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In this paper, we propose an attention-guided multi-scale fusion network (named as AMS-Net) for crowd
counting in dense scenarios. The overall model is mainly comprised by the density and the attention net-
works. The density network is able to provide a coarse prediction of the crowd distribution (density map),
while the attention network helps to distinguish crowded regions from backgrounds. The output of the
attention network serves as a mask of the coarse density map. The number of persons in the scene is
finally estimated by applying integration on the refined density map. In order to deal with persons of var-
ied resolutions, we introduce a multi-scale fusion strategy which is built upon dilated convolution.
Experiments are carried out on the standard benchmark datasets, covering varied over-crowded scenar-
ios. Experimental results demonstrate the effectiveness of the proposed approach.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Crowd counting is an emerging topic in the field of computer
vision in recent years, which can be applied in a wide range of
applications in visual surveillance, such as crowd simulation
[1,2], crowd dynamics modeling [3], crowd clustering [4], abnor-
mal behavior detection [5], pedestrian identification and facial
recognition [6,7], and group behavior analysis [8,9], to name a few.

However, crowd counting in real environments is very challeng-
ing due to the intrinsic characteristics of the problem: (1) people in
dense crowd always have lower resolutions with varied scales; (2)
frequent occlusions make it impossible to observe the whole body
of a person in the scene; (3) background clutters always exert neg-
ative influences on the counting accuracy.

In this work, we propose an attention-guided multi-scale fusion
network to address the problems mentioned above, which is
named as AMS-Net. Particularly, head regions are exploited to dis-
tinguish persons from each other, which are more suitable for
dense environments comparing to the whole body representation,
even in a low quality and low resolution scenario. In order to deal
with persons of varied resolutions, we propose a multi-scale fusion
strategy, which is built upon dilated convolution. The dilated con-
volution can expand the receptive field without introducing extra
computational cost, thus allowing a wider range of perceptual
scopes. In addition, it should be noticed that environmental cues
will be mistaken into account occasionally in some off-the-shelf
methods, due to background clutters. For example, in Fig. 1, trees
are mis-labeled as persons, thus leading to the decrease in the
counting accuracy. In order to tackle this problem, we introduce
an attention mechanism in the framework, which allows the model
to concentrate on crowds.

The main components in the overall framework are the density
network and the attention network. The former can provide a
coarse distribution of the crowd, while the later aims at differenti-
ating crowded regions from backgrounds. The output of the atten-
tion network can be viewed as a mask of the coarse density map.
The number of persons in the scene is finally estimated by applying
integration on the refined density map.

To sum up, the main novelties and contributions of this work
are presented as follows: (1) we propose an attention-guided
framework to deal with the problem of crowd counting in realistic
scenarios; (2) in order to perceive persons in varied resolutions, we
adopt a multi-scale fusion strategy, which is built upon dilated
convolution; (3) we introduce an attention mechanism in the
framework, which allows the model to concentrate on crowd
regions; (4) we use a channel-wise weighted strategy, which can
further promote the counting accuracy.

The rest of the paper is organized as follows: In Section 2, we
briefly review the recent progress in crowd counting and density
estimation. In Section 3, we present the whole framework, includ-
ing the multi-scale fusion strategy, the attention network, and the
density network. Experimental results are demonstrated in Sec-
tion 4, where we evaluate the performances of crowd counting
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Fig. 1. Background clutters. Top: original scenarios; Bottom: density maps estimated using the method presented in [10]. The red bounding boxes indicate the background
regions that being mistaken into consideration in the crowd density maps.
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comprehensively and visualize the results. We conclude our work
in Section 5.
2. Related work

In the last decade, a lot of effort has been spent by the research
community in the area of crowd counting, mostly considering a
bird-eye viewpoint, with applications to density estimation, abnor-
mal event detection, crowd evacuation, and early warning, etc.
Early works exploited the low-level visual features (i.e., HOG,
wavelet) for pedestrian detection in relatively sparse scenarios.
However, these features are hand-crafted, which are not suitable
for dense areas, where background clutters, occlusions, non-
uniform crowd distribution, and illumination changes always exist.
More recently, with the rapid development of modern deep learn-
ing techniques, the performances of crowd counting in more com-
plicated and realistic scenarios have been promoted significantly.

At the beginning, the convolutional neural network (CNN) and
its variants were widely adopted. Boominathan et al. [11] pre-
sented the so-called CrowdNet, where the shallow and the deep
fully convolutional neural networks are combined to capture both
the high-level semantic information and the low-level visual fea-
tures. Shang et al. [12] proposed an end-to-end convolutional neu-
ral network which exploits contextual information for both local
and global count estimation. Sindagi et al. [13] provided an end-
to-end CNN-based cascaded network, where the coarse count in
an image serves as the high-level prior in the training procedure.
In [14], Ranjan et al. presented a two-branch convolutional neural
network, where one branch is used to generate a low resolution
density map, and the other exploits the obtained low resolution
density map to predict the corresponding high resolution density
map.

Since scale variations are widely existed in dynamic scenarios
due to varied camera viewpoints, it is essential to take multi-
scale perceptions into consideration. In the recent years, varied
multi-scale feature fusion strategies have been proposed, such as
[15–17]. In the filed of crowd counting, Zhang et al. [10] proposed
a multi-column convolutional neural network for crowd density
estimation, which exploits filters with varied kernel sizes. This
approach is able to deal with arbitrary sizes of input images and
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variations in people’s resolution. In [18], Sam et al. presented a
switching convolutional neural network for crowd counting. Each
independent CNN is equipped with a specific receptive field. A
switch classifier is exploited to relay crowd patches of varied scales
to the proper CNNs. Li et al. [19] adopted the dilated convolutional
neural network to expand the receptive field, in order to generate
high-quality density maps. Cao et al. [20] first adopted multi-scale
convolution kernels for spatial feature extraction, and then
exploited deconvolution to generate the crowd density map. Yan
et al. [21] proposed a perspective-guided convolutional neural net-
work for crowd counting, which is able to deal with scale varia-
tions of people caused by the perspective effect. Yang et al. [22]
proposed a reverse perspective network for perspective-aware
object counting, which can solve the scale variations in an unsu-
pervised manner. Bai et al. [23] proposed an adaptive dilated con-
volution network, which learns a specific continuous dilation rate
to effectively match the scale variations at different locations.

In [24], Wang et al. proposed a large-scale crowd dataset for the
task of counting and localization, which facilitates training the
CNN-based models in a supervised manner. In [25,26], Wang
et al. utilized synthetic crowd data with enough annotations to
tackle the counting problem. In [27–29], the attention mechanisms
[30] were adopted. In [31], Liu et al. exploited contextual informa-
tion to predict crowd density. In [32], Ma et al. leveraged on the
Bayesian loss for crowd counting with point supervision. In [33–
35], multi-level feature fusion strategies were utilized for crowd
counting and density estimation. A detailed overview on the recent
literature can be found in the survey papers [36,37].
3. Methodology

3.1. Framework

The overall framework of the proposed AMS-Net is presented in
Fig. 2. Raw input images are processed by the attention network
and the density network directly. In order to perceive people with
varied resolutions, we embed a multi-scale fusion module into the
attention network, whose output is used as the mask of the density
map that obtained through the density network. Finally, the



Fig. 2. The proposed framework. The attention map corresponds to the regions where crowds are more likely to locate, and the density map is a coarse estimation of the
crowd distribution in the scene. � represents the dot production between the attention map and the density map.
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number of persons in the crowd is estimated by applying integra-
tion on the refined density map.

3.2. Multi-scale feature fusion module

In highly dense scenarios, people always demonstrate multiple
scales observing from bird-eye view cameras. Especially in the very
low-resolution images, where people in the distance look rather
small. When applying the standard convolution network for crowd
feature extraction, the down-sampling operation will further dis-
card spatial information, thus being not suitable to deal with peo-
ple in small scales.

Therefore, we propose to use the so-called dilated convolution
[38] for spatial feature extraction in the crowd. The dilated convo-
lution is defined as in Eq. (1):

yðm;nÞ ¼
XM
i¼1

XN
j¼1

xðmþ r � i; nþ r � jÞwði; jÞ ð1Þ

where xðm; nÞ represents the original image; wði; jÞ represents the
filter, with the size of M � N; r corresponds to the dilation rate.
The dilated convolution can expand the receptive field from k � k
Fig. 3. The fundamental structure
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to kþ ðk� 1Þ � ðr � 1Þ. When r = 1, the dilated convolution degen-
erates to the standard convolution operation. The advantages of
dilated convolution lie in the following aspects: (1) it does not
adopt the down-sampling operation, which is suitable to handle
people in small scales; (2) it can expand the receptive field to a lar-
ger scope; (3) it can maintain the original kernel size, without intro-
ducing extra computational cost.

Due to the above reasons, we propose a multi-scale fusion strat-
egy which is built upon dilated convolution with varied dilation
rates. The fundamental structure is shown in Fig. 3, where the ker-
nel size is set to 3� 3; r is set to 1, 3, 6, 9, accordingly (actually
more different dilation rates can be used). The whole procedure
is presented as in Eq. (2). For any input Iinput;Conv

M�M
ri

ð�Þ indicates
the application of a M �M kernel with the dilation rate
ri; Concateð�Þ represents the concatenation of features extracted
at different scales. The obtained feature f multi will be further pro-
cessed by the standard 1-d convolution as presented in Eq. (3). This
multi-scale feature fusion module will be further integrated into
the attention network in the following paragraphs. When stacking
multiple dilated convolution layers sequentially, it can perceive
spatial features with various scales.
of multi-scale fusion network.



Fig. 4. The crowd attention network.
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f multi ¼ Concate½Conv3�3
ri

ðIinputÞ�; i ¼ 1;2;3; � � � ; ð2Þ

f output ¼ Conv1�1ðfmultiÞ; ð3Þ
3.3. Crowd attention network

Backgrounds usually exert side effects on the performances of
crowd counting and density estimation. In this work, we incorpo-
rate an attention component in the proposed framework which
Fig. 5. Examples of attention maps. Column-1: original scenario
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enables the model to focus on regions that human crowds are more
likely to locate. The structure of crowd attention network is pre-
sented in Fig. 4 (the detailed implementations can be found in
Table 9 in the Appendix section), where the original size of the
input image is H�W�C (height, width, and channels).

The front-end of the network is built upon the VGG-16 network
[39], which corresponds to Conv1 to Conv4 as presented in Table 9.
The Conv5, Conv6, and Conv7 layers are implemented using the
fundamental multi-scale fusion network as shown in Fig. 3, which
are stacked sequentially, with up-sampling layers intersected
s; Column-2: Fa; Column-3: Fb; Column-4: attention maps.



Fig. 6. The crowd density network.
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alternately. The output of Conv7 consists of two feature maps,
namely Fa and Fb with the size of (H/2)�(W/2). Motivated by the
recent success of squeeze-and-excitation networks [40], we intend
to assign channel-wise weights to Fa and Fb, respectively. We apply
the global average pooling (GAP) and the softmax operation on Fa

and Fb as shown in Eq. (4). The attention map is obtained using Eq.
(5). This weighted operation can achieve competitive perfor-
mances as compared to the adoption of the standard squeeze-
and-excitation operation, which will be shown in the experimental
section. Moreover, it is also computational efficient. Examples of
the obtained attention maps are shown in Fig. 5.
Fig. 7. The detailed structures of the concatenation o
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ðPa; PbÞ ¼ softmaxðGAPðFaÞ;GAPðFbÞÞ; ð4Þ
f att ¼ sigmoidðPa � Fa þ Pb � FbÞ; ð5Þ
3.4. Crowd density network

The structure of crowd density network is presented in Fig. 6
(the implementation details can be found in Table 10 in the Appen-
dix section), where the original size of the input image is H�W�C
(height, width, and channels). The three output density maps (cor-
perations. (a) Concatenate_1; (b) Concatenate_2.
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responding to Output1, Output2, and Output3 layers in Table 10)
will be taken into account when constructing the loss function.

Particularly, the operations of Concatenate_1 and Concate-
nate_2 in Table 10 are shown in Fig. 7.

3.5. Model training

The overall loss is comprised by the attention loss and the den-
sity loss. In the following, we will present the details.

3.5.1. Attention loss
The attention map is a binary image, which is used to distin-

guish foreground regions from backgrounds. Thus, we define the
attention loss using the cross-entropy form, which is formulated
as in Eq. (6), where Ak represents the attention map of an input
image k. We use Ak;i;j to represent the value of the attention map

Ak at a specific position (i; j). AGT
k;i;j indicates the corresponding

ground truth. m is the batch size.

lk ¼
XM
i¼1

XN
j¼1

AGT
k;i;jlogðAk;i;jÞ þ ð1� AGT

k;i;jÞlogð1� Ak;i;jÞ

Latt ¼ � 1
m

Xm
k¼1

lk

ð6Þ
3.5.2. Density loss
The density loss measures the Euclidean distance between the

estimated density map and the corresponding ground truth, which
is defined as in Eq. (7), where Zi represents the density map of an
input image i, and ZGT

i indicates the corresponding ground truth. m
is the batch size.

Ldensity ¼ 1
2m

Xm
i¼1

kZi � ZGT
i k2 ð7Þ

The overall loss is defined as in Eq. (8), where k is the weight of
the attention loss, and l represents the number of output layers in
the crowd density network.

loss ¼ kLatt þ
Xl

i¼1

Ldensity ð8Þ
Fig. 8. Ground truths of density maps. Top: original scenarios; Bo
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The proposed model is learned in a supervised manner. Thus,
we need to generate the ground truths for the density and the
attention maps by leveraging on people’s locations.

3.5.3. Ground truth of the density map
For a given image with N labeled persons, we use the approach

presented in [10] to generate the corresponding density map.
Please see Eq. (9) for details, where xi represents the head location
of a person. Gri

ð�Þ is a Gaussian function. We compute the distances
of the k-nearest persons in the neighborhood of xi, and the average
value di is used to initialize the variance ri. b is set to 0.5. ‘�’ indi-
cates the standard convolution operation.

FðxÞ ¼
XN
i¼1

dðx� xiÞ � Gri
ðxÞ

ri ¼ bdi

ð9Þ

Examples of the ground truths corresponding to the density
maps are shown in Fig. 8.

3.5.4. Ground truth of the attention map
We binarize the density map to generate the corresponding

attention map, where the threshold is set to 0.01. Examples are
shown in Fig. 9.

4. Experiments

In this section, we will present the details of the experiments.
First, we briefly introduce the standard benchmark datasets for
validation. Next, we provide the evaluation protocols and the set-
ting of hyper-parameters. Finally, we evaluate the performances
of crowd counting comprehensively, and visualize the experimen-
tal results.

4.1. Benchmark datasets

At the early stage, the ShanghaiTech [41] and the UCF_CC_50
[42] datasets were considered as the standard benchmarks to eval-
uate different crowd counting algorithms. In the recent years, more
large-scale crowd datasets have been released, with increasing
number of sample images and more challenging scenarios, such
as the UCF-QNRF [43], the JHU-CROWD++ [44], and the NWPU
Crowd [24] datasets. In this section, we first use the ShanghaiTech
ttom: ground truths of density maps obtained using Eq. (9).



Fig. 9. Ground truths of attention maps. Top: original scenarios; Bottom: ground truths of attention maps.
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and the UCF_CC_50 datasets for evaluation, in order to validate the
fundamental characteristics of the proposed framework. Next, we
apply our approach on the UCF-QNRF, the JHU-CROWD++, and
the NWPU Crowd datasets, demonstrating the counting perfor-
mances on large-scale data. The detailed descriptions of the men-
tioned datasets are presented as below.

ShanghaiTech: The ShanghaiTech dataset is a large-scale
benchmark for crowd counting, which includes 1,198 labeled
images covering 330,165 people in different scenes. This dataset
can be further divided into two subsets, namely Group A and
Group B. Group A contains 482 images in the dense scenarios,
where 300 images are used for model training, and the rest are
used for test. Group B contains 716 images in the relatively sparse
scenarios, where 400 images are used for model training, and the
rest are used for test.

UCF_CC_50: The UCF_CC_50 dataset contains 50 images cap-
tured from highly-crowded scenes. The number of labeled persons
varies from 94 to 4,543, and the average is 1,280. The 5-fold cross-
validation strategy is used for evaluation in this dataset.

UCF-QNRF: The UCF-QNRF dataset is used to evaluate crowd
counting and localization approaches, which contains 1,535
images in total, where 1,201 images are used for training and the
rest 334 images are used for test.

JHU-Crowd++: The JHU-Crowd++ dataset is a large-scale data-
set, containing 4,372 images collected in a variety of different sce-
narios. Moreover, it also provides rich annotations (1.51 million in
total), such as dots, bounding boxes, blur levels, etc.

NWPU Crowd: The NWPU Crowd is currently the largest data-
set for crowd counting and localization, which includes 5,109
images in total with 2,133,375 head annotations. It contains a vari-
ety of crowd scenes with diverse illumination conditions and den-
sity ranges.

We present the differences of the mentioned benchmark data-
sets in Table 1. Examples of the corresponding crowd scenarios
can be found in Fig. 10.
4.2. Evaluation protocols and hyper-parameters

We use the mean average error (MAE) and mean square error
(MSE) as the criteria for evaluation, which are defined as in Eq.
(10) and (11), respectively, where n is the number of images in
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the test set, Ci indicates the estimated number of persons in an
image, and CGT

i is the corresponding ground truth.

MAE ¼ 1
n

Xn
i¼1

jCi � CGT
i j ð10Þ
MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

jCi � CGT
i j2

vuut ð11Þ

MAE reflects the average counting accuracy, and MSE shows the
stability of the counting algorithm. Lower values of MAE and MSE
imply better performances in the task of crowd counting.

Given the density map of an image, the number of persons can
be approximated as in Eq. (12), where H and W represent the
height and the width of a density map, Zh;w represents the density
value at a specific position ðh;wÞ.

Ci ¼
XH
h¼1

XW
w¼1

Zh;w ð12Þ

In the training phase, we use the Adam algorithm to optimize
the loss function, and the learning rate is set to 1e� 4. The number
of epoch is set to 500, and the batch size is set to 2.

4.3. Results

4.3.1. Evaluation on the performances of crowd counting
First, we validate the role of attention mechanism in the pro-

posed model. To this end, we compare the crowd counting perfor-
mances by removing the attention network. Experimental results
can be seen in Table 2, from where we can find that the attention
network can promote the performances significantly in terms of
MAE and MSE. The results are consistent in both dense (Group A)
and sparse (Group B) scenarios in the ShanghaiTech dataset, and
also in the UCF_CC_50 dataset.

In Fig. 11, we show the estimated number of persons in every
image in the ShanghaiTech dataset. Group A contains 182 test
images, and Group B contains 316 test images. For demonstration,
we sort images according to their ground truth CGT

i in the ascend-
ing order. In Fig. 12, we provide several visual examples. It can be
seen clearly that without the support of attention network, some



Table 1
Characteristics of the benchmark datasets used for evaluation.

Dataset #Total Images Min Max Average Total

ShanghaiTech A 482 33 3,139 501 241,677
B 716 9 578 124 88,488

UCF_CC_50 50 94 4,543 1,280 63,974
UCF-QNRF 1,535 49 12,865 815 1,251,642
JHU-Crowd++ 4,372 0 25,791 346 1,515,005
NWPU Crowd 5,109 0 20,033 418 2,133,375

Fig. 10. Benchmark datasets. Top: ShanghaiTech Group A, ShanghaiTech Group B, and UCF_CC_50. Bottom: UCF-QNRF, JHU-Crowd++, and NWPU Crowd. It can be seen clearly
that the densities and people’s scales are different in varied datasets.

Table 2
Evaluation on the attention network.

Attention network ShanghaiTech A ShanghaiTech B UCF_CC_50

MAE MSE MAE MSE MAE MSE

No 73.5 114.8 11.4 23.3 432.4 617.8
Yes 63.8 108.5 7.3 11.8 236.5 319.2

Fig. 11. The number of persons in every image in the ShanghaiTech dataset. (a) Group A; (b) Group B. The black curve indicates the ground truth; the red curve indicates the
results using the attention module; the green curve indicates the results without the attention module.

B. Zhang, N. Wang, Z. Zhao et al. Neurocomputing 451 (2021) 12–24
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Table 3
Comparisons of different approaches on the ShanghaiTech dataset.

Method Group A Group B

MAE MSE MAE MSE

MCNN [10] 110.2 173.2 26.4 41.3
Cascaded-MTL[13] 101.3 152.4 20.0 31.1
SwitchCNN [18] 90.4 135.0 21.6 33.4
CP-CNN [45] 73.6 106.4 20.1 30.1
IC–CNN [14] 68.5 116.2 10.7 16.0
CSRNet [19] 68.2 115.0 10.6 16.0
SANet [20] 67.0 104.5 8.47 13.6
Perspective-CNN [21] 57.0 86.0 8.8 13.7
RANet [46] 59.4 102.0 7.9 12.9
AMS-Net 63.8 108.5 7.3 11.8

Fig. 12. Visualization. Column-1: original images; Column-2: ground truth; Column-3; estimation results without the attention network; Column-4: estimation results with
the help of attention network. Red bounding boxes indicate background regions; Column-5: attention maps.

Table 4
Comparisons of different approaches on the UCF_CC_50 dataset.

Method MAE MSE

MCNN [10] 377.6 509.1
Cascaded-MTL [13] 322.8 397.9
Switchin-CNN [18] 318.1 439.2
CP-CNN [45] 295.8 320.9
IC–CNN [14] 260.9 365.5
CSRNet [19] 266.1 397.5
SANet [20] 258.4 334.9
Perspective-CNN [21] 244.6 361.2
RANet [46] 239.8 319.4
AMS-Net 236.5 319.2

Table 5
Evaluation on other large-scale benchmark datasets, namely the UCF-QNRF, the JHU
Crowd++, and the NWPU Crowd datasets.

Methods UCF-QNRF JHU Crowd++ NWPU Crowd

MAE MSE MAE MSE MAE MSE

MCNN [10] 277 426 160.6 377.7 218.5 700.6
Cascaded-MTL [13] 252 514 138.1 379.5 None None
CSRNet [19] None None 72.2 249.9 104.8 433.4
SANet [20] None None 82.1 272.6 171.1 471.51
SFCN [26] 102.0 171.4 62.9 247.5 95.4 608.3
CAN [31] 107 183 89.5 239.3 93.5 489.9
BL [32] 88.7 154.8 59.3 229.2 93.6 470.3
AMS-Net 86.5 167.2 61.3 236.1 91.2 425.5

Table 7
Evaluation on the number of kernels on the ShanghaiTech dataset (Group A).

Kernel ID ShanghaiTech Group A

MAE MSE

1 66.3 112.4
1 and 2 64.3 110.2
1, 2, and 3 64.0 109.0
1, 2, 3, and 4 63.8 108.5

Table 8
Characteristics of the typical scenarios selected for demonstration.

Scene Image resolution Max-scale Min-scale Average-scale

scene-1 1024�684 30�30 5�5 17�17
scene-2 1024�680 90�90 7�7 37�37
scene-3 1024�768 85�85 8�8 40�40
scene-4 896�600 12�12 7�7 9�9

Table 6
Evaluation on different channel-wise weighted operations on the ShanghaiTech
dataset.

Weighted operations Group A Group B

MAE MSE MAE MSE

without channel-wise weighted operation 65.7 114.3 8.5 16.6
squeeze-and-excitation 63.3 106.5 7.4 13.6
global average pooling 63.8 108.5 7.3 11.8

B. Zhang, N. Wang, Z. Zhao et al. Neurocomputing 451 (2021) 12–24
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background areas in the red bounding boxes are mistaken into
account, thus leading to the decrease in the counting accuracy.

Next, we compare our approach with other state-of-the-art
methods, and the quantitative results are shown in Table 3 (on
the ShanghaiTech dataset), Table 4 (on the UCF_CC_50 dataset),
and Table 5 (other newly released large-scale datasets). From the
experimental results we can find that: (1) on the ShanghaiTech
and the UCF_CC_50 datasets, the proposed method achieves very
promising performances. Only on Group A of the ShanghaiTech
dataset, the method in [21] is a better option; (2) on the UCF-



Fig. 13. Visualization: typical scenarios selected for demonstration with varied image resolutions, backgrounds, non-uniform density distribution, and scale changes. From
the 1st column to the 4th column, we illustrate scene-1 to scene-4.

Table 9
The detailed structure of the attention network.

Structure Current layer Type Output size Previous layer

Conv1 Conv1_1 Conv2d H*W*64 Input
Conv1_2 Conv2d H*W*64 Conv1_1

Conv2 Conv2_1 Maxpool+Conv2d (H/2)*(W/2)*128 Conv1_2
Conv2_2 Conv2d (H/2)*(W/2)*128 Conv2_1

Conv3 Conv3_1 Maxpool+Conv2d (H/4)*(W/4)*256 Conv2_2
Conv3_2 Conv2d (H/4)*(W/4)*256 Conv3_1
Conv3_3 Conv2d (H/4)*(W/4)*256 Conv3_2

Conv4 Conv4_1 Maxpool+Conv2d (H/8)*(W/8)*512 Conv3_3
Conv4_2 Conv2d (H/8)*(W/8)*512 Conv4_1
Conv4_3 Conv2d (H/8)*(W/8)*512 Conv4_2

Conv5 Conv5_1 Multi-scale fusion (H/8)*(W/8)*256 Conv4_3
Upsmaple1 Upsmaple1 Upsample (H/4)*(W/4)*256 Conv5_1

Conv6 Conv6_1 Multi-scale fusion (H/4)*(W/4)*128 Upsmaple1
Upsmaple2 Upsmaple2 Upsample (H/2)*(W/2)*128 Conv6_1

Conv7 Conv7_1 Multi-scale fusion (H/2)*(W/2)*2 Upsmaple2
Avgpool Avgpool GlobalAveragePool 2 Conv7_1

Output Output Pixel-wise product (H/2)*(W/2)*1 Conv7_1,Avgpool
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QNRF, the JHU-Crowd++, and the NWPU Crowd datasets, our
approach can still achieve competitive performances.

Finally, we evaluate the performances of different channel-wise
weighted operations. Experiments are carried out on the Shang-
haiTech dataset, and the results are shown in Table 6, where we
compare the performances of squeeze-and-excitation, global aver-
age pooling, and without the channel-wise weighted operation.
From the results we can find that: (1) channel-wise weighted oper-
ations can promote the counting performances; (2) using the stan-
dard squeeze-and-excitation operation to weight Fa and Fb can
achieve slightly better counting accuracy in the dense environ-
ments (Group A), but a little bit worse in the relative sparse scenar-
ios (Group B); (3) Considering the complexity and computational
cost, global average pooling (GAP) is still a competitive channel-
wise weighted strategy in realistic applications.
21
4.3.2. Evaluation on multi-scale crowds
In this section, we evaluate the importance of the multi-scale

feature fusion model. To this end, we first compare the perfor-
mances using varied number of kernels. We take the ShanghaiTech
dataset (Group A) for demonstration, and the corresponding exper-
imental results are demonstrated in Table 7. The kernel ID is in line
with Fig. 3, where ID: 1 to 4 correspond to the dilation rate r = 1, 3,
6, 9. It can be seen clearly that when increasing the number of ker-
nels, the counting accuracy improves consistently.

Next, we validate that the proposed approach is able to handle
persons with varied scales. We select several typical scenarios
with varied crowd density, apparent scale changes, and different
backgrounds, where the characteristics of these scenarios are pre-
sented in Table 8. The qualitative results are demonstrated in
Fig. 13.



Table 10
The detailed structure of the crowd density network.

Structure Layer Type Output size Previous layer

Conv1 Conv1_1 Conv2d H*W*64 Input
Conv1_2 Conv2d H*W*64 Conv1_1

Conv2 Conv2_1 Maxpool+Conv2d (H/2)*(W/2)*128 Conv1_2
Conv2_2 Conv2d (H/2)*(W/2)*128 Conv2_1

Conv3 Conv3_1 Maxpool+Conv2d (H/4)*(W/4)*256 Conv2_2
Conv3_2 Conv2d (H/4)*(W/4)*256 Conv3_1
Conv3_3 Conv2d (H/4)*(W/4)*256 Conv3_2

Conv4 Conv4_1 Maxpool+Conv2d (H/8)*(W/8)*512 Conv3_3
Conv4_2 Conv2d (H/8)*(W/8)*512 Conv4_1
Conv4_3 Conv2d (H/8)*(W/8)*512 Conv4_2

Conv5 Conv5_1 Maxpool+Conv2d (H/16)*(W/16)*512 Conv4_3
Conv5_2 Conv2d (H/16)*(W/16)*512 Conv5_1
Conv5_3 Conv2d (H/16)*(W/16)*512 Conv5_2

Upsmaple1 Upsmaple1 Upsample (H/8)*(W/8)*512 Conv5_3

Output1 Output1+Concatenate1 Concatenate_1 (H/8)*(W/8)*1 Upsample1,
(H/8)*(W/8)*256 Conv4_3

Upsmaple2 Upsmaple2 Upsample (H/4)*(W/4)*256 Concatenate1

Output2 Output2+Concatenate2 Concatenate_1 (H/4)*(W/4)*1 Upsample2,
(H/4)*(W/4)*128 Conv3_3

Upsmaple3 Upsmaple3 Upsample (H/2)*(W/2)*128 Concatenate2

Output3 Output3 Concatenate_2 (H/2)*(W/2)*1 Upsample2,Conv3_3
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5. Conclusions

In this paper, we propose an attention-guided framework for
crowd counting in realistic environments, which is mainly com-
prised by an attention network and a density network, respec-
tively. The attention network is used to detect regions where
human crowds are more likely to locate, which can alleviate the
impacts that background clutters exert on the counting perfor-
mances. In order to perceive people of varied resolutions, we fur-
ther embed a multi-scale fusion module into the attention
network, which is built upon dilated convolution. The output of
the attention network will serve as the mask of the crowd density
map, which is obtained through the density network. We conduct
extensive experiments on several popular benchmark datasets,
demonstrating the effectiveness of the proposed framework. From
the results we can conclude: (1) the attention network can
improve the counting accuracy significantly; (2) channel-wise
weighted operations can further promote the counting perfor-
mances. As for the future work, we would like to embed the most
recent multi-scale fusion strategies into our framework, and pro-
vide comprehensive evaluations.
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Appendix A

In the appendix section, we present the detailed structures of
the crowd attention network (as shown in Fig. 4) and the crowd
density network (as shown in Fig. 6) in Tables 9 and 10,
respectively.
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[2] H. Wang, J. Ondřej, C. O’Sullivan, Path patterns: Analyzing and comparing real
and simulated crowds, in: Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, 2016, pp. 49–57.

[3] B. Zhou, X. Tang, X. Wang, Learning collective crowd behaviors with dynamic
pedestrian-agents, International Journal of Computer Vision 111 (1) (2015)
50–68.

[4] I.A. Lawal, F. Poiesi, D. Anguita, A. Cavallaro, Support vector motion clustering,
IEEE Transactions on Circuits and Systems for Video Technology 27 (11) (2016)
2395–2408.

[5] T. Hassner, Y. Itcher, O. Kliper-Gross, Violent flows: Real-time detection of
violent crowd behavior, in: Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition Workshops, 2012, pp. 1–6.

[6] X. Wu, R. He, Z. Sun, T. Tan, A light CNN for deep face representation with noisy
labels, IEEE Transactions on Information Forensics and Security 13 (11) (2018)
2884–2896.

[7] R. He, W. Zheng, B. Hu, Maximum correntropy criterion for robust face
recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence 33
(8) (2010) 1561–1576.

[8] J. Shao, C.C. Loy, X. Wang, Learning scene-independent group descriptors for
crowd understanding, IEEE Transactions on Circuits and Systems for Video
Technology 27 (6) (2016) 1290–1303.

[9] Q. Wang, M. Chen, F. Nie, X. Li, Detecting coherent groups in crowd scenes by
multiview clustering, IEEE Transactions on Pattern Analysis and Machine
Intelligence 42 (1) (2018) 46–58.

http://refhub.elsevier.com/S0925-2312(21)00579-8/h0005
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0005
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0005
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0005
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0005
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0010
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0010
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0010
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0010
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0015
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0015
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0015
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0020
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0020
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0020
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0025
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0025
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0025
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0025
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0030
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0030
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0030
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0035
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0035
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0035
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0040
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0040
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0040
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0045
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0045
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0045


B. Zhang, N. Wang, Z. Zhao et al. Neurocomputing 451 (2021) 12–24
[10] Y. Zhang, D. Zhou, S. Chen, S. Gao, Y. Ma, Single-image crowd counting via
multi-column convolutional neural network, in: Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition, IEEE,
2016, pp. 589–597.

[11] L. Boominathan, S.S. Kruthiventi, R.V. Babu, CrowdNet: A deep convolutional
network for dense crowd counting, in: Proceedings of the International
Conference on Multimedia, 2016, pp. 640–644.

[12] C. Shang, H. Ai, B. Bai, End-to-end crowd counting via joint learning local and
global count, in: Proceedings of the IEEE International Conference on Image
Processing, IEEE, 2016, pp. 1215–1219.

[13] V.A. Sindagi, V.M. Patel, CNN-based cascaded multi-task learning of high-level
prior and density estimation for crowd counting, in: Proceedings of the IEEE
International Conference on Advanced Video and Signal Based Surveillance,
IEEE, 2017, pp. 1–6.

[14] V. Ranjan, H. Le, M. Hoai, Iterative crowd counting, in: Proceedings of the
European Conference on Computer Vision, 2018, pp. 270–285.

[15] Y. Li, Y. Chen, N. Wang, Z. Zhang, Scale-aware trident networks for object
detection, in: Proceedings of the IEEE International Conference on Computer
Vision, 2019, pp. 6054–6063.

[16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception
architecture for computer vision, in: Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–
2826.

[17] S. Gao, M.M. Cheng, K. Zhao, X.Y. Zhang, P.H.S. Torr, Res2Net: A new multi-
scale backbone architecture, IEEE Transactions on Pattern Analysis and
Machine Intelligence (2019), https://doi.org/10.1109/TPAMI.2019.2938758.

[18] D.B. Sam, S. Surya, R.V. Babu, Switching convolutional neural network for
crowd counting, in: Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition, IEEE, 2017, pp. 4031–4039.

[19] Y. Li, X. Zhang, D. Chen, CSRNet: Dilated convolutional neural networks for
understanding the highly congested scenes, in: Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition, IEEE,
2018, pp. 1091–1100.

[20] X. Cao, Z. Wang, Y. Zhao, F. Su, Scale aggregation network for accurate and
efficient crowd counting, in: Proceedings of the European Conference on
Computer Vision, 2018, pp. 734–750.

[21] Z. Yan, Y. Yuan, W. Zuo, X. Tan, Y. Wang, S. Wen, E. Ding, Perspective-guided
convolution networks for crowd counting, in: Proceedings of the IEEE
International Conference on Computer Vision, IEEE, 2019, pp. 952–961.

[22] Y. Yang, G. Li, Z. Wu, L. Su, N. Sebe, Reverse perspective network for
perspective-aware object counting, in: Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition, 2020, pp. 4373–
4382.

[23] S. Bai, Z. He, Y. Qiao, H. Hu, J. Yan, Adaptive dilated network with self-
correction supervision for counting, in: Proceedings of the IEEE International
Conference on Computer Vision, 2020, pp. 4593–4602.

[24] Q. Wang, J. Gao, W. Lin, X. Li, NWPU-Crowd: A large-scale benchmark for
crowd counting and localization, IEEE Transactions on Pattern Analysis and
Machine Intelligence (2020), https://doi.org/10.1109/TPAMI.2020.3013269.

[25] Q. Wang, J. Gao, W. Lin, Y. Yuan, Pixel-wise crowd understanding via synthetic
data, International Journal of Computer Vision (2020) 1–21.

[26] Q. Wang, J. Gao, W. Lin, Y. Yuan, Learning from synthetic data for crowd
counting in the wild, in: Proceedings of IEEE International Conference on
Computer Vision and Pattern Recognition, 2019, pp. 8198–8207.

[27] J. Chen, W. Su, Z. Wang, Crowd counting with crowd attention convolutional
neural network, Neurocomputing 382 (2020) 210–220.

[28] L. Zhu, C. Li, B. Wang, K. Yuan, Z. Yang, Dcgsa: A global self-attention network
with dilated convolution for crowd density map generating, Neurocomputing
378 (2020) 455–466.

[29] Y. Zhang, C. Zhou, F. Chang, A.C. Kot, Multi-resolution attention convolutional
neural network for crowd counting, Neurocomputing 329 (2019) 144–152.

[30] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, Z. Zhang, H. Lin, Y. Sun, T. He, J. Muller, R.
Manmatha, M. Li, A. Smola, ResNeSt: Split-attention networks, arXiv preprint
arXiv:2004.08955 (2020)..

[31] W. Liu, M. Salzmann, P. Fua, Context-aware crowd counting, in: Proceedings of
the IEEE International Conference on Computer Vision and Pattern
Recognition, 2019, pp. 5099–5108.

[32] Z. Ma, X. Wei, X. Hong, Y. Gong, Bayesian loss for crowd count estimation with
point supervision, in: Proceedings of the IEEE International Conference on
Computer Vision, 2019, pp. 6142–6151.

[33] X. Ding, F. He, Z. Lin, Y. Wang, H. Guo, Y. Huang, Crowd density estimation
using fusion of multi-layer features, IEEE Transactions on Intelligent
Transportation Systems (2020), https://doi.org/10.1109/TITS.2020.2983475.

[34] Y. Fang, S. Gao, J. Li, W. Luo, L. He, B. Hu, Multi-level feature fusion based
locality-constrained spatial transformer network for video crowd counting,
Neurocomputing 392 (2020) 98–107.

[35] S. Vishwanath, P. Vishal, Multi-level bottom-top and top-bottom feature
fusion for crowd counting, in: Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 1002–1012.

[36] V.A. Sindagi, V.M. Patel, A survey of recent advances in cnn-based single image
crowd counting and density estimation, Pattern Recognition Letter (2018) 3–
16.

[37] D. Kang, Z. Ma, A.B. Chan, Beyond counting: Comparisons of density maps for
crowd analysis tasks-counting, detection, and tracking, IEEE Transactions on
Circuits and Systems for Video Technology (2019) 1408–1422.
23
[38] F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, arXiv
preprint arXiv:1511.07122 (2015)..

[39] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, arXiv preprint arXiv:1409.1556 (2014)..

[40] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the
IEEE International Conference on Computer Vision and Pattern Recognition,
2018, pp. 7132–7141.

[41] Y. Zhang, D. Zhou, S. Chen, S. Gao, Y. Ma, Single-image crowd counting via
multi-column convolutional neural network, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 589–597.

[42] H. Idrees, I. Saleemi, C. Seibert, M. Shah, Multi-source multi-scale counting in
extremely dense crowd images, in: Proceedings of the IEEE International
Conference on Computer Vision, 2013, pp. 2547–2554.

[43] H. Idrees, M. Tayyab, K. Athrey, D. Zhang, S. Al-Maadeed, N. Rajpoot, M. Shah,
Composition loss for counting, density mapestimation and localization in
dense crowds, in: Proceedings of the IEEE International Conference on
European Conference on Computer Vision, 2018, pp. 8–14.

[44] V.A. Sindagi, R. Yasarla, V.M. Patel, JHU-CROWD++: Large-scale crowd counting
dataset and a benchmark method, IEEE Transactions on Pattern Analysis and
Machine Intelligence (2020), https://doi.org/10.1109/TPAMI.2020.3035969.

[45] V.A. Sindagi, V.M. Patel, Generating high-quality crowd density maps using
contextual pyramid CNNs, in: Proceedings of the IEEE International Conference
on Computer Vision, IEEE, 2017, pp. 1861–1870.

[46] A. Zhang, J. Shen, Z. Xiao, F. Zhu, X. Zhen, X. Cao, L. Shao, Relational attention
network for crowd counting, in: Proceedings of the IEEE International
Conference on Computer Vision IEEE, 2019, pp. 6788–6797.

Bo Zhang received the BSc degree in computer science
and technology in 2007 and the MSc degree in computer
application technology in 2010 from Jilin University,
China. He received the PhD degree in telecommunica-
tions in 2015 from the University of Trento, Italy. He is
currently an assistant professor in Dalian Maritime
University, China. His research interests include com-
puter vision, multimedia signal processing, and
machine learning.
Naiyao Wang is currently a Ph.D. candidate in the
School of Information Science and Technology, Dalian
Maritime University, China. His research computer
vision, self-supervised learning, and machine learning.
Zheng Zhao received his B.S. degree from Dalian
University of Technology in 2010. He received his M.S.
and Ph.D degrees from Zhengzhou Science and Tech-
nology Institute in 2013 and 2017. His research inter-
ests include next generation Internet and deep learing.

http://refhub.elsevier.com/S0925-2312(21)00579-8/h0050
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0050
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0050
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0050
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0050
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0055
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0055
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0055
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0055
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0060
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0060
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0060
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0060
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0065
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0065
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0065
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0065
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0065
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0070
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0070
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0070
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0075
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0075
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0075
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0075
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0080
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0080
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0080
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0080
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0080
https://doi.org/10.1109/TPAMI.2019.2938758
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0090
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0090
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0090
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0090
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0095
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0095
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0095
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0095
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0095
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0100
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0100
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0100
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0100
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0105
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0105
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0105
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0105
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0110
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0110
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0110
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0110
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0110
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0115
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0115
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0115
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0115
https://doi.org/10.1109/TPAMI.2020.3013269
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0125
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0125
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0130
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0130
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0130
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0130
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0135
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0135
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0140
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0140
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0140
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0145
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0145
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0155
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0155
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0155
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0155
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0160
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0160
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0160
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0160
https://doi.org/10.1109/TITS.2020.2983475
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0170
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0170
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0170
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0175
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0175
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0175
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0175
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0180
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0180
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0180
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0185
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0185
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0185
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0200
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0200
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0200
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0200
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0205
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0205
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0205
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0205
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0210
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0210
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0210
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0210
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0215
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0215
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0215
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0215
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0215
https://doi.org/10.1109/TPAMI.2020.3035969
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0225
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0225
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0225
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0225
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0230
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0230
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0230
http://refhub.elsevier.com/S0925-2312(21)00579-8/h0230


B. Zhang, N. Wang, Z. Zhao et al. Neurocomputing 451 (2021) 12–24
Ajith Abraham received Ph.D. degree in Computer Sci-
ence from Monash University, Melbourne, Australia
(2001) and a Master of Science Degree from Nanyang
Technological University, Singapore (1998). Ajith’s
research and development experience includes nearly 30
years in the Academia and Industry. He works in a multi-
disciplinary environment involving machine (network)
intelligence, cyber security, sensor networks, Web intel-
ligence, scheduling, data mining and applied to various
real world problems. He is an author/co-author of 1,200+
publications and some of the works have also won best
paper awards at International conferences and also

received several citations. Since 2008, Dr. Abraham is the Chair of IEEE Systems Man
and Cybernetics Society Technical Committee on Soft Computing (which has over 200
+ members) and served as a Distinguished Lecturer of IEEE Computer Society repre-

senting Europe (2011–2013). Currently Dr. Abraham is the editor-in-chief of Engi-
neering Applications of Artificial Intelligence (EAAI) and serves/served the editorial
board of over 15 International Journals indexed by Thomson ISI.
24
Hongbo Liu received his three level educations (B. Sc.,
M. Sc., Ph.D.) at the Dalian University of Technology,
China. He is with the School of Information Science and
Technology, Dalian Maritime University. Professor Liu’s
research interests are in cognitive computing, machine
learning, big data, etc. He participates and organizes
actively international conference and workshop and
international journals/publications. He received the
New Century Excellent Talents Award in 2010.


	Crowd counting based on attention-guided multi-scale fusion networks
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Framework
	3.2 Multi-scale feature fusion module
	3.3 Crowd attention network
	3.4 Crowd density network
	3.5 Model training
	3.5.1 Attention loss
	3.5.2 Density loss
	3.5.3 Ground truth of the density map
	3.5.4 Ground truth of the attention map


	4 Experiments
	4.1 Benchmark datasets
	4.2 Evaluation protocols and hyper-parameters
	4.3 Results
	4.3.1 Evaluation on the performances of crowd counting
	4.3.2 Evaluation on multi-scale crowds


	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	Appendix A 
	References


