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Abstract

Clinicians can detect diseases early, thanks to the digital image processing

methodologies, which improve health together with the treatment experience.

The technology of magnetic resonance imaging (MRI) is frequently employed

in the brain, research for any kind of related illness. The brain MR image

requires precise automated thresholding for a meaningful representation to aid

doctors, because of its different modalities and complexity. The majority of the

threshold selection strategies are based on entropy. However, these strategies

are limited by their reliance on the spatial distribution of gray values. There is

also a pressing need to develop a thresholding technique that is independent

of the spatial distribution, making it more suitable for a variety of modalities

and complexity, such as the brain MR images. A novel non-entropic maximiz-

ing objective function for the multilevel thresholding approach using a thresh-

old score (TS) is presented in this paper, to address these concerns. An

evolutionary TS-AOSMA approach, using the optimizer called adaptive opposi-

tion slime mold algorithm (AOSMA), is suggested to lower the computational

cost of TS-based multiclass segmentation, which is a novel idea. The proposed

approach is evaluated on T2-weighted brain MR imaging slices from Harvard

Medical School's whole brain atlas dataset. When compared to the state-of-the-

art Kapur's, Tsallis, and Masi entropy-based technologies, the proposed scheme

offered better quantitative and qualitative outcomes. The recommended strate-

gies may be useful in medical image analysis.
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1 | INTRODUCTION

Medical imaging allows clinicians to detect diseases early
on, resulting in better patient outcomes. For a healthier
society, a proper medical image analysis, to help clini-
cians, is required. Due to the modern medical equipment

with faster processing speed, the medical image analysis
using image processing techniques via computer vision is
now extremely successful. Segmenting the image into
usable findings, also known as image segmentation, is
one of the most essential challenges in the medical image
analysis. The image segmentation techniques are
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successfully applied in the medical image analysis for the
brain.1 The magnetic resonance imaging (MRI) is the
most commonly used type of brain imaging among the
four most common types, including computerized tomog-
raphy (CT), MRI, electroencephalography (EEG), and
positron emission tomography (PET). It is due to its lack
of radiation exposure, low invasiveness, and widespread
availability.2 Another benefit of MRI is that it provides
more information about the soft tissues with a better con-
trast.3 The abbreviations are listed below in Table 1 for
better readability.

The most prevalent method of segmentation is through
thresholding.4 An efficient thresholding technique, when
applied to a brain MRI, can have a significant impact on the
results of finding lesions or disorders within the image. The
global thresholding methods are described in References,4–6

with the Otsu between class variance technique,7 Shannon
entropy method,8 Tsallis entropy method,9 Kapur's entropy
method,10 cross-entropy method,11 Masi entropy method12

being the most common among the researchers. Thresholding
is a method of separating one or more foreground objects
from the background in an image using a similarity approach.

Broadly, the thresholding methods are classified into the bi-
level and the multilevel. The bi-level thresholding divides the
image into two classes by using a single threshold value
K ¼ 1ð Þ, whereas the multilevel thresholding divides the
image into several classes by using multiple threshold
values (K >1). In practice, the bi-level threshold selection
performance is highly inefficient for extracting relevant
information, leading to multiclass thresholding. The
image histogram is among the most widely used tools in
the global thresholding strategy,4 which employs L dis-
tinct gray levels and their frequencies in an image. The
approach of determining the K threshold levels is an
exhaustive search with a computational cost of O LK

� �
:13

As a result, a primary disadvantage of multilevel
thresholding is that it is computationally inefficient when
compared to bi-level thresholding because it requires
more computation. As a result, as K increases, so does
the computational complexity.

The above research work, more or less, has concen-
trated on the use of entropy-based fitness (objective)
functions. These technologies are dependent on the
image histograms. Therefore, they suffer from the non-
uniform distribution of the gray values. Further, the com-
putation burden increases, when the number of threshold
levels K increases. Further, the idea of opposition-based
learning was never integrated into optimizers. The exis-
ting optimization algorithms are, thus, offering us a lim-
ited exploration of the search space.

In the earlier technologies, bi-level thresholding was
used to segment the MRI into two regions. The bi-level
segmented image was then used for the analysis. How-
ever, limited features are found in a bi-level segmented
image. Therefore, there is a strong need to extend the
idea of bi-level segmentation into a multilevel segmenta-
tion, resulting in a multiclass segmented output. Interest-
ingly, more features are found in a multiclass segmented
(output) image of an MRI, which is essential for analysis.
The output attained is the multiclass segmented output.

An optimization strategy can be utilized to discover the
threshold value more rapidly to address the issue of the high
computing cost, in the exhaustive search of the multilevel
thresholding, in the brain MR images. The following are some
significant research outcomes on the brain MR image
thresholding that use the basic version optimization tech-
niques: bacterial foraging optimization algorithm (BFOA),
teaching learning-based optimization (TLBO)14 and crow sea-
rch algorithm (CSA).15 The basic version of the optimization
method is inadequate for all types of difficulties, prompting
the hybridization of algorithms or the modification of the sea-
rch strategy to get a more effective multilevel thresholding
performance on the brain MR images. Some applications in
the brain MR image thresholding reported, using the hybrid/
modified optimization algorithms, are as follows: adaptive

TABLE 1 Abbreviations with their descriptions

MRI Magnetic resonance imaging

TS Threshold score

AOSMA Adaptive opposition slime mold algorithm

CT Computerized tomography

EEG Electroencephalography

PET Positron emission tomography

BFOA Bacterial foraging optimization algorithm

TLBO Teaching learning based optimization

CSA Crow search algorithm

ABF Adaptive bacterial foraging

RCGA Real coded genetic algorithm

SBX Simulated binary crossover

MPSO Mutation-based particle swarm optimization

AWDO Adaptive wind driven optimization

SMA Slime mold algorithm

TS-AOSMA Threshold score-based optimal multilevel
thresholding using AOSMA

PSNR Peak signal to noise ratio

SSIM Structure similarity index

FSIM Feature similarity index

TH Threshold

MSE Mean square error

AVE Average

OPT Optimal
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bacterial foraging (ABF),16 real coded genetic algorithm
(GA) using simulated binary crossover (SBX),17 mutation-
based particle swarm optimization (MPSO),18 modified parti-
cle swarm optimization19 and adaptive wind-driven optimiza-
tion (AWDO).20 These basic/hybrid/modified optimization
algorithms are used in the histogram-based multilevel
thresholding such as Otsu's methods,16,18,20 Kapur's
entropy,1,14,16,17,20 Shannon entropy,14 Tsallis entropy14 and
cross entropy.15 The above discussions prompted us to
develop a unique objective function for multilevel
thresholding. Then use an efficient pre-approved optimizer to
tackle the concerns of the computational cost.

The spatial distribution of the intensity values influ-
ences the performances of the histogram-based multilevel
thresholding techniques. As a result, when there is a sub-
stantial variation in the intensity values in an image, seg-
mentation accuracy suffers. This has motivated us to
develop a firsthand threshold score (TS)-based maximiza-
tion criterion objective function for the multilevel
thresholding that overcomes the limitation of the spatial
variation of the intensity values. The concept begins with
the bi-level thresholding and subsequently progresses to
multilevel thresholding. This addition may help to
expand the multilevel thresholding literature in the
image processing field. Because most research on the
brain MR image multilevel thresholding relies on the his-
togram of the MR image. In this work, we exploit the
thresholding using a non-histogram-based approach that
is independent of the spatial intensity variations. Further,
the proposed adaptive opposition slime mold method
(AOSMA)21 is used as an optimizer for the multilevel
thresholding to reduce the computational cost, because it
demonstrated good performances and convergence char-
acteristics when compared to other prominent opti-
mizers. This work proposes TS-AOSMA, which stands for
threshold score-based evolutionary brain MR image mul-
tilevel thresholding utilizing the AOSMA. We employed
T2-weighted brain MR imaging slices from Harvard Med-
ical School's whole brain atlas dataset22 for the experi-
mental purposes in this investigation, because these
images are more suited for the brain MRI segmentation.23

The Tsallis entropy, Kapur's entropy, and Masi entropy-
based evolutionary thresholding using AOSMA are also
proposed for performance comparison. The suggested
evolutionary TS-AOSMA brain MR image multilevel
thresholding method is validated. Our suggested method-
ology produced promising results based on several evalu-
ation criteria for the quantitative analysis and the
threshold images for the qualitative analysis.

In summary, this paper developed a new non-
entropic objective function, for the first time. New tech-
nology in terms of the non-entropic objective function is
developed firsthand. The investigated technology is used

for MR image segmentation for analysis. The work is
compared with state-of-the-art technologies. This may
enrich the literature and inspire researchers to work
more in this direction.

The key contributions and novelties are

• A non-entropic-based objective (fitness) function is
investigated.

• A novel optimizer called AOSMA is proposed for the
first time in the literature.

• A firsthand threshold score-based adaptive opposition
slime mold technology is fostered for segmentation of
the brain MR images.

• Its performances in terms of convergence and accuracy
are compared with the state-of-the-art technologies
and found better than the other existing methods.

The following is a breakdown of the paper's structure.
Section 1 is dedicated to the introduction. Section 2
briefly describes the material and methods used to formu-
late the problem. Section 3 suggests a new threshold
score (TS) based objective function for the multilevel
thresholding. Section 4 develops the evolving TS-AOSMA
multilevel thresholding scheme. Section 5 focuses on the
experimental results. Section 6 describes the final con-
cluding statement.

2 | MATERIAL AND METHODS

2.1 | Multilevel thresholding

Thresholding is the process of segmenting the image into
various classes to reduce the complexity of interpreting
the information content. Let us consider an image I
formed by a P�Q number of pixels with the intensity
value l from an lmax� lminþ1½ � distinct gray levels, within
the range lmin, lmax½ �, where P is the number of rows and
Q is the number of columns in the spatial dimensions.
The multilevel thresholding is a problem of segmenting
the image into multiple classes. So, if the image is classi-
fied into Kþ1 number of classes such as
M0,M1,…,MKf g, we require K number of the threshold
values t1, t2,…, tKf g and it must satisfy the condition
t1 < t2 < � � �< tK . The multiple classes M0,M1,…,MKf g are
classified as follows:

M0 l if lmin ≤ l< t1
M1 l

..

.

MK l

if t1 ≤ l< t2

..

.

if tK ≤ l< lmax,

ð1Þ
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and

I¼ [K
c¼0

Mc: ð2Þ

The thresholds must be established from
lmax� lmin�1½ � (i.e., lmax�1ð Þ� lminþ1ð Þþ1½ � . This is
due to the exclusion of the boundary values lmin and lmax,
distinct gray levels, which can be considered as an opti-
mization problem based on the design variables
t1, t2,…, tKf g. The optimal thresholds t�1, t

�
2,…, t�K

� �
using a

maximization criterion based on the multilevel
thresholding objective function fð Þ is determined as
follows:

t�1, t
�
2,…, t�K

� �¼ arg max
0< t1 < t2 < ���< tK < L�1ð Þ

f t1, t2,…, tKð Þ: ð3Þ

Let the individual gray level l probability plð Þ in the
target image is:

pl¼
nl

P�Q
, l¼ 0,1,…,L�1ð Þ, ð4Þ

where nl represents the count of pixels with the intensity
value l and

PL�1
l¼0 pl¼ 1.

The class probability ωið Þ for the ith class is evaluated
as follows:

ωi¼
Xtiþ1�1
l¼ti

pl, i¼ 0,1,…,Kð Þ, t0¼ 0 and tKþ1¼L�1: ð5Þ

In this section, we also describe Kapur's,10 Tsallis24

and Masi25 multilevel thresholding objective functions
used for comparison.

2.1.1 | Kapur's multilevel thresholding
objective function

Kapur's multilevel thresholding utilizes the maximization
criterion of the entropy10 to obtain the optimal thresholds
t�1, t
�
2,…, t�K

� �
. Kapur's multilevel thresholding objective

function is given as follows:

f Kapur t1, t2,…, tKð Þ¼
XK
i¼0

Ei, ð6Þ

where,

Ei¼�
Xtiþ1�1

l¼ti
pl
ωi

ln
pl
ωi

, 0≤ i≤K: ð7Þ

2.1.2 | Tsallis multilevel thresholding
objective function

Tsallis multilevel thresholding24 uses the pseudo additive
entropy maximization criterion to find the optimal
thresholds t�1, t

�
2,…, t�K

� �
for a non-extensive statistically

independent system. Tsallis multilevel thresholding
objective function is given as follows:

f Tsallis t1, t2,…, tKð Þ¼
XK
i¼0

Hq
i þ 1�qð Þ

YK
j¼0

Hq
i : ð8Þ

The q is the Tsallis parameter (or entropic index) and
prior Tsallis for each distributed class is defined as
follows:

Hq
i ¼

1
q�1

1�
Xtiþ1�1

l¼ti
pl
ωi

� �q� 	
, 0≤ i≤K: ð9Þ

2.1.3 | Masi multilevel thresholding
objective function

Masi multilevel thresholding25 was used to find the opti-
mal thresholds t�1, t

�
2,…, t�K

� �
based on the framework of a

maximization criterion of the generalized entropy intro-
duced by Masi.12 Masi multilevel thresholding objective
function is given as follows:

fMasi t1, t2,…, tKð Þ¼
XK
i¼0

Sri : ð10Þ

The r is the Masi parameter (or entropic parameter)
and Masi entropy Sri

� �
for the ith class is calculated as

follows:

Sri ¼
1

1� r
log 1� 1� rð Þ

Xtiþ1�1
l¼ti

pl
ωi

log
pl
ωi

� �� 	
, 0≤ i≤K:

ð11Þ

2.2 | Adaptive opposition slime mold
algorithm

The AOSMA is recently proposed by Naik et al.21 to
enhance the convergence and performance of the slime
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mold algorithm.26 The AOSMA uses an adaptive way to
decide when to use the opposition-based learning needs
in the SMA to get better optimal results. The AOSMA is
inspired by the oscillation mode of the plasmodial slime
mold (Physarum ploycephalum) and the positive–negative
feedback to choose the best-connected food path.

2.2.1 | Mathematical formulation of the
AOSMA

The AOSMA process has five major subparts, such as ini-
tialization, oscillation, approaching and wrapping foods,
adaptive opposition-based learning.

Initialization
As with most optimization algorithms, the AOSMA
requires random initialization to initiate the optimization
procedure. The initial populations are formulated based
on S number of slime molds for d-dimensional problems,
within the search space specified by the upper (UB) and
the lower (LB) boundary. The random initialization of
the population is performed as follows:

Xi itrð Þ¼LBþ randi 1,dð Þ � UB�LBð Þ, 8i� 1,S½ �, ð12Þ

and

X itrð Þ¼

X1

X2

..

.

XS

2
666664

3
777775, ð13Þ

where ith slime mold position at iteration itr is
Xi ¼ x1i ,x

2
i ,…,xdi

� �� �
, d-dimensional random vector with

values from the interval 0,1½ � is randi 1,dð Þ and for the ini-
tialization process itr is consider as 1.

Fitness evaluation and extraction of necessary
parameters
The slime molds are evaluated based on the fitness (odor)
f Xið Þ,8i¼ 1,S½ � for the iteration itr, where itr will be from
1 to maximum iteration Maxitr. The fitness values in a
vector f ¼ f X1ð Þ, f X2ð Þ,…, f XSð Þ½ �ð Þ are sorted in an
ascending order for a minimization problem:

SortedFitness,SortedIndex½ � ¼ sort fð Þ: ð14Þ

Based on the sorted fitness value for the iteration
(itr), some important parameters like the local best posi-
tion XLB, local best fitness f LB ¼ f XLBð Þð Þ, local worst

fitness f LW, global best fitness f GB and global best posi-
tion XGB. The above-said parameters are extracted as
follows:

f LB¼ f SortedFitness 1ð Þð Þ: ð15Þ

XLB¼X SortedIndex 1ð Þð Þ: ð16Þ

f LW¼ f SortedFitness Sð Þð Þ: ð17Þ

f GB¼
f LB if itr¼ 1

f LB if itr > 1 and f GB > f LB
f GB if itr > 1 and f GB ≤ f LB :

8><
>: ð18Þ

XGB¼
XLB if itr¼ 1

XLB if itr > 1 and f GB > f LB
XGB if itr > 1 and f GB ≤ f LB

8><
>: : ð19Þ

Oscillation
The oscillation stimulates randomness in the search pro-
cess to achieve a good trade-off between the exploitation
and the exploitation. The oscillation in the AOSMA is
governed by a weight W , velocity Vb and Vc.

The weight W is used to imitate the slime mold oscil-
lation frequency, which varies depending on the quality
of the food, such as quick for the high-quality food and
sluggish for the low-quality food. The W for S slime
molds can be modeled as follows:

W SortedIndex ið Þð Þ

¼
1þ randðÞ � log f LB� f Xið Þ

f LB� f LW

� �
1≤ i≤

S
2

1� randðÞ � log f LB� f Xið Þ
f LB� f LW

� �
S
2
< i≤ S

8>>><
>>>:

:
ð20Þ

where randðÞ is a randomly chosen number between
[0,1]. The Vb and Vc are random velocity values selected
from a continuous uniform distribution in the intervals
�b,b½ � and �c,c½ �. The b and c are determined using the
current iteration itr and the maximum iteration Maxitr as
follows:

b¼ arctanh � itr
Maxitr

� �
þ1

� �
: ð21Þ

and

c¼ 1� itr
Maxitr

: ð22Þ
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Approaching and wrapping foods
The slime mold approaching and wrapping food in the
AOSMA is formulated as follows:

Xnewi itrð Þ¼
XLB itrð ÞþVb W �XLB itrð Þ�XR itrð Þð Þ if r1 ≥ z and r2 < pi

Vc �Xi itrð Þ if r1 ≥ z and r2 ≥ pi

LBþ rand 1,dð Þ� UB�LBð Þ if r1 < z

:

8>><
>>:

ð23Þ

The XR is a slime mold from the S population that
has been randomly pooled. The z is the chance of wrap-
ping food to a random search space which is fixed at 0.03.
The r1 and r2 are two random numbers drawn within the
range of 0,1½ �. The pi, a threshold value is used to deter-
mine whether the slime mold will follow the local best
slime or its course. The pi is evaluated as follows:

pi¼ tanh f Xið Þ� f GBj j,8i� 1,S½ � ð24Þ

Adaptive opposition-based learning
The AOSMA used an adaptive judgment mechanism to
evaluate whether the opposition-based learning (OBL)27

was required during the search process. The opposite
position of a smile mold jth 8j� 1,d½ �ð Þ dimension is esti-
mated as follows:

Xnewoji¼min Xnewi itrð Þð Þþmax Xnewi itrð Þð Þ
�Xnewj

i, 8i� 1,S½ � and8j� 1,d½ �: ð25Þ

The next iteration's slime mold position is modeled as
follows:

Xi itrþ1ð Þ¼
Xnewi itrð Þ if f Xnewi itrð Þð Þ< f Xi itrð Þð Þ
Xseli itrð Þ if f Xnewi itrð Þð Þ≥ f Xi itrð Þð Þ

,8i� 1S½ �:
(

ð26Þ

where Xseli is the ith selected position among new posi-
tion Xnewi and its corresponding opposite position
Xnewoi, which can be chosen as follows:

Xseli itrð Þ¼
Xnewi itrð Þ if f Xnewi itrð Þð Þ< f Xnewoi itrð Þð Þ
Xnewoi itrð Þ if f Xnewi itrð Þð Þ≥ f Xnewoi itrð Þð Þ

(
, 8i� 1,S½ �:

ð27Þ

2.2.2 | Pseudocode of the AOSMA

At the outset, determine the number of slime molds S to
be used, the objective function f in a d-dimensional issue,

the search space boundary UB and LB, and the maxi-
mum permitted iteration count as Maxitr. The AOSMA
pseudocode looks like this (Algorithm 1):

3 | THE PROPOSED THRESHOLD
SCORE (TS) BASED MULTILEVEL
THRESHOLDING TECHNIQUE

A novel theoretical research is being conducted here. To
prove that our strategy is superior to the entropic value-
based methods, we propose a new thresholding function.
The problem statement's empirical formulation is
described below.

Begin with the bi-level thresholding, in which a
threshold t differentiates the image I into two distinct
classes M0 and M1. If the image I has P�Q number of
pixels with the intensity value lm,n at the spatial co-
ordinates m,nð Þ, where index m� 1,2,…,Pð Þ and

ALGORITHM 1 AOSMA pseudocode

Inputs: N , d, Maxitr, z, f , UB and LB.
Initialization: Initialize itr¼ 1 and N slime
mold using Equations (12) and (13).
while itr <Maxitrð Þ

Evaluate the fitness vector f and sort them in
ascending order (i.e., minimization problem)
using Equation (14).
Extract and update the necessary parameters
such as f LB, XLB, f LW, f GB and XGB using
Equations (15–19).
Update the oscillation parameter weight W ,
velocity Vb and Vc using Equations (20–22).

for i¼ 1: S number of slime mold
Evaluate pi using Equation (24)
Generate r1 and r2.
Randomly polled a slime mold XR for the

S population.
Estimate Xnewi using Equation (23).

if f Xnewið Þ> f Xið Þð Þ
Estimate Xnewoi using Equation (25).
and select Xseli using Equation (27).

end (if)
Update the slime mold position Xi for next
iterations using Equation (26).

end (for)
itr = itr + 1

end (while)
Outputs: f GB and XGB:

6 NAIK ET AL.



n� 1,2,…,Qð Þ. The intensity value lm,n, distributed to
class M0 and M1 based on the threshold t, is given as
follows:

M0 lm,n if lmin ≤ lm,n < t1
M1 lm,n if t1 ≤ lm,n ≤ lmax

,m� 1,2,…,Pð Þ andn� 1,2,…,Qð Þ,
ð28Þ

which must satisfy M0[M1¼ I.
Let us propose a threshold score (TS) for the bi-level

thresholding at a threshold value t as follows:

TS tð Þ¼
XP
m¼1

XQ
n¼1

2
Xlmax

lm,n¼lmin

lm,n�μð Þ2
 

�
Xt�1

lm,n¼lmin

lm,n�μ0ð Þ2�
Xlmax

lm,n¼t
lm,n�μ1ð Þ2

!
,

8t � lmin þ1lmax �1½ �,

ð29Þ

where μ, μ0 and μ1 are the mean intensity values of I, M0

and M1. The mean intensity values are calculated as
follows:

μ¼
PP
m¼1

PQ
n¼1

lm,n

N
, ð30Þ

μ0¼

PP
m¼1

PQ
n¼1

Pt1�1
lm,n¼lmin

lm,n

N0
, ð31Þ

and

μ1¼

PP
m¼1

PQ
n¼1

Plmax

lm,n¼t1
lm,n

N1
, ð32Þ

where N , N0 and N1 are the total number of pixels in the
image I, class M0 and class M1, respectively.

The objective function to obtain the optimal threshold
t� is a maximization problem, which is modeled as
follows:

TSopt t�ð Þ¼ arg max
lmin < t< lmax

TS tð Þ: ð33Þ

Let us take the bi-level threshold selection approach and
apply it to the multilevel thresholding for K threshold
levels. The image I is converted into a partitioned image

with Kþ1 classes M0,M1,…,MKð Þ using the K threshold
levels, which can be expressed as follows:

M0 lm,n if lmin ≤ lm,n < t1

M1 lm,n

..

.

MK lm,n

if t1 ≤ lm,n < t2

..

.

if tK ≤ lm,n < lmax

,m� 1,2,…,Pð Þandn� 1,2,…,Qð Þ,

ð34Þ

which must satisfy [K
c¼0Mc¼ I.

The TS for the Kþ1 class M0,M1,…,MKð Þ partitioned
image using the K threshold levels t1, t2,…, tKð Þ is defined
as follows:

TS t1, t2,…, tKð Þ

¼
XP
m¼1

XQ
n¼1

Kþ1ð Þ
Xlmax

lm,n¼lmin

lm,n�μð Þ2
 

�
Xt1�1

lm,n¼lmin

lm,n�μ0ð Þ2�
Xt2�1
lm,n¼t1

lm,n�μ1ð Þ2

��� ��
Xlmax

lm,n¼tK
lm,n�μKð Þ2

!
,

ð35Þ

where the threshold levels t1, t2,…, tKð Þ must satisfy the
condition lmin < t1 < t2 <…< tK < lmax, and μ, μi are the
mean intensity values of I and Mi. The mean intensity
value μi for class Mi is calculated as follows:

μi¼

PP
m¼1

PQ
n¼1

Ptiþ1�1
lx,y¼ti

lm,n

Nk
, 8i� 0,K½ �ð Þ, ð36Þ

where t0¼ lmin and tKþ1¼ lmax.
Then the threshold score (TS) based multilevel

thresholding objective function to obtain the K number
of optimal threshold levels t�1, t

�
2,…, t�K

� �
is a maximization

criterion, which is expressed as follows:

TSopt t�1, t
�
2,…, t�K

� �¼ arg max
lmin < t1 < t2 < ���< tK < lmax

TS t1, t2,…, tKð Þ
ð37Þ

A graphical picture containing the empirical findings is
provided in Figure 1, to ensure the intended research out-
comes. In contrast to the previous entropy approaches,
the following illustrative notes show how our scheme
employs a threshold score to determine the optimal
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threshold values. For a greater clarity, theoretical discus-
sions are made explicit in the following paragraph.

It is reiterated that Equations (33) and (37) are the
objective functions for the bi-level and the multilevel
thresholding. We've picked four standard images from
the image processing literature labeled Barbara,
Baboon, Columbia, and Plane,28 all of which are

256�256 pixels in size, and presented in the first column
of Figure 1. The plots of TS versus threshold value for bi-
level and tri-level thresholding are shown in the second
and fourth columns of Figure 1, with the red dot points
representing the respective optimal values. The related
threshold images are generated and presented in the
third and fifth columns of Figure 1 for bi-level and tri-

FIGURE 1 Standard images (first column), their threshold scores (second column: bi-level thresholding and fourth column: tri-level

thresholding) and the corresponding thresholded images (third column: bi-level thresholded images and fifth column: tri-level thresholded

images)
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level threshold images, respectively, based on the optimal
threshold values. The fifth column tri-level threshold
image K ¼ 2ð Þ delivers good qualitative and quantitative
results than the third column bi-level threshold image
K ¼ 1ð Þ in Figure 1. The computational complexity to sea-
rch K optimal threshold values require an exhaustive sea-
rch of O lmax� lminþ1ð ÞK


 �
for a lmax� lminþ1½ � distinct

gray level within the range lmin, lmax½ �. The thresholding
performance improves as the number of thresholds Kð Þ
grows. However, there is a big drawback: the computing
time grows exponentially. The most effective way to deal
with this is to apply an efficient optimization technique,
and hence, the AOSMA is used as an optimizer in these
experiments.

4 | A FRAMEWORK OF THE
PROPOSED TS-AOSMA METHOD
FOR THE OPTIMAL MULTILEVEL
THRESHOLDING

In this section, we established the TS-based optimal mul-
tilevel thresholding using AOSMA coined as the TS-
AOSMA to separate the K+1 different class using the K
optimal threshold values t�1, t

�
2,…, t�K

� �
. The prime objec-

tive is to obtain the optimal K threshold values within
the range lminþ1, lmax�1½ �, hence the multilevel
thresholding is a K dimensional problem. Considering
the TS-based multilevel thresholding is based on the
maximizing criterion, AOSMA's purpose is to efficiently

FIGURE 2 Flowchart on the TS-AOSMA method for the optimal multilevel thresholding
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maximize it to reduce the computational cost associated
with the exhaustive search. The AOSMA began with ran-
dom initialization of S slime mold positions within the
search boundary lminþ1, lmax�1½ � for a K-dimensional
threshold values t1, t2,…, tKð Þ. Each slime mold
Xi,8i� 1,S½ �ð Þ in the population represents a potential
response to a set of threshold values t1, t2,…, tKð Þ. The
slime mold uses the AOSMA described in Section 2.2 to
update its population and to reach the global best slime
mold XGB. Once the AOSMA reaches the maximum itera-
tion or stopping criteria reached, the XGB represents the
K optimal threshold values t�1, t

�
2,…, t�K

� �
. Further, for an

interpretation, the optimal threshold values are used to
generate the threshold image in pseudo coloring for the
clinical analysis and description. A flowchart on the TS-
AOSMA method for the optimal multilevel thresholding
is presented in Figure 2.

5 | EXPERIMENTAL RESULTS

The main aim is to obtain a suitable MR image with lim-
ited, distinct regions of the medical, clinical analysis of
the raw MR image with large intensity variations. The
limited, distinct region of an image is a threshold image,
which is a multilevel thresholding processed image of the
original (raw/target) image. In this paper, we propose TS-
AOSMA multilevel thresholding to process the target
image. We compare the proposed algorithm with other
recent works using entropy-based technologies such as
Tsallis,14 Kapur20 and Masi.25 This section also provides a
discussion on it. Tsallis, Kapur, and Masi multilevel
thresholding employing AOSMA are coined as Tsallis-
AOSMA, Kapur-AOSMA, and Masi-AOSMA evolution-
ary approaches of thresholding methods for performance
comparison. We used 100 distinct T2-weighted brain MR
imaging slices (slice 19 to slice 118) from Harvard Medi-

TABLE 2 Thresholding

performance comparison (computed

over 100 slices)

K Metric TS-AOSMA Kapur-AOSMA Tsallis-AOSMA Masi-AOSMA

2 PSNRAVE 24.9624 17.8858 19.8272 16.9999

SSIMAVE 0.5700 0.2486 0.2873 0.2241

FSIMAVE 0.7556 0.6369 0.6517 0.6250

3 PSNRAVE 27.4600 21.7300 24.5056 18.1791

SSIMAVE 0.7285 0.3813 0.4328 0.2586

FSIMAVE 0.8271 0.7276 0.7556 0.6606

4 PSNRAVE 29.3648 25.9255 26.7665 20.6007

SSIMAVE 0.8604 0.5735 0.5384 0.3322

FSIMAVE 0.8763 0.8106 0.8190 0.7218

5 PSNRAVE 31.0505 28.3442 28.3406 24.7717

SSIMAVE 0.9039 0.6860 0.6318 0.5245

FSIMAVE 0.9105 0.8616 0.8556 0.7936

Note: The bold values represent the best results.
Abbreviations: AOSMA, adaptive opposition slime mold algorithm; AVE, average; FSIM, feature similarity
index; PSNR, peak signal to noise ratio; SSIM, structure similarity index.

FIGURE 3 Three sample slices 45, 65 and 82 brain magnetic resonance image from AANLIB database
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TABLE 3 Optimal threshold value and corresponding performance measure for Slice 45 brain MR image

K Optimal values TS-AOSMA Kapur-AOSMA Tsallis-AOSMA Masi-AOSMA

2 THOPT 44, 121 114, 186 91 175 115, 185

PSNROPT 24.1022 17.0367 19.2679 16.8924

SSIMOPT 0.5486 0.2721 0.3200 0.2674

FSIMOPT 0.7496 0.5962 0.6232 0.5958

3 THOPT 30, 81, 133 86, 133, 188 65, 126, 189 103, 148, 189

PSNROPT 26.2398 20.7871 24.0722 18.1414

SSIMOPT 0.7251 0.3671 0.4577 0.3036

FSIMOPT 0.8229 0.7029 0.7475 0.6558

4 THOPT 21, 62, 103, 146 28, 72, 124, 185 50, 99, 151, 200 91, 134, 180, 212

PSNROPT 28.1674 27.6836 26.2261 19.8805

SSIMOPT 0.8558 0.7360 0.5420 0.3452

FSIMOPT 0.8755 0.8424 0.8156 0.6949

5 THOPT 18, 57, 92, 129, 177 23, 66, 108, 148, 190 42, 84, 126, 168, 211 43, 85, 125, 171, 208

PSNROPT 29.8707 29.4157 27.8213 27.6287

SSIMOPT 0.8700 0.8578 0.6014 0.5995

FSIMOPT 0.8940 0.8929 0.8514 0.8459

Note: The bold values represent the best results.

Abbreviations: AOSMA, adaptive opposition slime mold algorithm; FSIM, feature similarity index; MR, magnetic resonance; OPT, optimal; PSNR, peak signal
to noise ratio; SSIM, structure similarity index; TH, threshold.

TABLE 4 Optimal threshold value and corresponding performance measure for Slice 65 brain MR image

K Optimal values TS-AOSMA Kapur-AOSMA Tsallis-AOSMA Masi-AOSMA

2 THOPT 47, 127 117, 180 90, 173 121, 184

PSNROPT 23.4419 16.2639 18.9880 16.0005

SSIMOPT 0.5330 0.3059 0.3419 0.2977

FSIMOPT 0.6909 0.5817 0.5973 0.5744

3 THOPT 40, 100, 152 100, 145, 189 66, 129, 190 102, 145, 191

PSNROPT 25.8178 18.0968 24.1518 17.8708

SSIMOPT 0.6412 0.3551 0.4848 0.3506

FSIMOPT 0.7783 0.6556 0.7143 0.6515

4 THOPT 22, 66, 110, 163 95, 138, 180, 222 52, 102, 151, 202 101, 140, 180, 221

PSNROPT 27.4668 18.6620 26.5518 17.9100

SSIMOPT 0.8363 0.3684 0.5929 0.3542

FSIMOPT 0.8263 0.6766 0.7888 0.6638

5 THOPT 19, 60, 98, 134, 182 20, 67, 115, 157, 196 42,84, 126, 169, 210 92, 123, 158, 190, 226

PSNROPT 29.6209 28.6048 27.8671 19.3792

SSIMOPT 0.8666 0.8428 0.6643 0.3906

FSIMOPT 0.8727 0.8557 0.8326 0.7078

Note: The bold values represent the best results.
Abbreviations: AOSMA, adaptive opposition slime mold algorithm; FSIM, feature similarity index; MR, magnetic resonance; OPT, optimal; PSNR, peak signal
to noise ratio; SSIM, structure similarity index; TH, threshold.
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TABLE 5 Optimal threshold value and corresponding performance measure for Slice 82 brain MR image

K Optimal values TS-AOSMA Kapur-AOSMA Tsallis-AOSMA Masi-AOSMA

2 THOPT 44, 124 111, 169 93, 170 113, 170

PSNROPT 23.7733 16.4348 18.0951 16.3195

SSIMOPT 0.5701 0.2787 0.2978 0.2765

FSIMOPT 0.7157 0.5872 0.5884 0.5842

3 THOPT 42, 105, 171 101, 144, 188 68, 128, 189 109, 165, 206

PSNROPT 26.2159 17.3726 24.0319 16.6422

SSIMOPT 0.6945 0.3073 0.4317 0.2860

FSIMOPT 0.7459 0.6484 0.7015 0.6034

4 THOPT 34, 83, 119, 180 95, 132, 168, 208 56, 105, 155, 204 101, 144, 178, 212

PSNROPT 28.1922 18.1426 26.7104 17.3972

SSIMOPT 0.7373 0.3250 0.5590 0.3093

FSIMOPT 0.8325 0.6778 0.7692 0.6545

5 THOPT 19, 58, 92, 127, 187 10, 62, 115, 167, 207 44, 86, 128, 171, 213 93, 123, 157, 188, 219

PSNROPT 29.9791 28.2101 28.4173 18.4681

SSIMOPT 0.8637 0.8753 0.6492 0.3327

FSIMOPT 0.8721 0.8084 0.8335 0.6923

Note: The bold values represent the best results.

Abbreviations: AOSMA, adaptive opposition slime mold algorithm; FSIM, feature similarity index; MR, magnetic resonance; OPT, optimal; PSNR, peak signal to noise

ratio; SSIM, structure similarity index; TH, threshold.

FIGURE 4 Threshold images for Slice 45 brain magnetic resonance image
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cal School's whole brain atlas dataset22 for the experi-
mental purposes in this paper. Gray scale images are con-
sidered for the experiment.

In our experiments, the first simple and effective per-
formance metric uses as Peak Signal to Noise Ratio
(PSNR),25 which is evaluated as follows:

PSNR dbð Þ¼ 10log 10
2552

MSE I, Î
� �

 !
, ð38Þ

where MSE (mean square error) between P�Q dimen-
sional target image I intensity value lm,n and thresholded
image Î intensity value l̂m,n is

MSE¼ 1
P�Q

XP
m¼1

XQ
n¼1

lm,n� l̂m,n


 �2
: ð39Þ

As PSNR is a signal-to-noise ratio, a higher value
PSNR suggests that the thresholded image has more

information and less noise. The second performance met-
ric based on structure, contrast and brightness is Struc-
ture Similarity Index Measure (SSIM)29 with a larger
SSIM value indicating a better-thresholded image. The
third performance metric based on the gradient magni-
tude map and the phase congruency map is Feature Simi-
larity Measure (FSIM)30 an image quality assessment
index. For a better-threshold image, a high FSIM value is
preferred.

To make consistency among the experiments on evo-
lutionary multilevel thresholding TS-AOSMA, Tsallis-
AOSMA, Kapur-AOSMA and Masi-AOSMA methods run
for 200 maximum iterations with 30 slime mold as a pop-
ulation count. The Tsallis parameter q is chosen as 0.1
and the Masi parameter r is chosen as 0.5 for the evolu-
tionary multilevel thresholding method Tsallis-AOSMA
and Masi-AOSMA, respectively. Each target MR image
from 100 slices is subjected to 11 independent runs of the
evolutionary multilevel thresholding technique for the
threshold levels K ¼ 2,3,4,5. To show the effectiveness of

FIGURE 5 Threshold images for Slice 65 brain magnetic resonance image
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the proposed methods over 100 slice brain MR images, a
thresholding performance comparison using average
PSNR (PSNRAVE), average SSIM (SSIMAVE) and average
FSIM(FSIMAVE) is presented in Table 2. From Table 2,
the average performance of the TS-based approach out-
performs Kapur, Tsallis and Masi-based techniques. It
should also be noted from Table 2 that as threshold
values are elevated, PSNR, SSIM, and FSIM performance
improves.

To provide depth analysis on the performance of pro-
posed TS-AOSMA methods to others Slice 45, 65 and
82 brain MR images are considered for experiments.
These sample gray scale brain MR images are presented
in Figure 3. The performance comparisons are done with
the optimal PSNR (PSNROPT), optimal SSIM (SSIMOPT)
and optimal FSIM (FSIMOPT) obtained using the thresh-
old image generated with an optimal threshold value
(THOPT). The improved results depend primarily on the
appropriate value of the threshold. The optimizer

AOSMA is employed to lower computing costs in this
case, but the role of the multilevel thresholding fitness
function is crucial. The inherent characteristics of the
images and parameters connected with the multilevel
thresholding fitness function may also have an impact on
the findings. Some results are offered here for justifica-
tion in this context.

The optimal threshold value and corresponding per-
formance measures of brain MR images are presented
in Table 3 for slice 45, Table 4 for slice 65 and Table 5
for slice 82. The evolutionary TS-AOSMA outperforms
other methods in all experimented threshold levels
K ¼ 2,3,4,5. Outputs (segmented MRI) are shown
(Figures 4-6) using pseudo coloring, for a better visual
representation. For instance, when K = 5, we see K+ 1, i.
e 6 segments (six different colors). The respective thresh-
old image from Table 3 is exhibited in Figure 4, Table 4 is
shown in Figure 5 and Table 5 is shown in Figure 6. In
all the experimented threshold levels K ¼ 2,3,4,5, it can

FIGURE 6 Threshold images for Slice 82 brain magnetic resonance image
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be observed that the TS-AOSMA produces superior
results than the other methods Kapur-AOSMA, Tsallis-
AOSMA, and Masi-AOSMA. The performance of TS-
AOSMA is consistent for low K ¼ 2ð Þ and progressive
K ¼ 3,4,5ð Þ threshold levels based on the performance
measure and thresholded image. This investigation shows
that TS-based multilevel thresholding has some promis-
ing possibilities in the field of image processing
segmentation.

The ANOVA statistical test (as boxplots) is used to
measure the multilevel thresholding methods. These
methods are implemented to further study the TS-
AOSMA based approach. To perform the ANOVA sta-
tistical test, here 1100 data samples are used. These are
the outcomes of 11 independent runs of each 100 slices
(slice 19 to slice 118) used for the experiments. The

ANOVA test results are shown in Figure 7. Separate
boxplots are drawn for each performance metric such
as PSNR, SSIM and FSIM, to the threshold level
K = 2, 3, 4 and 5. The height of the boxplot exhibits
the consistency of the method. Less height means low
noise (low standard deviation). From Figure 7, it is
observed that the TS-AOSMA has shown more consis-
tency in terms of the height of the boxplot, when
compared with the other methods. As we know, the
higher the value of the performance metric, the
method shows more prominent result, in multilevel
thresholding. From Figure 7, it is revealed that the
TS-AOSMA has shown promising results as opposed
to other methods—Kapur-AOSMA, Tsallis-AOSMA
and Masi-AOSMA. The proposal may be useful for
classification.31

FIGURE 7 ANOVA test result of each method computed over 100 slices
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6 | CONCLUSIONS

This paper proposed a new non-entropy-based multilevel
thresholding method. The critical facts are highlighted in
this section. The proposal is histogram independent, as
opposed to the existing technologies that depend on the
histogram distribution while computing the entropy
values. The proposed technology is a maximization prob-
lem. The TS-based procedure uses pixels' intensity values
and an average intensity value in a class that is not based
on the pixel distribution in an image. It is our method's
intrinsic property. This non-entropic TS method more
effectively senses the intensity variation in an image. This
paper, therefore, presents evolutionary multilevel
thresholding for the brain MR images using the AOSMA.
The TS-based objective function is used to compute the
optimal thresholds. The findings are evaluated using the
performance measures of the proposed evolutionary TS-
AOSMA. Nonetheless, it suggests its effectiveness in the
brain MR image thresholding. The quantitative and qual-
itative findings demonstrate that the proposed TS-
AOSMA method outperforms the Tsallis-AOSMA,
Kapur-AOSMA and Masi-AOSMA. From Table 2, the
claims of the proposal are implicit. To figure out—(i) The
PSNR values achieved are higher by 20.19%, 13.47%, and
40.08% with respect to Tsallis, Kapur and Masi tech-
niques, respectively; (ii) The SSIM values yielded are
higher by 62.10%, 62.03%, and 128.67% as compared to
Tsallis, Kapur and Masi methods, respectively; (iii) The
FSIM values obtained are higher by 20.70%, 14.23%, and
40.83% compared to Tsallis, Kapur and Masi techniques,
respectively. Similarly, significant improvements are
achieved for three different slices, results are shown in
Tables 2–4. Exemplary results achieved reveal the fact
that our technology is efficient for brain MR image seg-
mentation. The limitation of our study may be the prob-
lem of over-segmentation, when the number of threshold
levels is very high, say K = 10 or higher. This may be
explored in the future. This limitation may be due to the
inherent characteristics of the brain MR images or may
be due to the limitation of our technology.

Multilevel thresholded MRI is commonly in use for
measuring and visualizing dissimilar brain assemblies,
for outlining lesions, for extracting brain features, for
image-guided instructions and surgical planning. Nev-
ertheless, it is unquestionable that computerized multi-
class segmentation technologies have shown their
potential for use in computer-aided diagnosis/therapy
planning. The suggested work would give the multi-
level medical image thresholding field a new direction.
The proposed methodology may also be used to evalu-
ate other imaging modalities like CT, PET, X-Ray etc.,
where we find the intensity variations. The future

scope of this work is to extend the idea for color seg-
mentation, satellite image denoising, breast thermo-
gram thresholding and image classification with many
more computer vision applications.
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