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Abstract 

Breast cancer is the deadliest disease among women that leads to death if not diagnosed 

at early stages. Early diagnosis plays a vital role in decreasing the mortality rate globally. 

Manual methods for diagnosing breast cancers suffer from human errors, inaccuracy, and 

consumes time. A Computer-Aided Diagnosis (CAD) can overcome the disadvantages of 

manual methods and helps radiologists for accurate decision-making. A CAD system based on 

Artificial Neural Network (ANN) optimized using a swarm-based approach can improve the 

accuracy of breast cancer diagnosis due to its strong decision-making capacities. Artificial Bee 

Colony (ABC) and Whale Optimization are metaheuristic search algorithms used to solve 

combinatorial optimization problems. This paper proposes a Hybrid Artificial Bee Colony with 

whale Optimization algorithm (HAW) by integrating the exploitative employee bee phase of 

ABC with the bubble net attacking method of whale optimization to propose an employee bee 

attacking phase. In the employee bee attacking phase, employee bees use exploitation of 

humpback whales for finding better food source positions. The weak exploration of standard 

ABC is improved using the proposed mutative initialization phase that forms the explorative 

phase of the HAW algorithm. HAW algorithm is used in simultaneous feature selection and 

parameter optimization of an ANN model. HAW is implemented using back-propagation 

learning that includes resilient back-propagation (HAW-RP), Levenberg Marquart (HAW-

LM), and momentum-based gradient descent (HAW-GD). These hybrid variants are evaluated 

using various breast cancer datasets in terms of accuracy, complexity, and computational time. 

HAW-RP variant achieved high accuracy with low complexity ANN model when compared to 

HAW-LM and HAW-GD. 

Keywords: Artificial neural networks, Artificial Bee Colony, Multilayer Perceptron, Levenberg 

Marquardt, Resilient backpropagation, momentum-based Gradient Descent backpropagation, 

Whale Optimization Algorithm. 
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1. Introduction 

Early-stage diagnosis plays a major role in increases the chance of recovery from breast 

cancer. World Health Organization (WHO) has reported that breast cancer occurs in millions 

among women and they die due to later stage detection. Each year about 400,000 die among 

the female population due to breast cancer according to WHO [1]. About 12.4% of women died 

in the United States due to breast cancer in 2019. In 2020, invasive breast cancer expected is 

276,480, and non-invasive breast cancer expected is 48,530 [2]. Metropolitan Cities in India 

such as Mumbai, Chennai, Delhi, Bangalore, Ahmadabad, and Bhopal are affected by 28% to 

35% among the women population [3]. Thus, breast cancer has become a serious health issue 

around the globe and early detection plays a vital role in speedy recovery [4].  Early detection 

can be done using various scanning methods such as magnetic resource imaging, ultrasound 

imaging, self-check-up, mammography, and biopsies [5]. Traditionally followed breast cancer 

methods require high diagnosis and they fail because of inaccurate diagnosis caused by human 

errors. Automated computer-based diagnosis schemes are much helpful in overcoming the 

problems that are caused by manual diagnosis methods and they avoid unnecessary surgeries 

and biopsies [6]. Expert systems built using ANN have strong decision-making capabilities 

because of which it can be used for building medical diagnosis systems [7, 8]. ANN-based 

decision-making systems have outperformed the traditional technique used for classifying 

patterns [9]. 

Evolutionary algorithms (EA) are based on that evolution process occurs naturally. 

Commonly used evolutionary methods for optimization problems that are population-based are 

the Differential Evolution (DE) [10], Evolution Strategy (ES) [11], Genetic Algorithms (GA) 

[12]. These algorithms are stochastic which is based on survival to fittest theory. A lot of 

researches has concentrated on improving the standard evolutionary methods by modifying its 

phases or else by hybridizing. A biography-based EA is introduced which is applicable for 

recombination and crossover operators inspired by GA [13]. An algorithm by combining DE 

with GA is proposed that can be used for path synthesis [14]. Another improved version of GA 

is introduced for fuzzy rules and membership function optimization for an Adaptive Network-

based Fuzzy Inference Systems [15].  An integrated algorithm combining DE and eagle 

strategy is introduced for constrained problems [16]. 
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Metaheuristic based swarm intelligence approach is used for real-time optimization 

problem solving [17, 18, 19].  Commonly used swarm intelligence approaches are the Ant 

colony Optimization (ACO) [20], and the Particle Swarm Optimization (PSO) [21] inspired by 

the foraging behavior of ants and social behavior of birds respectively. The echolocation 

capability of the microbats available in nature forms the basis of the Bat Algorithm (BA) [22]. 

A population-based swarm technique introduced based on the foraging behavior of honey bees 

[23]. The dynamic and static behavior of dragonflies forms the basis of a new metaheuristic 

algorithm called Dragonfly Algorithm (DA) [24]. Based on the herding behavior of krill, 

another swarm technique is proposed called Krill Herd (KH) algorithm [25].  

A technique based on migration behavior is called the Monarch Butterfly Optimization 

(MBO) is introduced [26]. The foraging behavior for the survival of E. coli bacteria forms the 

basis of the Bacterial Foraging Optimization (BFO) [27]. Another swarm technique called the 

Artificial Immune System (AIS) is inspired by the biological immune system of the human 

body [28]. An algorithm for global optimization based on interior design and decoration [29].  

A Salp Swarm Algorithm (SSA) based on the swarming behavior of the Salp in the ocean is 

introduced that can be used to solve multidimensional optimization problems [30]. Based on 

the Brownian movements and levy movements of the predators during their foraging process, 

another swarm technique called Marine Predictor Algorithm (MPA) was proposed [31]. This 

paper focussed on hybridizing Artificial Bee Colony Optimization with the Whale 

Optimization algorithm to introduce the HAW algorithm. The proposed HAW algorithm 

integrates the employee bee phase of the ABC with the encircling prey/ bubble net attacking 

method to have an enhanced exploitative phase called the employee attacking phase. In the 

employee attacking phase, the bees follow the bubble net attacking method of the whales to 

find out better food sources. The explorative phase of the HAW is driven by a mutative 

initialization phase of the standard ABC algorithm.  

Appropriate selection of ANN topology design parameters such as the number of 

hidden layers, numbers of hidden nodes, initial weight values between the connections, 

learning rate, and algorithm plays a vital role in building a successful ANN model [32]. The 

convergence of the back-propagation learning process can be affected by the improper 

selection of weights making the learning process to be trapped in the local optimal locations 

[33, 34]. Improper selection of the hidden nodes may make the ANN classifier to deal with the 

problems of underfitting and overfitting. If the usage of hidden nodes in an ANN model is not 

appropriate to the amount of learning required for accurate diagnosis, then the ANN classifier 

may either be overtrained where the ANN model can give accurate results in case of training 



4 
 

and fails with inaccurate results in the case of testing or undertrained where the prediction rate 

decreases. Based on the above discussion, this paper focuses on optimal selection of the value 

of initial weights and the optimal selection of the hidden node sizes of an ANN model using 

the proposed HAW algorithm with the help of a wrapper architecture such that the proposed 

work aims at improving the learning performance of an ANN avoiding the problems of 

overfitting and underfitting with increased predictive capabilities.  

Feature Selection (FS) deals with the deletion of irrelevant, redundant, and noisy 

features present in the input dataset of a classifier.  FS improves the generalization of an ANN 

classifier system with reduced computational time, as demonstrated in [35,36]. Hence, 

simultaneously optimizing the input features and design parameters of ANN such as the initial 

weights and hidden node size can increase the predictability of the ANN classifier. Swarm 

based intelligent systems are used for coupled optimization of input features and ANN design 

parameters [37]. Due to the importance of simultaneous optimization of ANN design 

parameters and feature selection process that improves the convergence of the training process 

and prevent the ANN from being under-trained and over-trained and because of the complex 

design issue of ANN,  the ANN topology optimization process can be coupled with a swarm-

based metaheuristic optimization, such as ABC due to its powerful local and global search 

capabilities in finding out global optimal solutions. 

1.1 Artificial Bee Colony (ABC) Optimization 

A meta-heuristic swarm-based search mechanism called ABC is introduced by 

Karaboga in 2005. It is a population-based approach, inspired by the foraging nature of honey 

bees that solves multidimensional and multimodal real-time optimization problems for 

different applications, as demonstrated in [38]. ABC is based on a stochastic process, that is 

robust and highly flexible with a lesser number of control parameters that make it simple. The 

algorithmic steps of the ABC optimization process are described in Algorithm (1): 

Algorithm 1: Artificial Bee Colony algorithm 

Step 1: Initialization:  

 Food sources are randomly produced using Equation (1). 

𝐴"# = 𝐴"# + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) ∗ (𝐴234# − 𝐴267# )   (1) 

 𝐴86  represents kth food source with lth parameter and j=1, 2.........N, in which N 

represents maximum food sources. l = 1, 2......dim, in which ‘dim’ represents the 

dimension representing the number of parameters in the optimization problem. 𝐴234#  
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and 𝐴267#  are the minimum and maximum bound of the lth parameter of the 

optimization problem respectively.  

Step 2: Quality Evaluation of food source: 

 The fitness values are identified for each food source	𝐴". 

Step 3: Employed bee Phase:  

 Food sources are assigned to employee bees or worker bees. The employee bees use 

Equation (2) to search neighborhood food sources surrounding the current food 

sources 𝐴"# . 

𝐸"# = 𝐴"# + 𝑟𝑎𝑛𝑑𝑜𝑚[−1,1] 	∗ (𝐴"# − 𝐴=# )    (2) 

𝐴= is a random food source where d∈ {1, 2..., N}.  ‘l’ is a random integer, and i = {1, 

2..., dim} and ‘d’ should not be equal to ‘l’ for proper exploitation. If the quality of 

𝐸"# 	is greater than 𝐴"# , then bee discards 𝐴"#  saving 𝐸"# 	, or vice versa.  

Step 4:  Onlooker Bee Phase: 

Information regarding the selected food sources is shared with the onlooker bees. The 

probability value	𝑍6	of each food source received from the employee bee is calculated 

using Equation (3). 

𝑍" 	=
@6A7BCC(DE)

∑ @6A7BCC(DE)G
EHI

       (3) 

 The quality of the food source	𝐴" is represented as 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐴"). The value 𝑍" of 

food source is compared with a	𝑟𝑎𝑛𝑑𝑜𝑚(0,1). Food sources with a 𝑍6	value greater 

than 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)	are selected by the onlooker bees. 

Step 5:  Food source memorization: 

The food source with the highest 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐴") is selected and memorized. 

Step 6:  Scout Bee Phase: 

In the scout bee phase, unimproved food sources are identified based on a counter 

value and they are replaced by a randomly generated food source according to 

Equation (1).  

1.2 Whale Optimization Algorithm (WOA) 

WOA is a population-based swarm intelligence metaheuristic algorithm introduced by 

Mirjalili and Lewis [39] which is inspired by the foraging behaviour of humpback whales. The 

humpback whales’ hunts group of krill or fishes using shrinking circle and producing bubbles 

in a circle ‘9’-shaped path. The exploitation phase is carried out using encircling prey and 

bubble-net attacking based on the spiral. A random search of prey is used for exploration. The 

exploitation phase of WOA is explained in Algorithm (2). 
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Algorithm 2: Encircling Prey / Bubble Net Attacking of WOA  

To hunt the prey for survival, humpback whales encircle around the prey which can 

be mathematically represented using Equation (4) and (5).  

𝑌 = P𝐿R⃗ . 𝐴∗(𝑡) − 𝐴(𝑡)P                                                                                          (4) 

𝐴(𝑡 + 1) = 𝐴∗RRRR⃗ (𝑡) − 𝑀RR⃗ . 𝑌                                                                                    (5) 

Where t represents the current iteration, A∗ represents the best solution found so far, A 

gives the position vector, | | represents the absolute value, . gives multiplication of two 

elements. L and M represents the coefficient vectors that can be obtained using Equation (6 & 

7). 

𝑀RR⃗ = 2𝑚RR⃗ . 𝑟 − 𝑚RR⃗                                                                                                     (6) 

𝐿R⃗ = 2. 𝑟                                                                                                                 (7) 

Where m is reduced linearly starting from 2 till 0 as the iteration proceeds. r represents 

a random vector from a uniform distribution between [0,1].  Each whale that represents a 

solution updates its position using Equation (5) where the updated new position of the whale 

depends on the best position (prey) found so far. The position of the whales can be controlled 

by the adjustment of vectors L and M.  The value of m is decreased to achieve the shrinking 

encircling behaviour using the Equation (8).  

𝑚 = 2 − 𝑡 X
Y34ZAB[3A

                                                                                            (8) 

Where t represents the current iteration and MaxIterat represents maximum iterations.  The 

new position of the whale on the spiral path can be calculated using Equation (9); 

𝐴(𝑡 + 1) = 𝑌\. 𝑒]C. cos(2𝜋𝑙) + 𝐴 ∗ (𝑡)                                                                         (9) 

Where Y\ = PARR⃗ ∗(t) −	ARR⃗ (t)P which indicates the distance of a whale and the best solution 

(prey).  w is a constant that represents the shape of the logarithmic spiral. s is the random 

number generated between [-1,1]. Hence, the updated new position of the whale is calculated 

using 50% probability using a random number 𝑃6 generated between [0,1] as represented by 

Equation (10). 

𝐴(𝑡 + 1) = f 𝐴(𝑡 + 1) = 𝐴∗RRRR⃗ (𝑡) − 𝑀RR⃗ . 𝑌																					𝑖𝑓	(𝑃6 < 0.5)
𝐴(𝑡 + 1) = 𝑌\. 𝑒]C. cos(2𝜋𝑙) + 𝐴 ∗ (𝑡)		𝑖𝑓	(𝑃6 ≥ 0.5)							

                     (10) 

1.3 Comparative Investigation of ABC and WOA in terms of exploration and exploitation  

. In the context of exploration, WOA uses the search of prey phase for exploration that 

completely depends on a random search agent which is a stochastic strategy. In the same way, 

ABC incorporates scout bees for exploration with the help of a random search. This makes 
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both the algorithms to produce solutions concentrated in a local area at the initialization phase, 

losing its diversification. Hence, the search process prematurely converges returning sub-

optimal solutions in both of the algorithms. Hence, both ABC and WOA are weak at 

exploration. 

In the context of exploitation, the local search process is incorporated using the 

encircling prey and the bubble net attacking method. The WOA exploitative phase guarantees 

convergence since positions of the whale are updated using the best solution (prey) obtained 

so far. Hence, proper exploitation is guaranteed by the encircling prey and the bubble net 

attacking method in the direction towards the prey since the search process is always guided 

by the best solution found so far. Comparatively, ABC exploitation is carried out using the 

employee bee phase and the onlooker bee phase where the positions of the food sources are 

updated by changing the single parameter of the old solution (food source) that causes the 

existence of similar food sources that converge at the same optimum locations. Also, the local 

search of ABC cyclically revisits the same solutions that create the problem of looping making 

the search converge prematurely. Hence, WOA is better at exploitation as compared to ABC.  

1.4 Problems that are addressed by the proposed HAW 

Many researches have used ABC and WOA to develop optimal classifiers that can be 

used for medical diagnosis purposes, but still, the standard ABC suffers from the following 

issues which the proposed HAW addresses.  

(i) The local search by the employee and onlooker bee cyclically revisits similar 

solutions inducing the problem of looping making the search process converge 

prematurely. 

(ii) ABC optimization makes the solutions to be concentrated in local regions due to 

a lack of diversified solutions at initialization. 

(iii)  The food source positions are updated by changing the single parameter of the 

old solution (food source) which causes the existence of similar food sources that 

converge at the same optimum locations.  

(iv) Exploitation is performed by two phases namely the employee bee phase and the 

scout bee phase, whereas the exploration process is done only by scout bees, 

which leads to an imbalance in exploration and exploitation. 

The proposed HAW that is capable of resolving the above issues can be used for 

generating an optimized ANN classifier that can accurately and efficiently be used for breast 

cancer diagnosis. This paper focus on the following objectives:  
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(i) A Hybrid ABC-WOA Optimization (HAW) that integrates the encircling prey 

and the bubble net attacking method of WOA with the employee bee phase of 

standard ABC to form an employee attacking phase. The exploration of the HAW 

is enhanced using the proposed mutative exploration phase of ABC at 

initialization.  

(ii) Implementation of proposed HAW in optimal feature subset selection and ANN 

parameter optimization using Wisconsin breast cancer dataset. The HAW-

optimized ANN model is evaluated in terms of accuracy, complexity, and 

computational time. 

2. Related Works 

A classification method for breast cancer diagnosis using principal component analysis 

and ANN is proposed [40]. The feature selection is done using a screen test, Kaiser Guttman 

rule, and cumulative variance. Then testing subset from WBCD is used to check ANN 

performance which attained classification accuracy of 95.68% with a set of 5 features selected. 

Even though the discriminating accuracy is high, the computational time required is more. 

Another feature selection scheme for breast cancer diagnosis is introduced [41]. The system 

used a support vector machine and ANN for classification. The method utilized WBCD that 

used 10-fold cross-validation of data portioning. The prediction accuracy was 97.14% for SVM 

and 96.71% for ANN. No parameter optimization of the classifier and hence can’t be used for 

high dimensional datasets. A diagnosis system using entropy measures for feature selection is 

proposed [42]. It used artificial neural networks in which weights optimized by PSO and 

Levenberg–Marquardt. The ANN evaluated for WBCD where accuracy reached up to 98.83%. 

The proposed system requires high computational time for large datasets.  

The integrated algorithm of ABC and ACO for finding optimal feature subsets of 

medical datasets is proposed [43]. The global search followed by ABC is improved by using 

feature subsets generated by ACO to the ABC optimization process. The approach yielded an 

accuracy of 99.07% using WBCD. The proposed exploitation uses traditional greedy selection 

making algorithm to prematurely converge at the local optimal locations. The proposed 

algorithm is only used for feature selection and no parameter optimization. The hybrid 

algorithm of DE and ABC for optimal binary subsets selection is introduced [44]. The proposed 

algorithm combines the high exploration property of DE with an improved onlooker bee phase 

of the ABC. The proposed approach achieved F-measure of 92.2, 96.4, 97.6 for decision tree 
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classifier, Naive Bayes classifier, and RBF networks classifier respectively using WBCD. The 

proposed algorithm is only used for feature selection and no parameter optimization.  

A modified ABC is proposed for feature selection [45]. The exploitation of the 

employee bees is improved where the neighborhood search process is improved using the 

global best solution. The modified ABC is used for feature selection using benchmark datasets 

called MIAS and DDSM for breast cancer diagnosis. Classification is carried out using Self 

Adaptive Resource Allocation Network. The accuracy evaluated as 96.89% and 97.17% for 

MIAS and DDSM respectively. The algorithm has not focused on the explorative phase and it 

has used only randomized initial solutions with loss of diversification. A feature selection 

algorithm using ABC and decision trees based on the gradient boosting model is proposed [46]. 

The features are selected from the Wisconsin breast cancer dataset and Haberman’s survival 

dataset. A regression tree is used as the classifier where Gradient descent finds the direction of 

the gradient of residuals. The classification accuracy is 74.3% for Haberman’s cancer dataset 

and 92.8% for WBCD. It has not been evaluated in terms of complexity.  

An efficient ABC is proposed for optimal learning of Deep Neural Networks (DNN) 

[47]. The proposed used ABC and Broyden–Fletcher–Goldfarb–Shannon (BFGS) with limited 

memory. This proposed ABC tuned the parameters of DNN with cascaded autoencoder layers. 

The classification accuracy using WBCD is 73.03%. The step size of the neighborhood search 

is kept static throughout the entire search process affecting the convergence. The optimized 

classification of DNA microarrays using ABC is proposed [48]. The optimal feature subsets 

from breast cancer datasets are selected using ABC. Then the selected optimal feature subsets 

are given to MLP, Radial Basis Function Neural Network, and SVM. The accuracy attained is 

94.7% for MLP, for SVM accuracy is 89.5% and for RBF is 73.7%. The algorithm used 

standard ABC without any improvement. ABC based feature selection is proposed for UCI 

datasets [49]. The proposed system chooses 2 features from 9 attributes from WBCD and 

yielded an accuracy of 96.69%. The proposed system is simple but used only the standard ABC.  

Optimal feature selection using ABC for UCI repository datasets is proposed [50]. The 

employee bee phase is modified using a modification rate where the feature is selected if the 

random number greater than the modification rate. The classification accuracy is 75.87%. The 

algorithm has not focused on the explorative phase and it has used only randomized initial 

solutions with loss of diversification. Two-hybrid algorithms are proposed based on ABC and 

PSO [51]. In the first algorithm, the employee bee phase is hybridized with PSO to find new 

velocity position updates. In the second algorithm, the onlooker and scout bee phase are 

improved using mutations of the genetic algorithm. Both of the algorithms have the highest 
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accuracy of 99.14% with an optimal selection of 13 features using WBCD. The proposed 

algorithm is only used for feature selection and no parameter optimization. A hybrid algorithm 

for feature selection using branch and bound approach and ABC is proposed [52]. The 

algorithm first applies the branch and bound and finds the first set of features. Then, it applies 

ABC to identify the second set of features. A union operation is done to form a new set of 

optimal features. The proposed has not focussed on classification. 

Optimal feature selection using Whales Bubble Net Hunting strategy for UCI repository 

datasets is proposed [53]. The algorithm handles exploitation using the Bubble-Net Attacking 

Method phase. Further, a global search is carried out by the Search for the Prey phase. During 

the evaluation, the SVM classifier attained an accuracy of 98.77%, precision of 99.15 %, recall 

of 98.64 %, and f-score of 98.9 %. The proposed algorithm is only used for feature selection 

and no parameter optimization. Optimal feature selection using the integration of ACO and 

Cuckoo Search is proposed [54]. Local search behavior of ACO is improved using the 

exploitation of Cuckoo Search. The proposed algorithm selected feature set that is optimal from 

the set of 78 texture features derived using GLCM. The input is taken from the MIAS dataset. 

In the proposed approach, 5 features were selected with 94% accuracy.  The proposed 

algorithm uses the SVM classifier for prediction. The proposed showed increased performance 

of 4% and 2% when compared with PSO and ACO respectively. 

3. Materials and Methodologies 

A wrapper-based method that eliminates the use of statistical methods such as 

information gain or F-score is used for implementing the proposed HAW.  The proposed 

architecture is depicted in Figure (1).  The input dataset is the breast cancer dataset where the 

total set is divided into three subsets. The first set that contains 50% of samples is used for 

training. The next 25% of samples are used for the validation and the rest of 25% is used for 

testing. With the help of the optimal set of input features generated by the proposed HAW, the 

optimal features are selected from the three subsets where the other features are rejected. The 

optimal selected features of the training set are used for training the underlying ANN classifier.  

The optimal initial weights and hidden node size generated by the proposed HAW are 

used as the initial parameter settings of ANN. The ANN error is calculated with the help of the 

validation set. If the validation error increases for six iterations continuously, the training of 

ANN is stopped. The fitness of trained ANN is calculated using Equation (12 &13). The ANN 

with high fitness (best) is selected and tested using the testing set with optimal feature subsets. 
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The complexity (number of connections) of final ANN network achieved is calculated using 

Equation (11). 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡 = 𝑈 ∗ 𝑉 + 𝑉 ∗𝑊 + 𝑉 +𝑊    (11) 

 ′𝑈	gives input features (size),	′𝑉′ indicates hidden node size, and ′𝑊′ indicates output 

nodes (size). The resulting ANN with the least connections guarantees less complexity. Fitness 

of ANN is calculated by Equation (6). A higher value of 𝐴𝑁𝑁	𝐸𝑟𝑟 indicates low fitness ANN.  

𝐴𝑁𝑁	𝐸𝑟𝑟 = qrstuvrswx
y∗]

z∑ ∑ {𝐴86 − 𝐵86}
X]

8~�
#
6~�    (12) 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 	 �
D��	�[[�[

       (13) 

 ‘l’ and ‘w’ is the size of the output nodes and validation examples, respectively. Pmax 

and Pmin are maximum and minimum actual output, respectively. 𝐵86	and 𝐴86  is the target output 

and actual output, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Proposed Wrapper Architecture 
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The initial solution representation is given using Figure (2). I bits give the random initial 

weights, in which 2I different initial weights can be explored. J bits give the hidden node size 

so that 2J hidden node size can be explored. K bits give the feature bits that represent the total 

features. If a feature is selected, then ‘K’ bit is one; otherwise, it’s zero. 

 

 

0000010101111..... 101000011110101....... 1000110........ 

 

Figure 2: Initial solution representation 

 

3.1 Breast cancer datasets used by the proposed Wrapper Architecture  

The proposed HAW is evaluated using breast cancer datasets such as the Wisconsin 

breast cancer dataset (WBCD), Wisconsin Diagnostic Breast Cancer dataset (WDBC), 

Wisconsin Prognostic Breast Cancer dataset (WDBC), Digital Database for screening 

mammography (DDSM), Mammographic Image Analysis Society (MIAS) and INbreast 

database. The description of the datasets used is given in Table (1): 

DATASET INSTANCES FEATURES CLASSES 

Wisconsin Breast Cancer 
Dataset(WBCD) 

699- Total           9 2(Malignant, Benign) 

Wisconsin Diagnostic Breast Cancer 
Dataset (WDBC) 

569-Total 
357 - Malignant 

212-Benign 

30 2(Malignant, Benign) 

Wisconsin Prognostic Breast Cancer 
Dataset (WPBC) 

198-Total 
151-Non-recurrent 

47-recurrent 

          32 2(Non-recurrent, recurrent) 

Digital Database for Screening 
Mammography (DDSM) 

480-Total 
170-Malignant 
310 –Benign 

21 2(Malignant, Benign) 

Mammographic Image Analysis 
Society (MIAS) 

338-Total 
138-Malignant 

200-Benign 

21 2(Malignant, Benign) 

INBREAST Database 275-Total 
95 –Malignant 

180-Benign 

21- 2(Malignant, Benign) 

 

Table 1: Breast Cancer datasets 

I bits J bits K bits 
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3.2 Detailed Description of the proposed HAW algorithm 

The proposed HAW optimization algorithm is framed by the integration of a mutative 

initialization phase of ABC optimization with the exploitation phase of the whale optimization 

technique. The standard ABC is weak in exploration because of localized initial food sources 

due to the poor random search process. Hence, the HAW algorithm has used a mutative 

exploration phase at its initialization such that the algorithm can explore the entire problem 

space and finds out new promising regions. This employee bee phase of the ABC optimization 

process is integrated with the exploitative of WOA such that the employee bees follow the 

encircling prey/ bubble attacking method of whales to update the positions of the food sources. 

The best food source found at each iteration is considered as the target prey of WOA. The 

HAW involves two stages: In the first stage, HAW uses a mutative initialization phase is 

proposed using different mutations and it derives a possible set of diversified solutions. In the 

second stage, an employee bee attacking phase is proposed such that the optimum set of 

solutions derived by the mutative initialization phase forms the initial food source positions of 

the employee attacking phase that follows the attacking method of whales for the prey. The 

simulated annealing technique is used in the employee bee attacking phase to make the 

algorithm to escape from the local optimum locations and avoid looping problems. A flowchart 

representation of the HAW algorithm is shown in Figure (3). The proposed HAW optimization 

is summarized as follows: 

(i) A mutative initialization phase is proposed to derive a set of diversified solutions 

to expedite the search speed at the exploration phase. 

(ii) An employee attacking phase is proposed so that the employee bees adapt the 

encircling prey/ bubble net attacking method of whales for updating the current 

food source positions during their foraging process. The exploitation of the 

employee bee attacking phase is guided by the best food source (prey of the 

whales) found so far.  

(iii) To escape from suboptimal location and to avoid looping problems, Simulated 

Annealing (SA) based employee attacking phase is proposed.  

(iv) The onlooker bee phase and scout bee phase are followed in the same way as that 

of the standard ABC optimization. 
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Figure 3: Flowchart representation of the proposed HAW algorithm 

 

 

3.2.1 Initialization and fitness calculation  

A food source indicates a possible solution of the underlying optimization problem. 

Each food source is generated using the ‘dim’ number of variables that represent the dimension 

of problem space considered. The generation of the initial population is done through the 

random distribution of food sources using Equation (14).	𝐴"#  represents the kth variable of food 

source 𝑘 and k=1, 2.........N where N represents the maximum size of the food sources. 

𝐴"# = 𝐴267# + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) ∗ (𝐴234# − 𝐴267# )   (14) 

Where N=1, 2......dim, and ‘dim’ represents the dimension based on the number of 

parameters of the underlying optimization problem.	𝑟𝑎𝑛𝑑𝑜𝑚(0,1) is the random number 

generated between 0 to 1.	𝐴234	# 	represents the maximum bound of the lth variable of the 

optimization problem and 𝐴267#  gives the minimum bound of the lth variable of an optimization 

problem. The algorithm for the initial generation of food sources is given in Algorithm (3). 

Algorithm 3: Initialization of the proposed HAW 

Generation of Initial population 

      For 𝑚 = 1	𝑡𝑜	𝑖 do 

             For 𝑛 = 1	𝑡𝑜	𝑑 do 

𝑌27 = 𝑌2677 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) ∗ (𝑌2347 − 𝑌2677 ) 

             End for n 

       End for m 

Affinity Evaluation and sorting 

For 𝑚 = 1	𝑡𝑜	𝑖 do 

     Calculate fitness (𝑌2) 

     Sort (𝑌2) based on fitness 

End for 

Yes 

End 
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3.2.2 Proposed Mutative exploration phase  

The mutative exploration phase detects multiple food sources based on its quality. 

Better food sources are selected from the total population. Further, they are divided into three 

subpopulations based on the fitness difference between each food source and the best food 

source in the population with the help of three different threshold values such as limit1, limit2, 

and limit3. The three different subpopulations of food sources are subjected to different 

mutations where higher fitness food sources are mutated less and low fitness food sources are 

mutated high. Thus, the amount of mutation is inversely proportional to the fitness value of 

food sources. Better food sources with high fitness values are grouped as 𝐴"� food sources 

whose fitness is close to the fitness of the best food source of the total population. The 𝐴"� 

food sources are best; hence, a local search process is facilitated around the best food sources, 

which are mutated using Gaussian mutations where Equation (15) is utilized to make small 

random changes to 𝐴"� food sources.  

𝐴"�\ = 𝐴"� + µ�. 𝐺(0,1)      (15) 

 𝐴"�\ , the mutated food source, which is generated after the Gaussian mutation; µ� is 

the mutation rate indicating the strength of Gaussian noise added; 𝐴"� is the original food 

source; and 𝐺(0,1) is the random number of Gaussian distribution whose mean is zero and 

variance is one. 

Intermediate food sources with intermediate fitness values are grouped as 𝐴"� food 

sources whose fitness shares an intermediate fitness difference from the best food source of the 

total population. The 𝐴"X food sources are intermediate; hence, a uniform search process is 

facilitated around the intermediate food sources, and are mutated using uniform mutations 

where Equation (16) is utilized to generated uniformly mutated food sources of the 𝐴"X 

represented as 𝐴"X\  in which a random value is chosen from a solution and replaced with a 

uniform random value between the user-defined upper (Ub) and lower (Lb) limits.  

𝐴"X\ = 𝐴"X        (16) 

The worst food sources with low fitness values are grouped as 𝐴"� food sources whose 

fitness values are at a larger difference from the fitness of the best food source in the population. 

The 𝐴"� food sources are worse than	𝐴"�	and 𝐴"X. Hence, a global search is facilitated around 

the worst food sources, in which 𝐴"� food sources are mutated using Levy Mutations (LM) 

using Equation (17) that are more probable to escape from the local optimum. 

𝐴��\ = 𝐴�� + µ�. 𝐶(0,1)      (17) 
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 𝑋��\  is the mutated food source generated after Cauchy mutation and µ� is the Cauchy 

mutation rate that indicates the strength of the mutation. The mutated food sources along with 

the replaced worst food sources 𝐴4 forms the new set of food source 𝐴7B] eligible for 

exploitation. The modified antibody detection phase is described by the algorithm (4). 

Algorithm 4: Modified antibody detection phase  

Replace the worst ′𝑥′ food source by randomly generated food source 𝐴4 

 For each better food source (Ak ) 

     Select 𝐴"�, 𝐴"X, and 𝐴"� food sources from better food sources. 

					𝐴"� if {|Fitness (Ak) – Fitness (Abest) |} ≤ limit1 

    𝐴"X if {|Fitness (Ak) – Fitness (Abest) |} ≤ limit2 and if {| Fitness (Ak) – Fitness (Abest) |} ≥ 

limit1 

    𝐴"� if {|Fitness (Ak ) – Fitness(Abest) ) |} ≥ limit2 

           If			𝐴"� food sources 

                Mutate using equation (15) 

            Else If			𝐴"X food sources 

                Mutate using equation (16) 

             Else 

                 Maturate using equation (17) 

       Set of mutated food sources generated are  𝐴"���� 

Set 𝐴7B] = 𝐴"���� 

End for 

Generate 𝐴7B] = 𝐴7B] 	∪	𝐴4 

3.2.3 Proposed Employee bee attacking phase  

The food sources generated from the mutative exploration phase along with the 

replaced randomly generated food sources form the initial food source positions of the 

exploitation phase. Each food source is assigned with an employee bee where a bee searches a 

better food source around the current food source following the same way a whale search for 

the prey. An employee bee follows a circular path during searching for a neighborhood food 

source where the best food source found so far is considered as the center of the circle. This 

exploitative mechanism makes the search process to be always guided by the best optimal 

locations. The step size β of the search process is kept high at the initial stages of the iteration 

on the circular path to facilitate the process of exploration whereas in the later iterations the 

step size is gradually decreased to facilitate the process of exploitation. This dynamic step size 
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β of the search process makes the employee bees to search the entire problem space such that 

the bees can reach remote locations that were not reached in the exploration phase. The problem 

of oscillations and local optima can be eliminated with the dynamic step size in the circular 

path. A random number ran is generated using uniform distribution and checked against the 

control variables 𝐶� and 𝐶X. Then, if a randomly produced number less than 𝐶� then the food 

source position is found using Equation (18). 

                    𝑁"# = 𝐴"# + 𝛽 ∗ (𝐴"# − 𝐴=# )              (18) 
 
Where 𝛽= random (-1,1) is the step size that is dynamically varied across the iterations. 𝑁"#  is 

the new food source. 𝐴"#  is the current food source, 𝐴=#  is the randomly selected food source.  

Then if the randomly produced number is less than 𝐶X	and a probability check is done using 𝑃6 

where if 𝑃6 < 0.5	then new neighborhood position is found searching around a circular path 

keeping the best food source found so far 𝐴"∗ 	as the center of the circle using Equation (19). 

                    𝑁"# = 𝐴"∗ − 𝑀RR⃗ . 𝑌                                                                          (19) 
M represents the coefficient vectors obtained using Equation (3 & 4). Y is the distance between 

the current food source and the center of the circle (best food source) represented in the 

Equation (20). 

                  Y= P𝐴"∗ −	𝐴"# P                                                                              (20)                                                    

 Another probability check, if  𝑃6 ≥ 0.5	then new neighborhood position is found searching 

around a circular path keeping the best food source 𝐴"∗ 	found so far as the center of the circle 

using the Equation (21) 

                  𝑁"# = 𝑌. 𝑒3]. cos(2𝜋𝑙) + 𝐴"∗                                                         (21) 

a is a constant that represents the shape of the logarithmic spiral. w is the random number 

generated between [-1,1]. 

If fitness of 	𝑁"#  (neighborhood food source) is lesser than fitness 𝐴"#  (current food 

source), the proposed employee bee attacking phase accepts	𝑁"#  by accepting downhill 

movements to make the search process to escape from its local optimum in the fitness 

landscape. The acceptance of the worst food sources is based on the probability value 𝑒
�∆�
� . 

This is done using a simulated annealing-based selection mechanism where better and worst 

solutions are accepted in the proposed employee bee attacking phase. Acceptance or rejection 

of worst solutions is based on the controlling parameter called the simulated annealing 

temperature where the probability of accepting the worst solutions decreases as the iteration 

proceeds where the temperature gets decreased. At the initial stages the simulated annealing 
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temperature ‘T’ is set to have a high value where the value v∆�
�

 tends towards 0 making the 

probability value 𝑒
�∆�
�  towards 1 allowing the acceptance of the worst solutions. As the iteration 

grows, the value v∆�
�

 tends towards 1 making the probability value 𝑒
�∆�
�  towards 0 allowing the 

acceptance of better solutions. This makes the proposed HAW algorithm to allow both the 

uphill and downhill movements in the fitness landscape making the algorithm to eliminate the 

problem of striking at local optimum locations. When the iterations grow, the simulated 

annealing temperature ‘T’ is cooling down using the Equation (22). 

𝑇(𝑡 + 1) = ∅ ∗ 𝑇(𝑡)       (22) 

Where,𝑇(𝑡 + 1) is the new temperature and 𝑇(𝑡) is the temperature of the previous 

iteration.	′∅′ is the simulated annealing constant which is set close to 1. The proposed employee 

bee attacking phase is described by the algorithm (5). 

Algorithm 5: Proposed Employee bee attacking phase 

    For k= 1 to n do 

         For l=1 to dim do 

             If ran ≥ 𝐶� 

                     Search for the neighbouring food source using Equation (18) 

             Else If ran < 𝐶X  

                 If (𝑃6 < 0.5) 

                      Search for the neighbouring food source using Equation (19) 

                  Else 𝑖𝑓	(𝑃6 ≥ 0.5) 

           Search for the neighbouring food source using Equation (21) 

                  End if 

              End if 

         End for l 

         If 		𝑓𝑖𝑡𝑛𝑒𝑠𝑠{𝑁"#} > 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐴"# ) 

                    Accept 𝑁"#  

         Else 

                    Calculate ∆𝐸 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠	{𝐴"# } − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑁"#) 

                    Accept 	𝑁"#  with probability 𝑒
�∆�
�  

          End if 

End for k 
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3.2.4 Onlooker Bee Phase  

The information about the newly generated food sources 𝑁"#   is shared with onlooker 

bees. Further, onlooker bees produce probability value	𝑉𝑆6	for a food source, it receives from 

the employee bee attacking phase using Equation (23). 

𝑉𝑆" =
@6A7BCC(DE)

∑ @6A7BCC(�w)G
EHI

       (23) 

Where 𝑓𝑖𝑡𝑛𝑒𝑠𝑠	(𝐴") is the quality of food source	𝐴". A random (0,1) is generated and 

compared with 𝑉𝑆" for each food source. Those food sources whose 𝑉𝑆" is greater than random 

(0,1) is selected by onlooker bees. The detailed description for the onlooker bee phase given 

using Algorithm (6) 

Algorithm 6: Onlooker Bee Phase 

For k= 1 to N do 

Calculate probability using Equation (3) 

         If 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) < 𝑉𝑆" 

             Accept 𝑁"#  

         Else 

             Reject 𝑁"#  

 End for  

Memorize the best food source   𝐴�BCA 

3.2.4 Scout Bee Phase  

The abandoned food sources are replaced and new food sources are introduced by the 

scout bees. In each iteration, if the food source isn’t improved then the limit value associated 

with the food source is incremented and if the food source doesn’t improve for certain iterations 

and crosses the threshold limit value then those food sources are replaced by the scout bees by 

random generation process using Equation (1). The detailed description of the scout bee phase 

is given in the Algorithm (7). 

Algorithm 7: Scout Bee Phase  
While (	𝐴" does not improve) 

        count = count + 1 

        If count > count��� 

             Replace 	𝐴" with the newly generated food source 

       Else  

count = 0 
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Iteration= Iteration +1 

4 Performance Evaluation of the proposed HAW Optimization 

The HAW algorithm is used to generate the optimal feature subsets, initial weights, and 

hidden node size of an ANN which is trained using three different learning mechanisms based 

on backpropagation such as Resilient Backpropagation (RP), Levenberg Marquardet 

backpropagation (LM), and momentum-based Gradient Decent backpropagation (GD). The 

HAW performance is analysed to find out the backpropagation variant that achieves the least 

ANN error with low complexity using WBCD. Further, the best backpropagation variant that 

is selected is used for training the ANN when tested for the rest of the datasets.  The HAW 

optimized ANN is analysed for ten independent runs using various generation sizes and the 

mean accuracy, mean connections, and mean computational time are calculated.  

4.1 Parameter Settings and Experimental Setup using WBCD 

The proposed wrapper architecture was implemented utilizing MATLAB 8.5 software. 

Backpropagation training is done using a neural network toolbox. The implementation of 

backpropagation is done using default training parameters. The winner takes all approach in 

output nodes is used for classification. The parameter settings of the ANN classifier are shown 

in Table (2). HAW utilized the cancer1 dataset [55] which contains pre-processed WBCD 

samples. The values in between 0 to 1 are rescaled and attribute values that are missing are 

filled using mean values of non-missing attributes. The HAW parameter settings are shown in 

Table (3).  

Table 2: Parameter settings of ANN  
Parameter Value 

Training                  Backpropagation 
Input nodes size 9 
Output nodes size 2 
Initial weights (Number of bits) 15 
Hidden node size (Number of bits) 2 
 Input features (Number of bits) 9 
Activation function (hidden node)  Hyperbolic Tangent 
Activation function (output node) Pure Linear 
Training set (no of samples) 349 (50%) 
Validation set (no of samples) 175 (25%) 
Testing set (no of samples) 175 (25%) 

 

Table 3: Parameter settings of HAW 
Parameter Value 

Employee Bees (size) 30 
Onlooker Bees (size) 30 

Scout bees (size) 1 
Total colony (size) 60 

Count limit (𝐶𝑜𝑢𝑛𝑡234) 10 
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Better food source selection (𝐴"	) 80% 
Worst food source selection (𝐴4	) 20% 

Control Threshold (𝑙𝑖𝑚𝑖𝑡1) 0.0001 
Control Threshold (𝑙𝑖𝑚𝑖𝑡2) 0.5 

Mutation rate (µ�	) 0.4 
Mutation rate (µ�	) 0.6 

 

4.2 Evaluation of Proposed HAW using WBCD with respect to accuracy, complexity 

and computational time  

The proposed HAW is evaluated for the complexity in terms of the number of 

connections and accuracy using ten runs for generation sizes 10, 20, 30 as given in Table (4). 

HAW-RP achieved the highest mean accuracy of 99.25% at the 20th generation size. The mean 

connections were 10.40 for HAW-RP, which is low when compared to HAW-LM and HAW-

GD. HAW gained the less complexity ANN trained with RP. The validation error convergence 

of the optimized ANN network for RP, LM, and GD for various generations is depicted in 

Figure (3).  

Table 4: Performance of the proposed HAW algorithm for various backpropagations 

Max 

Generation 

Size 

Proposed 

HAW-RP 

Proposed 

HAW-LM 

Proposed 

HAW-GD 

Classification 

accuracy (%) 

Number of 

connections 

Classification 

accuracy (%) 

Number of 

connections 

Classification 

accuracy (%) 

Number of 

connections 

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean 

10 98.42 97.55 11 12.56 97.75 96.73 11 16.42 97.83 96.91 11 14.65 

20 99.55 99.25 10 10.40 97.95 96.71 12 15.34 98.12 97.38 11 14.82 

30 99.15 98.48 11 12.23 98.45 98.22 13 14.46 98.91 98.57 12 14.21 
 

Followed by HAW-RP, HAW-GD is 98.57% accurate, with average connections of 

14.21 in the 30th generation. Next to HAW-GD, HAW-LM achieved high accuracy of 98.22% 

in the 30th generation with average connections of 15.46. The classification accuracy of the 

optimized ANN network for RP, LM, and GD for various generations is depicted in Figure (4). 

The accuracy of HAW-RP was 1.05% more than HAW-LM and 0.69% more than HAW-GD.  

The confusion matrix based on the True Positive, True Negative, False Positive, and 

False Negative of HAW-RP, HAW-LM, HAW-GD for the best network achieved is shown in 

Table (5). Figure (5) gives the complexity of the ANN network achieved in terms of the number 

of connections for various generation sizes. HAW-RP achieved lower complexity with lesser 

connections, followed by HAW-GD and HAW-LM. The mean hidden node count of HAW-
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RP was 22.5% less than HAW-LM and 20.78% less than HAW-GD. HAW-RP produced ANN 

complexity of having 28.08% fewer connections than HAW-LM and 26.81% fewer 

connections than HAW-GD. 

  
Figure 3: Convergence of validation error for HAW  

 
Figure 4: Performance of HAW with respect to classification accuracy 

Table 5: Confusion Matrix of the HAW Optimized ANN network across ten runs 

Methods of 
comparison Actual Number of cases 

Test outcome-Predicted 

Malignant Benign 

HAW-RP 
Malignant 650 647(TP) 10 (FN) 

Benign 1100 3 (FP) 1090(TN) 

HAW-LM Malignant 650 640(TP) 21(FN) 

Benign 1100 10 (FP) 1079(TN) 

HAW-GD Malignant 650 642(TP) 17 (FN) 
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Benign 1100 8 (FP) 1083(TN) 

 

 
Figure 5: Performance of HAW with respect to the number of connections 

 

The performance metrics of the optimized ANN network generated using HAW-RP, 

HAW-LM, HAW-GD are shown in Table (6). HAW-RP showed higher sensitivity and 

specificity, followed by HAW-GD and HAW-LM. Figure (6) shows the hidden node count for 

HAW-RP, HAW-LM, and HAW-GD over generation sizes. 

     Table 6: Performance of HAW Optimized ANN network based on different metrics 
Metrics Proposed 

HAW-RP 
Proposed 
HAW-LM 

Proposed 
HAW-GD 

Sensitivity (%) 98.47 96.82 97.42 
Specificity (%) 99.72 99.08 99.26 
Accuracy (%) 99.25 98.22 98.57 
Precision (%) 99.53 98.46 98.76 

Negative predictive Value 
(NPV) (%) 99.09 98.09 98.45 

F-measure 0.99 0.97 0.98 
 

Table (7) gives the importance of feature selection on the performance of the proposed 

HAW optimized ANN network in terms of classification. From Table (7), it can be concluded 

that HAW optimized ANN with feature selection improved prediction accuracy with less 

complexity when compared with the performance without the feature selection. 

Table 7: Performance of HAW-RP based on feature selection 
Max 

Generation 
Size 

Feature 
Selection (FS) 

Average 
Hidden 

Node Count 

Average 
Number of 

Selected Features 

Average Number of 
connections 

Average 
Accuracy 

(%) 

10 With FS 1.4 5.8 12.56 97.55 
Without FS 2.5 9 27.5 88.34 
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20 With FS 1.2 5 10.40 99.25 
Without FS 2.2 9 26.6 90.42 

30 With FS 1.3 5.1 12.23 98.48 
Without FS 2.2 9 24.8 89.05 

 
Table (8) shows the confusion matrix for best network achieved using HAW-RP, with 

selected features such as Uniformity of cell size, Single epithelial cell size, Bare nuclei. 

Table 8: Confusion Matrix of HAW-RP optimized best ANN with features selected 

Feature Selection Actual Cases 
Predicted Cases 

Selected Feature Set 
Benign Malignant 

With Feature 
Selection 

Benign 110 110 1 Uniformity of cell size, Single 
epithelial cell size, Bare nuclei 

Malignant 65 0 64 

Without Feature 
Selection 

Benign 110 102 7 Clump Thickness, Uniformity of cell 
size, Uniformity of cell shape, 
Marginal adhesion, Single epithelial 
cell size, Bare nuclei, Bland 
chromatin, Normal nucleoli, Mitoses 

Malignant 65 8 58 

 

 

  
Figure 6: Evolution of hidden node count with feature selection for HAW across 

different generations 

The evaluation of HAW optimized ANN with respect to computational time is given in 

Table (9). The mean computational time for 10 runs was estimated for various sizes of 10, 20, 

and 30. The computational time of ANN optimized using HAW-LM was low in comparison to 

the computational time of HAW-RP and HAW-GD. 

Table 9: Performance-based on average computational time 
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Maximum 
Generation Size 

Average CPU Time(s) 
Proposed 
HAW-RP 

Proposed 
HAW-LM 

Proposed 
HAW-GD 

10 427.5 301.5 502.8 
20 820.2 789.6 845.9 
30 1105.9 1036.5 1254.1 

 

Figure (7) compares HAW with PSO, DE, ABC, BA, ACO, BFO, DA, GA, AIS, MBO, 

WOA, and SSA using the WBCD. HAW attained highest accuracy, which was 9.67%, 7.53%, 

10.89%, 12.27%, 12.78%, 8%, 10.03%, 0.97%, 8.83%, 9.91%, 5.03%, and 3.39% respectively 

higher than when compared to above mentioned algorithms. 

 
Figure 7: Comparison between evolutionary methods using WBCD dataset 

Figure (8) compares HAW and existing hybrid algorithms that are ABC-based using 

WBCD, which includes ABC-ACO [43], ABC-DE [44], ABC-DA [56], and ABC-Gradient 

Decision Tree [46]. The accuracy of HAW was 0.07%, 1.58%, 2.36%, and 2.02% respectively 

higher when compared to the above-mentioned algorithms. 

   
Figure 8: Comparison of ABC-based hybrid algorithms using WBCD datasets 
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Table (10) gives a comparison of the proposed HAW optimized classifier with existing 

breast cancer diagnosis schemes using WBCD datasets. Based on Table (10), it is concluded 

that the proposed Optimized ANN classifier using HAW outperformed existing breast cancer 

diagnosis schemes.  

Table 10: Comparison with existing breast cancer diagnosis schemes  

WBCD Dataset 
First author, Year Method Accuracy (%) 

Quinlan,1996 [53] C4.5 classifier 94.74 
Hamilton,1996 [54] RAIC classifier 95.00 
Nauck,1999 [55] NEFCLASS 95.06 
Pena-Reyes,1999 [56] FUZZY-GA classifier 97.36 
Setino, 2000 [57] Neuro-rule classifier 98.10 
Albrecht, 2002 [58] LSA classifier Machine 98.80 
Fogel, 1995 [59] ENN classifier 98.05 
Abonyi, 2003 [60] SFC classifier 95.57 
Polat, 2007 [61] LS-SVM classifier 98.54 
Gujaro-Berdinas, 2007 [62] LIS classifier 96.00 
Karabatak, 2009 [8] AR+ANN classifier 97.40 
Monirul, 2010 [63] CAFS+ANN classifier 98.76 
Stoean, 2013 [64] SVM+EA classifier 97.07 
Fadzil Ahmad, 2014 [65] GANN-ANN classifier 98.29 
Shunmugapriya, 2017 [43] ABC-ACO-J48 classifier 99.04 
H. Rao, 2018 [46] ABC+ GD classifier 92.8 
Ghanem, 2018 [56] ABC-DA+ANN classifier 98.29 
Karthik, 2018 [70] DNN classifier 98.62 
Proposed Work HAW-ANN classifier 99.25 

 

4.3 Performance evaluation of HAW using different breast cancer datasets 

The proposed HAW-RP yielded the best ANN networks with high accuracy and low 

complexity. Hence, HAW-RP was tested for the rest of the breast cancer datasets taken for 

investigation. Table (11) shows the performance of the HAW-RP Optimized ANN network 

for different breast cancer datasets. The average classification accuracy, F-measure, number of 

connections, and computational time has been calculated using ten different independent runs 

for different generation sizes and the best of the average values has been recorded. The 

proposed HAW algorithm optimized ANN model namely HAW-RP has shown better 

performance with a smaller number of connections in comparison with standard ABC and 

WOA for the datasets taken for investigation. 
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Table 11: Performance of HAW-RP Optimized ANN network for different datasets 

Datasets 

Average classification 

accuracy (%) 

 

Average F-measures 

Average number of 

connections 

Average computational 

time (Secs) 

ABC WOA HAW-RP ABC WOA HAW-RP ABC WOA HAW-RP ABC WOA HAW-RP 

WBCD 89.5 94.5 99.2 0.8812 0.9327 0.990 25.21 28.11 10.40 640.6 700.5 820.2 

WDBC 87.5 91.5 98.5 0.8648 0.9005 0.975 24.67 22.17 19.82 590.3 600.2 750.2 

WPBC 86.5 93.5 96.3 0.8532 0.9206 0.953 24.89 23.19 18.52 300.1 350.7 425.5 

DDSM 87.2 92.5 98.8 0.8641 0.9187 0.981 36.23 37.87 16.8 535.6 600.2 700.6 

MIAS 89.4 91.2 98.7 0.8894 0.9072 0.978 33.78 35.78 25.34 450.2 500.9 656.8 

INBREAST 86.3 89.3 99.1 0.8570 0.8831 0.986 30.82 31.12 25.12 400.1 455.7 600.4 

 

The Figure (9 & 10) shows the graphical representation of the performance of the 

standard ABC and WOA optimized ANN model and the proposed HAW optimized ANN 

model for various breast cancer datasets taken for investigation with respect to classification 

accuracy and an average number of connections. The HAW optimized ANN model has shown 

higher accuracy and low complexity in comparison to the standard ABC and WOA optimized 

ANN model. 

 
Figure 9: Comparison based on classification accuracy for breast cancer datasets 
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Figure 10: Comparison based on number of connections for breast cancer datasets 

Table (12) shows the confusion matrix with a frequently selected feature set for the various 

datasets used for investigation of the proposed HAW-RP based ANN after the execution of ten 

independent runs. 

Table 12: Confusion Matrix after ten runs for various datasets 

WDBC dataset Frequently selected features 

Methods of 
comparison 

Actual 
Number 
of cases 

Test outcome-
Predicted 

Texture, Radius, Compactness Concavity, 
Fractal dimension 

 Malignant Benign 
HAW-RP Malignant 420 415(TP) 16 (FN) 

Benign 1000 5 (FP) 984(TN) 
WPBC dataset Radius, Texture, Area, Concavity, 

symmetry, fractal dimension 
 Methods of 

comparison 
Actual 

Number 
of cases 

Test outcome-
Predicted 

Recurrent 
Non-

Recurrent 
HAW-RP Recurrent 190 183(TP) 11 (FN) 

Non-
Recurrent 

300 7 (FP) 289(TN) 

DDSM dataset Skewness, Kurtosis, Correlation, Contrast, 
Area, Major Axis length, Skeleton 

Methods of 
comparison 

Actual 
Number 
of cases 

Test outcome-
Predicted 

Malignant Benign 
HAW-RP Malignant 400 392(TP) 7(FN) 

Benign 900 8(FP) 893(TN) 
MIAS dataset Solidity, Perimeter, Extent, Skewness, 

Entropy, Mean, Variance, Eccentricity 
 

Methods of 
comparison 

Actual 
Number 
of cases 

Test outcome-
Predicted 

Malignant Benign 
HAW-RP Malignant 250 247(TP) 8(FN) 

Benign 600 3(FP) 592(TN) 
INBREAST dataset 

25.21 24.67 24.89
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Methods of 
comparison 

Actual 
Number 
of cases 

Test outcome-
Predicted 

Skewness, Kurtosis, Correlation, Area, 
Major Axis length, Convex Area, 

Eccentricity Malignant Benign 
HAW-RP Malignant 290 287(TP) 3(FN) 

Benign 400 3(FP) 397 (TN) 

 

Table (13) shows the performance comparison of the proposed HAW optimized ANN 

model in terms of average classification accuracy for ten independent runs with various 

classifiers for different datasets. The proposed HAW-ANN model has shown higher accuracy 

compared with existing classifiers for all the datasets taken for investigation.  

                Table 13: Average classification accuracy for various classifiers 

Datasets 
Average classification accuracy (%) 

SVM Naive Bayes Random Forest MLP HAW- ANN 

WBCD 92.3 83.4 85.9 88.6 99.2 

WDBC 89.7 88.4 82.4 87.5 98.5 

WPBC 84.5 89.1 84.9 88.1 96.3 

DDSM 92.2 80.9 82.5 92.2 98.8 

MIAS 88.4 80.3 77.9 86.2 98.7 

INBREAST 88.3 82.6 88.2 91.1 99.1 

 

4.4 Comparison with existing approaches using WDBC 

Figure (11) compares HAW with PSO, DE, ABC, BA, ACO, BFO, DA, GA, AIS, 

MBO, WOA, and SSA using the WDBC. Each algorithm is executed for 10 runs various 

generation sizes 10, 20, and 30 and the best is taken for comparison. HAW based ANN attained 

highest accuracy, which was 7.65%, 6.83%, 12.96%, 17.12%, 8.84%, 5.69%, 9.2%, 7.42%, 

12.96%, 11.3%, 7.65%, and 5.35% respectively higher than when compared to above 

mentioned algorithms. 
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Figure 11: Comparison with other evolutionary methods using WDBC dataset 

Table (14) gives a comparison of the proposed HAW optimized classifier with existing 

breast cancer diagnosis schemes using WDBC datasets. Based on Table (6.10), it is concluded 

that the proposed Optimized ANN classifier using HAW outperformed existing breast cancer 

diagnosis schemes.  

Table 14: Comparison with existing breast cancer schemes for WDBC dataset 

WDBC dataset 
First author, Year Method Accuracy (%) 
Bamakan, 2014 [71] CFS -SVM classifier 87.84  
Bamakan, 2014 [71] SVM-Filtered classifier 87.84  
Bamakan, 2014 [71] Logistic Regression-CFS classifier 95.95 
Bamakan, 2014 [71] Logistic Regression-Filtered classifier 96.62 

Xue, 2012 [72] BPSO classifier 92.98 
Xue, 2014 [73] PSO classifier 93.98 

Maldonado, 2011 [74] KP-SVM classifier 97 ±0.9 
Maldonado, 2011 [74] REF-SVM classifier 95.25±1.0 

Miao, 2011 [75] Training-self classifier 85.12 
Miao, 2011 [75] Training- Random classifier 83.54 

Luukka, 2006 [76] LDA classifier 97.19 
Luukka, 2006 [76] C4.5 classifier 94.06 
Luukka, 2006 [76] DIMLP classifier 96.92 
Luukka, 2006 [76] SIM classifier 98.2 
Razieh, 2015 [77] PSO-KDE classifier 98 
Djellali, 2018 [51] ABC-GA classifier 91.67 

Proposed Work HAW-ANN classifier 98.5 

 

4.5 Comparison with existing approaches using Wisconsin Prognosis Breast Cancer 

Dataset (WPBC) 

Figure (12) compares HAW with PSO, DE, ABC, BA, ACO, BFO, DA, GA, AIS, 

MBO, WOA, and SSA using the WPBC. Each algorithm is executed for 10 runs various 

generation sizes 10, 20, and 30 and the best is taken for comparison. HAW based ANN attained 

highest accuracy, which was 7.6%, 6.06%, 11.33%, 13.03%, 6.41%, 9.31%, 10.44%, 5.02%, 

10.44%, 7.6%, 2.99%, and 2.67% respectively higher when compared to above mentioned. 
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Figure 12: Comparison with other evolutionary methods using WPBC dataset 

 

Table (15) gives a comparison of the proposed HAW optimized classifier with existing 

breast cancer diagnosis schemes using WPBC datasets. Based on Table (6.10), it is concluded 

that the proposed Optimized ANN classifier using HAW outperformed existing breast cancer 

diagnosis schemes.  

Table 15: Comparison with existing breast cancer diagnosis schemes for WPBC  

 

WPBC dataset 
First author, Year Method Accuracy (%) 
Belciug, 2012 [78] MLP-GA Hybrid classifier 81.11  
Belciug, 2012 [78] MLP-BP classifier 60.21  
Belciug, 2012 [78] PNN classifier 74.43 
Belciug, 2012 [78] PCNN classifier 72.10 
Salama, 2012 [79] SMO classifier 76.28 
Salama, 2012 [79] J48 classifier 76.28 
Sridevi, 2014[80] Correlation +Rough Set classifier 85 
Proposed Work HAW-ANN classifier 96.3 

 

4.6 Comparison with existing approaches using DDSM, MIAS and INBREAST 

databases 

The Figure (13) shows the comparison of HAW with evolutionary algorithms such as 

PSO, DE, ABC, BA, ACO, BFO, DA, GA, AIS, MBO, WOA, and SSA. Each algorithm is 

executed for 10 runs various generation sizes 10, 20, and 30 and the best is taken for 

comparison.  Using DDSM database, HAW based ANN achieved accuracy which is 7.98%, 

7.16%, 13.3%, 17.48.1%, 9.17%, 6.01%, 9.53%, 7.74%, 13.3%, 11.64%, 6.81%, and 6.35% 

more than above mentioned algorithms respectively. Using MIAS database, HAW based ANN 

achieved highest accuracy which is 10.53%, 10.28%, 10.4%, 8.2%, 8.22%, 12.67%, 
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10.28%,7.17%, 9.42%, 10.28%, 8.22%, and 7.87% more than more than above mentioned 

algorithms respectively. Using INBREAST database, HAW based ANN achieved highest 

accuracy which is 7.6%, 9.14%, 14.83%, 9.26%, 5.99%, 11.47%, 8.66%, 5.99%, 8.07%, 

12.36%, 10.97%, and 10.11% more than more than above mentioned algorithms respectively. 

Table (16) gives a comparison of the proposed HAW optimized classifier with existing 

breast cancer diagnosis schemes using DDSM, MIAS, and INBREAST datasets. Based on 

Table (16), it is concluded that the proposed Optimized ANN classifier using HAW 

outperformed existing breast cancer diagnosis schemes.  

 
Figure 13: Comparison with other evolutionary methods using DDSM, MIAS, and 

INBREAST 

 

Table 16: Comparison with existing breast cancer diagnosis schemes for DDSM, MIAS, 

and INBREAST datasets 

First author, Year Method Database Accuracy (%) 
Wang, 2014 [81] SVM classifier DDSM 92.74 
Liu, 2013 [82] SVM classifier DDSM 93.00 
Saki, 2013 [83] OWBPE classifier MIAS 89.28 

Buciu, 2011 [84] PSVM classifier MIAS 96.43 
Tahmasbi, 2011 [85] ANN-MLP classifier MIAS 96.43 
Tahmasbi, 2010 [86] ANN-MLP classier MIAS 92.80 

Zhang, 2012 [87] SVM classifier DDSM 72.00 
Verma, 2010 [88] SCNN classifier DDSM 94.28 
Verma, 2009 [89] SCBDL classifier DDSM 97.50 
Rojas, 2009 [90] Bayesian classifier DDSM, MIAS 81 

Dheeba, 2012 [91] PSO-ANN classifier MIAS 97.61 
Dheeba, 2012 [92] DE-WNN classifier MIAS 97.84 

Rahimeh, 2015 [93] GA-CNN classifier MIAS, DDSM 88.15, 94.99 
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Andrik, 2017 [94] CED classifier INBREAST 98.9 ± 0.4 
Ribl, 2018 [95] DNN classifier INBREAST 95 

Proposed Work HAW-ANN classifier 
DDSM 
 MIAS 
INBREAST 

98.8 
98.7 
99.1 

 

4.6 Comparison with existing approaches that doesn’t involve complex tuning process 

for breast cancer diagnosis 

Table (17) gives a comparison of the proposed HAW-ANN scheme with existing breast 

cancer diagnosis schemes that involves either feature selection or parameter tuning process. 

Based on Table (17), it is concluded that having both feature selection and parameter 

optimization of ANN in parallel is vital and the proposed HAW-ANN outperformed existing 

breast cancer diagnosis schemes that has used either feature selection or the parameter tuning 

of the classifier involved.  

 

Table 16: Comparison with existing breast cancer diagnosis schemes  

 

First author, Year Method Database Accuracy 
(%) 

Ghanem, 2018 [56] ABC-DA based feature selection +ANN  WBCD 98.29 
H. Rao, 2018[56] Feature selection + Decision Tree  WBCD 97.18 
B. Xue, 2014 [73] PSO based feature selection + KNN  WBCD 94.74 

Liu, 2013 [82] Feature selection + SVM  DDSM 93.00 
Buciu, 2011 [84] Feature reduction + Proximal SVM MIAS 96.43 

Dheeba, 2012 [91] PSO based parameter tuning of ANN  MIAS 97.61 
Dheeba, 2012 [92] PSO based parameter tuning of WNN  MIAS 97.84 

Rahimeh, 2015 [93] GA based feature selection +CNN  MIAS, 
DDSM 

88.15 
94.99 

Kermani, 1995 [96] GA based feature selection +ANN WBCD 94.7 
Verma, 2009 [97] GA based feature selection + ANN  DDSM 85 
Abbass, 2002 [98] PSO based parameter tuning of WNN  WBCD 98.1 

M. Supriya, 2019 [100] DA based feature selection + Gray wolf-
based parameter tuning of ANN  

WBCD 99 

Dhanya, 2020 [101] Feature selection + KNN  WBCD 93.57 

Proposed Work 
HAW based simultaneous feature selection 
and parameter tuning + ANN  

WBCD 
WDBC 
WPBC 
DDSM 
MIAS 
INBREAST 

99.2 
98.5 
96.3 
98.8 
98.7 
99.1 
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5 Conclusions 

This paper proposed a hybrid algorithm by integrating the standard ABC with WOA 

for simultaneous feature subset selection and parameter optimization of ANN for breast cancer 

diagnosis. It is noted that in the exploration phase of HAW, the food source positions are found 

randomly with different mutation strategies whereas in the exploitation phase the bees search 

in the circular path moving guided by a goal point in the center which is a deterministic 

approach.  These two combinations of approaches make HAW avoid local optimal problems 

and have a high convergence speed. The advantage of HAW lies in deriving an optimal ANN 

network by the optimal searching of hidden node size, the initial value of weights, and input 

features using a simple wrapper approach. Performance evaluation of HAW using back-

propagation variants such as RP, LM, and GD is done for different breast cancer datasets. Based 

on the results achieved, RP achieved the best prediction accuracy with a low complexity ANN 

network. From the results of this study, it is concluded that having both feature selection and 

parameter optimization of ANN is vital. In comparison with existing published researches, the 

average accuracy attained by HAW is promising. In comparison with existing evolutionary 

algorithms, the proposed HAW algorithm was more accurate and less complex. Further, the 

limitations of the proposed HAW-ANN classifier are based on the “no free lunch theorem” 

which states that classifier trained on a particular feature set may not be used for other feature 

sets. Based on this, the proposed HAW optimized classifier that is trained on the breast cancer 

datasets has not been yet tested for other medical datasets and other high dimensional datasets. 

The proposed wrapper approach of the HAW-ANN scheme is complex and requires more 

computational time than the existing breast cancer scheme since it involves feature selection 

and parameter tuning process parallel.  
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