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Link prediction is one of the most important methods to uncover evolving mechanisms of dynamic com-
plex networks. Determining these links raises well-known technical challenges in terms of weak corre-
lation, uncertainty and non-stationary. In this paper, we presented a novel gated graph convolutional
network (GCN) based on spatio-temporal semi-variogram (STEM-GCN). It learns spacial and temporal
features in order to achieve link prediction in the dynamic networks. In this STEM-GCN model, we first
utilized the spatio-temporal semi-variogram to obtain the spacial and temporal correlations from the
dynamic networks. Its spacial correlation helped us determine the hyper-parameters of STEM-GCN and
speed up its training. The correlation smoothing strategy is also introduced to eliminate the noise
through temporal correlation and to improve the accuracy of link prediction. Finally, the network dynam-
ics are captured by propagating the spacial and temporal features between consecutive time steps with
stacked memory cell structures. The extensive experiments on real data sets demonstrated the effective-
ness of the proposed approach for link prediction in dynamic complex networks.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Link prediction in dynamic networks (graphs) aims to infer the
changing of its topological structures and temporal features, which
plays a key role in the understanding of network evolution and the
relationships between the topology and functions [1–3]. Most real-
world networks are naturally dynamic, evolving over time with the
addition, deletion, and updating of nodes and links [4]. Their prop-
erties, such as weak correlations in time and space, uncertainty,
and non-stationary, make it very difficult to characterize the struc-
tural relationships (links) among the nodes in the networks. Vari-
ous graph neural network models were designed to investigate
network dynamics [5,6]. The dynamic network is usually repre-
sented as a series of continuous network snapshots. Then the
model learns the fixed-size embedding of each node through con-
tinuous network snapshots and the link prediction is mapped to
the nearest neighbor search in the embedding space [7–9]. How-
ever, real-world networks often have complex evolving dynamics,
making it extremely challenging to predict the potential structural
relationships over time [10,11].

The challenges can be summarized from three aspects. 1) The
temporal correlation may exist over periods of various lengths.
An example is shown in Fig. 1: there is a link between nodes A
and B at the first two time steps, and it disappears at time t þ 2.
The duration of links is different and uncertain, making weak cor-
relation in time among network snapshots [12,13]. 2) There may
exist diverse link patterns among the nodes. In Fig. 1, node A ceases
contact with its neighbors, while other nodes still keep in touch
with neighbors. They influence each other, which usually leads to
complex evolution over both time and space [14,15]. 3) The
embedding of continuous snapshots is non-stationary. In real-
world dynamic networks, the distribution of links in each network
snapshot varies. Such successive network snapshots are non-
stationary time series in nature [16].

To address the above challenges, many methods combine graph
neural networks (GNNs) with long short-termmemory (LSTM) net-
works to capture evolutionary patterns in the dynamic networks.
Seo et al. [17] presented a graph convolutional recurrent network
(GCRN) combining an LSTM network with ChebNet [18]. Since they
assume the links are fixed over time, Chen et al. [19] proposed a
novel end-to-end framework GC-LSTM, which is capable of han-
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Fig. 1. Evolution of the Dynamic Networks.
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dling links appearing or disappearing. Similarily, Chen et al. [20]
presented a novel encoder-LSTM-decoder (E-LSTM-D) deep learn-
ing model for link prediction in dynamic networks. The encoder
is utilized to acquire node features, helping LSTM to learn the evo-
lutionary patterns of snapshot sequences. Recently, the temporal
graph attention (TGAT) layer [21] is introduced to efficiently aggre-
gate temporal-topological neighborhood features to learn the
time-feature interactions. However, the distribution of links in
each network snapshot is very sparse since only a subset of nodes
in the real-world dynamic network will generate links in a finite
time. Such issue leads to weak correlations between network snap-
shots, which in turn brings great difficulty to effectively implement
link prediction in dynamic networks.

In this paper, we proposed a novel gated graph convolutional
network based on spatio-temporal semi-variogram (STEM-GCN)
for link prediction in dynamic complex networks. Firstly, we lever-
age the spatio-temporal semi-variogram to analyze the correlation
of dynamic networks. For successive snapshots with large changes
in temporal semi-variance, a weak correlation smoothing strategy
is introduced to guarantee continuous smoothness. Then, the
stacked memory structure cell (MCS) is designed to obtain the hid-
den state of the current network snapshot by iteratively learning
from successive network snapshots. Finally, the probability matrix
of links in the current network is generated by using the fully con-
nected neural network to decode the state hidden state. Our main
contributions are summarized as follows:

� We analyzed the correlation of successive network snapshots
using the spatio-temporal semi-variogram. The model’s hyper-
parameters are determined through spacial correlations. The
theoretical analysis is consistent with the experimental results,
which significantly speeds up the training of our model.
� Based on the spatio-temporal semi-variogram, a weak correla-
tion smoothing strategy is introduced for continuous snapshots
with large changes in temporal semi-variance. This strategy not
only preserves the continuity of the network snapshots, but also
improves the accuracy of the prediction.
� To reduce the number of parameters and achieve more efficient
temporal learning, we introduce the memory cell structure
which embeds GCN into the input gate of LSTM. So that GCN
can directly obtain the structural features of dynamic networks
and share parameters with LSTM.

The remainder of this paper is organized as follows. Section 2
outlines the state-of-the-art methods for dynamic network link
prediction. In Section 3, we introduce the definition of dynamic
networks and related theories. In Section 4, we present a novel
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gated graph convolutional network based on spatio-temporal
semi-variogram for link prediction in dynamic networks. Experi-
ments of evaluating the area under the curve (AUC) and error rate
(ER) of the STEM-GCN are carried out in Section 5. Finally, we sum-
marize the results and propose future work in Section 6.
2. Related Work

Link prediction has been widely used in social networks, finan-
cial networks, and brain networks [22–24], etc. More recently, the
dynamical aspects of networks have been incorporated into this
task. In this section, we discuss relevant works in dynamic network
link prediction from links stream-based approaches and snapshot-
based approaches.

The existing links stream-based approaches are point processes
which are continuous in time [25–28]. Nguyen et al. [25] suggested
using node embedding and the random walk models for learning a
time-dependent network representation. Trivedi et al. [26] pre-
sented an architecture, Know-Evolve, capturing evolutionary
dynamics of both subject and object entities in a temporal knowl-
edge graph using recurrent neural networks and temporal point
processes, which captures temporal node interactions in addition
to the topological evolution. DyRep [27] extended Know-Evolve
with a two-time scale deep temporal point process approach that
captures temporal node interactions in addition to the topological
evolution. Recently, DynamicTriad [28] imposed the triad to learn
the node embeddings while preserving the temporal information.
These methods take a pair of nodes as input and utilize recurrent
neural networks and temporal point processes to capture evolu-
tionary dynamics. They are advantageous for event time prediction
because of the continuous nature of the process. However, such
techniques cannot be applied to network snapshots that lack
fine-grained timestamps.

The snapshot-based methods are proposed from another per-
spective. These methods aggregate the links within fixed time
intervals into network snapshots, and use GNNs and RNNs or
transformer networks to encode structural patterns and temporal
patterns respectively. Seo et al. [17] presented graph convolutional
recurrent network (GCRN) combining an LSTM network with Cheb-
Net [18]. They use a GCN to acquire node features, helping LSTM to
learn the evolutionary patterns. Later, Manessi et al. [29] used a
recursive network of LSTM to deal with the time-varying changes
of the GNN. They modify the graph convolution layers by adding
a skip connection. Recently, EvolveGCN [30] is introduced to pro-
cess dynamic networks, in which gated recursive unit GRU and
LSTM are combined with GCN to capture dynamics, and RNN is
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used to estimate the GCN parameters for the future snapshots. One
advantage of capturing dynamics in parameters is that it can han-
dle more flexible dynamic data as the nodes do not need to exist all
the time. Meanwhile, Chen et al. [31] proposed, for the first time, a
novel end-to-end multiple residual recurrent graph neural net-
works (Res-RGNNs) framework, referred to as ‘‘MRes-RGNN”, for
traffic prediction. Wang et al. [32] proposed a novel decomposition
of in-cell and inter-cell data to effectively model the Spatio-
temporal dependency. Later, a novel temporal convolutional
framework TrellisNets (STP-TrellisNets) [33] is introduced for spa-
tial–temporal prediction. The temporal module of STP-TrellisNets
employs two TrellisNets in serial to capture both the short- and
long-term temporal correlation. Liu et al. [34] presented a novel
deep model called ‘‘AttConvLSTM”. ConvLSTM keeps spatial infor-
mation as intact as possible during sequential analysis, and the
attention mechanism focuses on variations that cannot be identi-
fied by the recurrent module.

In general, most of real-world networks are sparse networks,
and the link distribution becomes uneven over time. Some edges
may continue to appear at multiple consecutive network snap-
shots, and the network structure would not change, resulting in
weak temporal correlations among snapshots. These approaches
do not analyze the correlation between consecutive snapshots. In
this paper, we propose a model based on spatio-temporal semi-
variogram analysis, which takes relatively long consecutive snap-
shots as input and is able to automatically learn the global struc-
ture of networks.
3. Preliminaries

In this section, we introduce the dynamic network (dynamic
graph) link prediction model and spatio-temporal semi-
variogram of dynamic networks.
3.1. Problem Formulation

We formally define the problem of dynamic network link pre-
diction. A dynamic network can be represented as a sequence of
discrete network snapshots, G ¼ G1; � � � ;GTf g, where T is the num-
ber of time steps. Each snapshot Gt ¼ Vt ;Et ;Atð Þ represents a
directed and unweighted graph at time t. Let Vt be the set of all
vertices, and Et be the temporal edges within the fixed time inter-
vals. At denotes the adjacency matrix of Gt , where the element
At i; jð Þ ¼ 1 if there is a directed edge from vertex i to j, and
At i; jð Þ ¼ 0 otherwise.

For a dynamic network, its network snapshot sequence is
At�s; � � � ;At�1f g, we consider the link prediction of a dynamic net-
work as a structural sequence modeling problem. The goal is to
predict the probability of all links at time t through the evolution
information of the precious s time stamps in network snapshot
sequence. It can be defined as

eAt;pre ¼ argmaxeAt

P eAtjAt�s; � � � ;At�1
� �

; ð1Þ

where At�s; � � � ;At�1f g represent the adjacency matrices of previous

s snapshots, eAt represents the predictive variable of the model

P eAtjAt�s; � � � ;At�1
� �

, and eAt;pre denotes the predictive adjacency

matrix of the snapshot at time t.
Consequently, the link prediction problem essentially amounts

to the estimation of a function or predictor based on the collected
history links. In other words, the function at each time step uses
history snapshots to capture network dynamics and can thus pre-
dict links with higher precision.
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3.2. Spatio-temporal Semi-variogram of Dynamic Networks

A dynamic network is composed of nodes and edges with time
series. As it evolves over time, node attributes will be affected by
neighbors around them. Therefore, the comprehensive attributes
of each node could be further expressed in terms of both the spatial
and temporal aspects as follows:

u v i; tð Þ ¼ 1
jC v ið Þj

X
v j2C v ið Þ

xtj ; ð2Þ

where xtj denotes the attributes of node v j at time t, and C v ið Þ rep-
resents the set of neighboring nodes of node v i. The correlation
between nodes in a dynamic network can be analyzed by semi-
variogram [35]. The semi-variogram w dð Þ, which describes the spa-
tial dependence of two random processes generated by two nodes
v i and v j separated at d distance, is defined as

w dð Þ ¼ 1
2N

XN
i¼1

XN
j¼1

u v i; tð Þ �u v j; t
� �� �2

; dist v i;v j
� � ¼ d; ð3Þ

where N is the number of the nodes. When considering temporal
correlation, the semi-variogram function w d; sð Þ should take into
account the time interval s:

w d; sð Þ ¼ 1
N

XN
i¼1

u v i; tð Þ �u v j; t þ s
� �� �2

;dist v i;v j
� � ¼ d: ð4Þ

However, corresponding to the degree of nodes, the distribution
of nodes in the dynamic networks is irregular. Therefore, we ana-
lyze the spatial dependence of node attributes, based on the
spatio-temporal semi-variogram of dynamic networks, as follows:

w d xð Þ; sð Þ ¼ 1
j/ d xð Þ; sð Þj �

X
f2/ d xð Þ;sð Þ

u v i; tð Þ �u v j; t�
� �� �2

; ð5Þ

where / d xð Þ; sð Þ ¼ v i; v j; t; t�
� �jdist v i;v j

� � 2 d xð Þ; jt � t�j ¼ s
� �

and
f is v i; v j; t; t�

� �
. In other words, / d xð Þ; sð Þ is a set consisting of any

pair of nodes that are spatially separated over a distance in the
range d xð Þ and are temporally separated over s. The distance
d xð Þ is 1;2; � � � ; k, where k is the diameter of a network (the maxi-
mum distance between any two nodes), which is obtained by Floyd
algorithm [36].

We will utilize the spatio-temporal semi-variogram to analyze
the spatial and temporal dependence of nodes in the dynamic net-
works. The number of layers of graph convolution is determined by
spatio-temporal semi-variogram to improve the prediction accu-
racy of the model for the dynamic link prediction tasks.

4. STEM-GCN Model for Dynamic Networks

In this section, we propose a novel STEM-GCN model for link
prediction in dynamic networks. First, we introduce a weak corre-
lation smoothing strategy to generate consecutive network snap-
shot sequences. Then, consecutive network snapshot sequences
are fed into the STEM-GCN to learn both structural and temporal
features of dynamic networks and predict future network snap-
shots based on the previously observed ones. Finally, we will
define our loss function, demonstrate its optimization, and analyze
the time complexity of our algorithm.

4.1. Weak Correlation Smoothing Strategy

Applying consecutive snapshots divided by fixed time intervals,
causes poor prediction accuracy since the division makes the tem-
poral correlation among snapshots weak. Therefore, it is important
to use spatio-temporal semi-variogram to analyze the temporal
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correlation between nodes for consecutive snapshots. A weak cor-
relation smoothing for consecutive snapshots with large correla-
tion fluctuations is implemented to eliminate the noise through
temporal correlation. In what follows, we will introduce the weak
correlation smoothing strategy in detail.

Firstly, from the dynamic network, we aggregate a series of
links within a fixed time interval into network snapshots
G1;G2; � � � ;GTf g. The snapshots are represented as adjacent matri-
ces A1;A2; � � � ;ATf g. Secondly, we randomly initialize the attribute
xti of each node in the network snapshot. Considering the temporal
and spacial dependence of the node, the comprehensive attributes
of each node are further expressed by Eq. (2). The spatio-temporal
semi-variogram values among snapshots are calculated by Eq. (5).
Intuitively, the semi-variogram curve with smooth and small fluc-
tuations indicates that the attributes of the node pairs are well cor-
related in terms of temporal and spacial dependence. Thirdly, for
dynamic networks with large curve fluctuations, we adopt a weak
correlation smoothing (WCS) strategy and repartition the network
snapshots to improve the accuracy of the model.

More specifically, we smooth the semi-variogram curve and
find the extreme points in the curve, record the index Ti of the
extreme points through Index function. Given the consecutive net-
work snapshot sequences S, for s network snapshots behind the
extreme point, ATp

iþ
(p ¼ 1; � � � ; s) are obtained through sampling.

The network snapshots ATi�1 ; � � � ;ATi ;AT1
iþ
; � � � ;ATs

iþ

n o
are divided

into sequences SN1 through the Slide function, where N1 repre-
sents the number of sequences. This function implements a sliding
window with a width of s and a sliding step length of s to intercept
consecutive network snapshots. Similarly, for s network snapshots
before the extreme point, ATp

i�
are obtained through sampling from

ATi ; � � � ;ATiþ1

� �
, where p ¼ 1; � � � ; s. The network snapshots

AT1i�
; � � � ;ATsi�

;ATi ; � � � ;ATiþ1

n o
are divided into sequences SN2

through the Slide function. Finally, we concatenate SN1 and SN2

into SN. The weak correlation smoothing strategy is provided by
Algorithm 1.

Algorithm1: Weak Correlation Smoothing (WCS)

Require: Dynamic network: G ¼ G1;G2; � � � ;GTf g, Diameter of
a G: k, Sequence length: s.

Ensure: Consecutive network snapshot sequences SN.
1: Generate adjacency matrices At from G;
2: Initialize randomly xti and calculate the comprehensive

attributes u v i; tð Þ of each node v i by Eq. (2);
3: Calculate w d xð Þ; sð Þ by Eq. (5).
4: w s; d xð Þð Þ  wSmooth s; d xð Þð Þ;
5: for s ¼ 1 to T do

6: n s; d xð Þð Þ  @w d xð Þ;sð Þ
@s ;

7: end for
8: n s; d xð Þð Þ  nSmooth s; d xð Þð Þ;
9: Tlist  Index n s; d xð Þð Þ ¼ 0ð Þ;
10: for Ti 2 Tlist do
11: for p ¼ 1; � � � ; s do
12: Get ATp

iþ
by sampling from ATi�1 ; � � � ;ATi

� �
;

13: SN1  Slide ATi�1 ; � � � ;ATi
;AT1

iþ
; � � � ;ATs

iþ

n o
;

14: end for
15: Temp ATi�s;ATi�sþ1; � � � ;ATi�1

� �
;

16: for p ¼ 1; � � � ; s do
17: Get ATp

i�
by sampling from ATi

; � � � ;ATiþ1

� �
;

18: SN2  Slide AT1
i�
; � � � ;ATs

i�
;ATi

; � � � ;ATiþ1

n o
;

292
a (continued)

Algorithm1: Weak Correlation Smoothing (WCS)

19: end for
20: SN  SN1 �SN2 ;
21: end for
22: Return SN.
4.2. STEM-GCN Model

Our objective is to learn a stable dynamic link prediction model
based on spatio-temporal semi-variogram, named STEM-GCN,
which predicts future links by simultaneously capturing changes
in topology and temporal characteristics of historical snapshots.
The overall framework, which is shown in Fig. 2, includes two core
parts. One is the stacked Memory Cell Structure (MCS) and the
other is the fully connected network. It utilizes the encoder-
decoder architecture which takes the smooth network snapshot
sequences S ¼ At�s; � � � ;At�1f g as input and outputs predicted net-

work snapshot eAt;pre.

4.2.1. Stacked Memory Cell Structure
To reduce the number of model parameters and achieve a more

efficient temporal learning, the STEM-GCN model mainly depends
on the memory cell structure (MCS), as shown in Fig. 2. Each mem-
ory cell structure, with the embedded GCN into the gate of LSTM,
can save the structural features of the dynamic networks. The
stacked memory cell structures can preserve both structural and
temporal features of the long-term networks at the same time,
and further capture the evolutionary nature of dynamic networks.
Compared with GC-LSTM, the number of trainable parameters
could be largely reduced, since the parameters are shared across
the GCN and LSTM.

In the MCS, the first step is to introduce a multiplicative forget
gate unit to throw away the irrelevant memory contents from the
previous cell state. The forget gate is defined as

Zf
t ¼ r WfAt þ UfHt�1 þ bf

� �
; ð6Þ

where At 2 RN�N is the input of the MCS at time t;Ht�1 2 RN�F

denotes the output at time t � 1 and r �ð Þ represents the activation
function sigmoid defined as r xð Þ ¼ 1= 1þ exp �xð Þð Þ. The parameters
Wf 2 RN�F ;Uf 2 RF�F and bf 2 RF are the weights and bias of the for-

get gate Zf
t , respectively.

Then a multiplicative input gate unitZi
t is introduced to protect

the memory contents stored in the cell state from perturbation by
irrelevant inputs. GCN is embedded into the input gate to extract
the topological structure of each network snapshot at the current
time and share the parameters with LSTM to reduce the number
of model parameters. The sigmoid layer decides how many con-
tents the input contains should be updated by Zi

t . The tanh layer
generates a candidate vector Mt based on the topological struc-
tures of the network snapshot extracted by GCN, and adds it to
the cell state. The current memory Ct can be updated by combina-
tion of the cell structure Ct�1 at time t � 1 and network topological
structures Mt at time t. The operation is defined as follows.

Zi
t ¼ r WiAt þ UiHt�1 þ bið Þ;

Mt ¼ tanh Wm
eD1=2eAt

eD1=2At þ UmHt�1 þ bm

� �
;

Ct ¼Zf
t � Ct�1 þZi

t �Mt ;

ð7Þ



Fig. 2. Overall framework of STEM-GCN model. Given a series of links, we aggregate them within fixed time intervals into network snapshot sequences from the dynamic
network. And then the new smooth network snapshot sequences are obtained by analyzing the spatio-temporal semi-variogram of the network snapshots and adopting the
weak correlation smoothing (WCS) strategy. Further, given the smooth network snapshot sequences with length s; Gt�s;Gt�sþ1; � � � ;Gt�1f g, each network snapshot sequence is
transformed into the adjacent matrix At�s;At�sþ1; � � � ;At�1f g as input to the STEM-GCN model. The stacked memory cell structures (MCS) can save both structural features and
temporal features, and further predict future links in dynamic networks. Finally, the features Ht received by the stacked memory cell structures are decoded into adjacency
matrix eAt;pre through the fully connected network, and the graph Gt is obtained.
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where Wi 2 RN�F ;Ui 2 RF�F ;Wm 2 RN�F and Um 2 RF�F are the
weights of the input gate in memory cell structure. Here, bi 2 RF

and bm 2 RF are the corresponding biases; eAt ¼ At þ IN is the adja-
cency matrix of the network snapshot Gt with added self-

connections; IN is the identity matrix, and eDii ¼
P

j
eAij is degree

matrix of eAt; eD�1=2eA eD�1=2 is the normalized transition probability
matrix. The memory cell structure can not only store the structural
and temporal features of consecutive network snapshots, but also
filter out the useless information. The output of the memory cell
structure based on Ct is controlled by the multiplicative output gate
Zo

t . The process is described as

Zo
t ¼ r WoAt þ UoHt�1 þ boð Þ;

Ht ¼Zo
t � tanh Ctð Þ;

ð8Þ

where Wo 2 RN�F ;Uo 2 RF�F and bo 2 RF denote the weight and bias
of the output gate in gated graph convolutional network,
respectively.

4.2.2. Decoder Architecture
To obtain the final prediction network, we utilize two-layer

fully connected network as the decoder. The hidden vector
Ht 2 RN�F is converted into a network probability matrix. The
operation is defined as

eAt;pre ¼ Dh H tð Þð Þ: ð9Þ
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where Dh is a F;512;512;Nð Þ fully connected neural network with
weights h. Notice that the size of input and output N is the number

of nodes in the different dynamic networks. Here, eAt;pre 2 0;1½ � is the
probability matrix. The larger the value, the greater the probability
that there is a connected edge between node i and node j. Naturally,

A
	
t;pre ¼ 0 indicates that there is no connected edge between nodes.
In this paper, given a network snapshot sequence

S ¼ Gt�s; � � � ;Gt�1f g, the adjacency matrix At�s at time t � s is first
input into the memory cell structure, and Ht�s and Ct�s are gener-
ated by the memory cell structure processing. Because the cell Ct�s
and the hidden state Ht�s reflect different information, we need to
consider not only the influence of the neighbor on the hidden state,
but also the influence of the neighbor on the state of the cell. Then,
the information ofHt�s and Ct�s are taken as the initial state of the
memory cell structure. Combined with the structural feature of
Gt�sþ1 extracted by using GCN, it is processed by the memory cell
structure and transmitted to the cell at the next moment. Through
repeated iterations, the hidden state Ht of network snapshot

sequenceS is obtained. Finally, the network information eAt;pre pre-
dicted at time t is obtained through the decoder.

4.3. Optimization

In order to verify the accuracy, we compare the predicted net-
work and the real network at time t. The reconstruction error of

the output eAt;pre and the target matrix At is shown as



:

Table 1
Basic statistics of the six datasets.

Dataset Nodes Edges Degree Timespan(days)
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L ¼ keAt;pre � Atk2F
¼

XN
i¼0

XN
j¼0
keAt;pre i; jð Þ � At i; jð Þk22:

ð10Þ

It is worth noting, that due to the sparsity of the network, there
are far more zero elements in the adjacency matrix than non-zero
elements. If the adjacency matrix is used as an input, numerous
zeros will be unnecessarily processed. Instead, we improve the loss
function to

L2nd ¼ k eAt;pre � At

� �

Bk2F

¼
XN
i¼0

XN
j¼0
k eAt;pre i; jð Þ � At i; jð Þ
� �


Bijk22;
ð11Þ

where 
 is the Hadamard product (i.e. the corresponding elements
are multiplied), Bij ¼ 1 if At i; jð Þ ¼ 0, and Bij > 1 for non-zero ele-
ments. This way we increase the penalty for nodes with edge con-
nections. In other words, higher weight is given to nodes
connected by edges. In order to prevent over-fitting, the L2-norm
unit Lreg is added:

Lreg ¼ 1
2

XK
k¼1
kW kð Þ

d k2F þ 1
2

XL

l¼1
kW lð Þ

e k2F þ kW lð Þ
i k2F þ kW lð Þ

M k2F þ kW lð Þ
o k2F

� �

ð12Þ
Combining Eqs. (11) and (12), we then use the mixed loss

function

Lmix ¼L2nd þ cLreg ; ð13Þ
where c is a tradeoff parameter.

To optimize the proposed model, we minimize the mixed loss
function defined as Eq. (13). We first perform forward propagation
to obtain the loss, and then do back propagation to update all the
parameters. For the LSTM-based STEM-GCN models, the weights of
the network are updated through time back propagation. After
obtaining the partial derivatives of the parameters. We optimize
the model using Adaptive Moment Estimation (Adam) [37]. The
full algorithm is presented in Algorithm 2.

Algorithm2: Training of STEM-GCN

Require: Dynamic network: G ¼ G1;G2; � � � ;GT�
}, Sequence

length: s, Number of sequence: N, Parameters of MCS:
W; b, Parameters of decoder: h.

Ensure: Parameters of STEM-GCN.
1: Generate adjacency matrices At from G;
2: SN  WCS A1; � � � ;ATf g;
3: for n ¼ 1to N do
4: for t ¼ 1to s do
5: H tð Þ  MCS Atð Þ;
6: end for

7: eAt;pre  Dh H tð Þð Þ;
8: L2nd  k eAt;pre � At

� �

Bk2F ;

9: Lmix  L2nd þ cLreg;
10: W; b; h Adam Lmix;W; b; hð Þ;
11: end for
12: Return W; b; h.
BA 100 50.6 K 753 100
RADOSLAW 167 82.9 K 993.1 271.4
HYPERTEXT 113 20.8 K 368 2.5
ENRON 151 10 K 133 164.5
SFHH-CONF 403 70.3 K 348 2.0
FB-FORUM 899 33.7 K 74 164.5
4.4. Complexity Analysis

The complexity of STEM-GCN, like that of many other deep
learning models, mostly depends on the weights of the model. A
simple STEM-GCN model consists of GCN layer whose hidden size
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is l, LSTM layer whose hidden size ism1, and the MLP containingm2

layers with m3 hidden units, then the complexity is obtained by

O n2� � 	 n2lþ 4 nm1 þ n2 þm1
� �þm2m3n; ð14Þ

where n is the number of nodes of the Gt ;n2l is the complexity of
GCN, 4 nm1 þ n2 þm1

� �
is the complexity of the LSTM, and m2m3n

is the complexity of the MLP. The complexity varies with the struc-
ture of the model. Although there are many parameters, a test under
GPUs acceleration can be completed in a few seconds.

5. Experiments

In this section, we present a comprehensive collection of exper-
iments to demonstrate the performance of STEM-GCN. Our discus-
sion includes a variety of datasets, compared methods, evaluated
metrics, and tasks.

5.1. Datasets

To verify the effectiveness of our STEM-GCN, we conduct our
experiments on both synthetic and real-world dynamic networks.
The detailed statistics of the six datasets are summarized in
Table 1.

5.1.1. Synthetic Dynamic Network
From existing network evolution models [38,39], some regular

dynamic networks can be generated to use as standard datasets
to judge the performance of the model. We call the synthetic data
set the BA dynamic network. The method to generate dynamic net-
works based on the classic BA model [40] is as follows.

Assume that the number of generated nodes is 100, and each
node has 5 attributes. The dynamic network is expressed as
G tð Þ ¼ V tð Þ;E tð Þ;X tð Þf g at time t, where V tð Þ and E tð Þ are the sets
of vertices and edges, respectively. Here,X tð Þ 2 R100�5 indicates the
feature matrix of the node. Considering that the link is related to
the mutual influence between nodes, we denote byW v ið Þ the com-
prehensive influence of node v i. That is,

W v ið Þ ¼
X5
m¼1

xim þ
1

jC v ið Þj �
X

v j2C v ið Þ

X5
m¼1

xjm; ð15Þ

where C v ið Þ is the first-order neighbor nodes of node v i, and xim is
the attribute values of node v i. Since the comprehensive influence
of the node determines the probability the node being selected into
the newly added edge, the probability P v ið Þ is defined as

P v ið Þ ¼ W v ið ÞX
v j2V

W v j
� � ; ð16Þ

where P v ið Þ represents the probability of connecting to node v i

when a new node appears. The larger the value of P v ið Þ is, the easier
it is to generate an edge between the new node and v i. As new
nodes emerge, a dynamic network is generated through this proba-
bilistic preference. The network structure changes at each moment
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are related to the attribute values of the nodes. The attribute values
of each node can be generated by different random functions.

5.1.2. Real-World Dynamic Networks
(1) HYPERTEXT [20]: It is a dynamic network of face-to-face

interpersonal communication. The data are collected through the
wireless devices carried by people. Each node represents a person,
and a link indicates the active contacts between people during 20-s
intervals.

(2) ENRON and RADOSLAW [19]: Both of them are email net-
works, and each node represents an employee in a mid-sized com-
pany. Whenever an email is sent from one person to another, a link
will appear. ENRON records email interactions for nearly six
months and RADOSLAW lasts for nearly nine months.

(3) SFHH-CONF [41]: It is a human contact dynamic network
where nodes represent humans and edges between them represent
proximity. This data set describes the face-to-face interactions of
403 participants at the 2009 SFHH conference in Nice, France.

(4) FB-FORUM [19]: These data are attained from a Facebook-
like online forum of students at the University of California at
Irvine, in 2004. It is an online social network where nodes are users
and edges represent interactions between them. The records were
for more than five months.

Before training, the data is partitioned into several network
snapshots, each of them containing data from a particular time
window. Since the length of the time window for different datasets
may vary according to the timespan, in order to obtain enough
samples, in this paper, we divide the dynamic networks into 100
network snapshots in ascending order of timestamp, and use 16
consecutive snapshots as a set of samples, with the previous 15
snapshots as input and the last one as the output. Therefore, a total
of 85 samples are obtained, of which the first 65 samples are used
as the training set, and the last 20 samples are used as the test set.

5.2. Baseline

To verify the effectiveness of the STEM-GCN, we compared it
with five baselines on link prediction of dynamic networks, which
are introduced as follows.

(1) GCRN [17]: It utilizes GCN to acquire node representations,
passes them into LSTM and uses a fully connected network
to decode the future network structures.

(2) GCN + GRU [42,43]: Similar to GCRN for dynamic network
link prediction, it also leverages GCN to extract node repre-
sentations, which are used as input of LSTM to capture
dynamics.

(3) GC-LSTM [20]: It is a framework of encoder and decoder
model for end-to-end dynamic network link prediction, in
which two GCN are embedded into the LSTM to learn tempo-
ral and spatial feature.

(4) E-LSTM-D [19]: It uses an encoder to embed the adjacency
matrices into the vectors. The representations for the
sequences of graphs are learned from the stacked LSTM
module placed right behind the encoder, which will be fur-
ther decoded to the real next network by a decoder.

(5) TGAT [21]: It uses the self-attention mechanism and the
novel functional time encoding technique to learn node
embeddings as functions of time.

5.3. Evaluation Metrics

We used two different metrics to evaluate the performance of
our STEM-GCN model and other baseline methods in the link pre-
diction task. One of them is the area under the curve (AUC) [44],
which is defined as
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AUC ¼ n0þ0:5n00
n ; ð17Þ

where n is the number of independent comparisons in which miss-
ing links and non-existent links are randomly selected to compare
their score. Among these comparisons, n0 times the existing link
gets a higher score than the nonexistent link and n00 times they
get the same score. The AUC can be interpreted as the probability
that a randomly chosen missing link is given a higher score than
a randomly chosen nonexisting link.

The other metric we use is error rate (ER) [19], which is defined
as the ratio of the number of mis-predicted links to the total num-
ber of truly existing links. That is,

ER ¼ Nfalse

Ntrue
; ð18Þ

where Nfalse and Ntrue are the number of mis-predicted links and
actually existing links, respectively.

5.4. Experimental Results

In our experiments, we first utilized the spatio-temporal semi-
variogram to analyze the spatial and temporal changes in the
dynamic networks. To validate the effectiveness of our model, we
implemented ablation experiments on the two proposed methods
MGCNwithout the weak correlation strategy and STEM-GCN. Then,
we compared them with five state-of-the-art methods including
GCRN [17], GCN + GRU [42,43], GC-LSTM [20],E-LSTM-D [19], TGAT
[21] on the evaluation metrics AUC and ER. Finally, we evaluated
the performance of the above models on tasks of link prediction,
network visualization, and network reconstruction.

5.4.1. Dynamic Networks Analysis based on Spatio-temporal Semi-
variogram

The objective of the spatio-temporal semi-variogram analysis
on dynamic networks is to evaluate the spatial and temporal cor-
relation in network snapshots. Aiming at such spatio-temporal
analysis and taking corresponding measures for weak correlation
will improve the accuracy of dynamic network link prediction.

In the first part, we utilized the spatio-temporal semi-
variogram to analyze the spatial dependencies and temporal corre-
lations in the synthetic BA dynamic network. The BA network is
generated in Section 5.1.1, consisting of 20 network snapshots with
time stamps. The change of spatio-temporal semi-variogram is
shown in Fig. 3, which is the correlation of network snapshots with
different counting time window lengths and distances.

Fig. 3(a) illustrated spatio-temporal semi-variogram of the BA
network, which displays the correlation in the spatial distance
and time directions. In the time t direction, all the values of the
semi-variogram show continuous and slow increases in semi-
variance for time steps of 0 to 20. Based on the definition of the
semi-variogram, the small value indicates the high dependence
between nodes separated at distance and time steps. It is interest-
ing to notice that the semi-variogram value slowly grows along the
time axis when d ¼ 1, which suggests that the attributes of each
node are highly related to the change of the combined value of con-
nection information within 1 hop and its history. In the spatial dis-
tance d direction, one can notice that the value of semi-variogram
increases continuously from 1 to 2, and is then steadily approach-
ing 6. This indicates that each node is less affected by neighbor
nodes whose distance is between 3 and 6 hops.

Fig. 3(b) illustrates the change of semi-variogram with different
distances over time, i.e. the temporal correlation. It could be
observed that, as time increases, the values of the semi-
variogram at different distances are linear. Therefore, the temporal
correlation between the node pairs is good.

The spatial dependence of the comprehensive attributes of the
nodes can be observed in Fig. 3(c). The distance at which the model



Fig. 3. Spatio-temporal semi-variogram on BA.
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is first flattened is known as the range. The location of the sample
closer to the range is spatially autocorrelated, while the location
farther from the range is not. After the shortest distance between
the nodes exceeds 2, the value of the semi-variogram will remain
unchanged, which indicates that the mutual influence of the two
nodes is small. The model in this paper uses a two-layers graph
convolution operation.

In the second part, we utilize the spatio-temporal semi-
variogram to analyze the spatial dependencies and temporal corre-
lations in the five real-world dynamic networks. In this paper, we
Fig. 4. Spatio-temporal semi-v

296
divide the dynamic network into 100 network snapshots at a fixed
time interval, the spatio-temporal semi-variogram changes with
different counting time window lengths and distances are shown
as the subgraphs b. Since the real-world networks are very sparse,
in order to more intuitively reflect the change of spatio-temporal
semi-variogram, the subgraph a shows a spatio-temporal semi-
variogram that divides the dynamic network into 20 network
snapshots at a fixed time interval.

In the dynamic network HYPERTEXT, the change of spatio-
temporal semi-variogram is shown Fig. 4. As evident in Fig. 4(b),
ariogram on HYPERTEXT.
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there is only one curve, indicating that the actual network is very
sparse and the diameter of each network snapshot is one. As time
increases, the semi-variogram value at different distances
increases rapidly in the first 13 time steps, then decreases rapidly
at the time of 40, and then fluctuates continuously. The curve of
spatio-temporal semi-variogram fluctuates greatly, indicating that
the temporal correlation between nodes is poor. As the dynamic
network HYPERTEXT continues to add new members over time
and establishes isolated interactions, in order to more intuitively
reflect the change of spatio-temporal semi-variogram of the
dynamic network, we divide the dynamic network into 20 network
snapshots, and the change of spatio-temporal semi-variogram is
shown in Fig. 4(a). The behavior is consistent with the Fig. 4(b),
and the fluctuation is large. The dynamic network HYPERTEXT is
unevenly distributed in space and changes irregularly over time.

Fig. 5 illustrates the change of spatio-temporal semi-variogram
in the dynamic network ENRON. As evident in Fig. 5(b), there are
two curves, indicating that the diameter of each network snapshot
is 2. The value of semi-variogram increases continuously with time
from 1 to 90 and then decreases to till 100. Its change is almost lin-
ear. As depicted in Fig. 5(a), the change of spatio-temporal semi-
variogram of 20 network snapshots is similar to Fig. 5(b). Note that,
as the size of the network snapshot increases, the diameter of the
network increases to 4. This implies that email interactions con-
tinue to increase over time.

Fig. 6 illustrates the change of spatio-temporal semi-
variogram in the dynamic network RADOSLAW. There are five
curves in Fig. 6(b), that is, the diameter of each network snap-
Fig. 5. Spatio-temporal sem

Fig. 6. Spatio-temporal semi-v
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shot is 5. Compared with the first two dynamic networks,
RADOSLAW is denser. The value of semi-variogram increases
rapidly to 47 during the time from 1 to 17 and then slowly
drops to about 34 with slight fluctuations. Fig. 6(a) shows the
change of spatio-temporal semi-variogram of 20 network snap-
shots. The change trend is consistent with Fig. 6(b). We also note
that even if the size of the network snapshot changes, the diam-
eter of the network remains unchanged. It may be caused by the
interaction of email and the small number of new members dur-
ing the short time.

In the dynamic network SFHH-CONF, the change of spatio-
temporal semi-variogram is shown in Fig. 7. There are six curves
in Fig. 7(b), and the diameter of each network snapshot is 6. The
value of semi-variogram increases rapidly to 15 with time from 1
to 10 and then continue to fluctuate slightly until the 30th time
step. From 15 to 30 time steps, the curve value increases to the
highest point 22, and then slowly decreases until the 80th time
step. The value of semi-variogram increases continuously with
time from 81 to 86 and then decreases to approximately 100.
Fig. 7(a) illustrates the change of spatio-temporal semi-variogram
of 20 network snapshots. The trend of change is roughly the same
as the Fig. 7(b). Similar to dynamic network RADOSLAW, even if
the size of the network snapshot changes, the diameter of the net-
work remains unchanged.

In the dynamic network FB-FORUM, the change of spatio-
temporal semi-variogram is shown in Fig. 8. There are two curves
in Fig. 8(b), with the diameter of each network snapshot being 7.
The value of semi-variogram increases continuously with time
i-variogram on ENRON.

ariogram on RADOSLAW.



Fig. 7. Spatio-temporal semi-variogram on SFHH-CONF.

Fig. 8. Spatio-temporal semi-variogram on FB-FORUM.
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from 1 to 10 and then decreases to approximately 100. Fig. 8(a)
presents the change of spatio-temporal semi-variogram of 20 net-
work snapshots. The change trend is consistent with the Fig. 8(b).
Again, the size of the network snapshot changes while the diame-
ter of the network remains unchanged.
5.4.2. Link Prediction
In this section, we present the performance results of various

models for link prediction on different datasets. For each dynamic
network, using the graph embeddings trained on network snap-
shots up to time step t, link prediction predicts the connections
between nodes at time step t þ 1. This approach has been widely
used in evaluating the quality of dynamic node representations
to predict the temporal evolution of network structures. Each
model is trained on the input snapshots Gt�s; � � � ;Gt�1f g, to obtain

the latest graph embeddings A
	
t;pre. In our experiments, for each

epoch, we feed 15 historical snapshots, Gt�15; � � � ;Gt�1f g to STEM-
GCN in order to obtain Gt .

To investigate the prediction performance, we reported the
average values of the three performance metrics for all the 20 sam-
ples. AUC is the area under the receiver operating characteristic
(ROC) curve and has the advantage of being independent of the
classification threshold. The ROC curves of six methods in all data-
sets are presented in Fig. 9, where FPR represents false positive rate
and TPR represents true positive rate. We can see that our method
can achieve better performance than the other five methods. These
results show that the performance of link prediction has been
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greatly improved after taking both the topological and temporal
features into account. It is interesting to note that the FPR value
is almost zero on all data sets. This is because the real data sets
are sparse networks, and most of the samples are negative exam-
ples (non-existent edges). Consequently, the predicted adjacency
matrix has only a few non-zero entries, resulting in FPR being zero.

Table 2 depicts the performance of various models for link pre-
diction on different datasets. This table shows that our methods
STEM-GCN and MGCN (without the weak correlation strategy) all
have higher AUC values and lower ER values. For synthetic network
BA, the AUC value of our methods, close to 87%, is the highest, and
the ER value of 0:27 is the lowest. This is because the dynamic net-
work BA is evolved from specific rules, and the semi-variogram of
BA is linear with respect to temporal correlation and spatial dis-
tance. Since the dynamic networks HYPERTEXT and SFHH-CONF
have highly dynamic edge connections and short duration, it is dif-
ficult to sample a complete network structure at any time. As a
result, the AUC of these two data sets is less than 80%, and the
error rate is higher than other data sets. Compared with other
benchmark methods, our method STEM-GCN has an AUC of 81%
and an increase of about 10% in the dynamic network ENRON.
Since ENRON is very sparse, this shows that STEM-GCN is more
suitable for sparse networks.

The semi-variogram fluctuates greatly with respect to temporal
correlation and spatial distance, indicating that the temporal corre-
lation between nodes is weak. For real-world dynamic networks
RADOSLAW, HYPERTEXT, SFHH-CONF and FB-FORUM with large
fluctuations in the spatio-temporal semi-variogram curve, we



Fig. 9. ROC curves of different methods.

Table 2
Performance of link prediction on AUC and ER.

Metric Method BA RADOSLAW HYPERTEXT ENRON SFHH-CONF FB-FORUM

AUC GCRN 0.8031 0.7224 0.5595 0.7137 0.5307 0.6331
GRU + LSTM 0.7985 0.7327 0.5227 0.7064 0.5332 0.5908
GC-LSTM 0.8444 0.7573 0.5490 0.7258 0.5503 0.6939
E-LSTM-D 0.8314 0.7341 0.5529 0.7062 0.5931 0.7595
TGAT 0.8463 0.8165 0.5660 0.7813 0.6947 0.7636
MGCN 0.8546 0.8201 0.7060 0.8133 0.7153 0.7694
STEM-GCN 0.8689 0.8298 0.7309 0.8053 0.7303 0.7804

ER GCRN 0.3964 0.9528 1.2214 1.0237 1.0297 1.0872
GRU + LSTM 0.4062 0.9398 1.1023 1.1472 1.0238 1.1429
GC-LSTM 0.3142 1.0205 1.0878 1.0302 1.0201 1.1045
E-LSTM-D 0.4022 1.0013 1.0748 1.0302 1.0406 1.0986
TGAT 0.3982 0.8983 0.9577 0.9504 1.0479 1.1042
MGCN 0.2753 0.8882 0.8029 0.8802 0.7918 1.0640
STEM-GCN 0.2656 0.8769 0.7872 0.8535 0.7741 0.9854
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introduce a weak correlation smoothing strategy and make link
predictions. It is found that our method STEM-GCN has improved
AUC by 1% and ER has been reduced by 2%, compared to the pre-
vious method MGCN. Note that after the introduction of the weak
correlation smoothing strategy, the AUC value of the ENRON
dynamic network drops by 1%, because the spatio-temporal
semi-variogram curve is approximately linear, and the introduc-
tion of the correlation smoothing strategy may destroy the tempo-
ral correlation. Although AUC has dropped, the error rate has
dropped by 3%. In summary, the STEM-GCN proposed in this paper
is more accurate than other approaches in predicting future
changes in the network.

Moreover, for the 20 test samples with G65þk, we test dynamic
link prediction performances with AUC and ER, obtained by
STEM-GCN. Here 65 is the number of snapshots in the training
set, and k represents the number of snapshots between the current
predicted one and the 65th one, varying from 1 to 20. As k varies,
we can see how long STEM-GCN can predict network evolution
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with satisfying performance. The results are shown in Fig. 10. We
can see that, with the increase of k, the AUC decreases, while the
ER increases. This shows that for most dynamic networks, it is
indeed relatively difficult to make long-term predictions of the
structure. Note that, for BA, the changing trends of prediction per-
formances are relatively stable. Maybe because the synthetic net-
work structure evolves regularly, making the collection of
snapshots easy to predict. Interestingly, for ENRON and FB-
FORUM, AUC steadily rises with the increase of k over time inter-
val, which may be because the networks are sparser than others.
These results explain why we can achieve better performances
on sparse dynamic networks.

5.4.3. Beyond Link Prediction
Network Reconstruction. A good low-dimensional representation

of the nodes can accurately reconstruct the network. Our STEM-
GCN model learns low-dimensional representations of each node
in the process of link prediction for the task of network reconstruc-



Fig. 10. Dynamic link prediction performances on the AUC and ER.
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tion. Through the decoder in the STEM-GCN model, the edges
between pairs of nodes are reconstructed from a low-
dimensional representation. We then represent the connection
probability of the edge according to the structural similarity of
the corresponding node pair. The probabilities of the edges are
sorted in descending order and the ratio of real links in the top k
edges is obtained as the reconstruction precision, where k is 2500.

Table 3 shows the Mean Average Precision (MAP) [45] on our
datasets. It is observed that STEM-GCN outperforms all baselines.
In the BA network, the average MAP of STEM-GCN is 99:8% while
the best method has 98:7%. In the RADOSLAW and ENRON net-
works, compared with the optimal method, the average MAP of
STEM-GCN is 86:28% and 83:68%, showing an increase of 1%. In
the HYPERTEXT network, the average MAP of STEM-GCN is
89:64% while the optimal method has 84:2%. In the SFHH-CONF
network, the average MAP of STEM-GCN is 98:72% while the opti-
Table 3
Average MAP of network reconstruction.

Method BA RADOSLAW HYPERT

GCRN 0.7888 0.5548 0.5384
GRU + LSTM 0.7996 0.5204 0.5008
GC-LSTM 0.9872 0.8592 0.8420
E-LSTM-D 0.9723 0.8363 0.8517
TGAT 0.9856 0.8496 0.8639
STEM-GCN 0.9980 0.8628 0.8964

Fig. 11. Visualization of th
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mal method has 87:4%. In the FB-FORUM networks, compared
with the optimal method, the average MAP of STEM-GCN is
84:24%, showing an increase of 3%.

Network Visualization. One important application of graph
embedding is network visualization. We carry out our experiments
on karate club data, and the known network structure is shown in
Fig. 11(a). First, the Gt�1 is obtained by randomly removing ten
links from the original network Gt . Then, we utilize the network
Gt�1 to infer Gt . Finally, the low-dimensional embeddings for each
node are generated by STEM-GCN during the process of link pre-
diction. We take the embeddings as input, and the output of the
stacked memory cell structure is visualized by method PCA [46],
as shown in Fig. 11(b). It is observed that the nodes of the same
classes are closely connected, while those of the different classes
are far apart. This verifies the excellent transferability of the pro-
posed STEM-GCNmodel. STEM-GCN can be used for link prediction
EXT ENRON SFHH-CONF FB-FORUM

0.5940 0.5784 0.6216
0.5756 0.5796 0.6212
0.8188 0.8740 0.8008
0.8023 0.9120 0.8119
0.8108 0.9341 0.8165
0.8368 0.9872 0.8424

e karate club network.
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tasks, and the embedding vector obtained by link prediction can
also be used to effectively solve the node classification problem.

5.5. Parameter Sensitivity

The performance of our STEM-GCNmodel is mainly determined
by the model’s structure. We test the model with different num-
bers of GCN-layers and decoder-layers to prove the validity of
the structures. In addition, we use the spatio-temporal semi-
variogram to model the dynamic networks and determine the
number of graph convolution layers (GCN-layers). The essence of
the spatio-temporal semi-variogram operation, in terms of space,
is to aggregate the attributes of different-order neighbor. And the
evolution of semi-variogram across different distances is equiva-
lent to different GCN-layers. Next, we will investigate their influ-
ences on the model performance.

The performances of the AUC and ER with different GCN-layers
are shown in Fig. 12. Fig. 12(a) shows the AUC with different GCN-
layers. One can notice that the AUC increases as the number of
Fig. 12. AUC and ER of d

Fig. 13. AUC and ER of dif
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GCN-layers increases from 1 to 2. However, the AUC starts to
decrease when the number of GCN-layers increased from 3 to 4.
Fig. 12(b) shows ER of different GCN-layer. As the number of
GCN-layers increases from 1 to 2, the ER decreases; when the num-
ber of GCN-layers increased from 3 to 4, ER begins to increase.
Therefore, we employ 2 as the optimal number of GCN-layers in
our model as the scores for the AUC are highest and the values of
ER are lowest. At the same time, the semi-variogram analysis also
tells us that the performance of the model is the best when the
number of GCN-layers is 2. The theoretical analysis is consistent
with the experiments, so we choose a two-layer GCN in the previ-
ous experiments.

The performances of the AUC and ER with different decoder-
layers are shown in Fig. 13. Fig. 13(a) shows the AUC with different
decoder-layers. The AUC increases with an increase in the number
of decoder-layers from 1 to 2, while the AUC starts to decrease
when the number of decoder-layers increases from 3 to 4. Fig. 13
(b) shows the ER of different decoder-layers. As the number of
decoder-layers increases from 1 to 2, the ER tends to flatten. Also,
ifferent GCN-layers.

ferent decoder-layers.
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ER increases the most when decoder-layers are from 3 to 4. There-
fore, we choose 2-fully connected layers in the decoder. Moreover,
it seems that, on the synthetic data set, AUC is the largest and ER is
the smallest because the synthetic data set is a regular data set
with the edge-first connection.

6. Conclusions and Future Works

In this paper, based on the practical challenges, we proposed a
novel STEM-GCN model for dynamic network link prediction,
which overcomes the limitations of capturing temporal informa-
tion and the high number of model parameters. For different
real-world dynamic networks, we take advantage of spatio-
temporal semi-variogram for analyzing the correlation of network
snapshots in time and space. We find that the correlation of net-
work snapshots is non-stationary. Aiming at network snapshots
sequences which have weak correlation in time, the developed
STEM-GCN framework introduced the weak correlation smoothing
strategy and also improved the accuracy of link prediction by 1%
(compared with MGCN without aforesaid strategy). Moreover,
STEM-GCN reduced the number of model parameters and achieved
a more efficient temporal learning by memory cell structure. The
experimental results demonstrated that the proposed model can
capture temporal patterns on synthetic and real-world datasets,
and outperformed other well-known state-of-the-art methods in
dynamic link prediction. In general, our approach shows promise
for revealing the evolving mechanism of real-world dynamic
networks.
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