPE)

The authors have
shown a novel
method to forecast
the wind power
using LSTM. The
result presented in
this table is only a
comparison of DL
based and ML based
method extracted
from the paper.
However, the actual
proposed method in
this paper is based
on the integration
of WT, PSO based
feature selection
and optimization,
and LSTM. The
hybrid approach has
shown improved
result compared to
MLP and LSTM like
MAE: 0.1217,
RMSE: 0.1536,
MAPE:4.0857.

Memarzadeh
and Keynia
(2020)

(continued on next page)
14

http://www.sotaventogalicia.com/
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Table 3 (continued).
Proposed
model (DL
based)

Data sources Forecasting
horizon

Benchmark model Result Remark Ref.

Benchmark model Proposed model

STNN Wind form located
in USA
(NREL website)
https://www.nrel.
gov/grid/wind-
toolkit.html

1 h,
2 h,
3 h

ANN,
LR,
CNN,
LSTM

For instance: (1 h
Forecast horizon)
RMSE:
1.865 (ANN),
1.866 (LR),
1.826 (ANN),
1.832 (ANN)

For instance: (1 h
Forecast horizon)
RMSE:
1.714 (STNN),

The suggested
spatial–temporal
neural network
(STNN) pools the
convolutional-GRU
model and 3D-CNN
and uses an
encoding-forecasting
structure to
generate the
spatiotemporal
predictions.
Variational Bayesian
inference is engaged
to acquire the
approached
posterior parameter
distribution of the
model and
determine the
probability of the
prediction. The
investigational
outcomes prove that
the suggested
approach ominously
outperforms
compared to other
baseline approaches.

Liu et al.
(2020)

LSTM
LSTM–GRU

Four wind farm
sites in the United
State (collected
from Global
monitoring
laboratory
website)
http://www.esrl.
noaa.gov/gmd/
grad/surfrad/

1 h,
2 h,
3 h

ARIMA,
BP,
Elman,
ELM,

For instance: (1 h
Forecast horizon)
RMSE:
0.5496 (ARIMA),
0.4141 (Elman),
0.6405 (BP),
0.4471 (ELM)

0.4057 (LSTM)
0.4727 (LSTM–GRU)
0.3806 (GRU)

The author have
presented a detail
analysis of DL based
wind power
forecasting and
compared their
work with several
ML approach based
on three time steps
horizon and several
error indices such
as RMSE, MAE and
MPAE. This table
shows an instance
of 1 h time horizon
prediction result
based on RMSE
obtained. The result
shows that the
suggested approach
GRU approaches
outperform to other
method with less
error and
computational time.

Peng et al.
(2020)

ESN,
DeepESN

collected from the
China Statistical
Yearbook 2018
http://data.stats.
gov.cn/easyquery.
htm?cn=E0101

1 h. HFGSE, EMD-LSSVR,
GM-ARIMA,
persistence, BPNN

For instance: (1 h
Forecast horizon)
RMSE:
0.2341 (HFGSE),
0.3907 (EMD-SSVR),
0.3152 (GM-ARIMA)
0.4264
(persistence),
0.1819 (BPNN)

For instance: (1 h
Forecast horizon)
RMSE:
0.1401 (ESN)
0.0701 (DeepESN)

In the comparative
result analysis the
DeepESN shows the
best forecasting
performance
compared with all
the other baseline
approaches in
regards of RMSE,
MAPE and
computational
efficiency.

Hu et al.
(2020)

(continued on next page)
Authors in Wang et al. (2017a) have proposed a new DL based

ensemble approach for probabilistic wind power forecasting (WPF). The
15
suggested approach was based on WT and CNN. The WT was imple-

mented to decompose the original wind power time series data into

https://www.nrel.gov/grid/wind-toolkit.html
https://www.nrel.gov/grid/wind-toolkit.html
https://www.nrel.gov/grid/wind-toolkit.html
http://www.esrl.noaa.gov/gmd/grad/surfrad/
http://www.esrl.noaa.gov/gmd/grad/surfrad/
http://www.esrl.noaa.gov/gmd/grad/surfrad/
http://data.stats.gov.cn/easyquery.htm?cn=E0101
http://data.stats.gov.cn/easyquery.htm?cn=E0101
http://data.stats.gov.cn/easyquery.htm?cn=E0101
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Table 3 (continued).
Proposed
model (DL
based)

Data sources Forecasting
horizon

Benchmark model Result Remark Ref.

Benchmark model Proposed model

SSA-
MADANET

Four wind form
(WF) from
Xinjiang, China
(Source data link
is not available)

10 min
20 min
30 min

ARIMA
ADANET
MADANET

For instance:
WF-1: (10 min)
ARIMA:
7.41% (MAPE), 0.75
(MAE), 1.02 (RMSE)
ADANET:
7.19% (MAPE), 0.73
(MAE), 1.03 (RMSE)

For instance:
WF-1: (10 min)
MADANET:
7.05% (MAPE), 0.71
(MAE), 1 (RMSE)
SSA-MADANET:
3.51% (MAPE), 0.35
(MAE), 0.46 (RMSE)

The ADANET is a
novel and capable
data-dependent
learning and DL
algorithm to
forecast the wind
power. It is
appropriately used
for capturing the
vibrant features in
wind speed. This
work has modified
the ADANET to a
new MADANET by
combining it with
the MS layer and
LSTM network. The
stated approach can
obtain strong and
high-precision WPF.

Mi and Zhao
(2020)

WT+DBN The four wind
time-series speed
data (s1–s4)
collected from
Sichuan Province,
China
(Source data link
is not available)

NA ENN
LGBM
RF

For instance:
WF-s1: (1 Step)
ENN:
46.13% (MAPE),
1.4211 (MAE, m/s),
1.9629 (RMSE)
RF:
53.78% (MAPE),
1.4807 (MAE),
2.0174 (RMSE)

For instance:
WF-s1: (1 Step)
WT+DBN:
0.9117 (MAE, m/s)
22.79% (MAPE)
1.0739 (RMSE)

In this work several
ML based and DBN
based DL method
integrated with or
without WT based
feature extraction
technique are tested
to predict the wind
power. The
WT+DBN method
shows to be better
approach compared
to others. Moreover,
it can be analysed
that less than 10
min required
training the network
and can be useful
for real-time
prediction.

Jiajun et al.
(2020)

CEEMDAN-
error-VMD-
LSTM

NREL National
Wind Energy
Technology
Center (NWTC)
(Jager and
Andreas, 1996)
https:
//www.nrel.gov

15 min,
1 h

MLP,
SVR,
LSTM,
EEMD-LSTM
CEEMDAN-LSTM

For instance
forecasting of
15 min horizon
RMSE:
0.88588 (MLP)
0.8784 (SVR)
0.8729 (LSTM)
0.5212
(EEMD-LSTM)
0.3427
(CEEMDAN-LSTM)

For instance
forecasting of
15 min horizon
CEEMDAN-error-
VMD-LSTM
0.1110 (RMSE)
3.21% (MAPE)
0.0831 (MAE, m/s)

Here, a hybrid
approach of WPF
based on error
correction, double
decomposition (DD)
and DL is suggested.
The DD policy is
proved to have
better result
compared to single
decomposition.
Considering series
decomposition in
error correction
models, the
proposed approach
provides better
prediction accuracy
than the models
without error series
decomposition. In
particular, the
CEEMDAN-error-
VMD-LSTM model
reduced the MAPE
by 62.20%, 57.80%,
66.66% and 69.88%
than the CEEMDAN-
error-LSTM model
in four experimental
cases.

Ma et al.
(2020)
16

https://www.nrel.gov
https://www.nrel.gov
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different frequencies sub-layers. Afterwards, each sub-layer was feed
as input to CNN to learn deep features automatically and effectively.
The forecasting accuracy obtained by the suggested approach was later
compared with the benchmark persistence technique and shallow NN
models, such as BP and SVM.

Torres et al. (2018) presented a predictive model based on deep-
MLNN and meteorological data for predicting the wind farm generation
for the next 24 h. This model was trained and validated with a dataset
collected from a wind farm located at the island of Tenerife. Yu et al.
(2019) presented an improved LSTM-enhanced forget-gate network
model (LSTM-EFG) for short-term WPF. Based on the correlation, the
feature dataset collected from groups of turbines separated from each
other with a certain distance was filtered to further optimize the
forecasting effect on wind power by clustering. The prediction outcome
indicates that the technique with Spectral Clustering has a higher
accuracy with an increase of 18.3% than those of the other predicting
models, and at the same time the convergence process has been sped
up.

Wu et al. (2016) proposed a novel method based on DNNs for
the deterministic short-term WPF. DNNs model including LSTM–RNN
has achieved improved results compared to conventional predicting
models. In addition to this, a probabilistic WPF based on conditional
error analysis was also executed in the stated work. The performance
of the stated technique was verified on a data-set comprising data
from numerous wind farms in north-east China. Wang et al. (2018b)
proposed a DBN model based STWF. The numerical weather prediction
(NWP) data was carefully chosen as the input of the suggested model.
The NWP dataset and wind data in the wind generating station have
shown to be similar features. Thus, the authors have used k-means
clustering algorithm to deal with the uncertainty in NWP dataset.
Afterwards, the output of clustering analysis which provide a large
number of NWP samples, were feed as input to DBN model for getting
an improved prediction rate. The DBN model was authenticated by the
Sotavento wind generating station in Spain.

Qureshi et al. (2017) presented a novel STWF model with the help
of DNN based ensemble method with transfer learning concept. Here,
the deep-auto-encoder and DBN were used as base regressor and meta-
regressor respectfully. The DBN was formed by stacking RBMs. The
stated STWF model was utilized the learning abilities of a group of
regressors thus, it was more robust in comparison to other similar
approach. Sergio et al. studied the applicability of DL architecture such
as DBN, SAE and DSAE in forecasting the hour-ahead average speed of
winds in the Northeastern region of Brazil (Sergio and Ludermir, 2015).
Hu et al. (2016) presented a SDAE and created a shared-hidden-layer
architecture based on transfer learning scheme. The input and hidden
layers were distributed for 4 wind generating stations, and the output
layers were parted to obtain the distinct prediction outcome of each
WES. The stated transfer learning technique was able to use mutual
features in better ways which were assembled from different WES.
With an intention to explain the uncertainty of wind flow, Khodayar
et al. (2017) combined rough-NNs with SAE and SDAE by using rough
neurons in the hidden and output layer. The suggested models were
called as rough-SAE (RSAE) and rough-DAE (RSDAE). Implementation
outcomes showed improved generalization capability and predicting
performance compared to other standard prototypes, such as SAE and
SDAE.

Huang et al. (2018) proposed an improved innovative STWF model
based on ensemble-EMD method and hybrid forecasting technique
comprising Gaussian process regression (GPR) and the LSTM. They used
EEMD to decompose the original raw wind time-series data into several
IMFs and then, the LSTM and GPR approach were applied to forecast
the IMFs respectively. Afterwards, analysing the IMFs’ prediction re-
sults from these two predictors, the variance–covariance method was
used to calculate the weight of these two predictors and provide a

combine result.

17
Zhang et al. (2015) presented a complex DL architecture model
for STWF and LTWF that is, the predictive-DBM (PDBM) and corre-
sponding learning system. The suggested approach predicts wind speed
by analysing the advanced level features extracted from lesser level
features of the wind speed dataset. These inevitably cultured features
were very edifying and suitable for the forecast. The assessment of the
offered PDBM model was portrayed by both hourly and daily basis
forecast study using real-time wind speed dataset. The forecast accuracy
of the stated PDBM model outperforms prevailing approaches by in
excess of 10%. Hu and Chen (2018) presented an innovative non-linear
hybrid approach pointing at advancing forecast result of wind speed
named LSTMDE–HELM based on LSTM, Hysteretic Extreme Learning
Machine (HELM), Differential Evolution algorithm (DE), and nonlinear
collective mechanism. The suggested non-linear LSTMDE–HELM system
has been exercised on the dataset collected from a wind generating
station situated at Mongolia, China. The forecasting horizon chosen for
these experiments were ten-minutes ahead and hour-ahead. Table 3
describes the findings of some randomly selected articles based DL
models in wind energy predicting application. It can be concluded that
although the application of DL in WEF is not fully-explored yet, the
predicting performances are mostly untouchable compared to superfi-
cial predictors, irrelevant to areas and forecasting horizons. However,
the DL based architecture forgoes computational time to attain greater
precision.

4.2.2. PV power forecasting
PV generating system (PVGS) has gained huge attention by the

global EUI and therefore, its rate of integration into the main-grid is
increasing day-by-day. According to the global energy status report
(REN21) accessible from REN21 (2018), the global PV systems installed
power capacity has increased immensely from 8 GW in 2007 to 402
GW in 2017. The output energy of PVGS is highly dependent on solar
irradiance, temperature, and different weather constraints. Thus, to
affirm reliable operation and economic integration of PVGS in SG, ap-
propriate forecasting of photovoltaic generation is an essential subject
for research (Ahmed et al., 2020; Mellit et al., 2020). Similar to load
forecasting and wind speed forecasting problem, and its solution as
presented in Sections 4.1 and 4.2.1 respectively, the PV forecasting
(PVF) methods can also be distributed on different time horizons.
Fig. 6 shows this classification and portrays the importance of each
type (Akhter et al., 2019). The PVF methods are generally classified
as persistence methods, statistical methods, ML-based methods, and
hybrid methods. Akhter et al. presented a nice and comprehensive
review of each PVF method. The authors have focused mainly on the
ML methods for PVF and carefully reported its importance in this field.
Wang et al. provided a comprehensive review on AI applications to
advanced solar power forecasting (Wang et al., 2020). As we have
already stated that DL methods belong to the advanced version of AI
that is AI-2.0 and therefore, the research and application of DL in PVF
have been increased in recent years.

In this section, we have tried to provide a detailed overview of
the status and scope of DL in PVF which may definitely help the EUI
researches those who are working in this specific area.

Nasser and Mahmoud in Abdel-Nasser and Mahmoud (2019) pro-
posed an LSTM and RNN based method for forecasting the output
power of PVGS. The stated approach was tested and evaluated on two
hourly PV datasets collected from two different cities of Egypt such
as Aswan and Cairo. A comparative performance analysis was also
carried out with multiple linear regressions (MLR), bagged regression
trees (BRT) and NN methods. The result shows that the proposed
approach was outperformed with very little RMSE. Gensler et al. in
Gensler et al. (2016) used the different DL framework for short-time
solar power forecasting. In this framework, they have implemented a
physical forecasting model, MLP, LSTM, DBN and auto-encoders for
predicting the solar power of 21 PV facilities located in Germany. A

comparative analysis was also carried out based on the output accuracy.
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Fig. 6. Classification of PV output power forecasting based on time horizon (Akhter et al., 2019).
In Wen et al. (2019), Wen et al. have proposed a DRNN–LSTM based
SPV power load forecasting model and proved that it performs well
compared to traditional MLP and SVM based tools.

By using meteoroidal data (for example, temperature and solar
irradiance) and historical PVGS output data as input to train and test
DNNs, Haung and Kua in Huang and Kuo (2019) proposed a high
precision DNN model named ‘‘PVPNet’’ to forecast 24 h PV system
output power. Li et al. in Li et al. (2017) used DBN for predicting
short time output power PV generation. The input variables to the DBN
model were solar irradiation, atmospheric pressure, relative humidity
and past 4 days output solar power data.

A few papers have shown the advantage of using decomposition
methods on historical PV output time series data, which are later used
as input to train the deep neural network model. In this framework,
Wang et al. proposed a hybrid model based on wavelet transform
and DCNN on PV output time series data collected from PV-farms in
Belgium (Wang et al., 2017b). The computational results indicate that
the mean MAPE, RMSE, and MAE of the offered deterministic model
outperform the three other compared benchmarks models in terms of
seasons, forecasting horizons and PV power locations. Similarly, the
author in Zang et al. (2018) presented VMD and CNN for forecasting
PV output power on a daily and hourly basis. The sky image data and
18
surface irradiance measurement were used by CNN and LSTM model
to SPVF in Zhen et al. (2020). The performance of the stated approach
provides higher accuracy and can preserve robustness under different
weather conditions.

Solar irradiance is one of the most significant meteorological data,
which mainly responsible for the change in PV output power. There-
fore, accurate solar irradiance prediction will definitely help to predict
accurate solar output power. Alzahrani et al. in Alzahrani et al. (2017)
proposed a deep-RNN model for predicting solar irradiance levels on
an hourly basis in a day. Table 4 describes the findings of some ran-
domly selected articles based on DL models in solar energy predicting
application.

4.3. Power system state forecasting

Power system state forecasting (PSSF) performs an essential char-
acter in electrical utility system monitoring, by presenting system
awareness even in advance of the time horizon, improving system
observability, and offering effective recognition of the grid topology
and link parametric changes. The rapid voltage fluctuation in the
electrical utility grids is becoming a major challenge as a result of
the high penetration of distributed energy resources; electric vehicles,
energy systems, and cyber assist system into the main grid. Therefore,
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Table 4
Summary of some selected DL application in solar power forecasting.

Proposed model
(DL based)

Data sources and
input variable

Forecasting
horizon

Benchmark
model

Result Remark Ref.

Benchmark model Proposed model

LSTM–RNN Aswan (Dataset1)
and Cairo
(Dataset2) cities,
Egypt.
(Source data link
is not available)

Hour-ahead,
day-ahead,
week-ahead

MNL,
BRT, NN

MNL: 384.89 (RMSE)
BRT:
494.46 (RMSE)
NN:
377.072 (RMSE)

LSTM–RNN:
82.15 (RMSE)

Input variable:
Historical Solar data
The suggested approach
has very small
prediction error related
to benchmark model.
However, the methods
have considered only
one error indices
RMSE’’ for comparisons
purpose.

Abdel-Nasser
and Mahmoud
(2019)

DRNN–LSTM Sails in the Desert,
Yulara, Australia
(Source data link
is not available)

Hour-ahead, MLP
SVM

MLP: 12.181 (RMSE),
7.526 (MAE), 34.71%
(MAPE) SVM: 14.92
(RMSE), 11.549 (MAE),
38.96% (MAPE)

DRNN–LSTM: 7.53
(RMSE), 4.369 (MAE),
15.87% (MAPE)

Input variable:
Historical Solar data
The suggested
approaches have shown
to be highly accurate
compared to the other
contemporary models
with less error index.

Wen et al.
(2019)

DBN The Desert
Knowledge
Australia Solar
Center (DKASC).
http:
//dkasolarcentre.
com.au/

Hour-ahead, BPNN BPNN: 16.74 (MAPE),
1.0 (MAE), 0.166 (TIC)

DBN: 8.92 (MAPE),
0.92 (MAE), 0.039
(TIC)

Input variable:
Historical PV power
data, solar radiation
intensity, temperature,
relative humidity, and
wind speed.
The prediction
performance highly
dependent on the
sunshine hours for
example, in summer
session, there will be
no significant difference
between the
performances regarding
different months but in
cloudy and rainy
weather have big
influence on prediction
accuracy.

Li et al. (2017)

WT+QR+DCNN PV farms in
Belgium(north-
western
Flanders PV farm
and north-eastern
Limburg PV farm)
http://www.elia.
be/en/grid-
data/power-
generation/Solar-
powergeneration-
data/Graph

15 min, 30 min,
30 min, 90 min,
120, min

BPNN
SVM
WT+SVM

For example, 45 min
time horizon,
BPNN: 0.0933
(MAPE), 8.1205
(RMSE), 4.6912 (MAE)
SVM: 0.0748
(MAPE), 7.5710
(RMSE), 4.124 (MAE)

For example, 45 min
time horizon,
DCNN:0.0385 (MAPE),
3.8772 (RMSE), 2.0340
(MAE)

Input variable:
Historical Solar data
The numerical
outcomes indicate that
the mean MAPE, RMSE
and MAE of the
suggested model beat
the compared
benchmarks models in
terms of seasons,
forecasting time
horizon and solar farm
locations.

Wang et al.
(2017b)

VMD–CNN Electric power
company in
Jiangsu Province,
China.
(Source data link
is not available)

1 h, 6 h, 12 h Shallow BPNN,
SVR, GPR

For example, 1
hour-ahead
prediction,
BPNN:0.475 (MASE),
5.77 (RMSE), 4.18
(MAE)
SVR: 0.450 (MASE),
5.52 (RMSE), 3.96
(MAE)
GPR:0.4029 (MASE),
5.61 (RMSE), 3.54
(MAE)

For example, 1
hour-ahead
prediction,
BPNN: 1.5418 (MAPE),
2.0533 (RMSE), 0.1752
(MAE)

Input variable:
Historical Solar data
Here, the paper
presents a hybrid
2D-VMD–CNN. It
attains greater
prediction accuracy
compared to other
benchmark models
including 1D
VMD-based forecasting
approach.

Zang et al.
(2018)

(continued on next page)
monitoring and effective tracking of system states grow into more
and more critical, not only for utility protection (Wang et al., 2019b)
but also for energy management (Zhang et al., 2016). The avail-
able methods are based on linear estimators or FNN. However, these
19
conventional methods are not able to restrain long-term nonlinear
dependencies in the voltage–time series and lead to weak performance.
To overcome these disadvantages of conventional state estimators, the
current research attention diverted towards the envelopments of DL/RL

http://dkasolarcentre.com.au/
http://dkasolarcentre.com.au/
http://dkasolarcentre.com.au/
http://www.elia.be/en/grid-data/power-generation/Solar-powergeneration-data/Graph
http://www.elia.be/en/grid-data/power-generation/Solar-powergeneration-data/Graph
http://www.elia.be/en/grid-data/power-generation/Solar-powergeneration-data/Graph
http://www.elia.be/en/grid-data/power-generation/Solar-powergeneration-data/Graph
http://www.elia.be/en/grid-data/power-generation/Solar-powergeneration-data/Graph
http://www.elia.be/en/grid-data/power-generation/Solar-powergeneration-data/Graph
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Table 4 (continued).
Proposed model
(DL based)

Data sources and
input variable

Forecasting
horizon

Benchmark
model

Result Remark Ref.

Benchmark model Proposed model

Deep-CNN In a particular
place of Taiwan
(Source data link
is not available)

24 h DT, RF, SVM,
MLP

DT: 206.61 (RMSE),
140.30 (MAE)
RF:167.52 (RMSE),
116.00 (MAE)
SVM:185.22 (RMSE),
147.30 (MAE)
MLP:224.99 (RMSE),
196.68 (MAE)

163.15 (RMSE),
109.48 (MAE)

Input variable:
Historical PV power
data, solar radiation
intensity, temperature.
The suggested model
shown to be more
effective compared to
other benchmark
model. Moreover, it can
be observed from the
result that the proposed
PVPNet algorithm can
reduce the monitoring
expenses, the primary
cost of hardware
mechanisms, and the
Long-term maintenance
costs of the future PV
farms.

Huang and Kuo
(2019)

CNN
LSTM

From a500 kWp
solar plant located
in the south of
Taiwan
(Zhong et al.,
2018)

Day-ahead SVM SVM: 30.66% (MAPE),
4.59% (MRE),
Computation time
(min): 2.74

CNN: 29.72% (MAPE),
2.94% (MRE),
Computation time
(min): 15.6
LSTM: 35.85%
(MAPE), 5.99%
(MRE), Computation
time (min): 6.14

Input variable:
Historical PV power
data and 5 weather
variable.
The depicted values in
this table on the result
section are the
performance evaluation
in rainy weather. It can
be observed that the
CNN approach shows
better result whereas
the computational
burden is more.

Aprillia et al.
(2020)

LSTM, and GRU Hourly and daily
solar radiation
data collected
from the
https:
//web.kma.go.kr/
eng/index.jsp

1 h,
1 day

SVR, RNN,
FFNN,

RMSE: (hourly)
0.3990 (SVR)
0.3928 (FFNN)
RMSE: (daily)
5.3618 (SVR)
5.4492 (FFNN)

RMSE: (hourly)
0.3920 (LSTM)
0.3909 (GRU)
RMSE: (daily)
5.3696 (SVR)
5.3315 (FFNN)

Input variable:
Historical Solar data
The depicted values in
this table on the result
section are belongs to
the power plant located
in Seoul. The error
index (RMSE) have not
shown much difference.

Aslam et al.
(2020)

LSTM Datset1: Brazilian
data
Datset2: Spanish
data
(Photovoltaic
Geographical
Information
System (PVGIS) of
the European
Commis-
sion/Institute for
Energy and
Transport (IET))

hourly MLP
RBF
SVR

For instance:
(Spanish data with
Winter season)
MAPE:
8.16% (MLP)
7.22% (RBF)
8.12% (SVR)

For instance:
(Spanish data with
Winter season)
MAPE:
7.19% (LSTM)

Input variable: Solar
irradiance and air
temperature
Result shows that the
use of deep learning
based LSTM model for
SPVF has a significant
improvement compared
to other ML based
approaches

Lima et al.
(2020)

LSTM National
renewable
energy laboratory
(NREL)
https:
//www.nrel.gov

0.5 h
1 h
6 h
12 h
24 h

NA NA For instance:
(Winter season)
LSTM:
0.61 (MAE)
1.39 (RMSE)

Input variable:
Historical solar data
with weather
information.
Although the
performance of the
LSTM approach shows
a good result on solar
forecasting, the stated
approach need to
compare with other
traditional ML
approaches.

Hossain and
Mahmood
(2020)

(continued on next page)
based PSSF methods which are able to capture long-term dependencies
(Zhang et al., 2019a) and ease to realize. Zhang et al. adopted DRNN
20
and prox-linear nets (RPLN) for PSSF using past measurements (Zhang
et al., 2019a). The simulation results indicate that the suggested RNN

https://web.kma.go.kr/eng/index.jsp
https://web.kma.go.kr/eng/index.jsp
https://web.kma.go.kr/eng/index.jsp
https://www.nrel.gov
https://www.nrel.gov
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Table 4 (continued).
Proposed model
(DL based)

Data sources and
input variable

Forecasting
horizon

Benchmark
model

Result Remark Ref.

Benchmark model Proposed model

LSTM,
GRU,
RNN

Collected from
DKASC, Alice
Springs, Australia
http:
//dkasolarcentre.
com.au/

1 h MLP MAPE (%): 10.1575
(MLP)
RMSE (kW): 11.0861
(MLP)

MAPE (%): 7.5978
(LSTM) 8.5169 (GRU)
8.7263 (RNN) 10.1575
(MLP)
RMSE (kW): 1.0382
(LSTM) 1.0351 (GRU)
1.0581 (RNN) 1.0861
(MLP)

Input variable:
Historical solar data
The authors have
shown the effective
ness of LSTM on solar
forecasting with respect
to MAPE and RMSE.
However, they have
analysed that the
performance may show
better result with the
integration signal
decomposition
technique like WPD to
LSTM.

Li et al. (2020)

Residual network
(ResNet) and
dense
convolutional
network
(DenseNet)

Collected from
DKASC, Alice
Springs, Australia
http:
//dkasolarcentre.
com.au/

Day-ahead SVR,
RF,
MLP

SVR: 0.175 (MSE)
0.272 (MAE) 0.456
(MASE)
RF: 0.235 (MSE) 0.299
(MAE) 0.501 (MASE)
MLP:
0.138 (MSE) 0.215
(MAE) 0.360 (MASE)

ResNet: 0.128 (MSE)
0.180 (MAE) 0.301
(MASE)
DenseNet: 0.081 (MSE)
0.152 (MAE) 0.255
(MASE)

Input variable:
Historical PV power
series, historical
meteorological
elements and weather
type predictions are
utilized as inputs.
Here, the authors have
used two version of
CNN such as ResNet
and DenseNet. The
forecasting accuracy
and reliability of the
proposed hybrid deep
networks have been
through various error
index and shown to be
great feasibility for
practical applications.

Zang et al.
(2020)
and EPLN based predictors perform better compared to FNN and
support vector auto-regression method.

5. Automatic Power Quality (PQ) monitoring

Deterioration risks in electric PQ have been increased due to the
excessive use of power semiconductor devices in a grid utility. PQ
disturbances (PQDs) are the results of deviation/disruption in the volt-
age, current and frequency signals from the benchmark rating (Mahela
et al., 2015), which leads to malfunctions of the control system as
well as decreases the life span of electrical equipment’s. Therefore, PQ
management is an important topic for EUI which signifies ‘maintaining
quality of power in a prescribed limit’. In the corporate world, a trendy
axiom says that ‘‘you cannot manage what you do not measure’’. Thus,
automatic detection, measurement, and recognition of PQDs are the
basis to deal with the PQ problem. In general, feature extraction,
selection, and classifications are three important stages of automatic
PQDs recognition (Mishra, 2019). The initial stage of PQDs recognition
used signal processing techniques for extracting several characteris-
tics/feature attributes. Likewise, feature selection and classification are
also important stages of PQDs classification (Jamali et al., 2018). In
earlier studies, several articles have reported the importance of FS
and the types of FS methods used for these particular applications
(Mishra, 2019). Ibrahim and Morcos (2002) reported the performance
and importance of different AI techniques for PQDs classification. On
the other hand, the advancement of AI makes possible the development
of DL architecture which is able to bypass FS methods.

Wang and Chen in Wang and Chen (2019) proposed a new method
of PQDs detection and classification using DCNN where it bypasses
the traditional feature extraction process based on signal processing
techniques and FS method. The proposed detection system comprises

of multiple units of DCNN framework where each unit comprises

21
1-D convolutional, pooling, and batch-normalization layers to attain
multi-dimensional features and reduce over-fitting. The validation of
the suggested method was carried out by considering the following
challenging environments: (i) 16 kinds of single and multiple PQDs
(ii) noisy environments (20 dB, 30 dB, 40 dB) (iii) PQDs on microgrid
system (iv) real-time PQDs.

Shen et al. used Improved Principal Component Analysis
(IPCA) and 1-Dimensional-CNN (1-D-CNN) for recognition of PQ dis-
turbances (Shen et al., 2019). Here, the IPCA and 1-D CNN were used
to extract several statistical features. Afterwards, 1-D CNN is further
used to classify the 12 categories of single and multiple PIDs. The
performance of the proposed approach was compared with SVM and
other existing ML techniques whose output shows that the proposed
approach outperforms to other ML-based approaches. Ma et al. (2017)
used Stacked auto-encoder (SAE), as a DL structure for the extraction
of the accurate and large dimensional feature vector of PQ disturbance
automatic recognitions. By this approach, the requirement of optimal
FS step in automatic fault classification can be shunned. In addition
to SAE, the PSO method was used to assist the classification task. In
Liu et al. (2018c), Liu and his co-authors suggested a hybrid approach
based on singular spectrum analysis (SSA), curvelet transform (CT)
and DCNNs. SSA is a non-parametric method and can be used for
recognizing week transient PQDs. Initially, PQDs were decomposed
using SSA and CT techniques. First, six-level coefficients using SSA
and three-level coefficients using CT were designated at features vector
in the subsequent step. Finally, these features were used as input to
DCNN for the automatic classification of PQ disturbances. Authors
in Mohan et al. (2017) studied the potential of DL architecture in
recognizing the PQDs in smart-grid, as it has the inherent auto-learning
capability of optimal features from raw input data. Therefore, several
DL architectures were implemented in the paper such as CNN, RNN,
I-RNN, LSTM, GRU, and CNN–LSTM. Similarly, Rajiv and Tripathi

http://dkasolarcentre.com.au/
http://dkasolarcentre.com.au/
http://dkasolarcentre.com.au/
http://dkasolarcentre.com.au/
http://dkasolarcentre.com.au/
http://dkasolarcentre.com.au/
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(2019) presented a LSTM–CNN based hybrid method for automatic
PQ classification and detection. Table 5 shows the summary of some
selected DL application in PQ disturbance detection and classification
approaches.

6. Microgrid

A microgrid is an emerging revolution in the EUI by which several
shortcomings in old conventional-grid have been overcome. The mi-
crogrid concept is rapidly accepted and adopted all over the world.
Microgrid concept allows multiple numbers and types of energy re-
sources integration to main-grid. Therefore, it is highly necessary to
address the control and protection challenges and remedial actions.
Moreover, the existence of multiple stakeholders in a microgrid is
also a challenging task for proper energy management in a micro-
grid. AI applications against these challenges have proven to be one
of the smartest approaches in recent times. Several articles have re-
ported the applicability and advantages of AI in microgrid control,
protection, and management (May et al., 2018; Kantamneni et al.,
2015; Garduno-Ramirez and Borunda, 2017). Deep learning is one of
the most advanced versions of AI which needs to be explored more
deeply for solving these particular challenges in microgrid environ-
ments. Although the scope of DL application in these domains is not
fully explored yet, the authors have tried to frame the outcomes of
accomplished microgrid challenges using DL in the following sections.

6.1. Microgrid energy management

Energy management is an important issue in microgrid (MG) envi-
ronment. Venayagamoorthy et al. (2016) proposed online dynamic en-
ergy management system (DEMS) which comprises evolutionary adap-
tive dynamic programming with a reinforcement learning support, in
order to realize optimal or near-optimal DEMS in both grid-connected
and islanded mode of microgrid operation.

6.2. Planning and operation of energy storage in microgrids

Authors in Shekhar et al. (2017) and Mbuwir et al. (2017) applied
reinforcement learning for regulating an energy storage device (ESD) in
an MG to maximize the self-utilization of the electricity generation from
the local PVGS and to minimize the electricity-tariff and enslavement
on the main-grid. In a few cases, multiple numbers of ESDs with dif-
ferent operating characteristics are employed as a group in a microgrid
to increase its flexibility. Qiu et al. (2015) proposed a novel approach
based on reinforcement learning for automatic control of charging and
discharging periods of the different ESDs to increase system efficacy.
Keerthisinghe et al. (2018) presented an energy management approach
for solar photovoltaic storage systems using a policy function approx-
imation (PFA) algorithm using ML. In the ML framework; the RNN,
DNN, ELM, ANN, and SVM were used and compared. A PV based
microgrid system comprises both short and long-term storage facilities,
but due to different uncertainty challenges like lack of knowledge
about future electricity consumption, highly weather dependency and
levels of irradiance the effective operation of storage devices is highly
hampered. François-Lavet et al. addressed this issue and suggested
one novel strategy based on RL (François-Lavet et al., 2016). The
method was empirically proved in the case of a domestic building
situated in Belgium. In Hua et al. (2019), authors have studied and
proposed a novel strategy of the energy management solution for a
typical scenario of energy internet (EI). The considered EI scenario
has multiple interconnected sub-grids where each individual sub-grid
comprises of several electrical devices, such as photovoltaic system,
wind turbine generators, microturbines, fuel cells, distributed energy
resources, battery energy systems, loads and energy routers. Repository
data from (https://dataport.cloud/) were used to design the power
flow model from the photovoltaic system, wind, and load for this
22
particular application. Based on the energy management principle of
energy internet, the desired targets for optimal energy management
were formulated as cost functions arithmetically. Then, the respected
energy management issue was formulated as an optimal control prob-
lem (OCP). As the articulated problem was complex in nature, the
traditional approaches, e.g., particle swarm optimization, genetic algo-
rithm, simulate anneal arithmetic, etc., seem to be inappropriate, the
author applied the deep-RL method to resolve the OCP.

6.3. Energy trading

It is well accepted that the future energy-grid will have numerous
MGs and therefore, the coordination between each other is highly
essential with proper energy trading strategy. Wang et al. (2016c)
presented a novel energy trading strategy using RL for each smart-
MG. The main purpose of the stated research work was to make each
microgrid become smarter by adding additional feature of self-choosing
ability by which each smart-MG can able to decide a strategy with
possibility to trade the energy in an autonomous market. The proposed
approach is definitely able capitalize its average revenue.

Normally, in MG case the service provider (vendor) is account-
able for buying electrical power from the utility enterprises and sell-
ing it to the consumer. However, in several times several challenges
have arisen for both of them (vender and the clients’) as a result of
partial/inadequate info acquisition system and the different sorts of
uncertainties in the MG. A novel solution (RL-based dynamic pricing
algorithm) to this particular issue was addressed by Kim et al. in Kim
et al. (2015), by which the need of priori info about MG can ignored
during guiding the strategy to both vendor and customers. Price of
electrical energy is the fundamental component in electricity market.
The trading in electricity market is generally based on electricity price.
The electricity price is attuned by deviation in supply and demand
response. Moreover, for the EUI, the bidding strategy decides the level
of profit, and therefore, prediction of most accurate bidding price is
an important aspect in the process. This helps the electrical generating
company by reducing the transaction risk and providing more opportu-
nity in the market. Kuo and Huang in Kuo and Huang (2018) presented
a strategy based on two DL framework; CNN and LSTM for electricity
price forecasting. The results of the stated approach was compared with
several other ML techniques such as ANN, DT, MLP, SVM, etc. and
found to be more effective than others. Lago et al. (2018) studied and
compared twenty seven approaches comprising both ML and DL based
approaches for electricity price forecasting. The outcome of the study
reveals that the DNN based approach outperforms compared to other
contemporary methods.

6.4. Islanding detection

Islanding is a situation in microgrid architecture framework where
the DERs and its’ connected loads are being disconnected from main-
grid. This situation may be intentional or un-intentional. The un-
intentional situation/islanding condition is always creates a dangerous
environment for utility workers and the electrical apparatus. Therefore,
detection of islanding with a stipulated time (for example, 2 s as
per IEEE standard) is highly essential for making smart-MGs. Several
islanding detection approaches with different detection principles were
suggested by researches in recent past (Mishra et al., 2019). Out of
these principles, the application of computational intelligence tech-
niques was found to be more effective one (Laghari et al., 2014).
Kong et al. (2018) used auto-encoder and stacked auto-encoder based
DL model for islanding detection approach as novel application in
this issue. Until that time, a fresh feature extraction process based
on the combination of multi-resolution singular spectrum entropy and
wavelet-transform was proposed and implemented to extract the fea-
tures vector. A comparative analysis between the proposed DL based
method and other ML approaches such as DT and SVM was carried

https://dataport.cloud/
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Table 5
Summary of some selected DL application in PQ disturbance detection and classification approaches.

DL model
(Proposed)

Type of PQ
Signals

Number of
class

Data processing
unit

Benchmark
models

Results Remarks Ref.

Accuracy in %
(Benchmark
Models)

Accuracy in
% (Proposed
model)

Deep-CNN Synthetic and

Real time

16 X SAE
LSTM

SAE:
99.14 (pure),
99.84 (40 dB),
98.82 (20 dB)
LSTM:
99.83 (pure),
92.39 (40 dB)
96.94 (20 dB)

99.96 (pure),
99.95 (40
dB),
98.13 (20
dB)

∙ The test results using both
synthetic and real time in microgrid
environment proves its the
effectiveness, and shown to be a
prevailing method compared to other
DL based methods and other ML
based methods.
∙ Results shows that the
computational time of the suggested
approach was pointedly smaller than
the other traditional methods owing
to its parallel computation skill of
GPU and combination of three
conventional steps.

Wang and
Chen (2019)

1-D-CNN Simulated 12 IPCA IPCA-SVM 99.05 (pure),
98.87 (50 dB)
96.76 (20 dB)

99.92 (pure),
92.85 (50
dB)
96.76 (20
dB)

∙ Comparative results shows that it
outperform to other signal processing
and ML based method.
∙ The computational time involve
with this method is 0.432 s, where
the SVM based method take 0.792 s

(Shen et al.,
2019)

DCNN Synthetic 31 SSA, CT SVM 99.91 (for single
disturbance)
98.62 (for
multiple
disturbances)

100 (for
single
disturbance)
98.52 (for
multiple
disturbances)

∙ The suggested approach is also able
to detect PQ disturbances for
extremely noisy conditions.
∙ Although the authors stated that
the DCNNs based approach have
reduced computational complexity
and increased learning ability, the
article have lack of evidence to
prove it.

Liu et al.
(2018c)

SAE Synthetic 7 X NA NA 99.75 (pure),
99.60 (30
dB)
98.52 (20
dB)

∙ No benchmark model was tested on
the similar dataset to compare with
the proposed model; however they
have used some previously published
articles for this task.
∙ Only seven cases of PQ events were
tested.

Ma et al.
(2017)

LSTM–CNN
hybrid model

Synthetic 5 X LSTM
CNN

LSTM: 95.60
(Pure)
CNN: 97.00
(Pure)

98.90 (Pure) ∙ The method did not consider noisy
data for testing
∙ Only five type single PQ
disturbances were tested.

Rajiv and
Tripathi
(2019)

CNN
(ResNet)

Simulated 54 X STFT
ST
DWT

STFT:
93.60 (30 dB)
93.68.00 (40 dB)

CNN
98.52 (30
dB)
98.45 (40
dB)

∙ No benchmark classification
method is shown in this work.
∙ The paper is tested on a wide
range of single and multiple
disturbance classification.

Gong and
Ruan (2020)

CNN–LSTM Both
Synthetic
and
Real-time

11 X CNN
RNN
LSTM
GRU

98 (CNN), 91.5
(RNN); 96.7
(LSTM), 96.4
(GRU)

98.4
(CNN–LSTM)

∙ Comparative analysis with other
ML approaches: NA
∙ The CNN–LSTM approach
outperform to other DL approach
with loss of classification is only 15%
∙ Accuracy is noted to be 91.9% for
the testing of 3 class of real-time
disturbances

Mohan et al.
(2017)
out where the proposed approach shows better performance in both

accuracy and detection time. Authors in Abdelsalam et al. (2020) have

proposed the islanding detection approach based on discrete Fourier

transform and LSTM. The performance of the suggested approach was

compared with other baseline classification approach (SVM, DT and

ANN) applied to similar feature vector. From the comparative analysis

the paper concludes that stated approach was proficient and effective in

identifying the islanding events with high accuracy and dependability

with smaller detection time.
23
6.5. Fault detection, classification and location

Intelligent fault detection, classification and location are highly
necessary for smart-MG for its effective control and operation (Pat-
naik et al., 2020). The integration of inverter-based DERs in MGs
makes customary fault recognition systems unsuitable owing to their
dependency on significant fault current levels. Several techniques were
presented to resolve these issues and have been an emerging topic for
research over last decade. With the hypotheses related with smart-MG
appealing maturing alarm amongst EUI scientists, the significance of
developing an smart fault monitoring and identification scheme capable
of recognizing and locating different sorts of faulty events cannot be
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Fig. 7. Typical flowchart of fault detection, classification and location (Beheshtaein
et al., 2019).

overstated. A basic framework for fault detection, classification and
location is shown in Fig. 7. Several fault detection and classification
approaches based on intelligent classifiers were reported in recent
years (Beheshtaein et al., 2019; Hare et al., 2016; Chen et al., 2016).
However, a few researches were reported in last couple of years where
DL application was highlighted.

James et al. (2017) presented an intelligent fault detection approach
for microgrid using discrete wavelet transform and DNN. The DNN
used for this approach was mainly used GRU for its construction.
The stated approach was able to handle three sub-problems such as
fault type detection, faulty phase detection, and fault location. Lastly,
the test results were also compared with DT, KNN, SVM, NBC, RF,
Differential relay and Over-current (OC) relays, where the comparison
result indicates the effectiveness of proposed DNN based approach in
all three sub-problems. Similarly, the auto-encoder based deep learning
neural network framework was proposed by Wang et al. (2016d) for
power system fault diagnoses.

In the case of a PV based MG system, the V–I profile as a result of PV
array fault and symmetrical line fault have high similarity which makes
the protection scheme become more challenging. The traditional OC
relays are unable to detect and classify such kinds of faults, and hence
fail to offer discrete tripling signals for each event. To address this
issue, Manohar et al. (2018) investigated and proposed a scheme using
SAE and DNN which can differentiate PV array faults and symmetrical
faults, and also achieve mode identification, fault recognition, cate-
gorization, and section identification issues. A similar research group
(Manohar et al., 2020) in (2020) addressed another challenging issue
‘‘effect of irradiance variation on protection system’’ in a PV based
MG system. In islanding condition, the irradiance variation pointedly
disturbs the current contour in both robust and faulty situation, thus
adding the risk of mal-operation of conventional OC relays. Therefore, a
resilient and dependable MG mandates the development of a protection
strategy, which is robust to changing irradiance levels. The use of
CNN allows recognizing prejudiced features as of complicated datasets
with decreased computational rate. Guo et al. (2017) proposed a new
efficient technique of faulty feeder recognition in resonant grounding
distribution systems (RGDS) using CWT and CNN. A brief study of
recent use of the DL approach in fault detection, classification and
location in different application domain of power system is presented
in Table 6.
24
7. Electric vehicle

In smart-grid architecture, demand-side management (DSM) aims
at suggesting inducement-based actions to change energy consumption
patterns, such that more efficient utilization of energy is made. This
repeatedly ensures that the current infrastructure is effectively used, to
meet boosted demand and to minimalize investments in supplementary
generation capacity (Zazo et al., 2016). However, the increasing use of
Electric Vehicles (EVs) could enhance the possibility of overloading the
power-grid by swelling demand peaks. Therefore, the necessity of DSM
integration to EV charging becomes very high for supporting energy de-
mand moderating, becoming the grid more economical, well-organized,
and reliable.

López et al. (2018) proposed a smart charging scheme based on ML
models for determining the charging sessions/time to charge the EV
during connection sessions. This can be achieved by taking practical
charging decisions through gaining the knowledge of several additional
information (such as, historical data of connection sessions, environ-
ment, pricing, and demand time series, etc.), to decrease the total
EV energy price. The initial stage of the scheme used dynamic pro-
gramming to calculate the optimal solution of the historical connection
sessions. Afterwards, ML models (such as DNN, Shallow-NN, and KNN)
were trained to learn the patterns by which it can able to provide the
right decision in real-time. Comparative results pointed towards DNN
as a better performer compared to other ML models.

DSM of charging and discharging of electric vehicle encounters huge
challenges due to the incomplete info about charging flexibility of EVs,
plug-in times, power limitations, battery size, power curve, etc.. With
an intention to overcome these issues, authors in Vandael et al. (2015)
have proposed a scheme based on RL to recognize the EVs charging
activities and then state an economic day-ahead consumption strategy
using the learned behaviour.

8. Additional electrical power domain with DL application

This section reviewed several other research domain excluding the
topics mentioned in Sections 3 to 7. This analysis or survey will clearly
highlight the diversified scope of the deep learning/deep reinforcement
learning applications in the electrical power domain.

8.1. Interval state estimation (ISE)

It is well known that the traditional power grid is being revo-
lutionized on the way to smart-grid that allows mutual interactions
amongst consumer and utility providers, and therefore more exposed
to cyber-attacks. But, owing to the attacking cost, the attack approach
might differ greatly from one operating scenario to another from the
viewpoint of the adversary, which was not well-thought-out in pre-
ceding reports. Thus, Wang et al. (2018c) proposed a situation based
two-stage sparse cyber-attack simulations for smart-grid with compre-
hensive network information. Afterwards, an effective interval state
estimation (ISE) using a Sacked auto-encoder based defence mecha-
nism was developed that helps to identify the probability for data
manipulating.

8.2. Demand response

Recognizing and forecasting energy flexibility on the demand side
has been important for applying demand response (DR). In the mean-
time, the development and implementation of SMs provide the consents
to monitor the real-time power consumption level using Nonintrusive
Load Monitoring (NILM). The NILM helps to determine the appliances
are being operated and their specific consumption. Mocanu et al.
(2016b) suggested Factored Four-Way- CRBMs to detect and forecast
demand flexibility in the real-world. Tornai et al. (2017) used RNN
to classify customers and shows that the stated systems were outper-

formed to other existing approaches; in few cases, the new considered
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Table 6
DL approach for fault detection, classification and location in different application domain of power system.

Application DL approach for fault
classification

Brief description of process Remarks Ref.

Microgrid fault
detection

Gated Recurrent Unit
(GRU) based Deep Neural
Network (DNN)

In this method, the extracted faulty feeders’
currents are pre-processed by DWT to
extract the statistical features. Afterwards,
these features are fed as input to DNN to
resister the fault information.

After a series of test simulations on 34 bus
IEEE test system, it concludes that the
stated approach is able to classify the fault
types and detect the fault location with
much better accuracy than other
comparative methods.

Yu et al. (2019)

Power system fault
Diagnosis

Stacked auto-encoders
(SAE)

After the extraction of faulty data from
SCADA centre these are processed by SAE
based DNN for training and testing.

This method is aimed in such a way to
achieve the solution to three major issues
that are usually encounter by traditional NN
approach such as availability of data, better
local optimum, and diffusion of gradients.

Wang et al.
(2016d)

Detection of array
faults and
symmetrical line
faults in a PV
integrated
microgrid

Sparse auto encoder
(Sparse-AE)

In the Initial phase, the measured voltage
and current signals from the pre-defined
relays are converted to grey-scale images.
Afterwards, these images are processed
through Sparse-AE to achieve unsupervised
feature learning. By this process the method
is able to discriminate the array faults and
symmetrical line faults as well as
accomplished the fault classification and
section identification task.

The method can help to improve the
reliability of the fault protection scheme in
a SPV based microgrid. The comparative
performance analyses with other ML
approaches such as ANN, SVM, and DT in
both the mode of microgrid operation prove
the superiority of the stated approach.

Manohar et al.
(2018)

Earth Fault
Detection in RGDS

Convolutional
Neural Network (CNN)

The multi-resolution based grey-scale
images were extracted from transient
zero-sequence current signals of the faulty
and healthy feeder using DWT. Afterwards;
CNN was applied for feature extraction
from the extracted greyscale images and
subsequently, the classification of the
healthy and faulted feeder.

The simulation results justify the reliability,
robustness and accuracy of stated fault
detection approach in diverse operating
conditions, such as two-point grounding
fault, different network structures,
transformer reversed, arc grounding fault,
etc. Moreover, the comparative performance
analysis based on traditional ML algorithm,
such as the Adaboost or SVM were also
conducted to prove the effectiveness of the
proposed approach.

Guo et al.
(2018)

Protection scheme
for PV integrated
microgrid under
solar irradiance
intermittency

Convolutional neural
network (ConvNet)

In the Initial phase, the measured voltage
and current signals from the pre-defined
relays are converted to grey-scale images
and the patches so obtained from the
multichannel training dataset containing
spatial and temporal information.
Afterwards, these dataset are processed
through ConvNet to achieve unsupervised
feature learning. By this process the method
is able to achieve the fault classification
and section identification task in islanded
microgrid.

The OPAL-RT simulation environment has
been used to validate the accuracy of the
proposed approach. The overall accuracy
obtained through the proposed approach is
99.48% and 99.58% in fault detection and
section identification task respectively.

Manohar et al.
(2020)

Intelligent
microgrids
protection

Deep feed forward neural
network (DFFNN) CNN
based DNN

Initially, the three-phase current signals are
extracted at relaying end and feed to the
proposed algorithm. Afterwards, these
information are accesses by the DNN
assigned for fault detection task. As soon as
the fault is detected by the algorithm, the
fault type information is registered for
further use.

Obtained results show a encouraging
performance regardless a wide variations in
fault resistance and DER penetrations
compared to existing approaches.
Furthermore, the detection time was found
to be less than 2 cycles from the point of
fault inception.

Samal et al.
(2019)
rates can reach closely 100%. In the point of fact, DR has belonged to
high dimensional control problems which may encounter the challenges
of restricted observability and uncertainty. To control such types of
challenges, several authors have suggested different deep reinforcement
learning (DRL) based approaches to set the residential DR at the appa-
ratus level Wen et al., 2015; Ruelens et al., 2014; Costanzo et al., 2016.
In the DRL approach, the deep learning architecture is combined with
a reinforcement learning algorithm (such as, Q-learning and Markov
Decision Process). Mocanu et al. (2018) suggested deep Q-learning
(DQL) and Deep policy gradient (DPG) for decision making policies at
both the individual residents and the aggregated level. The outcome of
the study concludes that the DPG outperforms DQL in live scheduling
of DERs at both the levels.
25
8.3. Internet of things and Cognitive networks

Cognitive networks (CNs) play a key role in the Internet of Things
(IoT) architecture applications, such as healthcare management, agri-
cultural science, ecosystem monitoring, and smart-metring. On the
other hand, the present small packet transmission efficacy of the Inter-
net of Things encounters a challenge of the overcrowded spectrum for
the fast-growing reputations of numerous wireless appliances. Never-
theless, the development of a hybrid approach i.e. cognitive radio-based
IoT (CIoT) technology is becoming an encouraging solution to the
above-mentioned issue. Again, to increase the packet transmission ef-
ficacy utilizing CNs is a foremost challenge for CIoT. In this regard,
Zhu et al. (2017) proposed a novel Q-learning-based communication

scheduling procedure employing the DL technique for the CIoT to



M. Mishra, J. Nayak, B. Naik et al. Engineering Applications of Artificial Intelligence 96 (2020) 104000
resolve the difficulty of achieving the right strategy for packets trans-
mission of different buffers via numerous networks to increase the
system output.

8.4. Fuel cell fault diagnosis

The development of fault diagnosis tools is very important for
confirming and increasing the stability, durability, and permanency of
solid oxide fuel cell (SOFC) systems. Zhang et al. (2019b) proposed a
novel method based on DL for diagnosing the presence of simultaneous
faults. The sparse auto-encoder (SSAE) was used for the automatic
extraction of unique features. Afterwards, the K-binary classifier is used
for detecting simultaneous faults.

In point of fact, the fuel cells are invincible to the impurities
of hydrogen and operational environments. Due to this, the output
performance of fuel cells is highly affected and degraded with moving
time. Therefore, the prediction of performance degradation is becoming
a challenging task for the researcher to increase the reliability of
fuel cells. Authors in Ma et al. (2018) proposed an advanced fuel
cell degradation forecasting scheme based on Grid-LSTM–RNN. The
comparative result shows that the stated scheme was able to predict
the degradation rate for a longer duration.

8.5. Anomaly detection and fault analysis of wind turbine

The insensitive and inconsistent operating environment of wind
turbines leads to malfunctions of connected apparatuses, such as the
gearbox, main bearing, generator, inverter, and controller (Kusiak and
Verma, 2011; Zhao and Li, 2017). Therefore, the uninterrupted health-
care monitoring of the wind turbine system via premature fault de-
tection approaches might help to enhance the reliability and decrease
maintenance charges of the turbine prior to they face a catastrophic
point. In this regard, Zhao et al. (2018) suggested a DL approach based
on deep-auto-encoder (DAE) for anomaly and fault detection schemes
for the wind turbine. The required data from the wind turbines were
collected through operational supervisory control and data acquisition
(SCADA) systems. Authors in Cheng et al. (2017) proposed an innova-
tive fault diagnosis technique for the drivetrain gearboxes of the wind
turbine connected with doubly-fed induction generators (DFIGs) using
a rotor current signal (RCS) analysis. The stated work was accomplished
by following steps; (i) extraction of the instantaneous fundamental
frequency of the RCS (ii) application of Hilbert transform for demod-
ulation of RCS to obtains its envelope containing fault characteristic
frequencies (iii) power spectral density analysis was performed on the
resampled envelope signal for the gearbox fault detection (iv) applica-
tion of DL architecture based classifier that consists of an SAE and an
SVM for gearbox fault classification using obtained fault features.

9. Critical discussion

This section highlights some key facts about the DL applications in
EUI through statistical analyses like distribution of articles by different
DL architecture versus EUI application domain. This will provide a
clearer idea to the researcher/scientist regarding the application feasi-
bility or scope of application and the acknowledgement received from
the popular publishing houses. In addition to this, several open research
issues are pointedly explained that may help the researcher in their
future research problem formulation.

9.1. Distribution of articles by DL architecture versus EUI application do-
main

The distribution of articles based on DL based neural network ar-
chitectures in different application domain in EUI is offered in Table 7.
It can be clearly observed from the table that the advanced forecasting
support to renewable power generation has been most popular research
domain for DL architecture. Moreover, it can be also analysed that the
LSTM and CNN models were most frequently used DL based model in
EUI.
26
9.2. Open research issues and further discussion

This article has presented an organized review for burgeoning DL
based approaches applied to the electrical utility industry. It can be
concluded that there has been lots of interest in using DL architectures
for delivering solutions to the problems associated with the electrical
power domain. The CNN, RNN, autoencoders, DBN and deep Q-learning
are the most commonly used approaches in the DL framework. Even
though several constructive outcomes are documented from the above-
mentioned reviewed stuff, a few additional concerns regarding DL
applications are highlighted below:

• From the above study, it can be clearly analysed that each and
every method in DL framework are viable candidates for pro-
viding more efficient performance compared to conventional ML
approaches for both prediction and classification problems. Deep
learning systems are able to handle large volumes of dataset ex-
tracted from SMs and other data sources. But, their performances
require to be further examined using more complex dataset.
Moreover, the question regarding the selecting criteria for the
number of layers and parameters are yet to be answered.

• In the forecasting support sections, it can be analysed that most
of the work till date have concentrated on short-time time-
horizons and univariate time series prediction. The develop-
ment of medium-term and long-term forecasting methods with
negligible error, and the multivariate time-series prediction are
few challenging tasks which need to be addressed through DL
application in near future.

• Demand response is belongs to high dimensional control problems
which may encounters the challenges of partial observability and
uncertainty. A few research based on DRL has already proposed
by different authors, but how to analyse flexibility as of the con-
sumer viewpoints, direct control of load, and accurate decision
making for each stakeholder in DR, specifically in the partial
observability situations, are still need to be addressed.

• As per the reviews carried out in Sections 6.4, 6.5 and 8.5,
DL has been proved to be an effective tool for fault/anomaly
detection and classification. But, a few concerns that need to be
answered such as small sample learning problems, detection of
differences between normal and pre-fault condition and feasibility
of real-time applications.

• It has been seen that the model-free methods such as RL and
DRL are proven to be most effective and alternative to model
based methods. However, the deep learning and reinforcement
learning methods have the characteristics of non-interpretability,
and therefore, reliability on such black box approaches for EPS
control and analysis is still being debatable.

• The application of DL in the field of image processing and speech
processing is highly successful, but as compared to these fields the
complexity in power system is found to be slightly higher. This is
for the reason that the characteristics of fault currents/voltages
can be heterogeneous and vary along with different faulty sit-
uations and time period. Therefore, the black box solution is
necessary for these types of problems which necessitate lots of re-
search effort from the researches belong to industry and academic
background.

• From the above-mentioned review, it is also concluded that the
research emphasis on cost of implementation, reasons behind
selection of DL architectures for the specific issue, and reducing
the computation complexity is highly required.

• Moreover, It is well knows that the implementation time and fault
detection response time are equally important in several problem
belongs to electrical domain. Therefore, there is an essential to
pay attention to the structure of the computation to minimize
time complexity.
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Table 7
Status of the DL model applied to various research fields under the area of electrical domains.

Application domain Ref. AEs CNNs/DCNN DNN Deep-RNN LSTM GRU RBM DBN DBM DQL/DRL

Load forecasting

Guo et al. (2018)
√

Hossen et al. (2017)
√

Din and Marnerides (2017)
√

He (2017)
√

He et al. (2017)
√

(Dedine et al. 2016)
√

Wen et al. (2020)
√

Bedi and Toshniwal (2018)
√

Qiu et al. (2017)
√

Estebsari and Rajabi (2020)
√ √

Tong et al. (2018)
√

Marino et al. (2016)
√

Amarasinghe et al. (2017)
√ √

Kong et al. (2019)
√

Mnih et al. (2012)
√

Taylor et al. (2011)
√

Mocanu et al. (2016a)
√

Shi et al. (2017)
√

Bouktif et al. (2018)
√

Kumar et al. (2018)
√

Wind power forecasting

Wang et al. (2016b)
√

Liu et al. (2018a)
√

Liu et al. (2018b)
√

Chen et al. (2018)
√

Zhu et al. (2018)
√

Feng et al. (2017)
Torres et al. (2018)

√

Yu et al. (2019)
√

Wu et al. (2016)
√ √

Wang et al. (2017a)
√

Zhou et al. (2018)
√

Wang et al. (2017a)
√

Wang et al. (2018b)
√

Qureshi et al. (2017)
√

Sergio and Ludermir (2015)
√ √

Hu et al. (2016)
√

Khodayar et al. (2017)
√

Huang et al. (2018)
√

Zhang et al. (2015)
√

Hu and Chen (2018)
√

Memarzadeh and Keynia (2020)
√

Liu et al. (2020)
√ √

Peng et al. (2020)
√ √

Hu et al. (2020)
Ma et al. (2020)

√

Mi and Zhao (2020)
√

Lin et al. (2020)
√

Jiajun et al. (2020)
√

Jahangir et al. (2020)
√

Devi et al. (2020)
√

PV power forecasting

Abdel-Nasser and Mahmoud (2019)
√ √

Gensler et al. (2016)
√ √ √

Wen et al. (2019)
Huang and Kuo (2019)

√

Li et al. (2017)
√

Wang et al. (2017b)
√

Zang et al. (2018)
√

Zhen et al. (2020)
√ √

Alzahrani et al. (2017)
√

Aprillia et al. (2020)
√ √

Aslam et al. (2020)
√ √

Lima et al. (2020)
√

Hossain and Mahmood (2020)
√

Li et al. (2020)
√ √ √

Zang et al. (2020)
√

Power system state forecasting Zhang et al. (2019a)
√

Power quality detection

Wang and Chen (2019)
√

(Shen et al., 2019)
√

Ma et al. (2017)
√

Liu et al. (2018c)
√

Mohan et al. (2017)
√ √ √ √

Rajiv and Tripathi (2019)
Gong and Ruan (2020)

√

(continued on next page)
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Table 7 (continued).
Application domain Ref. AEs CNNs/DCNN DNN Deep-RNN LSTM GRU RBM DBN DBM DQL/DRL

Microgrid energy management May et al. (2018)
√

Planning and operation of energy storage in microgrids
Keerthisinghe et al. (2018)

√ √

François-Lavet et al. (2016)
√

Hua et al. (2019)
√

Energy trading
Kim et al. (2015)

√

Kuo and Huang (2018)
√ √

Lago et al. (2018)
√

Islanding detection Kong et al. (2018)
√

Abdelsalam et al. (2020)
√

Microgrid fault detection, classification and location

James et al. (2017)
√ √

Wang et al. (2016d)
√

Manohar et al. (2018)
√ √

Manohar et al. (2020)
√

Guo et al. (2017)
√

Electric vehicle López et al. (2018)
√

Vandael et al. (2015)
√

Interval state estimation Wang et al. (2018c)
√

Demand response

Tornai et al. (2017)
√

Wen et al. (2015)
√

Ruelens et al. (2014)
√

Costanzo et al. (2016)
√

Mocanu et al. (2018)
√

Internet of Things and Cognitive networks Zhu et al. (2017)
√

Fuel cell fault diagnosis Zhang et al. (2019b)
√

Ma et al. (2018)
√ √

Anomaly detection and fault analysis of wind turbine Zhao et al. (2018)
√

Cheng et al. (2017)
√

• It is well-known that the SG, as cyber–physical critical infras-
tructures claims better reliability and efficiency through effective
use of AI. However, the dependency on AI has leads to several
other issues like increasing vulnerability to malicious attacks or
cyber-attack. In this regards, SG integrates the physical power
systems and cyber systems, which exhibits the following char-
acteristics like Self-adaption, self-organization, and self-learning.
Due to this features, the cyber–physical can effectively deal with
the faulty events, cyber-attacks, and power-crises, with the in-
tention to increase the resiliency of SG infrastructure. In this
direction, the ML approaches play an impotent role in the cyber–
physical strategy to deal with the false data injection attack in
SGs. Although several ML based cyber–physical strategy already
suggested by various researchers in past, the development of DL
based cyber–physical strategy is still an open research area.

For the electrical utility industry, DL has opened a plethora of
uturistic research opportunities; the important questions centering
round the impact of DL based innovation. The above-mentioned key
hallenges give way to a number of future research opportunities.
ith the continued research interest, the eventual goal is to develop

n overall solution with several interacting components. The above
entioned key challenges show the directions towards numbers of

orthcoming research openings.
It can be clearly analysed from Table 7 that, the DL methods

uch as autoencoder, DBN, CNN, and RNN has been employed for
esigning model to solve the diversified electrical domain problems.
he researchers/authors have used these techniques as novel tools and
ttempt to solve the specific problem. Here, a question may arise that
‘should there be any major change in the outcome, irrespective of the
hosen architecture?’’ These types of comparative analyses are missing
n many of the reviewed articles.

0. Conclusion

Recently, deep learning methods have gained huge attention
hroughout the globe. In contrast to conventional machine learning (AI-
.0), deep learning/deep reinforcement learning (AI-2.0) techniques
28
are more application-oriented, and therefore the adoption rate by
the advanced manufacturer is increased in recent years. In this sur-
vey article, the authors have presented a widespread review of deep
learning applications to several distinct problems associated with the
electrical power domain. The work emphasized on the feasibility study
and summarizes the recent developments in this area. In the DL
application research domain, we have studied almost related areas
under the umbrella of the electrical utility industry. From a tech-
nological perspective, these application domains are characterized as
advanced forecasting supports which include wind/PV power predic-
tions, anomaly detection, demand response, cybersecurity, microgrid
management, fault detection in microgrid, electric vehicle and en-
ergy storage management. In addition, we have presented several key
challenges which directed towards several open research scope. The
development of deep learning architecture for the solution of electrical
domain problems is still an emergent and encouraging research field.
We hope that this survey can helpful for the readers/researchers to gain
an absolute picture and deep vision into this area.
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