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ABSTRACT One of today’s inspiring issues is the 2D histogram-based multilevel threshold selection which
is used for segmenting images into several regions. The image analysis warrants exploration of multiclass
thresholding techniques using various entropy-based objective functions. In this context, the Shannon type of
entropic function without inherent decision making capacity has been widely used for threshold selection in
the last decade. Furthermore, a 2D histogram was constructed using local average intensity values resulting
in loss of some edge information. To address these problems, this study proposes a newmethodology using a
novel practical decisive row-class entropy (PDRCE) based fitness function for multilevel thresholding. The
PDRCE values are computed using the newly constructed 2D histogram-based on normal local variance.
Further, an opposition flow directional algorithm (OFDA) is proposed to maximize the fitness function.
The performance of the proposed technique is compared with five state-of-the-art 2D histogram-based
entropic fitness functions. Moreover, the performance of OFDA is investigated through comparison with
other global optimizers namely the genetic algorithm, particle swarm optimization and artificial bee colony.
An image segmentation evaluation dataset (BSDS500) is used in this experiment. It is witnessed that the
proposal is more efficient than state-of-the-art methods. Our fitness function would be useful for registration,
segmentation, fusion, etc.

INDEX TERMS Image processing, multilevel thresholding, entropy, computational intelligence, machine
learning.

I. INTRODUCTION
Image segmentation has an important role in several applica-
tions. To facilitate a thorough investigation on thresholding
based segmentation methods, an effort is made in this paper.

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Asif .

Nevertheless, earlier approaches, more or less, are focused
on solving the two-class segmentation problems. Subse-
quently, the multiclass segmentation problem is evolved as a
promising area of research. To facilitate a better analysis, the
researchers relied on meticulous segmentation of the input
images. It is studied from the literature that the multilevel
thresholding (MTH) is the easiest way of achievingmulticlass
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segmented outputs. In this context, many methodologies are
reported [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12]. Most of these methods use the image histogram-based
entropy values. Initially, 1D image histogram-based entropy
methods were used for this purpose [1]. However, these
methods lack the contextual information, which resulted in
reduced accuracy. To retain the contextual information, later
the idea was extended to 2D image histogram-based entropic
functions [2]. The 2D histograms were constructed using the
local average versus the grey level pixel intensities. Different
objective functions based on 2D histogram were suggested
for the purpose. In this study, the reason for inclusion of the
references is the domain of interest, i.e., 2D histogram-based
MTH methods.

Most of the recent techniques [5], [6], [7], [8], [9], [10],
[11], [12] are, more or less, concentrated on the use of
the entropic values. The authors in [5] have presented a
MTH method based on 2D histogram. They constructed the
2D histogram using the grey-level values of the pixels and
the average grey-level values of 3 × 3 neighbourhood. The
diagonal rectangles are used for entropy calculation using
Shannon kind of entropic functions. A 2D histogram-based
MTH technique was proposed in [6]. These authors [6] also
used the similar approach to construct the histogram. They
have also used the diagonal regions for computing the Tsallis
entropy. Differential evolution (DE) was used for maximiza-
tion. Fuzzy entropy was used in [7]. The authors in [7] used
modified versions of two different evolutionary computation
algorithms for optimization. However, the method was simi-
lar to the earlier approaches. The authors in [8], [9], and [10]
used the 2DRényi entropy as an objective function for solving
the MTH problem. However a 2D histogram is constructed
using the lateral inhibition in [10]. Non-extensive entropy
based MTH was presented in [11]. The authors in [12] used
2D Masi entropy as the fitness function for solving the MTH
problem. Recently, a 2D Kaniadakis entropy-based thresh-
olding technique using 2D histogram is presented in [13].
Lei and Fan [14] suggested the rough entropy based image
thresholding. They used the concept of nested optimization
for two level image segmentation. The idea of weighted max-
imum entropy thresholding is discussed in [15]. The method
is used for infrared pedestrian segmentation. The authors
in [16] reported a generalised Masi entropy based image
segmentation algorithm. It is also kept in mind to retain the
contextual information by using the 2D histograms. However,
there are certain demerits of these existing 2D histogram-
based methods. Due to the averaging of the grey-level values
in the neighbourhood while construction of the 2D histogram,
edge features are not efficiently retained. Moreover, the
computations are more, because of the use of the diagonal
regions.

In general, different ECs [17], [18], [19], [20], [21] are used
to optimize the fitness functions discussed above. Because,
the search process becomes exhaustive with increasing num-
ber of thresholds. Therefore, there is a necessity to use evo-
lutionary computing (EC) techniques.

The entropic fitness functions used above are not well
suited, because the pixel intensities are not uniformly dis-
tributed. Moreover, research papers are not seen related to the
use of decision making entropy for practical image segmen-
tation applications. To be specific, multilevel threshold selec-
tion with inherent decision making is a meaningful research
study now. This study encourages us to investigate practi-
cal decision making entropy kind of objective functions for
multiclass image segmentation, which is a worthwhile idea.
This approach is never perceived in the image processing/
computer vision literature.

It may be noted that the earlier methods use Shannon kind
of entropy based fitness functions. The logarithmic functions
used to compute Shannon type of entropy have their inherent
flaws. It is obvious that − log pi = ∞ ,when pi = 0
[22]. The notation pi indicates the probability of occurrence
of a particular pixel intensity. As a result, the accuracy value
is lessened. In addition, the local averaging adopted while
constructing the 2D histogram in the above methods [5],
[6], [7], [8], [9], [10], [11], [12] causes loss of the edge
information, leading to less accuracy.

This is the reason why the authors are motivated to
suggest a novel decisive kind of entropy based objective
function, coined as practical decisive row class entropy
(PDRCE). Where, we use exponential kind of function with
inherent mechanism for practical decision making to com-
pute the PDRCE. Further, the normal local variance in the
2D histogram construction process is incorporated. A new
Opposition Flow Directional Algorithm (OFDA) is also sug-
gested for maximizing the PDRCE. The reason for the choice
of OFDA is its inherent ability to explore a larger search
space. In summary, the contributions are – i) a novel PDRCE
based objective function for multilevel thresholding, ii) con-
struction of 2D histogram using normal local variance, iii) a
new optimizer called OFDA. This investigation may add new
literature to the image segmentation area.

The rest of the sections are organized as follows: Section II
describes the materials and methods related to this work. The
suggested methodology is presented in Section III. Results
and discussions are found in Section IV. Conclusions are
drawn in Section V.

II. MATERIALS AND METHODS
The above discussions are very important from an image pro-
cessing point of view. Thus, we are motivated to investigate a
new strategy for multilevel image thresholding using the 2D
PDRCE technique.

A. OTSU METHOD
Let us assume that TH = [th1, th2, th3, · · · , thk−1] com-
prises many thresholds. In Otsu’s scheme, the variance plays
an important role in the threshold selection process. It is
defined as [1], [2]:

σ 2c
B =

k∑
i=1

σ 2c
i =

k∑
i=1

ωci
(
µci − µ

c
T
)2 (1)
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Here, i is an integer. The probability of occurrence is denoted
by ωci , the mean of the i-th class is represented by µci . For
MTH, the ωci values for different i are given below:

ωc0 (th) =
∑

th
i=11Ph

c
i , ω

c
1 (th)

=

∑
i=th1+1

th
2 Ph

c
i , · · · , ω

c
k−1 (th) =

L∑
i=thk+1

Phci (2)

The µci values for different i are given by:

µc0 =
∑

th
i=11

iPhci
ωc0 (th1)

, µc1 =
∑
i=th1

+1th2
iPhci

ωc1 (th2)
, · · · ,

µck−1 =

L∑
i=thk+1

iPhci
ωck−1 (thk)

(3)

It may be noted that Otsu’s between class variance method-
ology was first proposed for the bi-level thresholding (BTH).
Need to mention here that the method is based on the
image histogram. Subsequently, the basic idea was extended
to the MTH. This method is found popular for the image
segmentation.

B. KAPUR’S ENTROPY THRESHOLDING
Another quite popular method (non-parametric) used for
the segmentation purposes is Kapur’s entropy-based tech-
nique. The scheme is found in [5] and [6] for the MTH.
Its popularity is mainly for its easiness in the implementation,
because it is a non-parametricmethod. Kapur’s-entropy based
scheme is mainly dependent on the probability distribution of
the pixel intensities. Image histogram is used for computing
the entropy values. This is treated as a maximization prob-
lem. The fitness function for the BTH using Kapur’s entropy
is:

fKapur = H c
1 + H

c
2 , c =

{
1, 2, 3, for RGB
1, for Grayscale

(4)

The entropies H1 and H2 are defined as:

H c
1 =

th∑
i=1

Phci
ωc0

ln
(
Phci
ωc0

)
, H c

2 =

L∑
i=th+1

Phci
ωc1

ln
(
Phci
ωc1

)
(5)

Here, the probability distribution of the grey level is denoted
by Phci . Note that the probability of occurrences are repre-
sented by ωc0 (th) and ω

c
1 (th), for two distinct classes C1 and

C2. The idea is also extended to the MTH. In this case, the
objective function is expressed by:

fKapur (TH) =
k∑
i=1

H c
i , c =

{
1, 2, 3, for RGB
1, for Grayscale

(6)

Here, TH = [th1, th2, · · · , thk−1] contains (k−1) number of
thresholds. For MTH, (5) is written by:

H c
1 =

∑
th
i=11

Phci
ωc0

ln
(
Phci
ωc0

)
,

H c
2 =

th2∑
i=th1+1

Phci
ωc1

ln
(
Phci
ωc1

)
, · · · ,

H c
k =

L−1∑
i=thk−1+1

Phci
ωck−1

ln

(
Phci
ωck−1

)
(7)

Precisely, (7) is used to segment the image into multiple
classes. More details are found in [5] and [6]

C. THE FLOW DIRECTIONAL ALGORITHM
The flow directional algorithm (FDA) is discussed in [18].
It is inspired by the flow of water into a drainage basin,
which simulates the direction of flow to the lowest height
outlet points. The flow direction is also influenced by the
neighboring flow and its slope, which is based on the D8 cell
model (ref Fig. 2 in [18]). Each flow position Flow_X and
its height Flowfitness(f (flowX )) serves as a search agent for
α flow, which is initialized in the drainage basin within the
boundaries [ub, lb]. The new flow positions are estimated in
two ways in the FDA. Firstly, it is to assume that a flow gen-
erates its β neighbor flow Neighbor_X (ref (3) in [18]) on its
route to the drainage basin, and then, updates flow locations
Flow_newX (ref (8) in [18]) based on the best neighbor flow.
The flow positions are updated Flow_newX (ref (9) in [18]) in
a second way by presuming that the present flow encounters
any random flow, and changed its path. Finally, the flow’s
position is updated, if it is better than the old flow, which is
expressed as:

FlowX(i) =

{
FlownewX(i) f

(
FlownewX(i)

)
< f

(
FlowX(i)

)
FlowX(i) Otherwise

∀i ∈ [1, α] (8)

where f (Flow_newX (i)) is the height of Flow_newX (i). The
flow position is updated iteratively until it approaches the
optimal solution or maximum iteration Max_Iter . The FDA
demonstrated outstanding performances on the benchmark
functions. It has also shown better results for the real-world
engineering design problems. More information regarding
the FDA is found in [18].

III. PROPOSED METHODOLOGY
This section highlights a newmodel for the multilevel thresh-
olding of images.

A. PROPOSED OBJECTIVE FUNCTION FOR MULTILEVEL
THRESHOLDING
Here, we present the PDRCE based threshold selection
method formulticlass image segmentation. Fig. 1 displays the
block diagram of the PDRCE scheme. The PDRCE values are
calculated along the row using the two dimensional histogram
of an image. The normal local variance is used for the con-
struction of the two dimensional histogram. Need to mention
that the fitness function values are linked to the threshold
selection. Therefore, an optimizer is used for obtaining the
optimal threshold.
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FIGURE 1. Block diagram of the suggested methodology.

Let the grey image be I ∈ <M×N . Let L represents the
intensity levels. Here, z = {0, 1, 2, · · · ,L−1} is the intensity
value of the pixels.

It is noted that z(x, y) denotes the pixel intensity, where
(x,y) are the pixel coordinates. Then, the local average av(x,y)
is calculated as:

av(x, y) =
⌊

1
w× w

∑l

a=−l

∑l

b=−l
f (x + a, y+ b)

⌋
(9)

where, l =
⌊w
2

⌋
and w is the size of the window. Generally,

the odd numbers are chosen for w.
In this contribution, an effort is made to consider the dif-

ference pixel intensities instead of straight forward consider-
ation of the average pixel intensities, as opposed to most of
the prevailing methodologies.

In this work, the local variance lvar(x, y) is computed as:

l var(x, y) = (z(x, y)− av(x, y))2 (10)

Proper care is taken to suppress high amplitude peaks,
which is normally encountered in differential steps. To avoid
such a situation, the local variance is further normalized.
Interestingly, normalized local variance is more justified for
practical applications.

Hence, the lvar is normalized to:

lvarn(x, y) =
(lvar(x, y)− lvarmin)× L

lvarmax − lvarmin
(11)

where lvarmax and lvarmin are the maximum and minimum
values of lvar(x, y) respectively. Need to mention here that L
is 256.

Here, z(x, y)=i, lvarn(x, y)=j . In this development, note
that occurrence of pair (i, j) = qij.
Further, probability of occurrence of (i,j) is given by:

pij =
qij

M × N
with1 ≤ i, j ≤ L. (12)

Figure 2 displays creation of two dimensional histogram
suggested for two level thresholding. Note that (S, T ) rep-
resents the threshold. The histogram is partitioned into four
quadrants. Note that the quadrants one and two contain the
directed edges. In Fig. 2, the 1st quadrant contains the back-
ground (C1) information, whereas the 2nd quadrant carries

FIGURE 2. Histogram in 2D for single threshold.

the foreground (C2) information. In this work, C1 and C2
represent two distinct classes.

The probability distribution of (C1) is expressed below:

P1(C1) =
∑S

i=1

∑T

j=1
pij (13)

The probability distribution of (C2) is given by:

P2(C2) =
∑S

i=1

∑L

j=T+1
pij (14)

The corresponding class probabilities of C1 and C2 are
expressed as:

C1 :

{
pij
P1
, i ∈ 1, 2, . . . , S; j ∈ 1, 2, . . . ,T

}
and

C2 :

{
pij
P2
, i ∈ 1, 2, . . . , S; j ∈ T + 1,T + 2, . . . ,L

}
The proposed PDRCE is expressed as:

E1(S,T ) = −
∑S

i=1

∑T

j=1

(
pij
P1

)
exp

(
1−

(
pij
P1

)α)
(15)

and

E2(S,T ) = −
∑S

i=1

∑L

j=T+1

(
pij
P2

)
exp

(
1−

(
pij
P2

)α)
(16)

Utilizing the sum property of PDRCE:

ETotal(S,T ) = E1(S,T )+ E2(S,T ) (17)

By maximizing ETotal , we get the optimal values.

(Sopt ,Topt ) = argmax {ETotal(S,T )} (18)

Two dimensional histogram for multilevel threshold selec-
tion is constructed using our method and is shown in Fig. 3.
Here, we assume 2-thresholds; the histogram is divided into
6 distinct areas. Notably, the first row itself contains the
required information. It is noteworthy to mention that the first
row also preserves the edge information. Further, the process
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FIGURE 3. Histogram in 2D for two thresholds.

facilitates a reduction in the number of calculations, because
one needs to calculate optimum ‘S’ once only. However, the
optimal T1 and T2 are calculated twice using two different
fitness functions investigated for these thresholds.

Note that the image is partitioned into ‘k’ number of
classes. The probability distributions of different classes
C1,C2, . . . ,Ck are expressed as:

P1(C1) =
∑S

i=1

∑T1

j=1
pij

P2(C2) =
∑S

i=1

∑T2

j=T1+1
pij

...

Pk (Ck ) =
S∑
i=1

L∑
j=Tk−1+1

pij (19)

The PDRCEs are defined by:

E1(S,T1) = −
∑S

i=1

∑T1

j=1

(
pij
P1

)
exp

(
1−

(
pij
P1

)α)
E2(S,T2) = −

∑S

i=1

∑T2

j=T1+1

(
pij
P2

)
exp

×

(
1−

(
pij
P2

)α)
...

Ek (S,Tk−1) = −
∑S

i=1

∑L

j=Tk−1+1

(
pij
Pk

)
exp

×

(
1−

(
pij
Pk

)α)
(20)

It is important to remember that ‘α’ is a tuning parameter.
The total PDRCE is defined as:

ETotal(ST1, ST2, . . . , STk−1) = E1(S,T1)+ E2(S,T2)

+ . . .+ Ek (S,Tk−1) (21)

Maximizing (21), we get the fitness function:

(SoptTopt1, SoptTopt2, . . . , SoptToptk−1 )

= arg max
1≤STi≤k−1

{ETotal(ST1, ST2, . . . , STk−1)} (22)

Fig. 4 shows different histograms for Otsu’s, Kapur’s and
our technique. The sample image shown in Fig. 4(a) is taken

from the Berkeley Segmentation Dataset (BSDS500) [23].
Its two dimensional histogram deploying Otsu method is
displayed in Fig. 4(b). Its 2D histogram utilizing Kapur’s
method and our technique are shown in Figures 4(c-d). Inter-
estingly, from Figures 4(b-c), it is observed that the diagonals
are used to calculate the entropy values. These values are
maximized to get the optimum thresholds, in the cases of Otsu
and Kapur’s schemes. Nonetheless, under a two dimensional
setting, the order of the computational complexity is O(L2K ),
with L as the number of grey levels. Hence, the multilevel
thresholding techniques, based on the two dimensional his-
tograms, need more computational time. The computational
time increases with increased number of K . However, in our
case, it is reduced significantly. Need to mention that the
proposed technique used a different construction principle
using the normalized local variance, as opposed to the exist-
ing technologies. Interestingly, it is seen that the first row is
only used to calculate the entropy value, which is depicted
in Fig. 4(d). In this case, the time complexity is reduced
to O(LK+1). The more is the number of threshold levels, the
more is the gain in the time complexity. Interestingly, the time
complexity of the proposed technique is simply ‘L’ times that
of the 1DOtsu scheme. It immediately reminds us that the 1D
histogram-based Otsu’s scheme needs O(LK ) computations.

The analysis is based on the facts displayed in Fig. 3 for
a clarity. It is reiterated that the optimum ‘S’ is computed
once only. Therefore, the proposal is very intriguing and time
efficient. Further, the suggested technique may also be very
useful for the selection of multiple thresholds.

It is to reiterate here that (22) is the investigated fitness
function, which is optimized (maximized) for computing the
optimal threshold values. Note that we need (K-1) number of
thresholds to partition the image into K distinct classes.

Mostly, state-of-the-art methods for MTH use Shannon
kind of entropy based objective functions. It is observed
that logarithmic functions are used, which have their inher-
ent demerits. For instance, it is observed that − log pi =
∞ when pi = 0. Here, p denotes the probability of
occurrence of a particular pixel intensity. Because of this,
the logarithmic functions reduce the accuracy value. This is
why the authors are inspired to propose a new decisive type
of entropy that is more practical. This study could add to
the body of knowledge in the field of image segmentation.
The proposed practical decisive row class entropy has more
advantages than the traditional Shannon kind of entropy uti-
lized earlier. The advantages of our PDRCE are – i) always
found non-negative, ii) for a particular p, the entropy value
is permanently more compared to Shannon entropy, iii) it
is more decisive, hence, more practical, iv) well suited for
MTH. Thus, all four good points on the PDRCE encourage
the authors for its use in MTH. The novel idea is further
explained below.

The key to our success is the use of the practical decisive
entropy basis function. It plays an important role for the
investigation of novel objective functions derived in (22). The
basis function is presented here for a better understanding.
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FIGURE 4. Illustration of two dimensional histograms, (a) sample
image‘#48025’, (b) Otsu, (c) Kapur’s, (d) Our method.

To be more specific, the function f (x) = x exp(1 − xα) is
used for the development of this methodology, where α is the
tuning parameter. The basis function f (x) = x exp(1 − xα)
with α = 1 is displayed in Fig. 5.

These discussions make the motivation clearer. An appro-
priate tuning parameter ‘α’ is used for the decision making.
Thus, the derived objective functions are inherently able to
handle different situations. The authors of this paper have
made an effort to use these functions for the problem on hand.

B. THE PROPOSED OPPOSITION FDA (OFDA)
As discussed earlier, each flow in the FDAupdates its solution
in the search space based on its random neighbor or some
randomflow. This may steer the flow to a local optimum solu-
tion, which may be a trap. This can be avoided by introducing
opposition-based learning (OBL) [19], which aids in the
search process in both directions. Let us assume FlowX(i) =
{Flow_x (i, 1) ,Flow_x (i, 2) , · · · ,Flow_x (i, d)} be a flow
in the d dimensional search space in the range [LB,UB],
where LB = {lb (1) , lb (2) , · · · , lb (d)} and UB =

{ub (1) , ub (2) , · · · , ub (d)}. Then, the opposite flow
OFlow_X (i) = {OFlow_x (i, 1) ,OFlow_x (i, 2) , · · · ,
OFlow_x (i, d)} is determined as:

OFlow_x (i, j)

= ub (j)+ lb (j)− Flow_x (i, j) ,∀i ∈ [1, α] and ∀j ∈ [1, d]

(23)

Finally, the OFDA’s selection-based updating rule is
described as follows:

FlowX(i) =

{
OFlowX(i) f

(
OFlowX(i)

)
< f

(
FlowX(i)

)
FlowX(i) Otherwise

∀i ∈ [1, α] (24)

where f (OFlow_X (i)) is the height of OFlow_X (i). The
OFDA implementation is illustrated in Fig 6.

FIGURE 5. A plot of the basis function f (x) with α=1.

IV. RESULTS AND DISCUSSIONS
The results are highlighted in this section. Discussions are
also provided for clarity. The parameters for the OFDA are
selected based on the guidelines discussed in [18] and [19].
The idea of OFDA is mentioned in the flowchart shown in
Fig. 6. Note that the findings are reported after 51 runs of each
of the techniques. In this implementation, 40 number of itera-
tions is considered in each run. In this experiment, 300 images
from the Berkeley Segmentation Dataset (BSDS500) [23] are
used.

The size of the images used is 256 × 256. These images
are converted to the grey scale before the experiment. Our
codes are implemented using MATLAB with Core i7 pro-
cessor having 8GB RAM. Note that α = 5 for all the
experiments. The results achieved utilizing our technique are
marked using boldface letters. In Fig. 7 (a), the sample image
(#228076) is displayed. The outputs (segmented version) are
pseudo-coloured using MATLAB for effective demonstra-
tion. These are also called thresholded images. The suggested
methodology is compared with five different state-of-the-art
2D histogram-based entropic methods. Note that, here the
results are compared using our implementations for all the
methods. In the study, the qualitative and the quantitative
results are presented for a fair comparison.

The multiclass outputs are shown for thresholds TH= 2, 3,
4 and 5. In Fig. 7, images (b-e) signify the threshold images
got deploying the suggested methodology. It is implicit from
the figures that more details are noticeable with increasing
segmentation classes K .

Interestingly, Fig. 7 depicts that the threshold outputs are
very close to the human segmentation images withK = 6 and
α = 5. The reason may be the inherent mechanism of the
proposal used to preserve the edge information in a more
decisive manner. It is seen that the results with K = 3 and
4 exhibits overlapping of various classes. It is noteworthy
to mention that significantly improved multiclass segmented
outputs are achieved with K = 6. The investigated fitness
function (PDRCE) is more effective, because it grips the local
transitions efficiently. The suggested normal local variance
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to construct the 2D histogram makes the algorithm more
useful for multiclass image segmentation. Because it retains
the contextual information efficiently.

More experimental results are added to convince the
readers. Fig. 8 displays the results achieved using our
methodology. The sample image #296028 from BSDS500
dataset is shown in Fig. 8(a). To illustrate the realistic
performances of the proposal, pseudo colours are used.
In Fig. 8, images (b-e) epitomize the threshold outputs
achieved utilizing the suggested technique. Further, more
results are added in Fig. 9. Note that the images in Fig. 9 (b-e)
signify the outputs found using the suggested method. A sim-
ilar observation is obtained from these images.

Table 1 displays a comparison of the PSNR [6] values
(computed over 300 images). Note that ‘Avg.’ indicates the
average and ‘Std. Dev.’ denotes the standard deviation. The
PSNR is valuable to compare images taking diverse dynamic
ranges. More is the PSNR value, better is the segmentation.
A higher value is favorite to claim an improvement in the
results, which is obvious for the suggested methodology.
To be precise, results using our method exhibit higher val-
ues. The possible reason may be its inherent capability to
retain all the directional edge information. The contextual
information considered during the construction of the 2D
histogram helps in boosting the signal info of the output
images.

The structured similarity (SSIM) index [6] (computed over
300 images) is shown in Table 2 . The feature similarity
(FSIM) [6] index (computed over 300 images) is displayed
in Table 3 . It may be noted that all the images are taken
from BSDS500 dataset. The higher the values of SSIM and
FSIM, the better is the methodology. Hence, always higher
values are desired, to achieve a better multilevel thresholding
performance. It is seen that (please see Table 2 and Table 3)
the average SSIM and FSIM values are best-in-class in the
PDRCE. Therefore, better performances are expected, which
is implicit. The reason may be the inclusion of the decisive
parameter ‘α’, which improvises the correlation among the
pixels. The choice of ‘α’is important for the practical. Note
that the FSIM is also a well-thought-out metric utilized for
assessment. Especially, the gradient magnitude is also more
in our method, because it is maximum towards the row as
shown in Fig. 3. Hence, Table 3 exhibits higher FSIM values
in the proposed case. These SSIM and FSIM values also rise
with increasing thresholds (TH).

To support our claim, we present a detail analysis for mak-
ing the results more convincing for the readers. Fig. 10 dis-
plays the graphs for five different functions f1-f5. In this
figure, f1(x) = x log

(
1
x

)
; f2(x) = x exp(1 − xα=1); f3(x) =

x exp(1 − xα=3); f4(x) = x exp(1 − xα=5) ; and f5(x) =
x exp(1 − xα=0.75). It may be noted that f1 is the logarith-
mic entropic function mostly found in the image processing
literature, whereas others (f2-f5) are the proposed decisive
entropic functions with different values of ‘α’. It is wise to
iterate that the value of the parameter ‘α’ plays a crucial role

FIGURE 6. Flowchart of the suggested optimizer.

in this development. This makes the method more useful for
decision making.

It is noticed that the traditional logarithmic entropy func-
tion f1 has a fixed shape, because it has no inbuilt tun-
ing parameter. On the other hand, we propose an effective
basis function that inherently includes the decisive parameter
‘α’. Profound differences are observed here by tuning the
parameter ‘α’. These differences are demonstrated in Fig. 10.
It evokes us many interesting ideas. One may easily notice
that the value of the suggested entropy is always higher than
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FIGURE 7. Sample image used. (a) Original image #228076 from BSDS500
dataset, (b)-(e) results obtained using PDRCE, (b) 3-level threshold
[105,165], (c) 4-level threshold [108,134,171], (d) 5-level threshold
[112,137,181,205], (e) 6-level threshold [111,123,167,183,207],
(f)-(i) human segmentation outputs. Threshold values used for multilevel
thresholding are indicated within the square bracket.

the value of the traditional Shannon type entropy displayed
as f1. This may enrich the image processing literature. The
extensive experiments are carried out by varying the values
of ‘α’. Fourteen different values for ‘α’ are considered in this
exemplar illustration. The outcomes are reported in Table 4.
It is found that our method Ranked one with α = 5 for the
input image #228076. Hence, a value of 5 is chosen for α
throughout this work. However, the value may change for
other kind of images. This may attract researchers to explore
the idea in future applications.

Besides PSNR, SSIM and FSIM, a more detail analysis
in terms of the important segmentation indices are provided
here. Five indices are explicitly used for comparing the seg-
mentation results. The results are shown in Tables 5-9. The
MATLAB codes of these indices together with the benchmark
images reported in [22] and [23] are used. The ‘ground truth’
segmentation images for various scenes are found in [23].
These manually segmented images are often used for the
performance evaluation.

It is important to discuss here the importance of the cross
correlation (CC) values in the image segmentation [24]. The
CC values are displayed in Table 5 . A higher value of CC
ensures the efficacy of a method. Our method yields the best
values. The use of PDRCE helps us to achieve the best results,
which inherently includes the decision making capability.
Thus, it is claimed that the suggested technique outperforms
the other methodologies reported in Table 5 .

The probability rand index (PRI) is an important segmenta-
tion index reported in [24]. The PRI is primarily a measure of
the similarity between the ground truth and the output images.
Typically, its range lies within [0, 1]. Its value depends
on the methodology used. The higher values are desirable
for good quality segmentation. The variation of information
(VoI) index is also important for evaluating the performance
of a segmentation technique [24]. It may be noted that the
range of the VoI is [0,∞). In this case, the lower is the value,
the better is the segmentation. The global consistency error
(GCE) is yet another important segmentation index used for
the performance evaluation. The GCE is reported in [24]. Its
range is [0, 1]. It is also widely accepted for the segmenta-
tion evaluation. The smaller values are desirable. Similarly,

FIGURE 8. Sample image used. (a) Original image #296028 from BSDS500
dataset, (b)-(e) results obtained using PDRCE, (b) 3-level threshold
[66,183, (c) 4-level threshold [72,100,185], (d) 5-level threshold
[65,94,132,191], (e) 6-level threshold [43,71,108,152,189], (f)-(i) human
segmentation outputs. Threshold values used for multilevel thresholding
are indicated within the square bracket.

FIGURE 9. Sample image used. (a) Original image #384022 from BSDS500
dataset, (b)-(e) results obtained using PDRCE, (b) 3-level threshold
[105,174], (c) 4-level threshold [76,134,179], (d) 5-level threshold
[49,103,165,194], (e) 6-level threshold [49,98,134,197,215], (f)-(i) human
segmentation outputs. Threshold values used for multilevel thresholding
are indicated within the square bracket.

another segmentation index named boundary displacement
error (BDE) is also used here to compare the performance
of our method. Hence, it is also used for a fair comparison of
our method with others. It is noteworthy to mention here that
a smaller value of the BDE is desired to claim the superiority
of a methodology over others [24]. All these segmentation
indices are considered for validation. The results are pre-
sented below.

The PRI values are presented in Table 6 . The worthiness
of the proposal is implicit. One may see that the sug-
gested methodology ensures improvised results, as opposed
to the outputs offered by earlier techniques. It is obvious
from Table 6 that these values are more in PDRCE. It is
also observed that the values increase with the increasing
K , which denotes a worthy multiclass segmentation perfor-
mance. The BDE values are shown in Table 7 . The best
values are also observed in our case. Further, the BDE values
become smaller with increasing thresholds, which is implicit
in Table 7 . These values are smaller in the proposed case,
which is quite desirable.

The GCE values are displayed in Table 8 . In our case, the
GCE values are lower than the other techniques; this guar-
antees the usefulness of the suggested methodology. Even
more interesting is that the GCE values are increasing with
increasing thresholds (TH). A similar trend is also observed
for other cases. The VoI values are shown in Table 9 . The
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TABLE 1. Comparison of PSNR values (computed over 300 images from
BSDS500 dataset).

TABLE 2. Comparison of SSIM values (computed over 300 images from
BSDS500 dataset).

TABLE 3. Comparison of FSIM values (computed over 300 images from
BSDS500 dataset).

values in the PDRCE case are found smaller than the other
methods. It is worthy to note that the results are compared
at a particular threshold level. It is noticed in Table 9 that
the values are lower, which is desirable for a better segmen-
tation. An interesting observation is made here. The values
of GCE and VoI could have been getting smaller, with an
increasing trend of the number of thresholds. However, from
Tables 8 and 9, it is seen that these values are increasing. Not

FIGURE 10. A graphical plot showing functions f1 - f5.

TABLE 4. Ranking of metrics (average PSNR, average SSIM and average
FSIM) with varied parameter α for K=3,4,5 and 6 for the image #228076.

TABLE 5. Comparison of CC values (computed over 300 images from
BSD300 dataset).

to be surprised. Perhaps the reason for the trend is the mul-
ticlass thresholding methodology itself. The MTH method
is different from the traditional segmentation technique. The
MTH is, more or less, concentrating on identifying the several
objects from the scene.

The statistical t-Test is performed for validating the claim.
Table 10 displays the t & p values on the segmentation
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TABLE 6. Comparison of PRI values (computed Over 300 images from
BSDS500 dataset).

TABLE 7. Comparison of GCE values (computed over 300 images from
BSDS500 dataset).

TABLE 8. Comparison of BDE values (computed over 300 images from
BSDS500 dataset).

metrics. The t-Test is conducted with a significance level of
0.05 between the PDRCE and the rest methods. Noteworthy
differences are observed. The statistical results presented in
Table 10 imply that our proposal is significantly different
from the other methods.

Here, we add more comparisons between this algorithm
and other meta-heuristic algorithms. The performance of
the proposed OFDA algorithm is compared with the FDA.

TABLE 9. Comparison of VoI values (computed over 300 images from
BSDS500 dataset).

TABLE 10. Comparison between PDRCE and other methodologies using
t-test.

TABLE 11. Parameters setting.

TABLE 12. Comparison of different metrics (computed over 300 images
from BSDS500 dataset) using the PDRCE fitness function with other
optimizers (threshold level K = 5).

In addition, three more popular global optimizers genetic
algorithm (GA), particle swarm optimization (PSO), and
artificial bee colony (ABC) are also considered for a fair
comparison. The parameters setting are displayed in Table 11.
All five segmentation indices are considered. The proposed
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method using FDA, GA, PSO and ABC is also implemented
separately. The performance of our method is superior to
others. The results are shown in Table 12. It is explicitly clear
from the Table 12 that our method performs well while using
the OFDA algorithm. The reason may be the enhancement of
the search space through opposition learning.

For the sake of completeness, an analysis on the compu-
tational complexity is also enlightened here. Nevertheless,
2D Otsu and 2D Kapur schemes offer a time complexity of
O(L2K ), the computation time increases exponentially with
increasing K . Whereas, our methodology offers a computa-
tion complexity of O(LK+1). The reason is that the area used
for calculation is limited to one row only (as discussed in
Section III). To be precise, the computation time is signifi-
cantly reduced in our case. Thus, boosting the time efficiency
is inhibiting, which may attract the readers.

V. CONCLUSION
In this paper, a novel fitness function coined as PDRCE is pro-
posed for multiclass segmentation. An efficient optimization
algorithm namedOFDA is suggested. TheOFDA’s efficacy in
achieving the best results are highlighted. The experimental
results are shown to justify the use of the PDRCE in theMTH,
an important commotion of image processing, a sub-field
of the machine intelligence. The multiclass segmentation is
created through the maximization of the proposed cost func-
tion. The advantages of the PDRCE method are discussed.
To figure out – i) decision making is included in the objective
function, ii) entropy values are always positive, iii) avoids
computation issues even if pi = 0, iv) time complexity is
significantly reduced etc. The well-known metrics PSNR,
SSIM and FSIM are evaluated and compared with state-of-
the-art methodologies. In addition, benchmark segmentation
indices are also measured to validate our scheme. A sta-
tistical test is performed to ensure the applicability of the
proposal in the field of image processing. The suggested
PDRCE methodology outperformed earlier techniques. Our
technique PDRCE outclassed other state-of-the-art schemes.
The reason may be its inherent capabilities to preserve the
directional edges in a useful way. In addition, the optimizer
OFDA brings in an enhancement of the exploration space,
significant abridged calculation difficulty etc. Most impor-
tantly, the information is contained in the first row only,
yielding reduced computation complexity. Further, Tables 1-9
demonstrate that the performance of our methodology is bet-
ter compared to state-of-the-art technology. The limitations
of the method are – over segmentation may occur when the
number of threshold levels are very high. This may be due to
the inherent characteristics of the images or limitations of our
methodology. The choice of α value is crucial, which may be
determined experimentally.

The idea of the PDRCE may be extended to 3D form.
The OFDA may be redesigned incorporating the crossover-
mutation, chaos, and learning etc. The strategy would be used
for the MTH of various medical images. The research idea
may also be extended to the segmentation of color images.
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