

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

An opposition equilibrium optimizer for context-sensitive entropy dependency based multilevel thresholding of remote sensing images

Manoj Kumar Naik^a, Rutuparna Panda^{b,*}, Ajith Abraham^c

^a Faculty of Engineering and Technology, Siksha O Anusandhan, Bhubaneswar, Odisha, 751030, India

^b Dept. of Electronics and Telecommunication Engineering, Veer Surendra Sai University of Technology, Burla, Odisha, 768018, India

^c Machine Intelligence Research Labs, Scientific Network for Innovation and Research Excellence, WA 98071-2259, USA

ARTICLE INFO

Keywords: Evolutionary computation Computational intelligence Multilevel thresholding Remote sensing image thresholding

ABSTRACT

Earlier 1D histogram-based entropic methods for multilevel image thresholding suffer from the lack of contextual information. Subsequently, the idea was extended for 2D histogram-based methods, where neighbourhood pixels were considered to retain the contextual information. Nevertheless, 2D histogram-based entropic methods are computationally intensive. Moreover, these methods are based on the maximization of entropic functions using an optimizer, leading to less accuracy. To address these issues, we propose a context-sensitive entropy dependency (CSED) based multilevel thresholding method. A new optimizer called opposition equilibrium optimizer (OEO) is introduced. The opposition based learning and escaping strategy are incorporated to enhance exploration capability. Here, 31 test functions including 8 from standard testbed IEEE CEC 2014 are used for validation. The merits are - i) reduced complexity, ii) improved accuracy, iii) better stability and scalability, iv) enhanced exploration capability, v) well suited to random problems with changing dimensions, etc. The search history, trajectory, and average fitness history of the OEO are explicitly discussed. The Box plots and the convergence curves are presented to confirm its stability and faster convergence. Friedman's mean rank test, Bonferroni-Dunn test, and Holm's test are also carried out to ensure OEO superiority over others. Encouraging thresholding results on high dimensional colour satellite images from the Landsat image gallery are shown based on the suggested method (CSED-OEO). The quantitative measures (Peak Signal to Noise Ratio, Feature Similarity Index, and Structure Similarity Index) are used for validation. The CSED-OEO is compared with state-of-the-art methods and found better. It means, realistically, the method may be useful for segmentation-based analysis of colour images.

1. Introduction

Image segmentation is one of the primary requirements in machine vision. The thresholding-based approach is a more popular methodology in image segmentation. The thresholding-based approach either uses the gray-scale image or the colour image, as a target source, to get the segmented image for further processing. In earlier days, gray-scale images are a more preferred way of target images for the image segmentation problem, which consists of the intensity information of a true image. However, the colour image contains extra information called hue and saturation along with the intensity. Hence, the colour image has more information content than the gray-scale image [1]. This is the reason, nowadays, for which the researchers are moving towards the colour image thresholding. The colour image thresholding has special importance for a geographic information system (GIS), which captures the remote sensing images. It stores, checks, and displays the data related to the earth surface. The remote sensing images are used to locate the objects

and the boundary for further processing to generate potential information like landscape, kind of soil, roads and forest fires, etc [2]. The colour image thresholding played a major role in GIS to analyse the remote sensing image for easy analysis, simple interpretation with exposed features, and reduced storage through compression of data [3–6].

Based on the survey of thresholding techniques [7–9], the thresholding methods are classified as bi-level and multilevel thresholding depending on the number of thresholds used to segment the images. The bi-level (global) thresholding approach uses only one threshold. The image is segmented into two areas – object and background. This method is known as the binarization of the image. However, in real life, the binarization of the image using bi-level thresholding does not provide sufficient information for further analysis. So, the researchers move towards the multilevel thresholding approach, which uses two or more threshold values to segment the image simultaneously for multiple objects from an image based on some criterion to be optimized. Some of the popular, recently developed (maximization/minimization criterion-based)

* Corresponding author. E-mail addresses: rpanda_etc@vssut.ac.in (R. Panda), ajith.abraham@ieee.org (A. Abraham).

https://doi.org/10.1016/j.swevo.2021.100907

Received 2 September 2020; Received in revised form 20 April 2021; Accepted 8 May 2021 Available online 16 May 2021 2210-6502/© 2021 Elsevier B.V. All rights reserved.

one dimensional (1D) thresholding methods are Otsu's method [10], Tsallis entropy [11], Kapur's entropy [12], Masi entropy [13], Rényi entropy [14], minimum cross entropy [15] and interdependence based approach [16]. All these methods use the 1D gray-level histogram of the image to obtain the optimal threshold values. The search complexity for the 1D thresholding method based on the 1D histogram for 'd' threshold values with L distinct gray levels is $O(L^d)$ for the gray-scale image while $O(3L^d)$ for the colour (RGB) image. The results of 1D thresholding methods are encouraging, with some drawbacks of not considering spatial correlation among the neighbourhood pixels. Therefore, these methods are called context-free methods. To overcome the drawbacks, Abutaleb proposed two-dimensional entropy in [17], an extension to Kapur's entropy [12] using a novel 2D histogram. The 2D histogram is formed using the information of a 1D histogram together with the local averaging information of its neighbourhood pixels (gray-level values). Some of the prominent works on the 2D thresholding approach that used a 2D histogram are proposed using Otsu's method in [18], Rényi entropy [19], Tsallis-Havrda-Charvát entropy [20], and Masi entropy [21], which show improved performance over 1D thresholding methods. However, as the 2D thresholding approach uses a 2D histogram, the search complexity for the gray-scale image is $O(L^{2d})$ while for the colour (RBG) image is $O(3L^{2d})$ for 'd' threshold values. Nevertheless, the complexity increases by a factor L^d . To reduce the complexity, researcher proposed 2D gray gradient based thresholding approach in [22,23] that used a modified 2D histogram with the gradient information. The gray gradient approach used row wise quadrants instead of the diagonal quadrants in the 2D histogram. However, this still requires a search complexity of $O(L^{(d+1)})$ for the gray-scale image while $O(3L^{(d+1)})$ for the colour images. Nonetheless, here also the complexity increases by a factor 'L'. In summary, these 2D thresholding methods suffer from high computational complexity. Higher is the number of threshold values 'd', more is the complexity.

To overcome the problem, the energy curve [24] is used instead of a histogram. The energy curve is computed at each gray level by considering the spatial contextual information of an image. It is more like a 1D histogram, which consists of several valleys and hills. From this knowledge, different regions are identified and segmented. The search complexity of the thresholding method is now – $O(L^d)$ for gray-scale image and $O(3L^d)$ for colour (RGB) image. So, the threshold section using the energy curve has two advantages. Firstly, the spatial contextual information is incorporated in the threshold selection process. Hence, the thresholding performance is improved. Secondly, the computational demand is reduced. This has motivated the authors to use the energy curve instead of a 2D histogram.

Moreover, for the multilevel thresholding, the nature-inspired optimization algorithms are used to reduce the computational complexity when the number of threshold levels 'd' increases. Therefore, a suitable optimizer is needed for this purpose. Some of the energy curve based multilevel thresholding using nature-inspired optimization algorithms are discussed here. The energy curve based multilevel thresholding was first used by Patra et al. in [24]. They used entropy based objective function to obtain the optimal thresholds. A genetic algorithm (GA) was used for optimization. The experiment was carried out in a gray-scale image. Pare et al in [25,26] came up with the colour image multilevel thresholding using the Cuckoo search (CS) algorithm and energy curve to obtain the optimal threshold values using Otsu's method, Kapur's entropy and Tsallis entropy based objective functions. A breast thermogram analysis based on the multilevel thresholding approach is presented in [27]. The authors used the energy curve in place of the histogram. The Otsu' method and Kapur's entropy were considered as the objective functions. The dragonfly algorithm (DA) was used as an optimizer. Recently, the CS is used as an optimizer for the energy curve based Otsu's method in [28], which shows better thresholding performance compared to the grav-level co-occurrence matrix (GLCM) and Rényi entropy. This prompts us to use the energy curve instead of a histogram for the multilevel thresholding followed by a good optimizer.

Recently, Faramarzi et al. proposed an equilibrium optimizer (EO) [29] inspired by the behaviour of dynamic and equilibrium state in a controlled mass volume model. Its exploration capability is limited because the particle position updating rule only depends on the best candidate. Although it shows better performance than some well-known optimization algorithms, there is still scope for its enhanced exploration. This had encouraged Wunnava et al. [16] to come up with an adaptive equilibrium optimizer (AEO) using an adaptive decision for dispersal of the non-performer particles. However, the adaptive decision depends on the fitness value of the particle; the search trajectory strictly follows the best solutions (obtained so far). Hence, there is likely to miss other possible solutions on the opposite (or near to the opposite) side. As a result, the search is limited. To overcome the problem, an opposition equilibrium optimizer (OEO) is proposed in this work. An effort is made to increase the exploration capability using the escaping strategy. Further, an idea of the opposition based learning (OBL) [30,31] search strategy is incorporated. The novel escaping strategy helps the OEO not to be trapped in the local optimal solution. Moreover, it ensures exploration from the opposite side of the search space. The performance of the OEO is evaluated using 23 well-known classical diversified test functions selected from the literature [32,33] together with 8 composition test functions from the IEEE CEC 2014 standard testbed [34]. The performance of the suggested OEO is also compared with some well-known and recently developed optimization algorithms - differential algorithm (DE) [35], particle swarm optimization (PSO) [35], equilibrium optimizer (EO) [29], Harris hawks optimizer (HHO) [36], sailfish optimizer (SFO) [37], whale optimization algorithm (WOA) [38], gray wolf optimizer (GWO) [39] and high-performance optimizer such as Success-History based Adaptive DE with Linear Population Size Reduction (L-SHADE) [40]. The qualitative and quantitative results are quite impressive and exhibit superiority over other optimization algorithms. For a detailed statistical analysis, both Friedman's mean rank test [41], Bonferroni-Dunn test [42], Holm's test [43] Wilcoxon's signed ranked tests [41] are emphasized. The performance of the suggested OEO warrants us to use it for the multilevel thresholding of remote sensing images.

A minimization of entropic objective function based multilevel thresholding method is proposed in Wunnava et al. [16], which uses a 1D histogram as an input to obtain the threshold values for the grayscale image. The information regarding the neighbourhood pixels is ignored. As a result, there is some loss in the contextual information. On the other hand, the energy curve has contextual information, which can be used for thresholding purposes in place of the 1D histogram. This has inspired us to propose a context-sensitive entropy dependency (CSED) based multilevel thresholding method. A CSED objective function is introduced to enhance the performance, with reduced computational complexity. Optimal threshold values are obtained by minimizing the objective function using the OEO. Need to mention here that the present problem is a minimization problem, which leads to reduced computations. The proposal is coined as CSED-OEO based multilevel thresholding method. The proposed CSED-OEO based multilevel thresholding technique is evaluated using high dimensional remote sensing images from the Landsat image gallery [44]. The quantitative analysis is carried out based on some well-known metrics like Peak Signal to Noise Ratio (PSNR) [45], Feature Similarity (FSIM) [46], Structure Similarity (SSIM) [47], optimal threshold values, and mean gray level. For the qualitative analysis, we present the thresholded images for some sample images. Further, a statistical test is also carried out with the help of Friedman's mean rank test, which shows the overall performance of the CSED-OEO method. Results are discussed in a detailed manner in the results and discussion section.

The rest of this piece of work is as follows. Section 2 briefly describes the minimum entropy dependency based multilevel thresholding; the energy curve; and the equilibrium optimizer (EO). Section 3 proposes an opposition equilibrium optimizer (OEO) to enhance the exploration capability of the EO. This section also presents a comparative performance analysis. Section 4 describes the proposed CSED-OEO based multilevel thresholding. The results and discussion on the proposed multilevel thresholding using high dimensional remote sensing images are presented in Section 5. Finally, the concluding remarks are drawn in Section 6.

2. Preliminaries

2.1. Minimum entropy dependency based Multilevel Thresholding

The multilevel thresholding uses a set of thresholds $\tau = (\tau_1, \tau_2, \dots, \tau_d)$ to classify the image into (d + 1) classes C_i , where $i = 1, 2, \dots, d + 1$. An individual class is represented as:

$$\begin{array}{l} \langle 0, \tau_1 - 1 \rangle \in C_1 \\ \langle \tau_1, \tau_2 - 1 \rangle \in C_2 \\ \vdots \\ \langle \tau_d, L - 1 \rangle \in C_{d+1} \end{array}$$
(1)

where $\tau_1, \tau_2, \dots, \tau_d$ are the threshold gray level values and *L* is the maximum gray level in an image *I*. The C_1 and C_{d+1} are the foreground and background classes or vice versa, whereas C_i with $i = 2, 3, \dots, d$ are the intermediate classes.

Recently, multilevel thresholding using the minimum interdependency is proposed in [16], which is an extension of the idea of bilevel thresholding proposed in [44]. The optimal threshold values $\tau^* = (\tau_1^*, \tau_2^*, \cdots, \tau_d^*)$ are obtained by minimizing the interdependency function:

$$\tau^{*} = (\tau_{1}^{*}, \tau_{2}^{*}, \cdots, \tau_{d}^{*}) = \arg \min_{0 < \tau_{1}^{*} < \tau_{2}^{*} < \cdots < \tau_{d}^{*} < L-1} \{\psi_{1}(C_{1}) + \cdots + \psi_{i}(C_{i}) + \cdots + \psi_{d+1}(C_{d+1})\}.$$
(2)

where entropic information ψ_i of the *i*th class $C_i(for \ i = 1, 2, \dots, d+1)$ is evaluated using Eq. (3).

$$\begin{split} \psi_{1}(C_{1}) &= \log_{e} \left(\sum_{i=0}^{\tau_{1}} p_{i} \right) - \frac{1}{\sum_{i=0}^{t} p_{i}} \left[\left(\sum_{i=0}^{\tau_{1}-1} p_{i} \right) \log_{e} \left(\sum_{i=0}^{\tau_{1}-1} p_{i} \right) + p_{\tau_{1}} \log_{e} p_{\tau_{1}} \right] \\ &\vdots \\ \psi_{i}(C_{i}) &= \log_{e} \left(\sum_{i=\tau_{i-1}}^{\tau_{i}} p_{i} \right) - \frac{1}{\sum_{i=\tau_{i}}^{t} p_{i}} \left[p_{\tau_{i-1}} \log_{e} p_{\tau_{i-1}} + \left(\sum_{i=\tau_{i-1}+1}^{\tau_{i-1}-1} p_{i} \right) \log_{e} \left(\sum_{i=\tau_{i-1}+1}^{\tau_{i-1}-1} p_{i} \right) + p_{\tau_{i}} \log_{e} p_{\tau_{i}} \right] \\ &\vdots \\ \psi_{d+1}(C_{d+1}) &= \log_{e} \left(\sum_{i=\tau_{d}}^{L} p_{i} \right) - \frac{1}{\sum_{i=\tau_{d}}^{t} p_{i}} \left[p_{\tau_{d}} \log_{e} p_{\tau_{d}} + \left(\sum_{i=\tau_{d}+1}^{L} p_{i} \right) \log_{e} \left(\sum_{i=\tau_{d}+1}^{L} p_{i} \right) \right] \end{split}$$
(3)

The probability distribution $p = \{p_0, p_1, \dots, p_l\}$ of all possible individual gray level in the image *I* of dimension, $m \times n$ is described as:

$$p_l = \frac{c_l}{M \times N}, \ \forall l \in [0, L]$$

$$\tag{4}$$

where c_l is the occurrence of the gray level *l* in the image *I*, $\sum c_l = m \times n$ and $0 \le p_l \le 1$.

2.2. Energy curve and its application to multilevel thresholding

The histogram of an image does not contain contextual information. Hence, the histogram-based thresholding approach may not provide an optimal threshold value. To overcome this, an energy curve is introduced in [24], that can preserve the contextual information with the similar characteristics of a histogram.

Let us take an image $I = \{z_{ij}, 1 \le i \le m, 1 \le j \le n\}$ of size ×*n*, where z_{ij} is the intensity values at coordinates (i, j). The neighborhood system [48] *N* of order *D* for a spatial coordinate (i, j) can be defined as:

$$N_{ii}^{D} = \left\{ (i+u, j+v), (u, v) \in N^{D} \right\}$$
(5)

In the thresholding application, we require the second order (D = 2) neighborhood system, i.e., $(u, v) \in \{(\pm 1, 0), (0, \pm 1), (1, \pm 1), (-1, \pm 1)\}$, shown in Fig. 1.

Let us generate a two-dimensional binary matrix $B_i = \{b_{ij}, 1 \le i \le m, 1 \le j \le n\}$ for intensity values $l(0 \le l \le L)$ using Eq. (6) and a two-dimensional constant matrix C =

(<i>i</i> - 1, <i>j</i> - 1)	(i-1,j)	(<i>i</i> -1, <i>j</i> +1)
(<i>i</i> , <i>j</i> -1)	(<i>i,j</i>)	(i, j + 1)
(<i>i</i> +1, <i>j</i> -1)	(i + 1, j)	(i+1, j+1)

Fig. 1. Spatial coordinate representation of a pixel (i, j) in N^2 neighborhood.

 $\{c_{ij}, 1 \le i \le m, 1 \le j \le n\}$ using the Eq.(7).

$$b_{ij} = \{ \begin{array}{cc} 1, & z_{ij} > l \\ -1, & z_{ij} \le l \end{array}, \ \forall i \in [1, m] \text{ and } \forall j \in [1, n] \end{array}$$
(6)

$$c_{ij} = 1, \ \forall i \in [1, m] \text{ and } \forall j \in [1, n].$$

$$(7)$$

The energy curve is defined as = { E_0, E_1, \dots, E_L }, where E_l is the energy value of the image at intensity values *l* and is defined as:

$$E_{l} = -\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{pq \in N_{ij}^{2}} b_{ij} \cdot b_{pq} + \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{pq \in N_{ij}^{2}} c_{ij} \cdot c_{pq}.$$
(8)

The $\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{pq \in N_{ij}^2} c_{ij} \cdot c_{pq}$ term of Eq. (6) is a constant term. This en-

sures that the energy value is always a positive quantity. The energy value E_l for a gray level l is zero, only when all the elements of B_l are either 1 or - 1. Otherwise, E_l is always positive. The energy curve retains the contextual information, which is more like a histogram. So, the energy curve can be used instead of a histogram. We get an additional advantage of smoothness in a curve and a more prominent discriminatory property of classes.

2.3. Equilibrium optimizer (EO)

The equilibrium optimizer (EO) [29] is inspired by the mass balance model of dynamics and equilibrium states. The approach is based on the mass conservation within a control volume, a physics principle. Let X_i be the *i*th particle concentration from a population of N particle in ddimensional search space is initialized within the upper search boundary (*U B*) and the lower search boundary (*L B*) using Eq. (9).

$$X_i = LB + rand_i(1, d) \cdot (UB - LB), \ \forall i \in [1, N]$$

$$(9)$$

Then, the particle concentration *X* and the fitness value f(X) for *N* particles are:

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_i \\ \vdots \\ X_N \end{bmatrix} = \begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^j & \cdots & x_1^d \\ x_2^1 & x_2^2 & \cdots & x_2^j & \cdots & x_2^d \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ x_i^1 & x_i^2 & \cdots & x_i^j & \cdots & x_i^d \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ x_N^1 & x_N^2 & \cdots & x_N^j & \cdots & x_N^d \end{bmatrix}$$
(10)

and

$$f(X) = \left[f\left(X_1\right), f\left(X_2\right), \cdots, f\left(X_i\right), \cdots, f\left(X_N\right)\right]'$$
(11)

Further, in the subsequent generation, the particle concentration X_i for *i*th particle is updated as:

$$X_{i} = X_{eq} + \left(X_{i} - X_{eq}\right) \cdot F_{i} + \frac{G_{i}}{\lambda V} \cdot \left(1 - F_{i}\right), \ \forall i \in [1, N]$$

$$(12)$$

where X_{eq} is a randomly pooled candidate from an equilibrium pool $X_{eq,pool}$, F_i is the exponential factor, G_i is the generation rate, V is the control volume taken a fixed value equal to 1 and λ_i is a random vector in the range [0, 1].

The equilibrium pool $X_{eq,pool}$ is formed using the particle concentration of the four best candidates $X_{eq(1)}$, $X_{eq(2)}$, $X_{eq(3)}$, $X_{eq(4)}$ based on the fitness value f(X) and the average concentration among them $X_{eq(ave)}$, which is represented as:

$$X_{eq,pool} = \left\{ X_{eq(1)}, X_{eq(2)}, X_{eq(3)}, X_{eq(4)}, X_{eq(ave)} \right\}$$
(13)

For a minimization problem, the selection of $X_{eq(1)}$, $X_{eq(2)}$, $X_{eq(3)}$, $X_{eq(4)}$ is based on a condition $f(X_{eq(1)}) \leq f(X_{eq(2)}) \leq f(X_{eq(3)}) \leq f(X_{eq(4)})$. The average concentration $X_{eq(ave)}$ is evaluated as:

$$X_{eq(ave)} = \frac{X_{eq(1)} + X_{eq(2)} + X_{eq(3)} + X_{eq(4)}}{4}$$
(14)

The exponential factor F_i is used to make a balance between the exploitation and the exploration, which is generated as:

$$F_{i} = a_{1} sign(r_{1} - 0.5) \left[e^{-\lambda_{i} \left(1 - \frac{t}{T}\right)^{\left(a_{2}^{-1}/T\right)}} - 1 \right], \forall i \in [1, N]$$
(15)

where r_1 and λ_i are the random vectors of size $1 \times d$ within the range [0, 1], which keep balance in the direction of the exploitation and exploration, a_1 and a_2 are taken as fixed values of 2 and 1 in [29]. The *t* represents the current iteration and *T* represents the maximum iteration allowed to reach the optimal equilibrium points.

The generation rate G_i help to extract the optimal solution by improvising exploration phase and for the *i*th particle is evaluated as:

$$G_i = GCP_i (X_{eq} - \lambda_i X_i) F_i \tag{16}$$

$$GCP_i = \begin{cases} 0.5r_2, & r_2 \ge 0.5\\ 0, & r_2 < 0.5 \end{cases}$$
(17)

where GCP_i is the generation rate control parameter and r_2 is a random number in the range of [0, 1].

2.4. Opposition based learning (OBL)

The opposition based learning (OBL) was proposed by Tizahoos in 2005 [30]. The technique is based on its current solution X and its opposite estimate \hat{X} of the current solution. Generally, the population X of an optimization algorithm are initialized in a random d dimensional search space. If the random solution space is nearer to the optimal solution space, the algorithm converges with a lesser function evolution. On the other way, if the random solution space is far away from the optimal solution or takes a long time to converge. To overcome this problem, one can take an estimate \hat{X} in the opposite direction of X and compare it to update the solution for the next generation.

Definition 1: Let x be a real number defined within the interval [lw, up], then the opposite number \hat{x} is described as:

$$\hat{x} = lw + up - x \tag{18}$$

If
$$l = 0$$
 and $u = 1$, then

$$\hat{x} = 1 - x \tag{19}$$

Similarly, one can estimate the opposite number for higher dimensional problem.

Definition 2: Let us define a *d*-dimensional point $X = \{x^1, x^2, \dots, x^d\}$ in a coordinate system where x^1, x^2, \dots, x^d are real numbers and the interval for each x^j lies between $[lw^j, up^j]$. Then, the *d*-dimensional opposite number $\hat{X} = \{\hat{x}^1, \hat{x}^2, \dots, \hat{x}^d\}$ is defined as:

$$\hat{x}^{j} = lw^{j} + up^{j} - x^{j}, \ \forall j \in [1, d]$$
(20)

Let f(X) is the fitness value of the *d*-dimensional point $X = \{x^1, x^2, \dots, x^d\}$ and $f(\hat{X})$ is the fitness value of the estimated *n*-dimensional opposite point $\hat{X} = \{\hat{x}^1, \hat{x}^2, \dots, \hat{x}^d\}$. The solution space updating equation, based on the opposition based learning, is described as:

$$X_{new} = \begin{cases} X, & f(X) \ge f(\hat{X}) \\ \hat{X}, & Otherwise \end{cases}$$
(21)

3. The proposed Opposition Equilibrium Optimizer (OEO)

This section proposes an opposition equilibrium optimizer (OEO), an efficient algorithm supplemented with opposition based learning and a novel escaping strategy. The particle position updating rule in EO mainly depends on the position of the particles from the equilibrium pool $X_{eq,pool}$, that are formed using the best candidates $X_{eq(1)}$, $X_{eq(2)}$, $X_{eq(3)}$, $X_{eq(4)}$ and they are average $X_{eq(ave)}$. Therefore, the search is primarily guided by the best solutions. This may lead to the local optimal solution, because all four best solutions may be found in a particular area of the search space. Especially, it reduces the chances of getting global optimal or near-global optimal solutions. This encourages us to incorporate a novel escaping strategy to elude such a situation. This proposal inherits an escaping strategy, one-third of the particles are randomly escaping from the local trap after the equilibrium is achieved. Even more interesting is its search capability throughout the entire search space. Thus, the suggested OEO is competent to explore better than the EO. Besides, the emphasis is also given on opposition based learning. The opposition based learning is established on the simultaneous evaluation of a particle on its position and its opposite points referred to as antiparticle. To explore the entire search space, the search trajectory should move in both directions - zone around the best solutions obtained so far, and the anti-particle concentration region. This warrants us to include opposition based learning in the OEO. This kind of learning strategy further enhances exploration capability.

Escaping strategy: Let us assume that a particle suddenly escapes from the current search space to a randomly new location with an escaping probability P_e , which is described as:

$$X_{i} = \{ \begin{aligned} X_{i} \cdot (2 \cdot r_{3} - 1), & r_{4} < P_{e} \\ X_{i}, & r_{4} \ge P_{e} \end{aligned}, \forall i \in [1, N] \end{aligned}$$
(22)

where r_3 is a random vector of size $1 \times d$ and r_4 is a random number in the interval [0, 1]. This novel updating rule helps the OEO search trajectory to avoid the local optimal solution.

Opposition based learning: Let us extend the solution space for the particle along with the corresponding anti-particle using OBL, which helps to explore the search space from both directions. The anti-particle concentration \hat{X}_i^j for *i*th particle in *j*th dimension is generated as:

$$\hat{X}_{i}^{j} = \min\left(X_{i}\right) + \max\left(X_{i}\right) - X_{i}^{j}, \ \forall i \in [1, N] \text{ and } \forall j \in [1, d]$$

$$(23)$$

Finally, the selection-based updating rule of the OEO is described as:

$$X_{i} = \{ \begin{aligned} X_{i}, & f\left(X_{i}\right) \geq f\left(\hat{X}_{i}\right) \\ \hat{X}_{i}, & Otherwise \end{aligned} \}, \ \forall i \in [1, N]$$

$$(24)$$

where $f(X_i)$ and $f(\hat{X}_i)$ are the fitness value of *i*th particle X_i and antiparticle \hat{X} .

3.1. Pseudocode of the OEO

In the beginning, determine the number of particles N to involve in the search process, the dimension of the problem d, search boundary interval [*LB*, *UB*], maximum allowable generation T of the particle to reach the optimal equilibrium point, escaping probability P_e and a fitness function $f(\cdot)$ for a problem statement. Also, assign free parameters $a_1 = 2$, $a_1 = 1$ and V = 1.

Begin:

Input: N, d, LB, UB, T, P_e , a_1 , a_2 , V and $f(\cdot)$ Initialization: Initialize current iteration t = 1Generate the particle concentration X using the Eq. (9-10) Update the fitness vector f(X) using Eq. (11) while $(t \le T)$ Update the equilibrium candidates $X_{eq(1)}$, $X_{eq(2)}$, $X_{eq(3)}$, $X_{eq(4)}$, $X_{eq(ave)}$ and construct the equilibrium pool $X_{eq,pool}$ using Eq. (13-14) **for** (i = 1 to N)Generate the random vector r_1, r_3, λ_i of size $(1 \times d)$ and random numbers r_2, r_4 in the interval [0, 1] Construct the F_i using the Eq. (15) Update the G_i using the Eq. (16) Update the particle concentration X_i using Eq. (12) if $(r_4 < P_e)//$ Escaping strategy Update the particle concentration X_i using Eq. (22) end Estimate the \hat{X}_i using the Eq. (23) // Generation of anti-particle Evaluate the fitness value $f(X_i)$ and $f(\hat{X}_i)$. Selection of next iteration X_i using the Eq. (24). //Opposition based learning Update the fitness vector f(X) for *i*th particle concentration X_i . end (for) Next iteration t = t + 1end (while) Output: C_{eq(1)}

3.2. Performance evaluation of OEO

3.2.1. Test functions, experimental setup, and evaluated algorithms

In this section, we evaluate the performance of the OEO using 23 well-known classical diversified test functions [32,33] together with 8 composition test functions from the IEEE CEC 2014 test suite [34]. Note that these 31 test functions are classified into four categories such as unimodal test functions $(f_1 - f_7)$, scalable multimodal test functions $(f_8 - f_{13})$, fixed multimodal test functions $(f_{14} - f_{23})$ and composition test functions $(f_{24(CEC-14-F23)} - f_{31(CEC-14-F30)})$. The unimodal test functions capability, whereas multimodal test functions are used to demonstrate the exploration capability, avoiding many local minima to reach the global minima. The composition test functions have many local minima with variations of shapes of the functions in different regions within a search space. These functions are composed of shifted, rotated, hybrid, expanded versions of the unimodal and multimodal test functions.

The performance of the OEO is compared with some recently developed and well-recognized optimization algorithms such as EO [29], HHO [36], SFO [37], WOA [38], GWO [39], PSO [35], DE [35] and L-SHADE [40]. A qualitative analysis [49] of the results of the OEO is carried out through the search history, trajectory, and average fitness history. Also, a qualitative comparison of the OEO with other optimization algorithms is done using Boxplots, convergence curves, and scalability curves. A quantitative analysis, based on the statistical results of fitness evaluation is carried out in terms of the average result ('Ave') and standard deviation ('Std') metric obtained from the fitness value of 51 independent runs of each optimization algorithm. Further, Friedman's mean rank test and Wilcoxon signed-rank test with a 5% degree of significance are used to demonstrating the significant differences between the other optimization algorithms. The Wilcoxon signed-rank test is evaluated based on *p*-value compared with OEO vs. other optimization algorithms for 51 independent optimal results, and assign '+' for p-value significantly better than 5% degree of significance, '-' for p-value significantly inferior to 5% degree of significance, and ' \approx ' for p-value with no significant difference. To provide a fair comparison, all test functions are evaluated with 30 particles through 500 iterations with a maximum of 15000 function evaluations. The control parameters for the OEO, EO [29], HHO [36], SFO [37], WOA [38], GWO [39], PSO [35], DE [35] and L-SHADE [40] are presented in Table 1. The optimization algorithms are

Table 1

The control parameters of va	arious o	ptimization	algorithms.
------------------------------	----------	-------------	-------------

Algorithms	Control parameters
OEO	Constant $a_1 = 2$, $a_2 = 1$, $V = 1$ and escaping probability $P_e = 0.33$
EO	Constant $a_1 = 2$, $a_2 = 1$ and $V = 1$
SFO	Power attack control coefficient $A = 4$ and $\varepsilon = 0.001$
WOA	Logarithmic spiral constant $b = 1$
GWO	Convergence constant $a = [2, 0]$
PSO	Inertia factor = 0.3, cognitive and social constant $(C_1, C_2) = (2, 2)$
DE	Scaling factor $F = 0.5$ and crossover probability $Cr = 0.5$
L-SHADE	p = 0.11, Arc rate = 2.6 and $H = 6$.

implemented in MATLAB R2018b in the Windows 10 environment of the Intel Core i3 processor with 8GB RAM.

3.2.2. Qualitative results of OEO

The qualitative results of the OEO during the iteration progress for one test function from each category are presented in Fig. 2. The wellknown metrics such as search history, trajectory, and average fitness history are used. The search history diagram of Fig. 2 presents the positions (only the first two dimensions) of each particle during the initial iteration to the maximum iterations. From the search history diagram, one can visualize that the OEO utilizes the whole search space to find the optimal solution. A higher concentration of points is aggregated nearer to the optimal solutions points. The trajectory of the best particle among N particles of the OEO is demonstrated in the 3^{rd} and 4^{th} columns of Fig. 2. The 3rd column of Fig. 2 demonstrates the trajectory of the best particle in 1st dimension. It reveals that, with the search progress, the concentration (position) reaches optimal or near-optimal solution space, although the initial search space is widely dispersed. Further, the trajectory of the best particle in *d*-dimension of the OEO is demonstrated in the 4th column of Fig. 2. It clearly shows how the OEO converges to an optimal solution space from a randomly distributed search space, as the iteration progresses. The last column of Fig. 2 displays the average fitness history based on Eq. (25) to demonstrate the collaborative behaviour of all N particles to reach the optimal or near-optimal solutions. A decreasing trend in the average fitness history shows the collaborative behaviour of the particle to reach an optimal solution. As the iterations progress, the newly updated solutions are better than the previous solutions. All these qualitative metrics help us to understand that the OEO has a well-balanced exploration and exploitation, to reach an optimal or near-optimal solution.

$$f_{ave}(t) = \frac{1}{N} \sum_{i=1}^{N} f(X_i), \ \forall t = [1, T]$$
(25)

3.2.3. Quantitative results comparison of OEO with other optimization algorithms

The comparison results (of optimization algorithms) on the test functions $(f_1 - f_{31})$ are presented in Table 2. The unimodal $(f_1 - f_7)$, scalable multimodal $(f_8 - f_{13})$ and composition $(f_{24} - f_{31})$ test functions are evaluated for d=30 for the statistical results presented in Table 2. The unimodal test functions $f_1 - f_4$ results on the OEO are improved significantly than other optimization algorithms. However, for the unimodal test function f_5 , the OEO behaves the same way as the EO, behind the HHO and L-SHADE to reach the optimal solution. The performance of the test function f_6 the OEO behind the L-SHADE, and for test function f_7 the OEO behind the HHO. The performance of the OEO on the scalable multimodal test function f_8 has improved over the EO and lags the HHO. The OEO obtain the same optimal results as the HHO for the test functions $f_9 - f_{11}$. The OEO also achieve similar results with EO for the test function f_9 , however, OEO lags L-SHADE for the test functions f_{12}, f_{13} . The performance of the OEO on fixed multimodal test functions $f_{14} - f_{23}$ show mixed responses of a similar result with EO, L-SHADE, and DE, however, it shows quite improved performance over EO for f_{15} , $f_{20} - f_{23}$. The performance of the OEO on composition test

Fig. 2. Qualitative results (search history, trajectory, and average fitness history) of OEO.

functions $f_{24} - f_{31}$ from CEC 2014 shows better optimal solutions than other optimization algorithms. In most of the test functions, the OEO performs statistically better. However, in some cases, it lags from other optimization algorithms – HHO, DE, and L-SHADE.

To analyse the statistical performance of the OEO, an statistical analysis based on the Friedman test [50] is first considered. Friedman's mean rank is analysed on all 51-independent run of 31 test functions $(f_1 - f_{31})$ for various optimization algorithms and reported in Table 2. Based on the Friedman mean rank reported in Table 2 the null hypothesis is rejected, which shows a significant difference in the performance of various optimizers. Interestingly, based on the Friedman mean rank OEO ranked first.

Further, to demonstrate the significant difference of OEO performance with another optimization algorithm, Bonferroni-Dunn [42] post hoc statistical analysis is carried out. The Bonferroni-Dunn test help to demonstrate the two algorithms are significantly different if the difference in the average ranking of the algorithms is larger than the critical distance (CD) [50]. Fig. 3 shows the average rank of the optimizer with a threshold line based on CD and OEO as control algorithms. The OEO shows better performance than EO, SFO, WOA, GWO, PSO, and DE at significance level $\alpha = 0.05$. The OEO outperformed all other optimizers and ranked first based on the lowest average rank of 2.355.

The disadvantage of the Bonferroni-Dunn test is, it cannot differentiate the methods which are below (e.g., HHO and L-SHADE) or close (e.g., EO) to the critical line. So further a sequential rejective multiple test procedure Holm's test [43] is carried out to identify which algorithm is superior/inferior to OEO. The Holm test is based on the sorted *p*-value and a comparison with them $\frac{\alpha}{k-m+1}$, where α is the target significance level, *k* is the degree of freedom and *m* is the rank. The Holm

Fig. 3. Bonferroni-Dunn test for the various algorithms with $\alpha = 0.05$.

test begins by comparing with *p*-value with corresponding $\frac{\alpha}{k-m+1}$ and reject the null hypothesis whenever it founds $p_i < \frac{\alpha}{k-m+1}$. The results of Holm's test using OEO as the control algorithm is shown in Table 3, which show OEO outperformed the PSO, GWO, EO, DE, WOA and SFO by rejecting the null hypothesis. However, OEO statistically likes HHO, and L-SHADE by accepting the null hypothesis.

Further, another statistical test called Wilcoxon's signed ranked test is also carried out in this work. The *p*-values are reported in Table 4 based on non-parametric Wilcoxon's signed ranked test with a 5% degree of significance. Wilcoxon's signed ranked test is carried out with the help of optimal fitness values obtained from the 51 independent runs of different optimizers taking OEO as a control algorithm. From Table 4, the p-value of the OEO vs. other optimization algorithms

Table 2

Comparison of optimization algorithms results (Best results are shown boldface).

	Function	Metric	OFO	FO	нно	SEO	WOA	CW0	PSO	DF	I-SHADE
Unimodal	function	Avo	5 522E 207	4 570E 41	4 0075 06	2 621E 15	1 0525 19	6 561E 09	5 424E 02	1 2705 1 01	1 100E 27
	J_1	Ave	5.525E-207	4.370E-41	4.9976-90	5.051E-15	1.955E-16	0.3012-08	5.424E-02	1.370E+01	1.100E-27
test function		Sta	0	1.282E-40	2.787E-95	9.113E-15	2.194E-18	1.623E-07	1.384E-02	5.35/E+01	1.//IE-2/
	f_2	Ave	6.425E-103	7.562E-24	2.039E-48	1.324E-07	3.569E-11	3.350E-05	1.064E+00	2.084E-02	3.329E-14
		Std	4.567E-102	1.696E-23	1.351E-47	1.541E-07	2.864E-11	3.923E-05	1.273E-01	7.083E-02	2.349E-14
	f_3	Ave	6.012E-186	1.135E-08	6.503E-71	9.542E-13	9.966E-05	3.290E-01	5.063E-01	6.363E+02	1.945E-13
		Std	0	3.659E-08	4.636E-70	3.113E-12	4.367E-04	4.205E-01	1.390E-01	3.461E+02	3.157E-13
	$f_{\scriptscriptstyle A}$	Ave	1.524E-99	5.044E-10	3.428E-48	9.667E-09	8.443E-05	1.448E-01	1.439E-01	2.322E+01	2.324E-06
		Std	4.496E-99	1.569E-09	1.861E-47	1.107E-08	1.318E-04	1.268E-01	2.191E-02	6.204E+00	1.823E-06
	f.	Ave	2.628E+01	2.533E+01	9.670E-03	7.742E-02	2.771E+01	2.881E+01	3.373E+01	5.731E+03	1.393E+01
	J 5	Std	2 265E-01	2 238E-01	1 205E-02	1 500E-01	7 679E+00	3 220E-01	1.508E+00	1.749E+04	6 097E-01
	f	Ave	5 150E-08	9 598F-06	1 200E-04	2 727F±00	8 402F-01	3 537E±00	5.883F-02	6.935F±00	2 679F-27
	J 6	Std	2 304F-07	7.948E-06	2.000E-04	1.640E+00	3.683E-01	5.057E+00	1 /8/E_02	1 840E+01	4.641E-27
	£	Avo	2.304L-07	1 1405 02	1 6595 04	2 1905 04	5.005L-01	4.086E.02	1.404L-02	C 200E 02	1 2415 02
	J 7	AVC Std	1.070E.04	6 6 2 6 E 0 4	1.0306-04	3.180E-04	0.920E-03	4.5600-05	1.41JE-01 4.140E-02	1 5405 02	1.341E-03
Caslahla	c	Stu	1.970E-04	0.030E-04	1.0/0E-04	2.774E-04	4.14/E-05	2.045E-05	4.1496-02	1.540E-02	4.440E-04
Scalable	J ₈	Ave	-8185.573	-9089.599	-12550.462	-/4188.123	-8022.479	-39.591	-157.831	-7034.625	-3321.327
Multimodal		Sta	863.616	931.345	131./93	386258.112	483.637	6.098	26.090	1225.383	406.600
test function	f_9	Ave	0	0	0	3.533E-13	2.009E+01	2.595E+01	1.730E+01	1.509E+02	6.253E+00
		Std	0	0	0	7.058E-13	1.563E+01	1.876E+01	4.684E+00	3.458E+01	1.596E+00
	f_{10}	Ave	8.882E-16	8.551E-15	8.882E-16	2.071E-08	5.265E-10	5.442E-05	3.881E-01	2.232E+00	4.185E-14
		Std	0	2.056E-15	0	2.536E-08	4.429E-10	6.420E-05	2.851E-01	2.721E+00	1.946E-14
	f_{11}	Ave	0	1.611E-14	0	9.578E-17	3.483E-17	1.816E-09	3.262E-03	3.562E-01	0
		Std	0	1.151E-13	0	2.483E-16	6.470E-17	3.368E-09	8.851E-04	7.322E-01	0
	f ₁₂	Ave	2.225E-07	6.108E-07	8.003E-06	5.043E-01	3.286E-02	2.936E-01	8.009E-04	2.499E+04	2.972E-16
	V 12	Std	5.720E-07	6.594E-07	1.675E-05	2.835E-01	1.800E-02	8.748E-02	2.369E-04	1.720E+05	1.701E-16
	f.,	Ave	8 584F-06	2 570F-02	1 020F-04	5.678F-03	7 026F-01	2.072F+00	1 722F-02	3 337F+04	1 063F-14
	J 13	Std	5.892E-05	4 568F-02	1.020E 01	7.025E-03	2 476F-01	2.672E+00	7.522E-02	1 143F±05	5.958E-15
Fived	£	Δνο	0.0021-03	0.000	1.571	6.0232-05	0.008	12 671	12 671	1.124	7 969
Multimodal	J 14	Std	2 02/E 16	1 225 16	1.321	4 17565175	1 1/E 12	12.071	12.071	0.72009425	2 711E 00
tost function	£	Avo	3.024E-10	2 5525 02	1.3432087	4.17303173 5.4405.04	1.14E-12 4.152E-04	1.226-10	2 2025 04	1 9175 02	2.7112+00
test function	J ₁₅	Ave	5.060E-04	5.552E-05	3.469E-04	3.440E-04	4.1556-04	1.000E-03	5.092E-04	1.01/E-US	3.075E-04
		Sta	6.3/4E-0/	7.329E-03	3.577E-05	8.806E-04	2.213E-04	1.379E-03	1.884E-04	4.701E-03	2.954E-19
	f_{16}	Ave	-1.032	-1.032	-1.032	-1.031	-1.032	-1.026	-1.032	-1.032	-1.032
		Std	3.807E-16	3.124E-16	1.606E-09	4.858E-03	1.441E-10	1.137E-02	5.381E-07	2.243E-16	2.243E-16
	f_{17}	Ave	0.398	0.398	0.398	0.419	0.489	0.797	0.398	0.398	0.758
		Std	1.020E-14	3.924E-16	9.396E-06	1.032E-01	6.500E-01	1.275E+00	3.543E-07	3.924E-16	2.637E-01
	f_{18}	Ave	3.000	3.000	3.000	7.786	3.000	4.602	3.000	3.000	3.000
		Std	2.695E-15	1.390E-15	1.547E-06	1.398E+01	3.661E-08	6.413E+00	2.905E-05	3.436E-15	2.262E-15
	f_{19}	Ave	-3.863	-3.862	-3.861	-3.800	-3.858	-3.744	-3.857	-3.863	-3.863
		Std	2.735E-15	1.545E-03	2.719E-03	7.293E-02	3.848E-03	5.597E-01	3.120E-03	3.140E-15	3.140E-15
	f 20	Ave	-3.269	-3.233	-3.092	-2.939	-2.843	-2.490	-3.075	-3.238	-3.287
	• 20	Std	6.188E-02	6.796E-02	1.127E-01	2.598E-01	5.116E-01	8.329E-01	2.279E-01	6.946E-02	5.471E-02
	fai	Ave	-9.001	-8.667	-5.346	-5.080	-4.973	-4.971	-5.055	-9.316	-5.055
	J 21	Std	2.1570E-14	2.629E+00	1.189E+00	4.006E-01	5.845E-01	5.842E-01	2.539E-04	2.166E+00	5.305E-07
	f	Ave	-9 107	-8 982	-5 243	-5 174	-5.006	-4 833	-5.087	-9.841	-5.088
	J 22	Std	1 042F+00	$2.631F \pm 00$	$1.084F \pm 0.0$	6.839F-01	5 848F-01	1.024F+00	4 285F-04	$1.949F \pm 0.0$	1 399F-06
	f	Ave	-9 903	-9.459	-5 569	-5 157	-5.046	-4 380	-5 128	-10 123	-5 151
	J 23	Std	1.060F±00	2 568E ± 00	1 564E+00	0.78/F_01	5.855E_01	1.627E+00	4 846E-04	1 672E+00	1 37/F_01
Composition	£	Δνο	2500	2615 200	2500	2500	2500	2500.002	2506 199	2616 410	2500
tost function	J 24 (CEC-14-	F23,VC	2500	2013.233 6.6655.02	2500	2JUU 9 092E 07	1 0255 09	2500.005 4 6 41E 02	2000.100	2010.415	1 90CE 12
form CEC	£	Avo	2600	2600 021	2600.000	3.3631-07	1.9231-08	2601 650	7.047E-01	2.7200+00	2600.001
101111 CEC	J 25 (CEC-14-	F24)VE	2000	2000.021	1 1225 02	2000.000	2000.265	2001.030	2001.250	2040.254	2000.001
2014		Sta	0	8.418E-03	1.123E-03	3.539E-04	1.050E-01	8.980E-01	1.613E-01	7.037E+00	4.671E-04
	f_{26} (CEC-14-	F2ASVe	2700	2701.900	2/00	2700	2700	2700.000	2700.099	2705.821	2700
		Std	0	4.009E+00	0	1.254E-08	4.029E-10	1.172E-04	1.225E-02	1.703E+00	4.898E-13
	$f_{27\ ({ m CEC}-14-}$	_{F2} Ave	2772.681	2721.840	2778.546	2778.481	2702.754	2800.000	2800.002	2706.461	2752.289
		Std	4.485E+01	4.141E+01	4.132E+01	3.919E+01	1.389E+01	8.879E-04	4.335E-04	2.375E+01	3.630E+01
	f_{28} (CEC-14-	F2Ave	2900	3270.823	2900	2900	2900	2900.001	2903.891	3261.551	3127.305
		Std	0	1.077E+02	0	2.538E-07	5.116E-09	7.726E-04	9.040E-01	6.765E+01	3.762E+02
	f_{29} (CEC-14-	Ave	3000	3821.335	3000	3000	3000	3000.002	3005.701	3889.015	3000
	(010 14-	Std	0	1.926E+02	0	4.326E-07	1.080E-08	2.425E-03	1.434E+00	2.205E+02	3.829E-09
	f_{30} (CEC -14	Ave	3199.917	2102159.186	497669.946	62394.447	3100.035	8377.328	7197592.705	1455346.004	3100.000
	(CEC-14=	Std	4.051E+02	4.077E+06	3.509E+06	1.501E+05	4.464E-02	5.600E+03	9.846E+05	3.212E+06	1.096E-05
	fal (CEC 14	Ave	6195.672	9365.528	251365.972	3200.078	17865.186	3531.487	498303.710	10852.880	3200.002
	→ 51 (CEC-14-	Std	3.573F+03	3.869E+03	3.760F+05	7.683F-02	1.213F+04	3.670F+02	5.818E+04	1.333E+04	6.220F-04
Friedman mea	n rank		2.355	3 964	3 598	5 599	5 187	7 200	7 265	6 159	3 672
Rank			1	4	2.555	6	5	8	9	7	3
Nalin			•	т	4	U	J	0	5	1	J

shows statistically significant, which are summarised as OEO vs. EO ('+' 83.9%, ' \approx ' 9.6%, '-' 6.5%), OEO vs. HHO ('+' 74.2%, ' \approx ' 22.6%, '-' 3.2%), OEO vs. SFO ('+' 90.3%, ' \approx ' 3.2%,'-' 6.5%), OEO vs. WOA ('+' 96.8%, '-' 3.2%), OEO vs. GWO ('+' 96.8%, ' \approx ' 3.2%), OEO vs. PSO ('+' 100%), OEO vs. DE ('+' 93.6%, ' \approx ' 3.2%),'-' 3.2%) and OEO vs. L-SHADE ('+' 90.3%, ' \approx ' 6.5%,'-' 3.2%). From these statistical values, it is observed that the OEO has significant improvement over other optimization algorithms. Based on the statistical results presented in Tables

2-4, it is believed that the OEO is good enough for function optimization. It ensures us a better trade-off between the exploration and the exploitation to find optimal solutions.

3.2.4. Qualitative results comparison of OEO with other optimization algorithms

This section presents a qualitative comparison of the OEO with other optimization algorithms using Boxplots and convergence curves. The

Fig. 4. Boxplot comparison of 18 test functions $f_1 - f_4$, $f_6 - f_9$, f_{12} , f_{13} , f_{17} , f_{21} , $f_{24} - f_{27}$, f_{29} and f_{30} .

Table 3Holm's test using OEO as the control algorithm.

Boxplot shows the potential of the optimization algorithm. From these plots, one can get an idea of how consistently or frequently the optimal solutions are obtained. The Boxplots of 18 test functions for fitness value using the optimal solutions obtained during 51 independent runs are presented in Fig. 4. Interestingly, the OEO has shown satisfactory results among all optimization algorithms. Further, convergence curves are also compared. A comparison of the OEO with other optimization methods for 12 test functions are performed based on the iteration count and presented in Fig. 5. From Fig. 5, it can be critically analysed that the OEO's performances on unimodal and scalable multimodal test functions are improved a lot than other optimization schemes. However, for the fixed multimodal and composition test functions, it shows a comparative result with other optimization algorithms such as EO, HHO, and DE. The qualitative analysis using Boxplots and convergence curves ensures the readers regarding the use of the OEO to solve complex optimization problems.

3.2.5. Scalability analysis of scalable test functions ${\rm f}_1-{\rm f}_{13}$

This section presents the comparison results of the optimal fitness values of scalable unimodal and multimodal test functions $f_1 - f_{13}$ for low to high dimensions. For the scalability analysis, we use N = 30 numbers of particles, T = 500 (15000 maximum function evaluations) as the maximum iteration count with 51 independent runs for OEO, EO, HHO, SFO, WOA, GWO, PSO, and DE, to validate low to high dimensions test cases for d = 10, 30, 50, 100 and 300. The L-SHADE is excluded for scalability test due to a large search agents' requirement N = 18D. The

scalability analysis of various optimization algorithms is presented in Fig. 6, which reveals the following facts:

- 1 The OEO consistently obtains the global optimum solutions for test functions $f_9 f_{11}$.
- 2 The OEO obtains near-optimal solutions for test functions $f_1 f_4$.
- 3 The OEO optimal solutions on test functions f_6, f_7, f_{12} and f_{13} are improved from its predecessors EO.
- 4 The OEO performances on test functions f_5 and f_8 lags HHO and SFO while a similar result like EO.

The scalability analysis reveals that the OEO can be used to obtain the optimal solution effectively for a set of random dimensional problems. Noteworthy differences are found for which it seems to be attractive for solving real-world engineering problems.

3.2.6. Discussions on results of OEO

For completeness, both the statistical and scalability analysis is presented. To enhance the search process of the OEO, the opposition-based learning and the escaping strategy are incorporated. From the statistical analysis based on Friedman's mean rank test, Bonferroni-Dunn test, Holm's test and p-value of Wilcoxon's signed ranked test, presented in Tables 2-4 and Fig. 3, it is revealed that the OEO becomes rank one among some recently developed and well-known optimizers - EO, HHO, SFO, WOA, GWO, PSO, DE, and L-SHADE. The Boxplot in Fig. 4 shows that the OEO has shown consistent performance among other optimization methods in most of the test cases. The OEO also enhances its convergence ability with iteration counts, which is reflected in Fig. 5. The OEO has shown better results in the scalability analysis, which is revealed from Fig. 6. Profound differences are marked in the study. Exemplary solutions are shown to demonstrate the ability of our proposed OEO. As opposed to the existing methods, our algorithm inherently includes certain mechanisms to handle different situations under uncertain dimensions. To figure out, the merits of our algorithm are - i) improved exploration, ii) better accuracy, iii) convergence in terms of iteration count, iv) easy to handle random problems with uncertain dimensions, etc. The reason for advanced technology may be due to the inbuilt escaping strategy and the opposition based learning scheme.

Fig. 5. Convergence curve comparisons of 12 test functions $f_1 - f_4$, f_6 , f_7 , f_9 , f_{12} , f_{15} , f_{19} , f_{24} and f_{29} .

4. The proposed context-sensitive entropy dependency based multilevel thresholding using opposition equilibrium optimizer

In this section, we propose a novel context-sensitive entropy dependency based multilevel thresholding technique using the opposition equilibrium optimizer (CSED-OEO) for colour images. The focus of the contribution is to retain contextual information without increasing the computation load. The idea of the energy curve (discussed in Section 2.2) is used under one-dimensional setting. Therefore, a higher speed in the computation of entropy values is enforced while minimizing

Table 4

p-value of Wilcoxon's signed ranked test with a 5% degree of significance (*p*-value ≥ 0.05 are shown in boldface). '+' for better, '-' for inferior, and ' \approx ' for identical.

Test functions	OEO vs. EO	OEO vs. HHO	OEO vs. SFO	OEO vs. WOA	OEO vs. GWO	OEO vs. PSO	OEO vs. DE	OEO vs. L-SHADE
\boldsymbol{f}_1	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16
f_2	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16
f_3	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16
f_4	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16
f_5	8.88E-16	8.88E-16	8.88E-16	5.76E-01	8.88E-16	8.88E-16	8.88E-16	8.88E-16
f_6	8.88E-16	4.62E-14	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16
f_7	8.88E-16	4.89E-02	1.61E-01	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16
${oldsymbol{f}}_8$	1.21E-07	8.88E-16	7.80E-01	4.89E-02	8.88E-16	8.88E-16	1.98E-04	8.88E-16
f_9	1.00E+00	1.00E+00	7.45E-09	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16
f_{10}	8.88E-16	1.00E+00	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16
f_{11}	1.00E+00	1.00E+00	6.10E-05	2.44E-04	8.88E-16	8.88E-16	8.88E-16	1.00E+00
f_{12}	1.47E-05	1.97E-11	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	4.62E-14
f_{13}	4.62E-14	4.62E-14	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16
$oldsymbol{f}_{14}$	1.60E-11	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.36E-12	8.88E-16
f_{15}	6.87E-07	4.62E-14	4.62E-14	1.98E-04	8.88E-16	4.62E-14	1.98E-04	8.88E-16
${m f}_{16}$	5.22E-03	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	4.66E-10	4.66E-10
f_{17}	1.00E+00	3.55E-15	8.88E-16	8.88E-16	8.88E-16	8.88E-16	1.00E+00	8.88E-16
f_{18}	5.54E-06	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	5.68E-14	2.54E-05
f_{19}	5.08E-04	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	2.27E-13	2.27E-13
f_{20}	4.01E-01	1.18E-12	4.62E-14	1.97E-11	1.18E-12	3.39E-06	1.61E-01	6.87E-07
f_{21}	5.76E-01	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	1.83E-08	8.88E-16
f_{22}	1.18E-12	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	1.18E-12	8.88E-16
f_{23}	1.98E-04	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	1.97E-11	8.88E-16
f _{24 (CEC-14-F23)}	8.88E-16	1.00E+00	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16
f _{25 (CEC-14-F24)}	8.88E-16	3.64E-12	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16
$f_{26 (CEC-14-F25)}$	8.88E-16	1.00E+00	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16
f _{27 (CEC-14-F26)}	1.98E-04	2.86E-01	6.87E-07	6.21E-04	8.88E-16	8.88E-16	1.47E-05	7.80E-01
f _{28 (CEC-14-F27)}	8.88E-16	1.00E+00	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16
f 29 (CEC-14-F28)	8.88E-16	1.00E+00	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16
f _{30 (CEC-14-F29)}	4.62E-14	1.00E+00	1.97E-11	1.97E-11	4.62E-14	8.88E-16	8.88E-16	1.97E-11
f _{31 (CEC-14-F30)}	1.10E-02	3.66E-03	1.00E+00	2.33E-09	1.00E+00	8.88E-16	4.89E-02	1.00E+00
+ / ≈ / -	26 / 3 / 2	23 / 7 / 1	28 / 1 / 2	30 / 0 / 1	30 / 1 / 0	31 / 0 / 0	29 / 1 / 1	28 / 2 / 1

Fig. 6. Scalability analysis for scalable test functions $f_1 - f_{13}$.

the objective function. As opposed to the earlier techniques, our method is based on a minimization approach. All these aspects are enshrined in the present development.

The multilevel thresholding using the CSED-OEO for a colour image is formulated here. The energy curve based minimum entropy dependency objective function for a multilevel thresholding problem is investigated and presented in this section. Let us define an RGB colour image *I* for size $m \times n \times 3$ as:

$$I(x, y) = \left[I^{R}(x, y), I^{G}(x, y), I^{B}(x, y)\right], \ 1 \le x \le m \ and \ 1 \le y \le n$$
(26)

where $I^{R}(x, y)$ represents the red, $I^{G}(x, y)$ represents the green and $I^{B}(x, y)$ represents the blue plane of the image I(x, y), which are mixed to display a true colour image. The arbitrary individual colour plane $I^{p}(x, y)$, $\forall p \in (R, G, B)$ is of size $m \times n$ pixel. So, each colour pixel is a

Table 5

The Optimal and Average segmentation metric results (PSNR, SSIM, and FSIM) ('†' as superior result count and '++' as simi	ar results count).
---	--------------------

Test Images	d	Metric	OEO	EO	HHO	SFO	WOA	GWO	PSO	DE	L-SHADE
111	4	PSNR _{OPT}	26.7311	26.1953	26.1127	25.9647	25.4479	26.5932	26.3408	24.7168	26.2182
		FSIIVI _{OPT}	0.9649	0.9638	0.9630	0.9641	0.9473	0.9005	0.9590	0.9249	0.9506
		PSNR	26 1839	25 3158	24 7267	25 1581	24 9962	26.0320	25 7419	24 7999	25 1801
		FSIM	0.9514	0.9406	0.9216	0.9383	0.9327	0.9572	0.9529	0.9250	0.9313
		SSIMAVE	0.9089	0.8938	0.8810	0.8929	0.8905	0.9059	0.9020	0.8873	0.8943
	8	PSNR _{OPT}	30.8012	30.7627	28.8841	29.5309	30.7044	30.6911	29.0388	30.0894	29.2234
		FSIM _{OPT}	0.9889	0.9890	0.9761	0.9829	0.9868	0.9908	0.9730	0.9866	0.9883
		SSIM _{OPT}	0.9649	0.9649	0.9474	0.9606	0.9655	0.9645	0.9550	0.9569	0.9444
		PSNR _{AVE}	30.0965	30.3724	28.2630	27.4707	29.9722	29.6723	27.1042	29.1146	29.3374
		FSIMAVE	0.9853	0.9876	0.9751	0.9684	0.9843	0.9851	0.9657	0.9807	0.9829
	12	DSNP	0.9591	22 0070	0.9377	0.9270	0.9573	0.9548	20 0012	0.9490	0.9494
	12	FSIM	0 9947	0.9952	0 9931	0.9916	0 9924	0 9949	0 9879	0 9901	0 9929
		SSIM	0.9794	0.9780	0.9757	0.9765	0.9813	0.9776	0.9671	0.9735	0.9760
		PSNRAVE	32.9053	32.8811	31.3138	29.4059	32.8995	31.4762	29.5991	31.3018	31.6175
		FSIMAVE	0.9938	0.9946	0.9901	0.9829	0.9938	0.9886	0.9800	0.9898	0.9920
		SSIM _{AVE}	0.9783	0.9776	0.9708	0.9466	0.9793	0.9715	0.9518	0.9678	0.9709
TI2	4	PSNR _{OPT}	27.8899	27.8899	27.8790	27.6226	27.5376	27.8717	27.4064	27.8863	27.7021
		FSIM _{OPT}	0.9318	0.9318	0.9343	0.9358	0.9287	0.9337	0.9310	0.9320	0.9223
		SSIM	0.9293	0.9293	0.9299	0.9246	0.9235	0.9259	0.9307	0.9278	0.9261
		PSINKAVE	27.7489	27.7208	27.4155	27.2930	27.0932	27.0973	25.4512	27.0009	27.4911
		SSIM	0.9258	0.9254	0.9230	0.9322	0.9243	0.9251	0.8957	0.9313	0.9282
	8	PSNR	31.7228	31.3243	30.9772	31.5871	31.0988	31.3695	29.5724	30.9483	30.8796
	-	FSIMOPT	0.9647	0.9646	0.9674	0.9606	0.9552	0.9677	0.9571	0.9534	0.9526
		SSIMOPT	0.9658	0.9622	0.9593	0.9648	0.9636	0.9606	0.9390	0.9612	0.9616
		PSNR _{AVE}	30.5086	30.9935	29.6352	30.5262	30.8446	30.7281	28.9036	30.8518	30.3196
		FSIM _{AVE}	0.9577	0.9572	0.9557	0.9602	0.9546	0.9575	0.9432	0.9543	0.9516
	40	SSIMAVE	0.9561	0.9608	0.9485	0.9577	0.9609	0.9606	0.9375	0.9617	0.9558
	12	PSNR _{OPT}	34.1794	33.8659	33.1145	32.1654	33.8241	33.17/6	32.6510	32.6501	32.4470
		FSIIVI _{OPT}	0.9765	0.9730	0.9689	0.9657	0.9743	0.9732	0.9724	0.9590	0.9743
		PSNR	33 7585	33 2947	31 7067	30 9414	33 3345	32 4432	31 3180	32 1503	32 3080
		FSIM	0.9725	0.9694	0.9679	0.9578	0.9705	0.9692	0.9646	0.9649	0.9677
		SSIMAVE	0.9775	0.9754	0.9647	0.9633	0.9752	0.9693	0.9632	0.9703	0.9696
TI3	4	PSNR _{OPT}	25.7751	25.6857	25.6718	25.5586	25.6738	25.7174	24.9349	25.6742	25.6064
		FSIM _{OPT}	0.9717	0.9712	0.9704	0.9658	0.9711	0.9713	0.9712	0.9707	0.9707
		SSIM _{OPT}	0.8299	0.8265	0.8283	0.8222	0.8276	0.8264	0.8175	0.8247	0.8274
		PSNR _{AVE}	25.6355	25.6760	25.3764	25.3733	25.6738	25.6531	23.5348	25.6617	25.4628
		FSINI _{AVE}	0.9719	0.9712	0.9668	0.9674	0.9711	0.9696	0.9486	0.9706	0.9696
	8	PSNR	30,7479	30 4709	29 9327	30 1617	30 7149	30 3299	28 0452	30 3325	30 2803
	U	FSIMORT	0.9920	0.9920	0.9905	0.9895	0.9929	0.9941	0.9758	0.9923	0.9917
		SSIMOPT	0.9105	0.9074	0.9014	0.9089	0.9165	0.9139	0.8535	0.9063	0.9202
		PSNR _{AVE}	30.3700	30.2062	29.6941	29.4834	30.2463	29.8101	27.6049	29.9206	29.9452
		FSIM _{AVE}	0.9922	0.9919	0.9917	0.9904	0.9923	0.9927	0.9840	0.9918	0.9904
	40	SSIMAVE	0.9069	0.9047	0.9017	0.9045	0.9073	0.9004	0.8692	0.9022	0.9068
	12	PSNR _{OPT}	33.0760	33.0612	31.8935	31.8043	33.1517	31.6193	30.7159	32.2235	32.4433
		rsini _{opt}	0.9905	0.9975	0.9950	0.9904	0.9971	0.9941	0.9820	0.9909	0.9964
		PSNR AVE	32,9308	32 8262	31 7439	31 1283	33.0178	30 7665	29 9644	31 9335	32 2049
		FSIM	0.9970	0.9968	0.9956	0.9947	0.9971	0.9906	0.9923	0.9945	0.9969
		SSIMAVE	0.9371	0.9386	0.9330	0.9231	0.9370	0.9094	0.9011	0.9237	0.9337
TI4	4	PSNR _{OPT}	25.0967	25.0248	23.8145	23.5509	23.4942	24.6870	24.6783	24.8779	22.9124
		FSIM _{OPT}	0.9598	0.9600	0.9576	0.9512	0.9066	0.9409	0.9542	0.9508	0.8864
		SSIM _{OPT}	0.9198	0.9179	0.9085	0.9045	0.9046	0.9172	0.9270	0.9231	0.9040
		PSNR _{AVE}	24.8931	22.6990	21.9672	22.4045	22.4702	23.5840	23.9223	23.6128	21.7421
		FSIMAVE	0.9410	0.9516	0.9554	0.9463	0.8992	0.9297	0.9492	0.9394	0.8738
	0	DSNP	0.8994	0.9071	0.8815	0.8757	0.8002	0.8700	20 4146	0.8989	0.8310
	0	FSIM	0 9943	29.9007 0.9950	29.0123	20.7590	29.2383 0 9946	29.2379	25.4140 0 9875	29.0000 0 9944	20.3423
		SSIM	0.9753	0.9711	0.9711	0.9648	0.9653	0.9679	0.9713	0.9682	0.9633
		PSNR	29.1131	28.2197	29.0618	27.9243	27.4528	28.4622	26.9897	26.7425	26.4580
		FSIMAVE	0.9875	0.9834	0.9907	0.9732	0.9771	0.9761	0.9824	0.9826	0.9881
		SSIMAVE	0.9670	0.9650	0.9680	0.9613	0.9572	0.9661	0.9597	0.9591	0.9499
	12	PSNR _{OPT}	32.6516	32.2969	29.4568	31.8648	31.4973	32.6384	31.2034	32.2362	32.1106
		FSIM _{OPT}	0.9985	0.9983	0.9912	0.9973	0.9966	0.9971	0.9936	0.9968	0.9970
		SSIMOPT	0.9828	0.9800	0.9694	0.9804	0.9808	0.9847	0.9800	0.9811	0.9802
		PSINK _{AVE}	31.9112	31.8803	27.6678	30.4305	30.0524	30.4779	28./999	31.10/3	29.9849
		r SIIVI _{AVE}	0.9902	0.9815	0.9/4/	0.9922	0.9644	0.9600	0.9629	0.9794	0.9917

		CCIM	0.0700	0.0777	0.0511	0.0070	0.0714	0.0721	0.0004	0.0004	0.0000
		SSIMAVE	0.9766	0.9777	0.9511	0.9678	0.9714	0.9721	0.9694	0.9684	0.9696
TI5	4	PSNROPT	26.3339	25.2370	26.0969	25.6033	25.2370	25.6544	26.0024	25.6927	25.7392
		FSIM	0 9764	0.9581	0 9753	0.9638	0 9581	0 9641	0 9782	0 9644	0.9670
		CCIM	0.0701	0.0155	0.0703	0.0044	0.0155	0.0001	0.0002	0.00011	0.00/0
		SSIMOPT	0.9289	0.9155	0.9284	0.9244	0.9155	0.9231	0.9238	0.9234	0.9248
		PSNR _{AVE}	25.7522	25.2161	25.1441	25.5437	25.2072	25.3377	24.4381	25.5263	25.2585
		FSIM	0.9674	0.9579	0.9611	0.9633	0.9579	0.9598	0.9512	0.9624	0.9605
		SSIM	0 02/0	0.015/	0.01/7	0.0240	0.0152	0.0174	0 0113	0.0226	0.0186
		SSIIVIAVE	0.5245	0.9134	0.9147	0.9240	0.9152	0.9174	0.9113	0.9220	0.9180
	8	PSNR _{OPT}	31.6015	31.6272	30.6433	30.6162	31.1169	31.1022	28.7858	30.6359	30.4560
		FSIM _{OPT}	0.9941	0.9938	0.9914	0.9930	0.9935	0.9943	0.9912	0.9902	0.9887
		SSIM	0 9740	0 9747	0.9687	0.9680	0 9721	0 9697	0 9583	0.9680	0 9703
		DCND	0.57 10	0.07 17	20.0001	0.5000	21 0220	20.2002	0.5505	0.0000	20 1205
		PSNRAVE	31.3227	31.3853	30.0021	29.6498	31.0338	30.3693	27.5978	30.1483	30.1285
		FSIM _{AVE}	0.9934	0.9936	0.9893	0.9897	0.9917	0.9901	0.9854	0.9895	0.9895
		SSIM	0.9729	0.9734	0.9661	0.9602	0.9701	0.9692	0.9479	0.9676	0.9663
	12	DENID	22 0156	22 0212	22 6022	22 4560	24 2252	22 4966	21 6269	22 5274	22 1659
	12	T SINKOPT	55.5150	55.6515	52.0555	52.4500	J 7 .J2JJ	33.4000	51.0508	JJ.JJ/4	55.1050
		FSIM _{OPT}	0.9976	0.9966	0.9964	0.9961	0.9982	0.9958	0.9957	0.9968	0.9953
		SSIMOPT	0.9844	0.9846	0.9804	0.9789	0.9841	0.9840	0.9740	0.9846	0.9798
		PSNR	32 8854	33 6961	31 7377	31 5215	33 7379	33 3778	30 2731	32 3157	32 2883
		FCIM	0.0052	0.0071	0.0007	0.0042	0.0072	0.0001	0.0205	0.0020	0.0045
		FSIIVIAVE	0.9953	0.9971	0.9927	0.9942	0.9973	0.9961	0.9895	0.9936	0.9945
		SSIM _{AVE}	0.9813	0.9837	0.9755	0.9740	0.9834	0.9829	0.9682	0.9794	0.9783
TI6	4	PSNRort	27.0952	27.0571	26.5280	25.8064	27.0481	26.8089	26.4675	27.0168	26.8923
		FSIM	0.9/16	0 0300	0.0158	0.0386	0.9466	0.9466	0.0375	0 0447	0.0326
		I SINIOPT	0.5410	0.5555	0.5150	0.5500	0.5400	0.5400	0.5575	0.5447	0.3320
		SSIM _{OPT}	0.8127	0.8120	0.7780	0.7631	0.7933	0.7989	0.7942	0.8088	0.8074
		PSNR _{AVE}	26.0380	26.7506	25.3058	25.1141	26.8424	26.6023	25.3038	26.7426	26.3512
		FSIM	0 9374	0 9408	0 9113	0 9091	0.9437	0 9409	0 9003	0 9366	0 9372
		CCIM	0.7767	0.0100	0 7202	0 7222	0 7800	0 7029	0 7279	0 7022	0 7927
	~	SSINAVE	0.//0/	0.0004	0./392	0.7222	0.7099	0./928	0./5/8	0./922	0./03/
	8	PSNR _{OPT}	30.7683	29.7804	28.5280	29.2569	29.6704	30.2685	29.0639	30.0731	29.1835
		FSIMORT	0.9905	0.9829	0.9796	0.9773	0.9859	0.9870	0.9658	0.9877	0.9838
		SSIM	0 8986	0.8771	0.8507	0.8780	0.8722	0.8820	0 8699	0.8819	0.8374
		DCND	0.0000	20.4402	0.0307	0.0700	20.2700	0.0020	0.0000	0.0015	20.0001
		PSNRAVE	30.0516	29.4403	28.4357	28./5/3	29.3790	29.4358	27.6929	29.1557	29.0021
		FSIM _{AVE}	0.9871	0.9839	0.9687	0.9777	0.9851	0.9811	0.9532	0.9830	0.9798
		SSIM	0.8851	0.8683	0.8438	0.8484	0.8671	0.8613	0.8278	0.8651	0.8503
	12	DCNID	24 0692	22 2724	21 6440	22 2205	22 4270	22 7102	22 5209	22 0205	22 1690
	12	FSINKOPT	34.0082	33.3724	31.0449	32.3393	32.4270	33.7192	52.5208	32.0303	32.1080
		FSIM _{OPT}	0.9966	0.9968	0.9887	0.9911	0.9940	0.9974	0.9921	0.9947	0.9887
		SSIMOPT	0.9481	0.9403	0.9223	0.9270	0.9265	0.9452	0.9285	0.9153	0.9160
		PSNR	33.0204	32,9946	30 9151	31 4851	31 6649	33 0353	29 7240	31 2675	31 4242
		ECIM	0.0047	0.0062	0.0004	0.0005	0.0010	0.0066	0.0759	0.0007	0.0965
		r SIIVI _{AVE}	0.9947	0.9905	0.9664	0.9865	0.9918	0.9900	0.9758	0.9907	0.9865
		SSIM _{AVE}	0.9358	0.9336	0.9042	0.9160	0.9137	0.9301	0.8564	0.9081	0.9109
TI7	4	PSNROPT	25.8106	25.5218	23.9090	25.2561	25.5107	24.9137	25.0154	25.4736	25.4562
		FSIM	0.9600	0.9575	0 9475	0 9641	0.9565	0 9519	0.9538	0.9560	0.9563
		CCIM	0.0000	0.0000	0.05475	0.0007	0.0070	0.0750	0.0330	0.0057	0.0050
		SSIMOPT	0.8984	0.8866	0.8560	0.8867	0.8872	0.8756	0.8749	0.8857	0.8850
		PSNR _{AVE}	25.4929	24.9973	23.5587	24.7786	25.4019	23.3312	24.3103	24.1016	24.6866
		FSIM	0.9504	0.9473	0.9391	0.9617	0.9471	0.9356	0.9371	0.9509	0.9523
		SCIM	0 6663	0.9752	0.8480	0.9921	0.9704	0.97/1	0.9721	0.0022	0.9921
	0	DOND	0.000	0.0752	0.0405	0.0001	0.0704	0.0741	0.0751	0.0052	0.0021
	8	PSNR _{OPT}	30.2647	29.5444	28.5365	27.6782	28.5677	29.1153	27.0458	28.6207	29.1583
		FSIM _{OPT}	0.9917	0.9910	0.9789	0.9843	0.9830	0.9870	0.9724	0.9847	0.9875
		SSIMORT	0.9501	0 9383	0 9297	0 9354	0 9270	0 9372	0 9286	0 9351	0 9357
		DCND	20 0124	20 4750	37.9154	26 6244	27 6662	20 00 4 4	26.0264	27 5094	27 0207
		PSINKAVE	29.8134	29.4759	27.0134	20.0244	27.0005	20.9044	20.9504	27.3084	27.0307
		FSIM _{AVE}	0.9888	0.9812	0.9628	0.9776	0.9772	0.9722	0.9722	0.9837	0.9743
		SSIM	0.9387	0.9284	0.9161	0.9221	0.9125	0.9318	0.9158	0.9247	0.9282
	12	PSNR	32 7679	32 5982	31 0779	31 2751	31 8878	31 3939	25 4264	31 4426	31 4026
	12	FCIM	0.0050	0.0057	0.0014	0.0052	0.0040	0.0020	0.0020	0.0015	0.0050
		FSIIVIOPT	0.9950	0.9957	0.9914	0.9953	0.9949	0.9930	0.9629	0.9915	0.9956
		SSIM _{OPT}	0.9677	0.9659	0.9599	0.9623	0.9610	0.9644	0.9090	0.9603	0.9613
		PSNRAVE	32.6180	31.9376	30.9150	31.0995	30.6371	30.9362	24.6592	29.9264	30.7235
		FSIM	0.9812	0,9806	0.9828	0.9822	0.9928	0 9744	0,9593	0.9862	0 9797
		CCIM	0.0592	0.0510	0.0522	0.0570	0.0602	0.0515	0.0012	0.0516	0.0405
		SSIIVIAVE	0.9385	0.9510	0.9323	0.9370	0.9005	0.9515	0.9012	0.9510	0.9495
118	4	PSNR _{OPT}	26.7213	25.1606	26.2764	26.8710	25.9750	26.1720	26.3807	25.7760	26.2535
		FSIM _{OPT}	0.9059	0.8487	0.8951	0.8957	0.8684	0.8869	0.8880	0.8695	0.8764
		SSIMORT	0 9391	0 9378	0 9370	0 9404	0 9426	0 9404	0 9421	0 9393	0.9438
		DCND	24 7604	24 2600	25 4162	25 0704	25 2554	25 6 10 1	26 1110	25 4175	25 7021
		PSINKAVE	24.7094	24.2000	25.4162	23.8784	25.5554	25.0181	20,1110	25.4175	23.7651
		FSIM _{AVE}	0.8928	0.8015	0.8636	0.8773	0.8554	0.8683	0.8807	0.8632	0.8749
		SSIM	0.9170	0.9135	0.9394	0.9384	0.9426	0.9394	0.9401	0.9375	0.9391
	8	PSNR	30 8445	29 7758	28 8876	29 9425	29 1859	30 5104	29 0244	30 3842	29 9509
	0	I SINKOPP	0.0005	20.7750	20.0070	23.5425	23.1033	0.0040	23.0244	0.00042	20.000
		r SIIVI _{OPT}	0.9005	0.9515	0.9011	0.9292	0.9420	0.9048	0.9446	0.9620	0.90/5
		SSIM _{OPT}	0.9700	0.9648	0.9590	0.9629	0.9621	0.9674	0.9562	0.9664	0.9625
		PSNR	30.0744	29.2353	27.8208	29.1908	29.3948	29.8612	28.5531	28.9138	29.0853
		ECINA	0.0626	0.0442	0.0206	0.0401	0.0450	0.0556	0.0460	0 0527	0.0412
		I SIIVIAVE	0.9028	0.9442	0.9390	0.9401	0.9438	0.9000	0.9409	0.9057	0.9413
		SSIMAVE	0.9657	0.9635	0.9526	0.9609	0.9637	0.9647	0.9539	0.9582	0.9599
	12	PSNROPT	33.1673	33.1434	31.1347	32.0253	33.0374	33.3131	30.4638	32.0626	32.7513
		FSIM	0 0780	0 0782	0 0582	0 0720	0 0772	0 0780	0 9606	0 0710	0 0700
		I SHVIOPT	0.3700	0.3762	0.3303	0.3720	0.0115	0.3760	0.0000	0.3713	0.3733
		SSIM	0.9811	0.9803	0.9/41	0.9742	0.9801	0.9802	0.9649	0.9778	0.9791
		PSNR _{AVF}	32.5798	32.1333	30.9431	30.2601	32.0377	32.1140	30.2490	31.0997	31.9087
		FSIM	0.9789	0 9723	0 9621	0 9639	0 9749	0 9721	0 9596	0 9742	0 9704
		CCINA	0.0705	0.0720	0.0717	0.0004	0.0700	0.0700	0.0007	0.0710	0.0700
_		SSIIVIAVE	0.9/85	0.9769	0.9/1/	0.9064	0.9762	0.9766	0.9067	0.9/18	0.9768
TI9	4	PSNR _{OPT}	25.1286	24.8940	25.5159	25.3399	24.9301	25.0029	23.0198	24.7994	24.9412
		FSIM	0.9546	0.9517	0.9588	0.9534	0.9515	0.9536	0.9088	0.9549	0.9587
		CCINA	0.0250	0.0014	0.0303	0.0307	0.0343	0.0000	0.0114	0,0000	0.0007
		SSHVIOPT	0.9359	0.9334	0.9392	0.9397	0.9343	0.9339	0.9114	0.9299	0.9337

		PSNRAVE	24.5015	24.1732	24.1433	24.3072	24.9011	24.9399	22.9863	24.6826	24.3894
		FSIMAVE	0.9456	0.9203	0.9419	0.9390	0.9516	0.9514	0.9271	0.9535	0.9428
		SSIM	0.9290	0.9217	0.9211	0.9265	0.9336	0.9338	0.9042	0.9289	0.9275
	8	PSNR	30.2413	30.1749	29.2808	28.6627	30.4116	29.7491	27.7169	29.8082	29.5684
		FSIMOPT	0.9879	0.9880	0.9839	0.9869	0.9891	0.9854	0.9753	0.9856	0.9862
		SSIMOPT	0.9759	0.9754	0.9707	0.9662	0.9768	0.9737	0.9625	0.9740	0.9714
		PSNRAVE	30.0288	29.7013	27.8510	28.2162	29.6948	29.0018	27.1644	29.3461	28.8566
		FSIMAVE	0.9878	0.9856	0.9807	0.9801	0.9863	0.9811	0.9720	0.9850	0.9820
		SSIMAVE	0.9749	0.9732	0.9603	0.9650	0.9731	0.9701	0.9579	0.9717	0.9688
	12	PSNR _{OPT}	33.3181	32.6910	32.1054	31.8795	32.4966	32.5028	31.1123	32.4794	32.7668
		FSIMOPT	0.9947	0.9942	0.9928	0.9927	0.9938	0.9917	0.9909	0.9935	0.9934
		SSIMOPT	0.9867	0.9855	0.9840	0.9829	0.9849	0.9856	0.9801	0.9849	0.9854
		PSNR _{AVE}	32.6398	32.4817	31.3471	30.0379	32.1159	31.4299	29.0111	31.7748	31.5425
		FSIM _{AVE}	0.9935	0.9935	0.9905	0.9852	0.9927	0.9892	0.9810	0.9917	0.9913
		SSIMAVE	0.9854	0.9851	0.9809	0.9756	0.9838	0.9815	0.9695	0.9828	0.9813
TI10	4	PSNR _{OPT}	24.9725	22.8728	24.2190	23.6342	23.1077	22.8389	24.6778	24.2442	24.2683
		FSIM _{OPT}	0.9416	0.8699	0.9247	0.9013	0.8846	0.8946	0.9144	0.9078	0.8932
		SSIM _{OPT}	0.7362	0.6752	0.7985	0.7674	0.6846	0.7662	0.7817	0.7063	0.7447
		PSNR _{AVE}	23.9164	22.7516	22.8019	23.2465	22.8552	23.2187	23.1274	23.3012	23.3246
		FSIM _{AVE}	0.9111	0.8651	0.9043	0.9092	0.8719	0.9001	0.8990	0.8933	0.8881
		SSIM _{AVE}	0.7393	0.7092	0.6814	0.7035	0.6962	0.7284	0.6860	0.7004	0.7174
	8	PSNR _{OPT}	29.4476	28.1726	28.0241	28.1767	28.6990	29.4345	29.3118	28.9466	28.9818
		FSIM _{OPT}	0.9681	0.9602	0.9686	0.9720	0.9583	0.9698	0.9767	0.9752	0.9767
		SSIM _{OPT}	0.8746	0.8527	0.8258	0.8225	0.8648	0.8660	0.8587	0.8550	0.8472
		PSNR _{AVE}	28.6454	27.9537	27.3179	27.4278	28.1130	28.5336	28.5395	28.1281	28.3452
		FSIM _{AVE}	0.9665	0.9526	0.9643	0.9684	0.9526	0.9633	0.9745	0.9605	0.9698
		SSIM _{AVE}	0.8480	0.8464	0.8102	0.8095	0.8558	0.8470	0.8306	0.8361	0.8303
	12	PSNR _{OPT}	32.5725	32.6196	30.7879	30.8428	32.2991	32.5998	30.6684	32.1626	31.6591
		FSIM _{OPT}	0.9881	0.9837	0.9773	0.9775	0.9860	0.9862	0.9763	0.9909	0.9889
		SSIM _{OPT}	0.9180	0.9251	0.9020	0.9072	0.9185	0.9225	0.8936	0.9114	0.9077
		PSNR _{AVE}	32.0101	32.0126	30.0686	30.2244	31.8495	31.3295	29.4384	31.0302	31.1451
		FSIM _{AVE}	0.9854	0.9828	0.9790	0.9787	0.9819	0.9813	0.9799	0.9842	0.9834
		SSIM _{AVE}	0.9116	0.9143	0.8845	0.8809	0.9127	0.8954	0.8618	0.8938	0.9023
$\uparrow / \leftrightarrow$			106 / 1	25 / 2	5 / 0	4 / 0	16 / 1	8 / 1	6 / 1	2 / 1	4 / 1
Friedm	nan's me	ean rank	7.8750	6.2639	3.5000	3.9694	5.5750	5.7167	2.7444	4.8194	4.5361
Rank			1	2	8	7	4	3	9	5	6

triplet corresponding to red (I^R) , green (I^G) and blue (I^B) colour plane. For an arbitrary colour plane $I^p(x, y)$, $\forall p \in (R, G, B)$, the energy curve $E^p = \{E_0^p, E_1^p, \cdots, E_L^p\}$ is generated using Eq. (8). The optimal threshold values $\tau^{p,*} = (\tau_1^{p,*}, \tau_2^{p,*}, \cdots, \tau_d^{p,*}), \forall p \in (R, G, B)$, using CSED based multilevel thresholding method for a colour image, are estimated as:

$$\begin{aligned} \tau^{p,*} &= \left(\tau_1^{p,*}, \tau_2^{p,*}, \cdots, \tau_d^{p,*}\right) \\ &= \arg \min_{0 < \tau_1^{p,*} < \tau_2^{p,*} < \cdots < \tau_d^{p,*} < L-1} \left\{ \psi_1^p(C_1^p) + \cdots + \psi_i^p(C_i^p) + \cdots + \psi_{d+1}^p(C_{d+1}^p) \right\}, \end{aligned}$$

$$\forall p \in (R, G, B) \end{aligned}$$
(27)

where entropic information ψ_i^p of the *i*th class C_i^p (*f* or $i = 1, 2, \dots, d + 1$) of an arbitrary plane (*p*) is evaluated using Eq. (28).

$$\begin{split} \psi_{1}^{p}(C_{1}^{p}) &= \log_{e} \left(\sum_{i=0}^{\tau_{1}} e_{i}^{p}\right) - \frac{1}{\sum_{i=0}^{\tau_{1}} e_{i}^{r}} \left[\left(\sum_{i=0}^{\tau_{1}-1} e_{i}^{p}\right) \log_{e} \left(\sum_{i=0}^{\tau_{1}-1} e_{i}^{p}\right) + E_{\tau_{1}}^{p} \log_{e} e_{\tau_{1}}^{p} \right] \\ &\vdots \\ \psi_{i}^{p}(C_{i}^{p}) &= \log_{e} \left(\sum_{i=\tau_{i-1}}^{\tau_{i}} e_{i}^{p}\right) - \frac{1}{\sum_{i=\tau_{i-1}}^{\tau_{i}} e_{i}^{r}} \left[e_{\tau_{i-1}}^{p} \log_{e} e_{\tau_{i-1}}^{p} + \left(\sum_{i=\tau_{i-1}+1}^{\tau_{i}-1} e_{i}^{p}\right) \log_{e} \left(\sum_{i=\tau_{i-1}}^{\tau_{i}-1} e_{i}^{p}\right) + e_{\tau_{i}}^{p} \log_{e} e_{\tau_{i}}^{p} \right] \\ &\vdots \\ \psi_{d+1}^{p}(C_{d+1}^{p}) &= \log_{e} \left(\sum_{i=\tau_{d}}^{L} e_{i}^{p}\right) - \frac{1}{\sum_{i=\tau_{d}}^{t} e_{i}^{p}} \left[e_{\tau_{d}}^{p} \log_{e} e_{\tau_{d}}^{p} + \left(\sum_{i=\tau_{d}+1}^{L} e_{i}^{p}\right) \log_{e} \left(\sum_{i=\tau_{d}+1}^{L} e_{i}^{p}\right) \right] \\ &(28) \end{split}$$

The probability distribution of energy $ep=e0p, e1p, \dots, eLp$ of all possible individual gray level in an arbitrary image plane Ip of dimension, $m \times n$ is described as:

$$e_{l}^{p} = \frac{E_{l}^{\nu}}{\sum_{i=0}^{L} E_{i}^{p}}, \,\forall l \in [0, L]$$
⁽²⁹⁾

where E_l^p is the energy value of the gray level *l* in the arbitrary image plane I^p , $\sum e_l = 1$ and $0 \le e_l \le 1$.

The optimal threshold values $\tau^{p,*} = (\tau_1^{p,*}, \tau_2^{p,*}, \cdots, \tau_d^{p,*}), \forall p \in (R, G, B)$ obtained using the CSED based multilevel thresholding method for a

colour image has *d* threshold values for each plane, that classifies the image plane into d + 1 different classes C_i^p for $i = 1, 2, \dots, d + 1$. The thresholded image plane $I_T^p(x, y)$ consists of only d + 1 gray levels, $\{\theta_1^p, \theta_2^p, \dots, \theta_{d+1}^p\}$, which are mean gray level values calculated by averaging the intensity values of the corresponding classes as:

$$I_T^p(x,y) = \{ \begin{array}{ccc} \theta_1^p, & 0 \le I^p(x,y) \le \tau_1^{p,*} \\ \theta_2^p, & \tau_1^{p,*} \le I^p(x,y) \le \tau_2^{p,*} \\ & \dots & \dots \\ \theta_{d+1}^p, & \tau_{d+1}^{p,*} \le I^p(x,y) \le L \end{array} , \ 1 \le x \le m \text{ and } 1 \le y \le n$$

$$(30)$$

After getting the red, green, and blue thresholded image planes, we combine the individual thresholded plane to obtain the colour thresholding image $I_T(x, y)$ given as:

$$I_T(x, y) = \left[I_T^R(x, y), I_T^G(x, y), I_T^B(x, y) \right]$$
(31)

It is needed to find $3 \times d$ numbers of optimal threshold values for a colour image. Here, the computation complexity is $O(3L^d)$. It is noteworthy to mention here that finding the optimal solutions is an exhaustive search process. Therefore, there is a strong need to propose a soft computing approach. In this experiment, the suggested OEO is used as an optimizer. The proposed CSED-OEO based multilevel thresholding technique may attract readers for colour image thresholding applications, because of its inherent advantages of attaining contextual information along with the knowledge of the entropy interdependencies among different classes. An effort is made here to minimize the shred boundary between different classes, which improves the accuracy of the method. A detailed process of the proposal for colour image thresholding is displayed in Fig. 7.

Generally, there is $256 \times 256 \times 256$ number of colour levels in an original RGB test image. If we use *d* thresholds to segment the original

Fig. 7. Flowchart of the proposed CSED-OEO based multilevel thresholding for colour images.

test image, the number of colour levels is reduced to $(d + 1)^3$, for the thresholded image. In our experiments, the segmented image is represented with 125 for d=4, 729 for d=8, and 2197 for d=12 colour levels. Thus, the proposed method reduced the distinct colour levels to such a large extent. Hence, it is well suited for simplified interpretation.

5. Results and discussions

In this section, we discuss the performance of the CSED-OEO based multilevel thresholding technique for remote sensing images. Its worthiness for the segmentation of multispectral images is highlighted. In these experiments, we use the high dimensional colour satellite images from the *Landsat image gallery* [44], which are captured by the Operational Land Imager (OLI) on the Landsat 8. The remote sensing images are taken well above the ground, so image features are rapidly changing their properties from one zone to another. This is the reason; the multilevel thresholding of high dimensional remote sensing images is more challenging. This demands us to use an efficient multilevel thresholding technique. A comparative study on the CSED based multilevel thresholding using recently developed and popular optimization algorithm are carried out. Here, the EO [29], HHO [36], SFO [37], WOA [38], GWO [39], PSO [35], DE [35] and L-SHADE [40] are also used for optimization.

Ten different test images (TI1 to TI10) from the *Landsat image gallery* [44] are considered for the experiments, which are displayed in Fig. 8. The visual information like test image, histogram, and energy curve of the corresponding RGB plane is also shown in Fig. 8. Along with this, Fig. 8 also provides information about the place and sensor of imaging,

Fig. 8. Test images (TI1 to TI10) with their corresponding histograms.

dimensions of the images. In the experiments, all the algorithms are run independently 21 times for the threshold values d = 4, 8, 12, particle N = 30 and maximum number of iteration count T = 100, to maintain the consistency among the optimizer performances on the multilevel thresholding using the suggested CSED method. It is reiterated that the optimization parameters setting of the OEO, EO, HHO, SFO, WOA, GWO, PSO, DE, and L-SHADE are presented in Table 1.

For a numerical finding, the optimal threshold values of the test images are presented in Table A.1 of the Appendix. The mean gray level values of thresholded images using the optimal thresholds are displayed in Table A.2 of the Appendix. Tables A.1 and A.2 consists of numerical data to provide a practical understanding. Whereas the qualitative results on the OEO are presented in Fig. 9. The thresholded images provide a visual interpretation of the mean gray levels given in Table A.2. Fig. 9 shows the thresholded images of 10 test images (TI1 to TI10) for threshold values d = 4, 8 and 12. From Fig. 9, it is revealed that the CSED-OEO based multilevel thresholding method has the potential to obtain good quality threshold values. It is also evident that the quality of the thresholded images increases with an increase in the number of thresholds.

To conserve space, only two-sample test images TI8 and TI10 are displayed here for comparative analysis. The qualitative results using

Fig. 9. Thresholded images using CSED-OEO multilevel colour image thresholding.

OEO, EO, HHO, SFO, WOA, GWO, PSO, DE, and L-SHADE are presented in Fig. 10 and Fig. 11, respectively. Fig. 10 and Fig. 11 shows that the overall visual quality of the OEO based thresholded images is more like the original images, the 2nd column is of 4-level, 3rd column is of 8-level and 4th column is of 12-level thresholded images. The 4-level thresholded images use 125 colour levels, 8-level thresholded images use 729 colour levels, and 12-level thresholded images use 2197 colour levels to represent, which are shown in Fig. 9-11.

Swarm and Evolutionary Computation 65 (2021) 100907

Fig. 10. Thresholded images using various optimization algorithms for multilevel colour image thresholding of test image TI8.

The remote sensing images are high dimensional. The visual representation of thresholded images is not sufficient to ensure the superiority of a method. So, here some well-known quantitative metrics such as Peak Signal to Noise Ratio (PSNR) [45], Feature Similarity (FSIM) [46], and Structure Similarity (SSIM) [47] are used. The better is the PSNR, FSIM, and SSIM value, the better is the thresholding method. The results based on performance metric PSNR, FSIM, and SSIM are presented in Table 5. The first categories of metrics used in Table 5 are

Fig. 11. Thresholded images using various optimization algorithms for multilevel colour image thresholding of test image TI10.

optimal PSNR ('PSNR_{OPT}'), optimal FSIM ('FSIM_{OPT}'), and optimal SSIM ('SSIM_{OPT}'), which are obtained from the thresholded image using the optimal threshold value presented in Table A.1 and the corresponding mean gray level in Table A.2. The second categories of metric used in Table 5 to describe the performance of various optimizer in multilevel thresholding are average PSNR ('PSNRAVE'), average FSIM ('FSIMAVE'), and average SSIM ('SSIM_{AVE}'), which are obtained from the thresholded image using independent threshold value obtained during the 21 independent runs of optimizer. These are estimated from the original test image, the corresponding thresholded image generated using the optimal threshold values presented in Table A.1 (see the Appendix), and the mean gray levels presented in Table A.2 (see the Appendix). Let us assign ' \uparrow ' for the superior results and ' \leftrightarrow ' for the similar results of PSNR, FSIM, and SSIM using different optimization algorithms. The OEO has shown superior results for PSNR and SSIM metrics. However, it shows competitive results for FSIM metric. The performance on the quantitative metrics presented in Table 5 summarizes the following - OEO ('^' 58.8%), EO ('†' 13.8%), HHO ('†' 2.8%), SFO ('†' 2.2%), WOA ('†' 8.9%), GWO ('↑' 4.4%), PSO ('↑' 3.3%), DE ('↑' 1.1%) and L-SHADE ('↑'2.22).

Friedman's mean rank test is also performed on the data presented in Table 5. Interestingly, the OEO ranked first among other optimization algorithms. For instance, last row of Table 5 shows its superiority over others.

6. Conclusion

The paper highlighted the merits of the proposal covering all aspects of the multilevel colour image thresholding. As opposed to the previously published research work, mostly based on the maximization of entropy, the method proposed in this paper is based on the minimization of an entropic objective function. Another new contribution is the attainment of the contextual information in the thresholded output. The reason for attainment is the inherent mechanism using the energy curve. Interesting statistical results are achieved in connection with the newly introduced OEO because opposition particle concentration and escaping strategy are also utilized to enhance the exploration capability. Even more interesting is its scalability and stability performances because the search trajectory follows both directions. The search history, trajectory, and the average fitness history of the OEO explicitly discuss its effectiveness for optimization. Also, the Box plots and the convergence curves ensure its stability and faster convergence to obtain the optimal solutions based on the iteration count, respectively. The limitation of the OEO is it takes more number function evaluation as compared to its predecessors EO. The Friedman mean rank test, Bonferroni-Dunn test, Holm's test, and *p*-value of Wilcoxon's signed ranked test shows the commendable statistical performance of OEO over other optimizers such as EO, GWO, WOA, PSO, and DE. The OEO can be replaced in place of HHO, SFO, and L-SHADE optimization problem based on the posthoc analysis of Holm's test. The OEO can be further explored to the multi-objective and constrained handling optimization problem. Nonetheless, the OEO has the potential to be used for the world of optimization

Moreover, the CSED-OEO method provides reduced complexity because the energy curve is used instead of the 2D histogram used in multilevel thresholding techniques. Nevertheless, its performance on the high dimensional application is encouraging. The reason may be due to its effective strategy to minimize the shred boundary between different classes by minimizing their entropy dependencies. An in-depth statistical analysis is provided to validate the method. Encouraging results are shown, which may attract readers for its future applications. Noteworthy differences are observed from the visual results displayed in Figs. 9-11. Quantitative metrics - PSNR, FSIM, and SSIM are used for validation. Friedman's mean rank test is also carried out (Table 7) to justify the superiority of our method over others. Its performances are compared with state-of-the-art methods and found better than others. It is believed that the idea may attract other researchers to explore further. The paper may enrich the literature in the context of segmentation-based analysis of colour images. It would be useful for the segmentation of biomedical images like magnetic resonance images (MRI), thermogram images, etc.

Author statement

Manoj Kumar Naik: Methodology, implementation, data handling, programming, Writing original draft Rutuparna Panda: Conceptualization, methodology, guidance, data analysis, revision of draft Ajith Abraham: Supervision, analysis

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix

```
Tables A1 and A2
```

Table A1	
The optimal threshold values for e	ach color component of the test images

Test Images TI1	d 4	R	OEO 34 82 142 243	EO 33 112 185	HHO 36 128 171	SFO 52 109 198	WOA 33 112 185	GWO 34 94 154 243	PSO 40 132 178	DE 34 116 177	L-SHADE 38 89 167 243
		G	49 86 155 245	243 46 89 146 245	243 44 94 137 245	243 43 93 146 245	243 47 113 187 245	46 89 146 245	204 46 98 159 219	243 46 129 189 245	45 90 178 247
		В	68 134 175 244	80 135 202 244	19 80 157 225	80 171 209 241	9 80 135 225	80 138 193 244	58 74 129 212	81 133 189 232	72 133 175 241
	8	R	8 32 67 105 145 185 215 243	10 33 67 105 140 185 215 243	8 33 70 101 109 148 185 243	8 36 70 98 119 182 216 243	8 35 66 108 141 183 216 243	5 17 40 81 118 147 188 243	3 50 64 105 152 174 198 226	30 63 93 123 151 192 212 233	39 58 89 117 144 174 208 242
		G	243 21 50 82 113 150 183 217 245	243 22 49 82 113 150 183 212 245	243 27 78 114 148 166 197 230 248	28 43 83 123 164 205 221 245	9 45 79 112 145 178 212 248	21 57 84 107 129 177 223 235	4 25 52 63 84 151 214 243	5 52 81 102 141 188 212 245	33 52 85 107 147 193 226 250
		В	19 56 81 107 131 171 209 244	12 54 81 107 135 171 209 244	28 67 107 133 162 190 220 244	9 42 61 82 146 165 202 244	25 51 80 110 135 162 193 244	9 47 78 116 146 178 209 240	5 39 55 82 121 145 169 206	10 49 69 105 141 165 225 240	13 78 102 134 173 195 216 244
	12	R	9 35 60 82 97 123 147 171 193 215 230 243	7 35 66 86 112 130 148 182 200 219 232 243	1 19 29 47 70 86 129 154 179 206 216 240	9 15 31 70 86 128 134 144 168 181 215 243	10 36 54 71 91 112 139 162 185 207 230 243	10 25 30 66 91 105 128 147 164 179 199 226	27 35 48 61 90 103 114 128 204 210 224 242	17 38 53 65 88 100 131 155 161 187 220 237	8 39 68 88 108 123 136 158 176 204 225 245
		G	1 24 48 64 82 109 128 150 169 192 217	6 26 55 74 89 110 128 147 166 200 226	9 39 50 78 94 127 156 168 192 197 230	26 39 54 90 117 143 158 170 183 205	5 23 42 58 81 113 130 153 174 196 226	13 26 38 64 83 109 130 153 170 190 209	23 40 82 93 111 129 155 161 172 180	5 17 41 83 91 112 133 145 174 197 214	25 51 65 86 117 133 142 156 185 206
		В	9 27 51 66 82 107 131 154 175 202 220	11 27 47 63 80 107 132 147 170 191 225	14 36 51 81 116 124 134 145 193 202	13 34 51 60 77 100 124 137 149 166 190	248 8 19 32 50 66 82 106 134 164 195 216	248 35 48 62 85 117 127 140 172 184 199	3 30 47 75 88 114 118 166 193 205 217	12 24 36 49 85 112 130 145 169 191 202	229 232 20 38 59 78 102 143 160 187 198 205
TI2	4	R	30 90 157 222	30 90 157 222	43 79 157 222	37 85 153 222	32 90 164 222	32 95 157 222	33 65 127 183	223 29 85 153 223	34 104 161 226
		G	58 118 168 232	58 118 168 232	58 110 156 232	66 118 171 232	57 118 171 232	60 117 162 216	50 79 156 209	56 110 154 216	50 105 153 226
		В	35 77 108 162	35 77 108 162	77 108 152 204	1 79 108 182	74 114 162 202	76 108 156 204	73 111 204 233	75 113 164 220	75 114 157 213
	8	R	14 32 67 93 125 154 182 220	16 30 65 99 136 175 213 244	13 43 74 95 118 158 183 238	44 80 102 141 166 214 228 247	16 30 65 99 136 175 213 244	1 13 28 67 110 160 207 244	15 32 111 121 146 168 233 251	30 61 94 122 150 179 213 244	29 55 90 119 157 180 205 238
		G	45 69 85 108 138 168 196 235	47 68 95 118 148 178 207 235	50 67 84 112 158 198 216 232	45 67 100 131 154 168 207 232	25 47 80 111 148 175 207 235	24 46 68 89 123 163 197 239	46 69 106 125 133 171 187 249	25 50 85 120 150 178 210 232	46 79 112 143 163 177 210 241
		В	11 41 79 108 148 182 205 235	1 36 77 108 151 180 212 247	4 11 71 93 108 173 196 245	48 67 73 93 112 148 194 240	1 31 54 79 108 162 204 240	38 76 99 123 147 174 200 226	12 78 103 130 153 169 215 245	1 36 75 108 133 163 203 240	9 52 79 111 154 185 217 254
	12	R	1 13 30 64 90 115 138 159 183 207 232	13 35 63 94 113 128 148 169 186 207	17 38 47 55 72 98 127 158 176 217 233	17 37 50 65 83 90 111 119 171 198 226	16 29 48 68 88 110 132 153 175 196 222	29 42 81 99 128 142 151 174 181 190	4 21 55 88 104 128 157 170 203 214 242	1 16 29 54 89 104 137 165 181 200 208	1 17 36 88 103 123 145 161 183 201 213
		G	7 25 44 60 80 99 120 143 163 187 211	228 247 3 24 50 73 92 111 130 149 172 193 216	26 35 46 70 88 137 145 167 197 211 221	9 15 25 46 52 89 104 119 144 189 205	1 25 46 67 87 109 128 149 168 187 211	4 16 50 71 95 108 128 146 163 184 204	22 43 62 69 77 102 125 134 168 183 187	1 25 38 73 94 116 137 152 173 193 233	235 24 41 62 86 99 117 147 166 197 214 220
		В	232 6 23 44 77 93 108 125 151 175 202 226	237 1 21 53 79 97 114 133 156 176 212 236	241 19 39 65 76 99 108 124 139 176 207 226	241 11 27 38 49 64 99 124 139 159 201 227	239 1 21 45 77 93 114 150 175 199 220 240	226 1 21 58 77 86 99 110 123 151 178 207	215 2 20 61 73 91 112 123 151 215 230 248	248 6 24 52 78 103 129 149 172 189 208 223	245 10 38 77 93 121 148 163 174 202 227
TI3	4	R	254 48 102 155 214	254 42 97 153 212	240 50 97 153 212	254 42 120 171	254 42 97 153 212	233 41 97 155 212	254 53 109 154	245 42 97 155 210	229 252 44 104 158
		G	214 65 117 172 219	60 112 167 219	62 120 165 219	72 126 165 213	60 112 167 219	60 112 167 219	225 81 112 167 225	60 110 167 219	57 111 164 219

(continued on next page)

		В	59 120 168 219	57 114 171 219	62 120 157 213	54 107 162 219	57 112 162 218	59 112 167 219	114 143 202 227	57 112 163 219	53 110 172 215
	0	D	21 50 00 116	21 50 07 115	41 59 97 115	24 56 05 125	20 59 97 117	210	2 49 64 70 100	26 66 04 114	27 52 106 127
	0	ĸ	142 172 201	142 172 201	124 100 100	152 101 202	23 30 07 117	152 170 210	142 171 200	140 100 205	159 100 221
			143 172 201	143 172 201	134 100 190	152 181 203	149 177 207	152 178 210	142 171 208	149 180 205	158 190 221
			229	228	228	237	237	237		237	239
		G	37 66 96 122	40 66 97 126	36 51 86 131	63 92 103 128	37 66 94 120	40 65 94 119	49 88 95 114	40 84 116 142	50 93 112 144
			151 179 208	155 181 208	156 172 206	167 187 209	149 175 205	142 172 209	157 179 209	170 201 218	164 193 211
			235	236	234	233	234	238	221	234	235
		В	47 74 99 125	1 51 81 112	22 50 76 107	1 47 75 107	45 72 97 122	24 48 78 105	55 119 129	1 54 78 110	52 89 107 143
			151 179 207	142 171 203	145 169 203	137 172 206	149 177 207	133 167 201	150 173 195	139 172 207	164 198 224
			234	233	234	232	233	233	210 240	241	240
	12	D	2 71 12 61 92	1 24 42 61 79	6 12 27 50 74	255	2 2 2 1 2 6 1 9 6	26 50 76 00	22 52 72 04 00	1 20 55 97 102	4 25 72 00 107
	12	ĸ	J 24 4J 04 6J	1 24 42 01 70	0 13 27 33 74	23 43 31 112	2 23 42 01 80	105 116 120	JZ JZ /J 54 55	1 29 33 87 102	4 23 72 90 107
			99 118 141	97 120 143	85 114 149	128 157 174	107 127 149	105 116 129	115 146 157	119 133 150	124 136 150
			163 187 214	168 193 217	168 194 221	1/9 200 213	169 190 215	143 162 185	188 203 215	181 202 214	1/3 199 218
			237	242	237	222 233	237	214 235	222	235	233
		G	36 58 77 96	33 53 71 92	34 50 59 87	27 46 67 84 93	31 48 68 87	8 19 38 62 84	26 64 74 80 94	25 36 55 76	37 63 87 98
			117 135 152	112 130 149	104 112 132	112 137 152	107 126 144	104 122 140	124 145 169	100 108 131	114 136 160
			167 185 201	167 185 203	173 185 207	185 203 223	162 181 201	163 185 215	188 206 214	157 167 186	189 199 226
			220 241	222 241	222 241	242	222 241	237	222	221 241	237 246
		В	1 22 46 68 88	1 15 40 62 85	8 20 38 67 94	15 34 51 87 96	1 22 48 71 92	8 20 43 59 89	25 45 81 97	4 26 44 55 71	4 47 63 83 101
			109 130 153	107 130 153	119 142 158	111 142 163	114 133 153	115 136 169	117 121 151	101 127 150	132 146 176
			174 104 217	175 106 210	171 104 221	180 101 213	173 106 210	178 187 221	171 186 200	174 108 221	10/ 200 227
			220	240	220	242	240	220	171 100 200	247	241
TI 4	4	р	233	240	233	245	240	220	255 250	247	241
114	4	ĸ	21 98 154 241	20 99 158 241	21 05 100 241	30 05 150 241	20 99 158 241	20 99 163 241	16 82 131 200	20 91 147 241	20 90 142 241
		G	6 32 102 161	6 32 102 161	38 82 116 167	6 32 99 162	6 32 108 217	6 38 101 134	3/ 81 142 225	6 30 95 169	6 29 99 213
		В	14 81 138 198	16 81 140 198	79 125 170	16 101 132	16 81 133 198	16 81 136 198	8 97 171 214	16 68 145 198	10 113 150
					198	198					199
	8	R	20 54 82 109	20 59 89 119	34 52 83 111	2 21 58 91 132	2 20 65 104	3 21 38 63 108	20 57 88 104	1 20 62 92 112	25 77 98 112
			139 170 203	149 174 206	130 149 194	172 202 241	138 170 206	134 167 241	123 153 202	156 194 242	137 161 206
			241	241	241		241		246		242
		G	6 36 60 84 113	6 32 72 102	7 28 74 102	5 36 69 97 112	6 32 76 108	6 30 62 85 113	11 54 87 102	6 31 75 117	7 34 81 109
			151 187 221	131 163 194	134 163 205	138 179 223	138 167 194	147 184 220	117 144 195	147 164 189	144 188 203
				221	221		221		208	225	224
		в	16 /1 50 70	16 67 03 121	10 65 86 118	21 68 113 131	7 16 21 60 102	10 21 50 82	11 /1 62 80 03	20 60 01 125	16 76 05 110
		Б	10 41 55 75	146 170 109	127 170 220	167 100 201	122 170 202	10 21 33 02	165 107 214	162 105 212	146 166 177
			100 155 100	140 170 196	137 170 220	107 169 201	155 170 205	121 140 177	103 107 214	102 195 215	140 100 177
			198	216	234	234	~	213		230	203
	12	R	2 6 21 54 81	2 25 54 90 109	2 25 47 64 83	1 6 21 33 58	20 44 64 88	2 17 39 66 82	16 21 48 67 87	1 18 57 88 100	1 20 42 53 82
			104 124 145	126 139 156	123 131 144	72 111 125	111 135 154	96 108 138	104 118 126	111 121 139	98 117 139
			166 188 209	180 208 225	176 195 204	152 181 195	171 191 209	163 196 227	130 173 186	164 192 209	178 186 206
			241	241	241	251	228 241	241	208	240	238
		G	7 12 32 59 82	6 30 53 83 104	6 13 24 82 117	8 39 59 76 96	1 6 29 45 63	8 29 37 54 67	4 49 56 70 90	4 29 52 76 88	4 31 79 114
			102 122 142	130 148 161	121 136 170	119 125 127	85 107 132	83 96 110 135	102 128 143	127 149 162	124 135 151
			163 184 205	176 189 202	195 200 219	152 170 193	166 195 222	156 177 217	173 175 228	175 198 207	164 178 197
			224	224	243	224	243		238	243	212 225
		R	7 41 61 81 102	8 32 47 66 02	1 10 42 80 103	8 49 70 77 83	1 14 39 65 81	1 57 66 76 91	58 86 92 120	14 22 34 56 67	8 39 53 73 106
		U	101 100 101	107 122 140	122 151 156	102 124 146	100 101 146	107 127 151	10/ 100 1/10	91 07 114 12C	11E 12E 1E2
			121 130 131	10/ 123 140	100 100 220	100 124 140	100 121 140	107 107 101	124 133 14/	01 9/ 114 130	113 133 132
			1/0 189 216	158 179 203	109 198 230	170 189 228	10/ 198 216	10/ 183 212	153 16/ 1/5	10/ 189 213	1/1 192 209
			234	234	234	234	234	234	1// 188		234
115	4	R	41 82 126 171	37 78 123 171	37 92 127 183	37 80 127 171	37 78 123 171	36 82 126 171	31 80 115 164	37 78 123 164	40 82 134 183
		G	55 129 177	9 55 133 225	57 99 163 225	7 62 143 199	9 55 133 225	9 55 133 209	65 111 180	7 56 141 208	20 65 142 209
			227						218		

Swarm and Evolutionary Computation 65 (2021) 100907

Table A1 (co	ontinued)
--------------	-----------

	В	9 131 167 225	22 108 167	5 105 177 227	34 105 161	34 108 167	10 108 167	36 132 167	34 110 158	15 97 159 221
			230		232	230	230	235	219	
8	R	28 51 78 102	26 51 78 102	37 60 83 102	1 26 51 78 104	25 58 82 111	38 57 70 90	2 46 62 80 121	29 49 70 90	37 62 94 112
		123 146 164	123 148 171	122 153 181	133 155 193	140 168 194	104 142 162	162 187 207	109 150 166	147 161 180
		197	195	200		230	180		188	205
	G	20 49 79 113	3 49 82 112	24 53 88 116	49 68 96 112	9 49 78 108	22 61 90 119	4 50 85 110	9 52 103 137	9 45 83 114
		140 171 203	143 171 201	154 180 189	158 174 211	140 171 201	148 172 205	152 182 222	149 171 196	137 158 190
		232	232	229	232	232	232	235	221	216
	В	10 80 108 137	12 81 108 137	3 10 91 119	34 46 96 126	22 81 108 137	14 44 67 99	2 78 90 118	5 69 103 145	15 81 95 131
		160 186 216	159 186 216	165 186 205	154 186 206	159 186 216	133 169 207	177 185 204	160 188 206	157 200 220
		242	242	241	241	243	241	210	244	243
12	R	1 30 51 69 90	1 25 41 62 78	25 47 62 97	25 36 45 49 63	25 41 58 70 84	22 35 58 80 92	6 24 44 56 85	31 55 69 83	25 36 49 66 78
		119 143 159	94 111 127	109 121 148	97 122 143	102 127 153	111 121 143	98 115 155	110 130 144	99 135 161
		176 191 207	146 165 183	166 179 189	158 173 183	171 189 206	160 183 212	184 192 218	162 179 197	175 190 218
		230	204	221 230	230	230	230	229	214 228	229
	G	7 30 48 73 95	7 29 46 68 88	46 56 68 82	20 58 73 98	7 46 62 82 104	45 57 77 97	24 28 53 61 66	25 44 57 83	24 44 54 100
		112 131 149	112 136 161	110 119 136	108 130 151	126 150 171	116 130 144	91 108 148	112 129 141	113 129 150
		170 190 208	186 209 232	168 180 205	176 186 202	190 209 225	162 182 201	181 208 220	172 185 203	172 192 204
		230	254	229 239	224 241	240	222 238	232	218 239	214 232
	В	3 38 74 92 111	5 38 66 80 96	38 65 88 95	38 50 89 105	3 22 46 66 85	15 42 83 95	6 49 54 62 79	14 72 79 91	9 34 69 80 95
		126 145 158	116 137 156	106 126 145	113 126 133	108 137 156	111 130 145	82 110 153	108 122 143	104 126 143
		178 201 223	179 201 223	153 174 201	157 189 199	179 201 221	156 178 197	168 194 213	159 174 187	183 206 232
		243	244	212 244	221 230	244	216 237	244	211 236	250
4	R	42 106 148	42 106 148	29 116 152	42 107 158	42 116 162	42 106 154	41 83 125 195	45 106 152	45 103 146
		219	227	223	227	227	227		219	231
	G	50 111 167	62 111 170	50 122 177	59 116 170	62 110 156	59 111 167	127 153 185	64 110 168	51 120 177
		208	208	206	225	208	208	211	211	211
	В	110 147 188	110 147 188	113 154 188	138 167 199	107 149 188	115 146 190	108 126 174	110 150 190	106 151 188
		230	230	230	226	230	230	217	230	226
8	R	17 43 79 107	17 45 75 106	19 33 82 105	19 69 86 107	17 48 80 116	38 60 101 137	39 97 116 134	17 48 86 109	15 44 80 134
		134 158 197	138 170 202	157 193 213	139 177 219	148 185 219	162 195 220	145 203 232	143 165 189	148 183 218
		227	233	247	233	247	252	243	228	240
	G	24 59 86 114	24 52 104 131	32 54 105 131	24 51 97 125	24 50 82 113	24 62 96 127	47 65 112 146	24 51 96 117	50 100 121
		142 167 200	160 188 216	145 180 223	187 208 238	146 177 208	147 170 200	173 176 202	141 170 197	137 153 176
		238	251	251	251	251	230	225	228	211 249
	В	44 69 102 127	44 73 108 140	44 51 103 143	74 112 124	44 73 104 131	48 87 106 131	40 67 84 113	51 76 116 143	54 104 124
		147 177 203	172 199 221	161 176 209	147 189 216	159 188 215	160 196 236	148 185 213	164 194 229	138 150 172
		230	246	230	234 246	238	252	225	252	200 230
12	R	25 31 54 69 87	4 17 45 65 85	13 23 73 91	3 29 61 93 112	4 30 52 76 102	22 41 55 70 87	23 33 45 65 78	1 20 42 59 73	7 23 42 52 70
		112 126 140	106 129 149	117 129 143	138 159 178	121 139 162	106 126 149	99 133 143	106 120 147	97 128 151
		157 182 223	172 202 227	167 187 197	193 209 243	187 212 229	172 199 223	150 161 188	161 200 229	169 190 202
		247	247	238 252	247	247	252	232	247	234
	G	24 40 56 83 93	24 39 62 75 94	24 52 62 91	45 63 99 120	24 50 62 86	24 39 59 77 92	40 64 66 83	24 51 80 99	41 49 69 106
		111 125 147	113 134 155	105 121 161	140 157 184	108 131 162	111 130 150	106 127 134	119 126 147	117 129 144
		171 206 223	177 200 223	185 215 219	196 206 225	180 198 211	170 198 220	173 185 208	161 182 195	160 173 213
		251	242	238 251	244 251	230 251	238	237 252	216 241	237 251
	В	54 66 81 91	48 73 91 104	44 73 83 96	49 71 87 98	54 71 85 107	44 59 79 93	75 78 94 104	44 56 71 81	44 56 96 110
		106 122 135	122 143 161	126 154 159	110 147 152	124 143 156	109 125 140	119 123 140	102 129 151	127 141 157
		147 167 192	181 199 215	180 217 226	173 183 201	173 190 209	165 196 217	162 187 224	172 184 211	170 179 195
		208 238	238 252	238 254	230 246	230 246	246 254	239 245	219 236	219 239
4	R	16 64 120 190	54 107 158	56 163 191	10 64 118 174	54 102 155	55 128 195	7 67 93 166	55 112 162	57 103 159
-			205	239		205	239		205	205
	G	22 81 135 186	22 81 135 186	81 123 185	23 75 134 185	22 81 126 185	22 84 132 186	90 125 153	22 83 130 187	21 80 130 179
	5	01 100 100	01 100 100	219		01 120 100	01 102 100	192	00 100 107	00 100 170
				2.0						

TI6

TI7

(continued on next page)

M.K. Naik, R. Panda and A. Abraham

Table A1 (continued)

		D	64 110 171	61 112 171	64 110 171	6 60 145 212	62 110 177	62 110 176	54 105 150	64 100 172	62 116 171
		В	64 118 1/1	01 113 1/1 229	64 110 1/1 220	6 68 145 213	62 118 1//	62 118 176 220	54 135 170	64 109 172	63 116 174
	0	р	22ð 19 51 70 107	22ð 16 50 04 134	229	12 26 64 00	22ð 12 56 06 120	229	204 16 57 104 154	22ð 16 52 92 100	227 13 59 105 133
	ŏ	ĸ	10 31 /9 10/	10 39 94 124	20 04 8/ 108	15 20 04 90	15 30 90 129	51 52 95 118 145 163 305	16 37 124 134	164 107 220	12 38 103 133
			155 100 202	132 1/9 203	130 100 200	110 138 209	105 205 230	140 102 200	104 1/4 213	104 197 239	155 181 202
		C	239 19 42 70 100	239	239	239	200 22 75 105 125	239	23/	200	24U 17 /1 70 107
		G	10 43 /0 100	20 49 // 103	14 29 84 108 125 177 105	11 39 /1 13/	22 /3 IU3 I33	12 40 /0 100	20 40 48 80 102 122 202	21 39 09 94	1/41/910/ 120155176
			120 133 183	121 129 100	155 1// 195	130 101 190	105 194 221	129 100 180	103 123 203	113 133 184	120 133 170
		D	219 11 40 72 102	213	221 50 00 110 122	220 10 29 61 94	240	219	210 10 26 72 07	210 0.62.04.112	214
		Ď	11 48 /3 102	11 39 93 118	39 99 118 133 159 104 313	10 38 01 84	9 00 92 121 152 104 212	0 21 00 90 110	13 30 /3 9/	9 02 94 113 125 154 107	10 31 70 98
			133 100 200 220	130 104 214	130 194 212	114 10/ 220	133 104 213	139 100 222	133 190 200	155 154 187	122 143 191
	12	D	233 17 47 65 97	240 6 17 22 51 72	233 11 22 12 57 97	237 14 22 45 78 00	240 0 27 62 99 107	1 20 11 67 91	220 5 16 56 71 79	200 11 27 55 80 00	200 11 24 54 77
	12	ĸ	100 119 135	92 113 133	193 142 160	176 146 167	3 37 02 00 107 127 129 172	96 122 138	123 147 163	138 152 165	117 134 157
			154 172 105	92 113 133 155 170 205	103 142 100	120 140 107	102 212 226	152 190 220	123 147 103	100 208 226	166 192 105
			1J = 1/J 1JJ 212 220	730	720	250	250	250	7/7 202 232	155 200 220	21/ 228
		C	10 30 51 71 00	11 28 48 66 84	1 11 24 54 83	230	2 23 46 75 98	1 13 24 28 61	277 10 49 51 54 63	12 22 32 60 86	10 29 50 72 96
		U	112 126 155	103 122 140 00 04	98 138 152	141 149 185	2 23 40 73 30	77 102 127	67 161 176	12 22 32 05 00	10 29 30 73 90
			177 198 225	159 179 100	167 190 222	203 218 224	185 203 225	171 196 225	214 226 226	160 100 212	196 215 226
			246	133 173 133 222	246	205 210 254	205 225	246	214 220 230	733	748
		в	10 27 46 64 82	6 20 57 81 102	5 24 49 82 98	8 22 48 66 102	1 17 44 66 93	5 15 39 64 85	8 36 85 101	4 13 38 51 82	2-10
		5	103 121 146	121 141 160	114 125 161	121 140 176	118 138 160	114 139 164	113 128 145	101 113 129	112 123 136
			170 191 215	181 202 222	178 185 217	199 209 236	183 202 222	181 203 221	151 174 177	156 185 217	180 202 218
			241	747	239	744	747	203 221	212 247	238	237
TI8	4	R	43 98 126 177	27 61 96 146	23 95 130 174	27 57 108 177	27 61 96 146	27 57 96 149	27 61 115 149	24 61 86 147	25 61 137 169
		G	46 98 159 219	10 52 115 229	15 53 94 152	19 52 118 156	10 52 99 140	10 52 99 153	10 52 115 156	15 51 98 140	9 50 98 143
		B	70 113 165	67 109 171	38 125 153	39 115 147	67 109 171	46 113 171	68 114 170	39 109 170	70 110 169
		2	192	216	212	189	216	216	216	219	217
	8	R	15 63 88 116	24 61 88 115	9 29 57 117	12 38 64 95	10 27 61 88	10 27 45 88	13 29 45 58	13 29 61 83	13 29 61 93
	2		146 174 189	138 162 185	146 165 220	108 130 187	115 146 180	115 146 178	144 158 182	111 124 180	147 183 202
			221	225	242	225	226	223	195	225	225
		G	26 52 94 118	15 52 71 104	30 52 69 102	10 52 104 118	11 52 99 140	23 53 71 95	13 25 52 54 99	6 50 77 109	24 53 75 112
		-	152 181 200	140 160 200	130 180 196	128 142 173	160 200 227	116 154 183	151 175 228	136 165 197	138 159 192
			226	229	229	200	247	229		227	234
		В	7 49 89 110	1 21 39 69 109	39 69 125 146	23 67 90 107	7 39 68 109	7 39 56 109	24 38 51 96	18 37 67 109	7 17 37 73 117
			139 168 190	146 180 216	154 168 187	137 174 198	147 181 216	131 149 177	112 150 177	127 152 179	146 209 228
			220		216	225	253	209	230	209	
	12	R	26 49 67 85	9 27 45 61 95	4 34 63 85 103	3 11 41 88 99	10 28 47 60 88	7 21 28 58 88	9 26 36 59 69	29 41 67 85	9 31 45 56 74
			108 125 145	111 127 143	111 115 147	118 131 145	115 135 153	113 127 143	80 108 134	103 115 143	85 104 134
			163 180 202	165 186 220	167 184 214	176 194 226	170 189 220	165 184 223	157 193 234	157 170 196	153 168 205
			223 240	240	240	241	240	254	254	207 223	229
		G	6 24 36 51 76	10 28 52 71 99	10 26 36 52 66	15 24 61 73	10 32 50 61 77	6 21 39 52 74	48 52 61 83	10 25 51 71	16 28 48 77 98
			97 112 128	119 140 157	90 121 134	103 114 132	98 118 140	95 118 138	109 132 140	117 139 165	123 140 164
			156 180 209	178 196 210	152 194 220	141 165 177	156 183 206	158 182 201	145 192 221	181 195 213	188 208 224
			227	229	226	211 229	229	216	222 236	241 251	253
		В	21 39 61 79 97	3 22 39 56 71	1 21 44 69 90	1 6 27 72 88	7 22 39 69 88	20 40 70 89	3 53 65 79 105	7 41 69 85 118	3 44 62 90 115
			114 132 153	89 109 129	107 135 161	111 136 149	109 129 150	100 115 123	131 143 155	141 172 192	124 144 161
			176 198 221	150 171 195	187 227 239	177 208 221	171 195 216	136 147 164	170 184 195	201 212 230	167 176 212
		_	243	221	253	253	233	184 204	207	243	237
TI9	4	R	35 90 147 199	34 83 150 199	37 108 152	61 111 156	34 83 150 199	34 83 151 199	38 79 122 186	35 83 151 199	39 87 151 199
		_			199	194					
		G	21 68 119 187	21 69 118 189	14 72 143 195	16 65 115 186	16 69 118 189	14 67 121 189	10 39 50 176	16 69 115 168	21 69 122 186
										(coi	ntinued on next page)

iubic mi (conuntacu)	Tab	le A1	(continu	ed)
----------------------	-----	-------	----------	-----

		В	5 80 126 172	5 80 130 173	64 116 160 200	5 75 121 171	5 80 128 171	5 75 124 171	100 121 180 188	5 66 112 173	5 91 133 179
	8	R	31 60 85 111 143 173 200	1 34 69 104 137 165 195	35 57 91 120 142 175 193	16 49 80 108 141 182 201	29 56 83 111 143 171 199	6 34 66 100 129 159 195	34 78 112 127 140 176 192	1 26 61 101 127 155 189	2 32 69 94 116 149 186 221
		G	229 16 43 71 108 131 159 192	228 16 42 69 109 136 164 192	229 21 39 72 111 167 175 204	228 14 55 71 113 129 168 200	228 11 42 73 110 136 164 194	226 16 48 68 110 132 158 192	222 21 27 54 71 115 176 215	222 20 41 70 105 131 156 177	21 36 79 118
		P	217	221	221	221	221	222	246	208	219
		Б	133 163 200	130 155 175 200	118 146 203 230	158 203 214	130 155 175 200	137 168 200	170 188 201	129 153 168 203	143 158 185 199
	12	R	1 25 55 73 96 113 137 156 178 203 229	1 23 38 59 77 96 114 135 155 177 199	1 25 62 81 104 120 142 154 176 192 201	21 57 72 89 112 123 154 173 184 199	1 29 50 71 95 116 140 160 180 199 221	24 42 62 86 107 121 130 145 160 174	23 52 66 99 114 129 156 175 212 213	1 28 71 89 104 134 146 154 167 188 207	6 19 32 51 80 107 120 131 146 176 200
		G	254 16 38 68 87 102 119 139	229 3 21 41 55 77 100 118 137	229 21 36 45 69 75 109 114 135	211 231 19 28 39 74 85 122 132 154	237 14 42 65 89 112 138 159	192 218 1 23 37 57 70 101 117 149	223 231 3 14 59 71 91 98 116 139	229 10 43 69 89 100 120 129	231 19 35 53 64 85 114 127 141
			162 180 195 210 223	157 178 201 222	169 188 202 222	175 194 208 221	181 201 221 242 254	175 201 221 254	159 193 212 222	138 160 178 199 216	167 185 200 219
		В	3 22 44 60 78 96 114 132 151 171 186 200	1 26 50 74 93 112 129 149 171 190 202 230	3 55 62 87 107 122 142 171 179 193 214 230	10 30 41 57 70 83 101 117 134 186 199 230	1 26 48 68 93 114 135 159 180 200 217 230	1 43 59 70 81 103 122 142 169 200 218 230	6 53 78 100 110 112 126 154 189 195 197 227	1 16 43 52 70 94 113 130 157 178 215 229	8 43 62 74 83 98 125 150 167 179 204 215
TI10	4	R	20 87 149 219	22 82 166 252	27 102 160 199	21 76 188 252	22 82 166 252	21 87 185 252	18 84 113 185	23 79 160 236	18 87 158 235
		G	90 140 187 251	71 159 231 251	94 140 186 251	89 159 198 251	89 159 231 251	66 99 159 251	52 103 181 211	64 147 207 251	96 151 229 251
		В	6 91 142 205	8 91 161 247	59 140 186 247	8 92 133 168	8 91 161 247	8 90 164 247	89 129 163 184	8 87 136 199	88 152 212 247
	8	R	20 56 86 111 146 173 199 236	18 49 80 107 160 195 236 252	43 81 115 147 185 216 235 252	51 87 112 145 172 190 226 252	16 49 80 107 158 195 236 252	19 91 108 124 154 190 234 253	21 32 77 113 139 160 202 226	24 75 96 138 171 208 239 252	15 63 80 120 173 213 235 252
		G	31 66 106 134 155 181 206 234	30 59 93 132 159 195 231 251	12 26 73 104 140 154 211 251	47 99 122 141 157 190 230 251	30 59 93 132 159 191 231 251	30 63 93 140 162 181 206 232	42 60 89 107 149 166 198 236	69 80 111 139 157 215 232 251	31 66 84 126 141 163 186 212
		В	6 27 75 110 146 175 223	8 30 59 91 135 170 225 247	6 59 106 133 162 182 226 247	15 55 84 107 163 184 196 247	6 51 90 120 147 182 225	1 59 80 101 130 151 178 216	22 63 93 108 164 195 213	4 36 87 107 139 163 186 236	5 31 81 104 128 159 200
	12	R	16 32 49 66 84 103 124 146 172 208 237	1 23 49 69 88 112 140 163 184 210 237	14 50 82 112 121 132 147 166 183 221	15 41 52 66 96 123 147 166 184 201 221	1 16 42 70 93 116 143 164 185 210 237	30 42 67 76 106 123 132 153 188 213	5 49 68 84 96 143 156 177 183 188 216	220 23 34 53 62 75 114 139 154 167 206 233	33 44 70 87 109 118 131 161 181 205
		G	252 30 51 66 93 122 142 163 177 198 218 224 251	252 7 12 30 54 66 89 116 140 159 181 206 222	237 252 19 44 59 66 77 96 113 155 180 219 236 251	252 3 27 77 109 116 123 147 180 211 217 224 251	252 7 31 54 71 89 116 140 168 189 214 235 251	237 252 27 60 88 98 112 123 138 150 168 180 200 232	234 7 25 55 79 106 112 133 144 160 188 230 240	252 28 52 71 88 105 121 139 159 171 205 232 225	230 252 28 55 84 112 126 139 150 172 186 202 210 222
		В	8 30 59 75 95 110 129 146 161 185 213	5 26 51 70 90 105 121 142 161 182 204	8 33 44 59 76 91 133 144 176 207 226	1 31 55 75 85 100 126 154 160 172 206	1 26 51 66 85 105 126 147 168 199 226	1 16 34 51 70 91 109 126 149 170 206	10 47 73 96 123 140 150 167 182 219	8 27 59 81 99 108 129 141 178 199 219	4 34 40 56 93 117 152 174 198 228 244
			227	226	247	247	247	226	232 245	237	247

Test Images	d		OEO	EO	ННО	SFO	WOA	GWO	PSO	DE	L-SHADE
TI1	4	R	19 57 109 167	19 69 142 200	20 76 148 189	21 78 142 211	19 69 142 200	19 57 109 167	20 80 152 189	19 70 142 194	20 63 123 185
			249	249	249	249	249	249	223	249	249
		G	32 69 109 173	30 70 109 165	29 71 110 157	29 70 112 165	31 77 134 207	32 69 109 173	30 73 118 174	30 80 148 209	30 70 114 199
			254	254	254	254	254	254	242	254	255
		В	42 98 150 197	46 100 156	11 48 101 178	46 101 186	5 47 100 158	42 98 150 197	39 66 99 152	46 100 152	44 98 149 197
			252	220 252	244	223 251	244	252	236	206 248	251
	8	R	5 21 49 85 124	6 21 50 85 122	5 21 51 85 105	5 21 53 84 109	5 21 51 86 124	3 13 24 60 98	2 21 57 83 127	19 46 78 108	20 49 73 103
			162 197 226	159 197 226	128 164 200	145 195 227	159 195 227	132 164 203	163 184 208	137 168 201	130 158 187
			249	249	249	249	249	249	243	221 246	220 249
		G	14 37 68 97	15 37 68 97	18 62 94 128	19 36 67 100	5 31 67 94 126	14 42 70 96	3 18 40 59 72	3 35 68 92 117	22 43 70 96
			128 162 197	128 162 195	157 177 211	139 177 213	158 191 227	117 146 193	107 167 227	157 199 226	122 162 207
			230 254	226 254	239 255	232 254	255	229 251	254	254	237 255
		В	11 40 68 96	6 39 66 96 116	19 46 94 116	5 32 51 71 101	16 40 64 97	5 35 61 98 126	3 30 47 67 99	5 36 59 94 115	7 47 95 111
			115 147 186	150 186 225	146 174 203	155 180 220	118 147 175	159 191 223	130 156 184	152 185 233	150 183 205
			225 252	252	231 252	252	213 252	251	232	251	229 252
	12	R	5 21 48 71 90	4 21 51 76 99	1 13 23 38 59	5 13 22 50 78	6 21 45 63 81	6 20 27 48 78	19 30 42 55 75	11 24 46 59 77	5 21 54 78 98
			110 135 159	121 139 163	78 106 141	106 131 139	102 126 150	98 117 138	97 109 121	94 115 143	116 130 147
			181 202 222	190 208 225	166 190 211	156 174 194	172 195 216	156 171 188	155 207 216	158 172 199	167 188 212
			236 249	238 249	226 248	226 249	236 249	209 243	232 249	228 247	234 249
		G	1 16 37 59 72	4 19 43 67 81	5 28 45 67 86	18 33 48 71	3 17 34 52 70	8 21 33 55 72	16 33 67 88	3 13 31 67 87	17 39 60 74
			95 118 138	99 119 137	108 139 162	102 128 150	96 121 140	96 119 140	102 120 140	101 122 139	100 125 138
			159 178 203	156 177 212	177 195 211	164 176 193	162 183 209	161 178 199	158 166 176	157 183 205	149 167 194
			230 254	237 255	240 255	220 243 254	236 255	225 255	199 244 255	224 251	217 240 255
		В	5 21 40 59 74	6 21 39 55 71	8 29 44 65 98	7 27 43 56 68	5 15 27 42 58	25 42 55 73 99	2 21 39 60 83	6 20 32 43 65	12 32 48 68 95
			97 115 142	96 115 139	120 129 140	93 108 130	74 96 115 147	122 133 153	99 116 132	98 119 137	112 151 172
			163 187 211	157 180 205	162 198 209	143 157 177	177 205 229	178 191 209	178 199 211	156 179 197	193 202 211
			231 252	233 251	228 251	211 252	252	230 251	229 252	213 244	228 251
TI2	4	R	20 62 120 183	20 62 120 183	21 62 114 183	21 62 116 181	20 63 122 187	20 63 122 187	20 51 95 153	20 59 116 181	20 70 129 186
			236	236	236	236	236	236	201	237	239
		G	36 87 141 185	36 87 141 185	36 84 131 177	38 91 142 187	36 87 142 187	36 87 142 187	35 64 112 175	36 83 131 174	35 77 127 174
			243	243	243	243	243	243	224	230	239
		В	26 57 92 126	26 57 92 126	53 92 125 172	1 54 92 127	52 93 129 179	52 93 129 179	52 93 129 216	52 93 128 185	52 93 128 178
			188	188	220	203	218	218	244	233	227
	8	R	10 23 51 80	11 23 50 82	10 23 59 85	21 63 91 120	11 23 50 82	1 10 22 50 89	11 23 73 116	20 47 78 108	20 44 73 105
			109 139 168	117 155 191	107 137 171	153 187 220	117 155 191	133 182 219	133 157 190	136 164 193	137 169 192
			196 234	224 252	199 248	236 253	224 252	252	241 255	224 252	216 248
		G	34 56 78 96	34 57 82 106	35 58 76 98	34 55 84 115	21 35 63 95	20 34 57 79	34 57 88 116	21 35 67 101	34 62 95 127
			123 152 180	133 162 189	133 174 206	142 161 182	129 161 187	105 141 177	129 150 179	135 163 190	153 170 189
			209 245	218 245	223 243	217 243	218 245	210 248	202 254	219 243	221 249

Table A2 Mean gray level for each color component of the thresholded images obtained using the optimal threshold values.

23

(continued on next page)

	В	6 32 60 92 125	1 27 58 92 125	2 9 51 87 100	37 58 70 87	1 24 45 66 92	29 58 90 110	7 54 91 117	1 27 57 92 121	5 40 65 93 127
		161 193 217	163 194 224	126 184 212	101 127 165	126 180 217	132 158 186	137 161 187	141 180 216	167 199 228
		245	254	252	210 249	249	211 238	226 252	249	255
12	R	1 10 22 49 77	10 22 50 79	12 23 43 52 64	12 23 44 58 74	11 23 40 59 78	20 36 62 90	3 15 26 72 96	1 11 23 43 72	1 12 23 63 96
		103 126 148	104 121 138	85 112 142	87 101 115	99 121 142	113 135 147	116 142 164	97 120 151	113 134 153
		171 194 217	159 178 196	167 193 224	142 185 208	164 186 206	163 178 186	186 208 225	173 191 204	172 192 207
		241 255	215 236 253	241 255	234 252	232 253	203 237 254	247 255	221 255	222 246
	G	5 21 34 52 70	2 20 35 61 83	22 32 40 57 80	7 13 22 34 49	1 21 34 56 78	3 14 35 60 84	19 34 52 66 74	1 21 33 51 84	20 33 50 75 93
		90 109 132	101 121 139	110 141 156	70 97 112 132	98 119 138	102 118 137	90 113 130	105 127 145	108 132 157
		153 174 196	160 182 202	180 203 216	163 196 217	159 177 196	155 173 192	150 176 185	162 182 206	179 204 217
		220 243	225 247	230 249	249	222 248	213 239	197 230	240 253	230 252
	В	3 18 36 60 88	1 15 42 66 89	13 32 53 71 90	6 22 34 45 57	1 15 37 61 88	1 15 45 67 84	1 15 47 67 86	3 19 42 65 91	5 30 58 88 105
		100 117 134	105 124 140	104 117 131	88 111 131	102 128 161	92 104 117	100 118 133	116 136 159	131 155 169
		161 187 212	165 191 222	149 190 216	146 177 212	186 209 228	133 163 191	173 222 237	180 198 215	187 213 228
		235 255	243 255	232 249	236 255	246 255	218 244	251 255	231 252	237 255
4	R	28 75 130 187	25 70 127 185	28 74 127 185	25 81 148 193	25 70 127 185	24 69 128 185	30 81 133 193	25 70 128 184	26 74 133 187
		240	239	239	239	239	239	244	239	239
	G	43 95 145 197	40 90 140 195	41 96 143 194	46 103 146	40 90 140 195	40 90 140 195	52 98 140 199	40 89 139 195	39 88 138 193
	_	245	245	245	190 243	245	245	246	245	245
	В	45 87 145 197	43 84 143 198	46 88 139 188	42 80 134 194	43 83 137 194	45 84 140 196	73 129 175	43 83 138 195	41 81 141 196
		245	245	243	245	244	245	216 247	245	244
8	R	20 45 75 104	20 45 73 102	24 50 73 102	21 45 76 111	19 44 73 103	17 36 66 102	2 28 56 72 94	22 51 81 105	18 40 79 117
		130 159 187	130 159 187	125 151 182	140 168 193	134 164 193	136 166 195	127 158 190	133 166 193	144 175 207
	~	21/245	216 245	214 245	223 248	225 248	226 248	238	224 248	231 249
	G	28 52 83 110	30 54 83 113	28 44 70 111	42 79 98 117	28 52 82 108	30 53 81 108	34 70 92 105	30 64 102 130	35 74 103 129
		137 165 194	141 168 195	144 164 190	148 178 199	135 162 191	131 157 191	136 168 195	156 186 210	154 179 203
	р	224 249	225 249	223 249	223 248	222 249	227 250	216 245	227 249	225 249
	В	38 62 86 111	1 40 68 95 127	19 40 64 91	1 38 63 90 122	37 60 85 109	21 39 65 91		1 42 67 93 124	41 /2 98 125
			157 188 221	120 158 187	155 190 222	130 104 193	119 151 185	102 185 203	150 191 228	154 182 215
10	D	225 249	240	222 249	240			220 231	201	200 201
12	ĸ	2 17 54 54 74	1 1/ 55 52 /0	5 II 20 45 07 90 100 122	17 54 07 102	1 10 33 32 74		20 42 05 64 97	1 19 42 71 95	2 10 40 01 99
		91 109 150 152 176 201	00 109 152 157 191 206	150 192 200	121 144 100	9/ 110 159	111 125 157	106 152 152	160 102 200	160 151 144
		227 248	232 250	230 248	218 228 247	228 248	226 247	210 242	109 192 209 226 247	102 187 205
	G	227 248	252 250	27 43 55 74 96	210 220 247	220 240	7 18 29 51 74	213 242	220 247	28 51 76 93
	u	108 127 144	103 122 140	109 123 152	103 125 145	117 136 153	95 114 132		105 120 144	107 126 148
		160 177 194	158 177 195	180 197 215	169 195 214	172 192 213	152 174 201	179 198 211	162 177 205	175 195 214
		212 233 251	214 233 251	233 251	234 251	233 251	228 250	219 245	233 251	232 242 253
	в	1 19 38 58 79	1 12 34 52 74	5 17 33 54 81	12 30 43 71 92	1 19 39 61 82	5 17 36 52 75	22 37 65 89	2 23 37 50 64	2 38 56 74 92
	2	98 120 142	96 118 142	106 131 151	104 126 153	102 124 143	101 126 153	107 119 136	86 113 139	116 139 162
		164 185 207	165 186 209	165 183 209	172 186 203	164 185 209	174 183 206	162 179 194	163 187 211	186 202 219
		230 250	232 251	232 250	232 252	232 251	225 247	220 236 250	237 253	235 251
4	R	13 70 124 178	12 70 126 181	13 52 108 185	16 53 105 179	12 70 126 181	12 70 128 183	12 61 105 162	12 66 117 174	12 66 114 171
		251	251	251	251	251	251	209	251	251
	G	2 22 78 137	2 22 78 137	23 66 101 144	2 22 76 136	2 22 82 153	2 23 78 120	23 66 118 167	2 22 73 139	2 21 76 151
		180	180	184	180	227	164	232	185	224
	В	3 56 93 156	3 56 93 158	56 91 140 182	3 58 111 151	3 56 93 151	3 56 93 154	2 58 111 187	3 53 82 162	2 59 125 166
		212	212	212	212	212	212	223	212	213
8	R	12 45 69 95	12 48 75 104	19 45 68 97	1 13 48 75 111	1 12 52 84 121	2 13 33 53 85	12 47 73 96	1 12 50 77 102	13 59 88 105
		124 154 185	134 162 187	121 140 171	151 185 210	154 185 213	121 150 185	114 138 175	133 175 203	125 149 180
		211 251	213 251	203 251	251	251	251	210 253	251	213 251
									ſ	continued on next page)
									(pugo)

24

M.K.
Naik,
R.
Panda
and
A.
Abraham

	G	2 23 53 73 100	2 22 60 88 119	2 21 60 89 121	2 23 58 84 105	2 22 62 94 125	2 22 53 74 100	3 34 72 95 110	2 22 61 99 134	2 22 65 96 130
		135 167 197	148 176 203	149 179 212	127 158 191	153 179 203	133 164 195	132 166 201	156 175 199	164 195 211
		230	230	230	231	230	229	220	232	232
	В	3 39 51 67 89	3 53 77 102	4 52 74 96 126	4 53 81 121	2 12 20 53 80	2 17 50 68 93	3 39 52 70 86	4 50 71 101	3 55 84 103
		116 146 179	131 156 182	150 188 226	144 177 195	112 147 183	129 154 192	106 175 199	138 175 204	129 155 172
		212	207 224	239	213 239	215	222	223	221 234	188 215
12	R	1 5 13 45 68	1 13 45 73 100	1 13 40 57 74	1 5 13 29 49	12 37 55 77	1 12 33 55 75	12 19 40 59 78	1 12 47 73 94	1 12 36 49 68
		93 114 135	118 133 148	102 127 138	66 91 118 138	100 123 145	89 102 123	96 111 122	106 116 130	90 108 128
		156 177 196	168 191 214	160 185 199	167 188 204	163 181 198	150 179 205	128 151 180	151 178 199	158 182 194
		215 251	229 251	212 251	255	215 232 251	231 251	195 216	215 251	213 250
	G	2 11 22 51 71	2 22 46 70 94	2 13 20 64 101	2 24 52 68 87	1 3 21 39 56	2 21 34 48 61	1 29 53 64 81	1 21 44 66 83	1 22 64 98 120
		93 113 133	119 140 155	120 130 153	109 123 127	75 97 121 150	76 90 104 124	97 117 136	110 139 156	130 144 158
		153 173 192	169 182 195	181 198 207	141 161 180	178 204 230	146 166 189	158 174 188	169 185 202	171 186 203
		212 232	210 232	228 245	202 232	245	227	233 241	218 245	218 232
	в	2 39 52 69 89	2 31 43 56 76	1 4 40 57 89	2 45 58 74 80	1 5 37 53 72	1 49 62 71 83	50 69 89 101	3 19 33 49 61	2 37 48 61 84
	_	110 128 144	98 114 131	113 141 154	91 111 133	89 108 131	98 117 144	122 129 140	74 88 104 123	110 123 143
		159 179 201	148 167 190	162 181 211	156 179 205	155 180 207	158 175 196	150 160 171	148 177 200	160 180 200
		223 239	215 239	232 239	231 239	223 239	220 239	176 183 206	222	218
4	R	26 61 101 148	24 58 97 146	24 63 107 154	24 59 100 149	24 58 97 146	24 59 101 148	21 56 96 138	24 58 97 143	25 61 103 158
•		193	193	199	193	193	193	190	190	199
	G	42 95 156 203	3 42 97 185	42 80 135 196	2 44 105 174	3 42 97 185	3 42 97 175	45 89 151 200	2 42 102 178	3 45 106 178
	-	246	245	245	239	245	241	244	241	241
	в	2 88 148 202	4 81 135 205	1 80 137 207	5 80 132 205	5 81 135 205	3 81 135 205	8 88 149 209	5 82 133 194	4 77 125 196
	-	251	251	251	252	251	251	252	249	250
8	R	20 41 64 90	19 40 64 90	24 50 71 93	1 19 40 64 91	19 43 69 96	24 49 64 80 97	1 28 55 71 98	21 40 60 80 99	24 51 76 103
		112 135 155	112 136 160	112 137 167	117 144 174	124 154 182	121 152 171	141 175 197	127 158 178	128 154 171
		181 207	184 206	191 209	205	205 232	198	213	202	193 212
	G	3 40 66 96 127	2 40 68 97 129	4 41 73 102	40 59 83 104	3 40 65 94 125	3 43 77 105	2 40 70 98 133	3 41 80 121	3 39 66 99 126
		157 188 219	159 187 218	137 168 185	138 167 193	157 187 218	135 161 189	168 203 229	144 161 184	149 175 204
		247	247	210 246	222 247	247	220 247	247	209 244	243
	В	3 70 93 122	3 70 94 122	1 7 75 104 141	5 44 77 110	4 70 94 122	3 42 62 82 115	1 69 84 103	1 63 84 123	4 70 88 112
		149 174 203	148 173 203	176 197 226	141 171 197	148 173 203	150 191 227	145 182 196	152 175 198	145 181 211
		231 254	231 254	253	226 253	232 254	253	208 248	229 254	233 254
12	R	1 21 41 60 79	1 19 34 53 70	19 37 55 78	19 31 41 48 57	19 34 51 64 77	18 29 48 69 86	5 19 35 51 69	21 44 62 76 96	19 31 43 58 72
		103 131 151	86 102 119	103 115 134	78 108 133	93 114 140	101 116 132	92 106 134	120 137 153	89 114 148
		168 184 199	137 156 175	157 173 184	151 166 179	162 181 198	152 172 197	170 188 203	171 189 205	168 183 202
		213 232	194 211	202 223 232	199 232	212 232	216 232	221 231	218 231	221 231
	G	2 29 40 62 85	2 27 39 58 79	39 51 63 76 96	3 42 67 86 103	2 39 54 73 94	39 51 68 88	4 27 41 58 64	5 39 51 72 98	4 39 49 80 107
		104 122 141	100 125 150	115 128 154	120 142 165	116 139 162	107 124 138	79 100 130	121 136 158	122 141 162
		161 181 200	174 198 221	175 193 218	182 194 214	181 200 218	154 173 192	166 195 215	179 194 211	183 199 210
		220 246	246 255	235 248	234 248	234 248	212 231 248	227 247	230 248	224 247
	В	1 20 67 83 101	1 22 62 73 88	11 61 77 92	11 48 74 97	1 10 44 62 76	4 39 71 89 103	2 47 53 59 72	3 66 76 85 99	2 16 63 75 88
		119 136 151	106 127 147	101 116 136	109 120 130	96 122 147	121 138 151	81 95 132 161	115 133 151	100 115 135
		169 191 213	168 191 213	150 164 189	146 174 195	168 191 212	168 189 208	182 205 231	167 181 201	161 196 221
		235 254	235 254	207 231 254	211 226 251	234 254	228 253	254	225 253	243 255
4	R	23 88 127 167	23 88 127 167	15 93 134 169	23 89 132 174	23 94 139 176	23 88 130 171	22 73 105 152	25 88 129 169	25 86 125 166
		234	240	237	240	240	240	211	234	243
		234	240	162	240	240	240	211	234	245

(continued on next page)

25

TI5

	G	43 95 130 180 226	51 96 131 183 226	43 101 138	49 98 134 185 238	51 95 128 170 226	49 95 130 180 226	103 138 164	52 95 130 181	43 100 137
	В	96 121 161	96 121 161	97 124 167	102 149 180	94 119 162	97 125 160	95 116 138	96 121 164	94 119 164
8	R	205 240 8 32 70 95 121	205 240 8 33 67 93 122	205 240 9 27 71 95 131	211 237 9 58 79 97 123	205 240 8 35 71 99 132	207 240 20 53 86 119	191 231 21 82 107 125	207 240 8 35 75 98 126	204 237 7 32 71 108
0	ĸ	146 172 207	153 181 213	171 201 226	156 188 226	164 195 231	150 174 204	140 164 213	154 175 200	141 163 193
		240	244	253	244	253	233 255	238 250	241	228 248
	G	24 49 80 101	24 44 92 117	30 46 92 118	24 43 87 111	24 43 76 99	24 51 87 111	41 58 96 127	24 43 87 107	43 89 111 129
		127 151 179	142 170 199	138 156 194	141 196 221	128 157 188	136 156 181	156 175 186	128 151 180	144 162 188
	R	215 247 42 65 92 112	230 255 42 69 95 119	234 255 42 49 92 116	244 255 69 97 118 132	224 200 42 69 93 115	213 241 46 82 97 116	212 238	210 240 48 71 98 125	220 204 51 93 113 130
	D	135 158 188	152 183 209	151 168 190	161 201 224	141 170 200	141 173 212	124 161 198	152 176 209	144 159 184
		215 240	231 251	219 240	240 251	225 246	243 255	219 237	238 255	213 240
12	R	12 28 45 64 80	2 11 33 59 77	6 19 63 84 105	2 18 51 82 103	2 19 43 69 91	11 33 50 65 80	11 28 40 59 73	1 11 32 53 68	3 15 34 48 64
		100 119 133	96 118 139	123 136 155	125 149 168	112 130 151	97 116 138	90 116 139	92 113 134	86 113 140
		149 168 193	160 182 211	176 192 209	185 200 222	173 196 220	160 182 208	147 156 172	154 174 210	160 178 195
	C	234 253	236 253	245 255	245 253	237 253	235 255	199 243	237 253	213 245
	G	24 30 49 77 89	24 30 33 72 87	24 44 58 84 99	40 56 89 110	24 43 57 80 98	24 30 31 73 80	30 33 00 78 90 117 131 176	24 43 75 91	37 40 03 93
		156 183 214	164 186 210	196 217 228	190 201 215	188 204 220	158 181 208	179 194 221	153 170 188	151 166 186
		234 255	232 249	244 255	234 248 255	239 255	229 247	244 255	204 227 249	224 243 255
	В	51 63 77 87 99	46 69 86 98	42 69 80 91	46 67 83 93	51 67 81 97	42 56 74 88	70 77 89 99	42 53 67 78 93	42 53 89 103
		113 128 140	112 130 151	108 135 157	104 121 150	115 131 149	101 116 131	111 121 130	113 137 160	117 133 148
		156 177 200	170 190 207	168 196 222	161 178 192	164 181 199	150 177 206	149 172 203	178 196 215	163 175 187
4	р	221 246	225 245 255	232 245 255	214 237 251	219 237 251	229 250 255	231 242 250	227 244	206 228 246
4	К	7 35 90 154	21 /9 134 1/9	21 108 177	4 32 90 147	21 // 130 1//	21 89 160 209	3 31 80 131	21 82 138 181	22 /9 133 180
	G	207	14 57 106 159	56 101 153	15 55 102 158	14 57 102 154	14 58 107 157	59 107 140	14 58 105 157	13 57 103 154
	U U	212	212	203 230	211	211	212	171 215	212	208
	В	42 85 141 203	41 82 138 203	42 83 135 204	3 43 95 180	41 84 143 206	41 84 143 206	39 82 152 207	42 83 135 204	42 84 141 204
		249	249	249	245	249	249	251	249	249
8	R	7 33 65 93 122	7 34 76 109	12 39 70 98	5 20 41 80 103	5 31 76 113	13 41 72 106	7 33 88 140	7 32 67 91 133	5 31 81 120
		151 182 214	139 166 191	123 151 182	125 169 217	147 183 215	133 154 181	159 169 191	180 210 244	145 168 191
	G	240 11 37 57 83	12 41 62 89	212 240	240 7 32 56 100	242 254	215 240 7 33 56 83 115	220 245	234	214 247
	U	114 142 169	117 146 172	156 186 209	148 169 190	150 179 208	145 172 204	113 160 211	104 134 168	118 142 165
		203 230	204 230	231	212 234	230 250	230	229	202 229	196 227
	В	6 37 59 86 117	6 41 75 105	41 77 108 126	5 32 48 72 97	4 41 75 105	4 17 41 74 99	12 31 50 84	4 42 77 103	5 38 60 83 109
		150 184 222	133 167 200	145 176 204	144 205 230	136 168 200	131 170 203	114 164 199	124 145 170	132 166 215
10	р	252	229 252	227 252	251	228 252	248	214 249	213 250	250
12	ĸ	110 128 145	3 12 25 41 01 82 103 124	0 23 37 49 72	0 19 33 00 88	4 23 48 73 98	2 1/ 35 53 /4	2 11 33 04 75	4 24 45 68 90	4 23 43 00 90
		164 184 203	145 167 191	171 190 207	171 190 218	182 203 220	146 170 205	169 187 213	181 204 216	174 189 204
		219 246	215 246	220 246	247 254	242 254	244 254	237 252	230 255	220 245
	G	6 23 44 61 80	7 22 42 57 74	1 7 19 45 67	14 32 51 69 89	1 15 40 60 86	1 8 20 34 51	6 41 51 53 59	7 18 29 54 77	6 22 43 61 84
		101 124 146	93 113 132	91 118 146	120 146 166	110 135 156	69 89 115 149	65 107 169	98 124 142	107 124 145
		166 188 212	150 169 190	160 178 207	195 211 226	175 195 214	184 211 233	196 220 231	158 179 202	176 206 221
	р	233 250	211 231	231 250	238 250	233 250	250	239 247	223 239	233 252
	В	5 24 38 54 /3 92 112 133	5 10 41 09 91 111 131 151	2 20 38 03 90 106 120 142	4 18 38 30 82 111 130 157	1 11 30 33 79	2 11 33 49 75 98 126 151	4 31 34 93 107 121 137 148	2 9 32 44 03 91 107 121	2 13 27 43 72 99 118 130
		158 181 204	171 193 213	170 182 203	189 205 224	172 193 213	173 193 213	162 176 196	142 171 203	156 192 211
		230 252	233 252	229 252	241 253	233 252	232 252	233 254	229 251	229 251

TI7

(continued on next page)

Table A2	(continued)

TI8	4	R	5 69 112 160 203	3 43 78 120 200	3 57 113 159 202	3 42 82 152 203	3 43 78 120 200	3 42 77 121 201	3 43 86 132 201	3 42 75 115 201	3 42 95 157 202
		G	17 75 137 180 230	3 37 78 174 238	3 39 74 128 180	4 40 78 142 180	3 37 75 122 177	3 37 75 132 180	3 37 78 141 180	3 38 75 121 177	2 36 75 123
		В	42 97 137 176	41 96 137 185	32 101 138	32 96 132 161	41 96 137 185	34 95 138 185	41 97 138 185	32 93 137 185	42 96 137 184
	8	R	3 36 76 103 131 164 184	230 3 42 75 102 127 152 177	2 17 43 86 131 157 200 227	2 24 50 79 102 119 172 203	2 17 43 75 102 130 169 202	2 17 37 67 102 130 167 202	2 20 37 52 97 152 174 191	2 20 44 73 98 118 163 202	2 20 44 77 119 172 196 209
			203 230	203 233	247	233	234	232	207	233	233
		G	5 42 74 105	3 39 64 84 124	6 43 63 82 117	3 37 76 111	3 38 75 122	5 41 64 82 105	3 20 42 54 75	2 35 67 88 125	5 42 66 88 127
			139 170 189	152 178 209	166 187 206	124 136 163	152 178 209	140 172 194	130 167 188	155 179 206	151 176 203
			209 236	238	238	184 212	235 251	238	238	237	242
		В	4 35 79 100	1 17 33 55 96	32 55 103 136	18 41 83 100	4 32 54 96 130	4 32 49 95 122	19 33 46 86	15 32 53 96	4 15 32 56 99
			127 151 177	130 159 193	150 161 176	125 151 184	160 193 230	140 160 189	103 132 161	120 139 163	132 163 218
			201 233	230	198 230	208 235	255	225	192 239	191 225	237
	12	R	3 38 57 76 97	2 17 37 53 78	1 14 47 75 94	1 6 24 65 94	2 18 38 53 75	2 13 25 43 74	2 16 32 47 65	4 36 53 76 94	2 18 38 51 67
			117 135 156	104 119 135	108 113 131	109 125 138	102 125 145	101 120 135	75 94 121 147	109 129 151	79 95 119 145
			174 195 209	156 179 202	159 178 201	165 188 205	163 182 203	156 177 202	184 205 240	165 189 202	162 196 212
			230 246	227 246	222 246	232 246	227 246	231 255	255	213 232	237
		G	2 16 31 44 67	3 20 42 64 83	3 19 32 44 62	3 20 53 67 84	3 22 43 59 69	2 14 32 45 66	18 50 59 73 92	3 19 41 64 86	3 22 41 67 85
			85 105 122	109 131 150	78 103 128	109 125 137	85 108 131	83 106 130	122 136 143	130 156 174	110 132 155
			145 171 190	170 186 202	145 175 203	156 172 188	150 172 192	150 172 190	173 201 222	188 202 222	176 196 215
			216 237	217 238	223 236	218 238	214 238	207 227	228 243	245 253	234 255
		В	17 33 51 73 90	2 18 33 49 64	1 17 33 57 83	1 4 23 44 83	4 18 33 55 82	16 33 56 83 96	2 36 59 75 95	4 33 56 81 102	2 33 54 82 102
			105 124 142	83 100 121	100 124 146	100 126 142	100 121 139	107 120 130	120 137 149	131 153 181	120 134 152
			162 186 207	139 159 181	171 200 233	160 189 214	159 181 203	142 155 173	162 177 189	197 206 221	164 172 189
			231 248	205 233	244 255	233 255	225 240	193 221	201 224	236 248	224 243
TI9	4	R	19 66 123 171	18 60 123 173	19 84 131 174	26 94 133 174	18 60 123 173	18 60 123 174	19 60 106 150	19 61 123 174	20 66 124 174
			221	221	221	219	221	221	215	221	221
		G	5 44 99 163	5 45 99 164	4 46 120 173	4 43 96 161	4 45 99 164	4 44 100 164	3 34 45 145	4 45 97 149	5 45 102 163
			208	209	213	207	209	209	201	197	207
		В	2 60 100 147	2 60 102 150	52 87 137 178	2 58 95 144	2 60 101 148	2 58 96 146	69 110 147	2 53 87 139	2 66 110 153
			190	191	207	189	189	189	185 200	191	194
	8	R	18 45 74 101	1 18 52 91 123	19 46 77 108	13 28 66 97	17 42 71 100	4 18 50 87 117	18 57 99 120	1 16 43 86 116	1 18 50 84 107
			128 158 186	150 180 212	131 158 184	126 160 192	128 157 185	143 176 211	134 157 184	140 172 206	133 167 205
			214 239	238	211 239	214 238	214 238	237	208 235	235	234
		G	4 35 57 93 122	4 35 55 93 125	5 34 55 95 147	4 39 63 96 122	4 35 57 95 126	4 37 58 94 123	5 26 39 63 97	5 34 55 91 120	5 33 57 102
			147 177 204	152 179 205	172 190 212	152 185 210	152 180 206	147 177 205	155 194 225	146 168 192	138 165 185
			227	230	230	230	230	230	250	221	205 229
		В	2 23 47 69 92	1 41 62 87 114	41 62 83 97	1 29 47 75 114	1 42 65 90 116	1 13 48 71 97	2 35 64 88 110	2 36 62 91 116	2 39 58 86 125
			119 148 180	143 165 187	110 132 169	146 178 208	143 165 187	125 151 183	149 180 194	141 160 184	151 171 192
			207	207	208 234	219	207	207	208	209	207

(continued on next page)

	12	R	1 16 39 65 87	1 16 30 49 69	1 16 42 73 95	15 37 65 82	1 17 39 61 85	16 32 52 76 99	16 36 59 87	1 17 49 82 98	4 14 25 42 67
			106 126 146	88 106 125	113 131 148	103 118 138	107 129 150	115 126 138	108 122 142	121 140 150	97 114 126
			167 191 216	145 166 188	165 184 197	164 179 192	170 190 211	153 167 183	166 194 213	161 178 198	139 161 188
			238 255	214 239	215 239	206 221 240	229 244	206 233	218 227 240	218 239	215 240
		G	4 34 53 79 95	1 9 34 49 66	5 33 41 57 73	4 27 34 56 80	4 35 54 79 102	1 8 33 47 64	1 7 41 65 83	3 35 56 81 95	4 33 44 59 76
			111 131 152	91 110 129	95 112 127	106 128 145	128 150 171	89 110 137	95 108 130	111 125 134	101 122 135
			172 188 203	148 169 190	155 179 195	166 185 201	191 210 229	164 188 210	150 177 202	151 170 189	156 177 193
			216 231	211 230	211 230	214 230	245 255	229 255	217 230	207 227	209 229
		В	1 19 39 53 69	1 23 43 63 84	1 46 59 75 97	4 27 37 50 64	1 23 42 59 80	1 38 52 65 76	2 45 66 89 105	1 13 38 48 62	3 38 54 68 79
			87 105 123	103 121 139	115 132 155	77 92 109 126	103 124 147	92 113 132	111 119 140	82 104 122	90 111 138
			142 160 179	159 181 196	175 186 203	157 192 207	169 189 207	154 183 207	171 192 196	144 167 193	158 173 190
			193 207	208 234	218 234	234	221 234	222 234	205 231	219 233	208 220
TI10	4	R	6 61 124 189	7 58 128 218	7 75 131 181	7 54 134 225	7 58 128 218	7 61 135 224	6 58 101 141	7 56 126 206	6 60 127 204
			237	254	229	254	254	254	225	244	244
		G	61 118 163	52 118 202	63 119 163	60 123 181	60 123 202	51 84 125 214	46 79 133 199	50 113 181	64 123 198
			222 253	240 253	222 253	226 253	240 253	253	232	229 253	240 252
		В	2 73 111 180	3 73 117 209	51 95 165 216	3 74 110 151	3 73 117 209	3 73 117 210	72 107 146	3 71 108 173	72 112 188
			225	249	249	211	249	249	175 216	222	228 249
	8	R	6 40 73 101	6 35 66 96 132	9 65 102 131	10 71 102 129	6 34 66 96 132	6 63 101 118	7 27 58 99 127	7 54 87 122	6 42 72 106
			129 158 187	179 218 244	165 203 226	157 181 211	178 218 244	137 173 215	149 183 215	152 192 224	140 196 224
			219 244	254	244 254	240 254	254	244 255	240	245 254	244 254
		G	25 51 89 121	24 49 77 116	10 22 53 90	43 72 113 130	24 49 77 116	24 50 79 119	38 50 76 100	51 75 99 124	25 51 76 111
			143 170 196	143 179 215	122 147 188	149 175 212	143 177 213	150 173 196	125 157 184	147 192 224	133 151 176
			220 242	240 253	231 253	240 253	240 253	220 241	218 242	241 253	201 232
		В	2 22 65 93 124	3 25 51 76 110	2 51 83 118	9 47 72 96 128	2 44 74 105	1 51 71 91 114	17 55 78 101	2 31 72 98 120	2 26 68 93 115
			161 202 233	153 202 234	148 173 206	175 191 220	131 166 206	140 165 200	129 182 205	152 176 207	144 184 214
			249	249	234 249	249	234 249	230	219 234	234	235
	12	R	6 24 42 58 76	1 7 38 60 80	6 33 68 100	6 28 47 60 83	1 6 30 58 83	7 37 56 72 94	3 15 60 77 91	7 29 45 58 69	7 39 59 79 100
			95 116 134	102 127 150	117 127 139	113 134 156	107 130 153	116 128 141	124 150 167	99 128 146	114 125 143
			158 192 223	175 199 224	156 176 206	176 194 212	176 200 224	171 203 225	181 186 204	160 189 221	172 195 219
			244 254	244 254	229 244 254	238 254	244 254	244 254	225 244	243 254	242 254
		G	24 46 58 81	6 11 25 47 60	16 40 51 63 72	2 22 55 96 113	6 25 47 62 81	22 49 75 94	6 21 47 67 94	23 46 61 80 98	23 47 70 101
			111 131 152	79 106 127	87 106 129	120 133 165	106 127 153	106 118 130	110 123 138	114 129 148	120 132 145
			171 188 209	149 172 196	169 203 228	198 215 221	179 203 225	144 159 175	152 175 212	166 190 215	161 179 195
			226 241 253	220 241	242 253	237 253	242 253	197 221 241	236 244	229 242	211 226 241
		В	3 25 51 69 85	2 21 44 64 80	3 28 40 54 69	1 26 48 68 81	1 21 44 61 76	1 11 29 45 64	4 41 65 85 109	3 22 51 71 91	2 29 38 50 76
			103 119 137	98 113 130	84 109 139	93 112 139	96 115 135	81 100 117	131 146 159	104 118 135	105 131 163
			155 175 201	153 173 194	161 194 217	158 167 192	158 186 213	136 160 191	176 203 226	161 190 210	188 213 235
			220 235	215 234	234 249	225 249	234 249	216 234	236 247	230 241	245 249

References

- M. Haindl, S. Mikeš, A competition in unsupervised color image segmentation, Pattern Recognit. 57 (2016) 136–151, doi:10.1016/j.patcog.2016.03.003.
- [2] GIS (Geographic Information System) | National Geographic Society, (n.d.). https://www.nationalgeographic.org/encyclopedia/geographic-informationsystem-gis/ (accessed August 9, 2020).
- [3] A.K. Bhandari, V.K. Singh, A. Kumar, G.K. Singh, Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy, Expert Syst. Appl. 41 (2014) 3538–3560, doi:10.1016/j.eswa.2013.10.059.
- [4] A.K. Bhandari, A. Kumar, S. Chaudhary, G.K. Singh, A novel color image multilevel thresholding based segmentation using nature inspired optimization algorithms, Expert Syst. Appl. 63 (2016) 112–133, doi:10.1016/j.eswa.2016.06.044.
- [5] A. Bhandari, Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms, Expert Syst. Appl. (2015) https://doi.org/, doi:10.1016/j.eswa.2015.07.025.
- [6] H. Jia, X. Peng, W. Song, D. Oliva, C. Lang, Y. Li, Y. Yao, Masi Entropy for satellite color image segmentation using tournament-based lévy multiverse optimization algorithm, Remote Sens. 11 (2019) 942 https://doi.org/, doi:10.3390/rs11080942.
- [7] B. Sankur, M. Sezgin, Image thresholding techniques: a survey over categories, Pattern Recognit. 34 (2001) 1573–1583.
- [8] N.M. Zaitoun, M.J. Aqel, Survey on image segmentation techniques, Procedia Comput. Sci. 65 (2015) 797–806, doi:10.1016/j.procs.2015.09.027.
- M. Sezgin, B. Sankur, Survey over image thresholding techniques and quantitative performance evaluation, J. Electron. Imaging 13 (2004) 146–168 https://doi.org/, doi:10.1117/1.1631315.
- [10] Otsu_1979_otsu_method Otsu, IEEE Trans. Syst. Man. Cybern. C (1979) 62–66 https://doi.org/, doi:10.1109/TSMC.1979.4310076.
- [11] M. Portes de Albuquerque, I.A. Esquef, A.R. Gesualdi Mello, M. Portes de Albuquerque, Image thresholding using Tsallis entropy, Pattern Recognit. Lett. 25 (2004) 1059–1065, doi:10.1016/j.patrec.2004.03.003.
- [12] J.N.N. Kapur, P.K.K. Sahoo, A.K.C.K.C. Wong, A new method for gray-level picture thresholding using the entropy of the histogram, Comput. Vision, Graph. Image Process. 29 (1985) 273–285, doi:10.1016/0734-189X(85)90125-2.
- [13] M. Masi, A step beyond Tsallis and Rényi entropies, Phys. Lett. Sect. A Gen. At. Solid State Phys. 338 (2005) 217–224 https://doi.org/, doi:10.1016/j.physleta.2005.01.094.
- [14] A. Renyi, On Measures of Entropy and Information, in: Proc. Fourth Berkeley Symp. Math. Stat. Probab. Vol. 1 Contrib. to Theory Stat., University of California Press, Berkeley, Calif., 1961: pp. 547–561. https://projecteuclid.org/euclid.bsmsp/1200512181.
- [15] N.R. Pal, On minimum cross-entropy thresholding, Pattern Recognit. 29 (1996) 575– 580, doi:10.1016/0031-3203(95)00111-5.
- [16] A. Wunnava, M.K. Naik, R. Panda, B. Jena, A. Abraham, A novel interdependence based multilevel thresholding technique using adaptive equilibrium optimizer, Eng. Appl. Artif. Intell. 94 (2020) 103836 https://doi.org/, doi:10.1016/j.engappai.2020.103836.
- [17] A.S. Abutaleb, Automatic thresholding of gray-level pictures using twodimensional entropy, Comput. Vision, Graph. Image Process. 47 (1989) 22–32, doi:10.1016/0734-189X(89)90051-0.
- [18] J. Liu, W. Li, Y. Tian, Automatic thresholding of gray-level pictures using twodimensional Otsu method, (1991) 325–327.
- [19] P.K. Sahoo, G. Arora, A thresholding method based on two-dimensional Renyi's entropy, Pattern Recognit. 37 (2004) 1149–1161, doi:10.1016/j.patcog.2003.10.008.
- [20] P.K. Sahoo, G. Arora, Image thresholding using two-dimensional Tsallis– Havrda–Charvát entropy, Pattern Recognit. Lett. 27 (2006) 520–528, doi:10.1016/j.patrec.2005.09.017.
- [21] A. Wunnava, M. Kumar Naik, R. Panda, B. Jena, A. Abraham, A differential evolutionary adaptive Harris hawks optimization for two dimensional practical Masi entropy-based multilevel image thresholding, J. King Saud Univ. - Comput. Inf. Sci. (2020) https://doi.org/, doi:10.1016/j.jksuci.2020.05.001.
- [22] R. Panda, S. Agrawal, L. Samantaray, A. Abraham, An evolutionary gray gradient algorithm for multilevel thresholding of brain MR images using soft computing techniques, Appl. Soft Comput. 50 (2017) 94–108, doi:10.1016/j.asoc.2016.11.011.
- [23] A. Wunnava, M.K. Naik, R. Panda, B. Jena, A. Abraham, An adaptive Harris hawks optimization technique for two dimensional grey gradient based multilevel image thresholding, Appl. Soft Comput. 95 (2020) 106526 https://doi.org/, doi:10.1016/j.asoc.2020.106526.
- [24] S. Patra, R. Gautam, A. Singla, A novel context sensitive multilevel thresholding for image segmentation, Appl. Soft Comput. 23 (2014) 122–127, doi:10.1016/j.asoc.2014.06.016.
- [25] S. Pare, A. Kumar, V. Bajaj, G.K. Singh, A multilevel color image segmentation technique based on cuckoo search algorithm and energy curve, Appl. Soft Comput. 47 (2016) 76–102, doi:10.1016/j.asoc.2016.05.040.

- Swarm and Evolutionary Computation 65 (2021) 100907
- [26] S. Pare, A.K. Bhandari, A. Kumar, G.K. Singh, An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix, Expert Syst. Appl. 87 (2017) 335–362, doi:10.1016/j.eswa.2017.06.021.
- [27] M.-A. Díaz-Cortés, N. Ortega-Sánchez, S. Hinojosa, D. Oliva, E. Cuevas, R. Rojas, A. Demin, A multi-level thresholding method for breast thermograms analysis using Dragonfly algorithm, Infrared Phys. Technol. 93 (2018) 346–361, doi:10.1016/j.infrared.2018.08.007.
- [28] P. Kandhway, A.K. Bhandari, Spatial context-based optimal multilevel energy curve thresholding for image segmentation using soft computing techniques, Neural Comput. Appl. 32 (2020) 8901–8937 https://doi.org/, doi:10.1007/s00521-019-04381-9.
- [29] A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili, Equilibrium optimizer: A novel optimization algorithm, Knowledge-Based Syst. 191 (2020) 105190. https://doi.org/https://doi.org/10.1016/j.knosys.2019.105190.
- [30] H.R. Tizhoosh, Opposition-Based Learning: A New Scheme for Machine Intelligence, Int. Conf. Comput. Intell. Model. Control Autom. Int. Conf. Intell. Agents, Web Technol. Internet Commer. (2005) 695–701 https://doi.org/, doi:10.1109/CIMCA.2005.1631345.
- [31] S. Dhargupta, M. Ghosh, S. Mirjalili, R. Sarkar, Selective Opposition based Grey Wolf Optimization, Expert Syst. Appl. 151 (2020) 113389, doi:10.1016/j.eswa.2020.113389.
- [32] X. Yao, L. Yong, L. Guangming, Evolutionary programming made faster, Evol. Comput. IEEE Trans. 3 (1999) 82–102 https://doi.org/, doi:10.1109/4235.771163.
- [33] M.K. Naik, R. Panda, A novel adaptive cuckoo search algorithm for intrinsic discriminant analysis based face recognition, Appl. Soft Comput. 38 (2016) 661–675 https://doi.org/, doi:10.1016/j.asoc.2015.10.039.
- [34] J.J. Liang, B.Y. Qu, P.N. Suganthan, Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization, in: 2013.
- [35] D. Simon, Biogeography-Based Optimization, Evol. Comput. IEEE Trans. 12 (2009) 702–713 https://doi.org/, doi:10.1109/TEVC.2008.919004.
- [36] A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: Algorithm and applications, Futur. Gener. Comput. Syst. 97 (2019) 849–872, doi:10.1016/j.future.2019.02.028.
- [37] S. Shadravan, H.R. Naji, V.K. Bardsiri, The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems, Eng. Appl. Artif. Intell. 80 (2019) 20–34, doi:10.1016/j.engappai.2019.01.001.
- [38] S. Mirjalili, A. Lewis, The Whale Optimization Algorithm, Adv. Eng. Softw. 95 (2016) 51–67, doi:10.1016/j.advengsoft.2016.01.008.
- [39] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey Wolf Optimizer, Adv. Eng. Softw. 69 (2014) 46–61 https://doi.org/http://dx.doi.org/, doi:10.1016/j.advengsoft.2013.12.007.
- [40] R. Tanabe, A.S. Fukunaga, Improving the search performance of SHADE using linear population size reduction, in: 2014 IEEE Congr. Evol. Comput., 2014, pp. 1658– 1665, doi:10.1109/CEC.2014.6900380. https://doi.org/.
- [41] J. Carrasco, S. García, M.M. Rueda, S. Das, F. Herrera, Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review, Swarm Evol. Comput. 54 (2020) 100665, doi:10.1016/j.swevo.2020.100665.
- [42] J.H. Zar, Biostatistical Analysis, Prentice-Hall, Inc., USA, 1999.
- [43] S. Holm, A Simple Sequentially Rejective Multiple Test Procedure, Scand, J. Stat. 6 (1979) 65–70 http://www.jstor.org/stable/4615733.
- [44] Landsat Image Gallery, (n.d.). https://landsat.visibleearth.nasa.gov/ (accessed June 12, 2020).
- [45] S. Agrawal, R. Panda, S. Bhuyan, B.K. Panigrahi, Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm, Swarm Evol. Comput. 11 (2013) 16–30, doi:10.1016/j.swevo.2013.02.001.
- [46] L.Z. Lin Zhang, FSIM: A Feature Similarity Index for Image Quality Assessment, IEEE Trans. Image Process. 20 (2011) 2378 https://doi.org/, doi:10.1109/TIP.2011.2109730.
- [47] W. Zhou, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process. 13 (2004) 600– 612 https://doi.org/, doi:10.1109/TIP.2003.819861.
- [48] S. Ghosh, L. Bruzzone, S. Patra, F. Bovolo, A. Ghosh, A Context-Sensitive Technique for Unsupervised Change Detection Based on Hopfield-Type Neural Networks, IEEE Trans. Geosci. Remote Sens. 45 (2007) 778–789 https://doi.org/, doi:10.1109/TGRS.2006.888861.
- [49] A.H. Halim, I. Ismail, S. Das, Performance assessment of the metaheuristic optimization algorithms: an exhaustive review, Artif. Intell. Rev. (2020) https://doi.org/, doi:10.1007/s10462-020-09906-6.
- [50] S.-H. Liu, M. Mernik, D. Hrnčič, M. Črepinšek, A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting Sovova's mass transfer model, Appl. Soft Comput. 13 (2013) 3792–3805, doi:10.1016/j.asoc.2013.05.010.