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A B S T R A C T   

The local averaging technique adopted for the construction of 2D histogram in Otsu’s method fails to preserve 
the edge information. Further, the consideration of the diagonal pixels only results in the loss of information. 
These make the 2D Otsu method of multi-level thresholding inefficient to retain the spatial correlation infor
mation. Although the computation of 2D histogram based on gray gradient information is a better way to 
threshold an image, it faces a backlash due to the high magnitude peaks. To solve these problems, we suggest a 
new normalized local variance (NLV) method for constructing 2D histogram using the local variance followed by 
a novel evolutionary row class entropy (ERCE) method for optimal multi-level image thresholding, which tries to 
preserve maximum spatial information through normalization of the local variance. A new optimization tech
nique called hybrid Adaptive Cuckoo Search-Squirrel Search Algorithm (ACS-SSA) is also introduced. A new 
fitness function is suggested. The standard CEC 2005 benchmark test functions are used to validate the perfor
mance of our proposed ACS-SSA technique. The optimum threshold values obtained are used to segment 100 
slices of T-2 weighted axial brain MR images (taken from the Harvard Medical School database). Several per
formance evaluation metrics are computed to compare the performance of our method with the state-of-the-art 
methods. The analysis of the results shows that ERCE method outperforms other methods. This method may set a 
new direction in the multilevel image thresholding research.   

1. Introduction 

Medical image analysis is a very important contribution of image 
processing to the present-day society. Image processing seems to be an 
ever-growing and ever–improving area with endless scopes and possi
bilities. The effective solutions provided to age old existing problems 
indicate the dire need of implementation of efficient image processing 
techniques in the field of medicine. Segmentation of image is a primary 
step in image analysis. The efficiency of these techniques depends on the 
accuracy of image segmentation (Dora et al., 2017). A segmented image 
is represented by each of its constituent parts (Despotović et al., 2015; 
Mittal & Saraswat, 2018). Thus, image segmentation is the first step that 
precedes image analysis, disease diagnosis and treatment planning. The 
thresholding technique is the easiest method of image segmentation. In 
recent times, magnetic resonance (MR) images have gained greater 
popularity for image analysis of soft tissues like the brain and spine. This 
property may be attributed to the superior quality of the images 

obtained. Here, an external contrast agent is usually not required, 
because it provides a natural contrast based on varying properties of 
tissues or blood. It is used for pre-surgical and post-surgical treatment 
planning of various diseases due to its sensitivity to the differentiation of 
various neurological tissues (Maitra & Chatterjee, 2008). Its non- 
intrusive nature and non-usage of ionized radiations saves patients 
from any fatality in the long run. 

Segmentation of brain tissue partitions the brain mainly into white 
matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) together 
with its various abnormalities (if present). However, brain tissue seg
mentation can be a tedious process due to the highly complicated and 
overtly sensitive nature of this organ. Moreover, the size and location of 
the constituent parts may vary from patient to patient. Thus, the use of a 
simple yet effective segmentation technique can address this issue 
without further complicating it. Several methods for image segmenta
tion have been proposed over the years. As far as we know, thresholding 
is the simplest known technique for image segmentation. 
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Thresholding is the technique of segmenting an image by comparing 
each pixel intensity value with one or more predetermined threshold 
values obtained by optimizing a cost function. Expert systems are 
developed for thresholding based segmentation methods (Dora et al., 
2017; Mittal & Saraswat, 2018). The operation of thresholding is 
befitting for images having multimodal histograms (Panda et al., 2017). 
An extensive analysis of various methods involved in thresholding has 
been discussed by Sezgin and Sankur (2004). More on segmentation 
using thresholding methods is found in (Chatterjee et al., 2012; Nakib 
et al., 2010). 

The use of only one threshold value results in an image with 2 seg
ments. One segment carries pixels whose values are below the threshold 
value while the other segment contains pixel values above the threshold 
value. The object of interest is the foreground; the rest of the pixels 
constitute the background. Thus, it is rightly termed as bi-level thresh
olding. However, for brain tissue segmentation, bi-level thresholding 
lacks in imparting useful information, due to the intricacies and com
plexities involved in the brain. Multi-level thresholding, where two or 
more threshold values are used, resulting in an image with multiple 
classes (can give an appropriate solution). Here, each class represents a 
component of the image and conveys meaningful information. 

Several statistical information (first order, second order and higher 
order statistics) is used to construct the histograms. The main aim of 
thresholding technique is to obtain the optimum threshold values, which 
can accurately segment the image under consideration. This segmented 
image must produce object boundaries clearly. The optimum threshold 
values are obtained by optimizing a certain fitness function. Later, 
several performance evaluations are carried out, statistical parameters 
are used to determine the accuracy of segmentation. 

Even though many methods are suggested for multilevel thresh
olding, ample scope is there for an improvement. The limitations in the 
conventional 2D histogram based Otsu’s method are – inconsideration of 
the off diagonal information, local averaging to construct the 2D his
togram results in loss of high frequency information. To supplement the 
2D histogram based Otsu’s method, the authors in (Panda et al., 2017) 
suggested an evolutionary gray gradient algorithm (EGGA) for multi- 
level thresholding. The gray level gradient magnitude based 2D histo
gram utilizes the gradient magnitude. The gradient magnitude should be 
filtered using anisotropic diffusion method before constructing the his
togram to prevent information loss. Nevertheless, the authors have not 
used filtering as a preprocessing step. Thus, the 2D thresholding 
methods possess some demerits. The 2D Otsu method uses info from the 
background and the object while ignoring the edge information. The 
EGGA method never used filtering (which is a difficult task) before 
thresholding. The use of a suitable filter with appropriate parameters is a 
difficult task. The construction of 2-D histogram presented in EGGA 
method used gray gradient magnitude with an idea to retain spatial 
correlation. However, without filtering, if one uses the gray gradient 
information directly, then it may lead to poor thresholding due to the 
presence of high magnitude peaks at some positions of the image. 

These limitations motivated us to suggest a novel normalized local 
variance (NLV) method for construction of 2D histogram using the local 
variance. It is noteworthy to mention here that the local variance carries 
the spatial information. While constructing the 2D histogram, the 
contextual information is retained computing the local variance in a 
predefined neighbourhood. Hence, NLV based scheme is suggested for 
construction of the 2D histogram. Furthermore, an evolutionary row 
class entropy (ERCE) method is proposed to compute the entropy values 
from the 2D histogram (row wise). Especially, the ERCE based multi- 
level thresholding method is deployed to obtain improved multi-level 
threshold outputs. 

The structure of the paper is as follows. Section 2 presents the related 
works. Section 3 presents the proposed methodology. A new hybrid 
optimization technique is presented in section 4. Results are discussed in 
section 5. Finally, the conclusions are given in section 6. 

2. Related work 

The use of 1D histograms of thresholding purpose makes the process 
very simple and easy. Several researchers have used this method in 
thresholding applications (Bhandari et al., 2014, 2015; Raja et al., 2015; 
Hadjidimitriou et al., 2014). These 1D histograms, use first order sta
tistics information like average or variance of a single pixel at a time 
without considering the relationship between pixels. Maitra and Chat
terjee (2008) proposed a new optimal thresholding algorithm using 
Bacteria foraging (BF) technique. The performance of the concerning 
algorithm called ‘BACTFOR’ is based upon the behavior of E.Coli bac
teria to locate nutrient rich food. They have evaluated the efficiency 
using several benchmark test functions. They have also analyzed the 
performance of the algorithm in analysis of MR brain image by opti
mizing the objective functions (Kapur’s entropy and 1D Otsu method). 
The use of fixed step size in chemotaxis (bacteria foraging) decreases the 
efficiency of the algorithm. This algorithm has been further enhanced in 
Sathya and Kayalvizhi (2011a). Here, the authors have implemented an 
adaptive step size in in chemotaxis (bacteria foraging) the previously 
existing technique i.e., BF. Maximization of Kapur’s entropy and mini
mization of between class variance were used as objective functions. The 
use of an adaptive step size in chemotaxis (bacteria foraging) may have 
resulted in lesser execution time. These authors have also proposed an 
amended bacteria foraging (ABF) technique in Sathya and Kayalvizhi 
(2011b). The performance of the algorithm on T2-weighted axial images 
was compared with that of Genetic algorithm (GA), Particle Swarm 
Optimization (PSO) and BF. The authors claimed that ABF technique 
was faster and gave lower standard deviations as compared to existing 
BF. 

In 2014, Manikandan et al. (2014) proposed real coded genetic al
gorithm. A simulated binary cross over enhanced the performance of the 
algorithm. This technique was found to have better consistency than 
Nelder-Mead simplex, PSO, BF and ABF. Priyedarsini et al. (2017) have 
performed MR brain image segmentation by implementing Kapur’s en
tropy based social group optimization (SGO) technique. The authors 
have taken this method a step further by implementing pre-processing 
steps like skull-stripping and post-processing steps (extraction of the 
tumor using watershed segmentation). Such inclusions obviously 
resulted in better values of performance evaluation metrics. Rajinikanth 
et al. (2017) have followed a similar approach. Their method involves 
skull-stripping followed by optimization of entropy-based objective 
functions (Kapur’s entropy, Shannon’s function and Tsallis entropy) 
using teaching learning-based optimization (TLBO) technique. The post 
processing step involves active contour segmentation for extraction of 
tumor. The researchers concluded that Shannon’s entropy based TLBO 
outperformed the rest of the objective functions. In 2017, minimum 
cross entropy based on a crow search algorithm (MCET-CSA) has been 
given in Oliva et al. (2017). In this paper, there is a minimization of the 
cross entropy using the proposed optimization technique. This method 
was further compared with differential evolution (DE) and harmony 
search (HS), and has been claimed to be better than them. Recently, 
Kotte et al. (2018) have proposed an adaptive wind driven optimization 
(AWDO) technique. This paper uses Kapur’s entropy and Otsu’s method 
to evaluate the fitness function. The adaptive nature of the steps in
creases the overall performance of the optimization technique and 
makes it better than the earlier proposed WDO. However, due to the lack 
of spatial information correlation among neighboring pixels 1D 
histogram-based methods lag behind in giving accurate segmentation 
results. Several soft computing techniques have been proposed in recent 
times in order to perform multilevel thresholding of images (Suresha & 
Parthasarathy, 2018; Xu et al., 2019; Liang et al., 2019). 

In order to overcome the issues associated with first-order statistics, 
researchers have come up with 2D and 3D histograms. The properties of 
two or more pixel values that occur at different locations and the rela
tionship between them is estimated in higher order statistics. 1D based 
objective functions perform inefficiently whilst using them with 2D or 
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3D histograms. Several objective functions have been proposed to deal 
with higher order statistics. Panda et al. (2017) proposed an evolu
tionary gray gradient information method (EGGA). Agrawal et al. 
(2017) have proposed an absolute intensity difference based technique 
which requires the intensity difference information for thresholding. An 
adaptive coral reef optimization technique was used to obtain the 
optimal threshold values. This method was found to be very effective in 
dealing with intensity inhomogeneity. An interesting amalgamation of 
both the intensity and edge magnitude techniques has been proposed by 
Kaur et al. (2018). It even implements GLCM for computing multiple 
thresholds. These threshold values have been obtained using mutation 
based particle swarm optimization (MPSO). The authors claim this new 
technique to outperform all other approaches in all aspects. Feng et al. 
(2017) proposed a new method for 3D histograms. They have con
structed a 3D Otsu histogram based on several information like optimal 
pixel threshold value and the mean and median of neighboring pixels. 
The segmented image underwent a fast local Laplacian filtering (FLLP) 
in order to obtain a filtered image. 

3. Proposed methodology 

In the 2D Otsu method, a 2D histogram of the concern image is 
created using the local average versus the gray levels. However, only the 
diagonal quadrants are considered for the threshold selection. The 
exclusion of the off-diagonal elements may miss out on any important 
information in these areas. Moreover, the diagonal region considered is 
not smooth, has a limitation on providing the edge information of the 
image. These issues are addressed in Panda et al. (2017). The authors 
proposed a thresholding technique based on the gradient information of 
an image. They constructed a 2D histogram by using the gray levels vs 
the absolute difference of the pixel intensity. The algorithm preserves 
the relevant information while giving a lesser computational 
complexity. It is clearly analyzed that the number of quadrants formed 
decreases. Therefore, the number of computations decreases. This al
gorithm also preserves the edge information of the image. 

However, analysis of the histogram plot reveals high non-uniformity 
in the peak values of certain magnitudes, this peak value becomes very 
high which may give rise to magnitude limiting problems. This is a 
limitation to improving the segmentation accuracy. Hence, it is always 
advisable to normalize these parameters manually while construction of 
the histogram. Such a step eliminates any confusion, prevent any loss of 
information. 

In this section, a novel ERCE based multi-level thresholding method 
is proposed to obtain improved multi-level threshold outputs. 

Fig. 1 displays the block diagram of the suggested ERCE technique. 
The brain MR image together with the desired number of threshold 
levels (m) are given as the input. The segmented image is obtained as the 
output. A 2D histogram of the input image is formed using the proposed 
NLV method. The suggested ERCE method is used to calculate the row 
class entropy using the 2D histogram. To be precise, row class entropy 
values are calculated from the 2D histogram constructed using the 
normalized local variance information. The optimized row class entropy 
of this histogram is computed using the newly proposed hybrid ACS-SSA 
technique. The threshold values, thus obtained, are used to segment the 
brain MR image. The computation of our proposed algorithm is dis
cussed below. 

Let I represent a gray level image of size M × N. It is assumed that 
there is a total of L gray levels in the image. The pixel intensity is rep
resented as: g = {1,2, ...,L}

Now, let f (x, y) indicates the gray level of the image at coordinates 
× and y. Here, the maximum value of × is M and that of y is N. h(x,y) is 
the local average gray value denoted as: 

h(x, y) = ⌊
1

w × w

∑l

a=− l

∑l

b=− l
f (x + a, y + b)⌋ (1)  

where, l = ⌊w/2⌋ and w < min(M,N). Note that wis usually taken as an 
odd number. 

The local variance g(x, y) is represented as: 

g(x, y) = (f (x, y) − h(x, y))2 (2) 

This local variance is further normalized to eliminate the high 
magnitude peaks. The normalized local variance is 

gn(x, y) =
(g(x, y) − gmin) × K

gmax − gmin
(3)  

where gmax and gmin are the maximum and minimum values of the local 
variance, respectively. Here, K is a constant whose value is assumed to 
be fixed at 256. 

Let f(x, y) = i, gn(x, y) = j , the time of occurrence of the pair (i, j) =

qij. 
And so, the frequency of occurrence of (i,j) is 

Fig. 1. Block diagram of the proposed segmentation technique.  
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pij =
qij

M × N
1⩽i⩽L and 1⩽j⩽L (4) 

In Fig. 2, we clearly see that for bi-level thresholding, the 2D histo
gram is partitioned into 4 quadrants. There is only a single threshold 
value at (S, T). The first two quadrants convey the edge information. The 
1st quadrant is assumed to be the background (class C1) and the 2nd 
quadrant as the foreground (class C2). 

The probability distribution of C1is 

P1(C1) =
∑S

i=1

∑T

j=1
pij (5) 

Similarly, the probability distribution of C2is 

P2(C2) =
∑S

i=1

∑L

j=T+1
pij (6) 

The class probabilities of C1 andC2are given as: 

C1 :

{
pij

P1
, i = 1, 2, ..., S; j = 1, 2, ...,T

}

and C2 :

{
pij

P2
, i = 1, 2, ..., S; j

= T + 1, T + 2, ...,L
}

The entropy, dependent on a threshold value (S, T), is formulated as: 

E1(S, T) = −
∑S

i=1

∑T

j=1

(
pij

P1

)

ln
(

pij

P1

)

(7)  

and 

E2(S, T) = −
∑S

i=1

∑L

j=T+1

(
pij

P2

)

ln
(

pij

P2

)

(8) 

From the additive property of entropy, we get: 

ETotal(S, T) = E1(S, T)+E2(S, T) (9) 

Thus, the new objective function is obtained by maximizing this total 
entropy as 

(Sopt, Topt) = argmax{ETotal(S, T)} (10) 

From Fig. 3, it is observed that for 2 threshold values, the histogram 
is divided into 6 regions. It is the intersection of (S, T1) and (S, T2) 
values. All the information is found along the edges. In addition, due to 
normalization the information loss is minimum. Similarly, for 3 
threshold values, the entire region gets divided into 8 sub-regions, and 
so on. 

It is assumed that for multi-level thresholding, the histogram has 

been divided into ‘k’ number of classes. Thus, the probability distribu
tion of classes, C1,C2, ...,Ck are: 

P1(C1) =
∑S

i=1

∑T1

j=1
pij  

P2(C2) =
∑S

i=1

∑T2

j=T1+1
pij 

… 

Pk(Ck) =
∑S

i=1

∑L

j=Tk− 1+1
pij (11) 

The row class entropies are given as: 

E1(S, T1) = −
∑S

i=1

∑T1

j=1

(
pij

P1

)

ln
(

pij

P1

)

E2(S, T2) = −
∑S

i=1

∑T2

j=T1+1

(
pij

P2

)

ln
(

pij

P2

)

… 

Ek(S, Tk− 1) = −
∑S

i=1

∑L

j=Tk− 1+1

(
pij

Pk

)

ln
(

pij

Pk

)

(12) 

On adding, the total Row Class Entropy (RCE) is obtained as: 

ETotal(ST1, ST2, ..., STk− 1) = E1(S, T1)+E2(S, T2)+ ...+Ek(S, Tk− 1) (13) 

The maximization of the above total entropy results in the new 
objective function and is defined as: 

(
SoptTopt1 , SoptTopt2 , ..., SoptToptk− 1

)
=

argmax
1⩽STi⩽k − 1 {ETotal(ST1, ST2, ..., STk− 1)}

(14) 

Fig. 4 visually represents our proposed 2D histogram. The original 
image is taken from Berkeley Segmentation Dataset, displayed in Fig. 4 
(a). Its corresponding 3 dimensional view of the 2-dimensional histo
gram constructed using Otsu method is given in Fig. 4(b). Fig. 4(c) and 
(d) are the 2-D histogram plots constructed using EGGA and local 
variance methods, respectively. It can be seen that all the information is 
available along the diagonal while using the first method. In the second 
method, information is pushed to the edge which makes the data 
extraction task simpler. In our proposed method, the normalization of 
the high magnitude peaks definitely succeeds in preserving a greater 
amount of information. In this work, Eq. (14) is used as the objective Fig.2. Graphical presentation of 2-D histogram (for bi-level thresholding).  

Fig.3. Graphical presentation of 2D histogram (for multi-level thresholding).  
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function. 

4. Optimization techniques 

4.1. Cuckoo search algorithm (CS) 

CS (Yang & Deb, 2009) is based on the aggressive reproduction 
strategy of the cuckoo birds. These birds display an intelligent behavior 
during reproduction where they very tactfully lay eggs in the nest of 
other horde birds. Their intelligence can be attributed to the mimicking 
of color and pattern of eggs along with the time of egg-laying by the 
female cuckoo with other horde birds. The authors have assumed 3 
important points: i) each cuckoo lays only one egg at a time and that too 
in a random manner, ii) only the best nests get transferred to the next 
generation and iii) available host nests are fixed and their probability of 
discovering the alien egg is given by pa ∊ [0,1]. The aim of the algorithm 
is to get the nest with best eggs. The best nests are the new eggs from 
Cuckoo bird. Thus, out of all the solutions (eggs in nests), the nest with a 
cuckoo egg (objective function) having a maximum fitness value gives 
the best solution. They have used Levy steps using Mantegna’s algorithm 
to explore the search space. The new solution is modelled as: 

sj(t + 1) = sj(t) +α ⊕ Levy(λ) (15)  

where, sj (t) = j th Cuckoo’s current search space; α = constant (greater 
than 0 and usually fixed at 1); ⊕ = entry-wise multiplication; and j = 1, 
2,…, N (number of host nests). 

The Levy flight takes a random walk from Levy distribution; the Levy 
step is consequently calculated. The major drawback of this algorithm is 
sub-optimal convergence. Due to the use of fixed step sizes, the 
convergence parameters may get caught up in local maxima or minima. 
This attribute also results in greater convergence time. 

4.2. Adaptive cuckoo search (ACS) 

Naik and Panda (2016) have come up with an interesting solution to 
address the gap area in CS. They have replaced the fixed Levy steps by 
adaptive steps. The steps are called adaptive due to their characteristic 
feature of decrement in the step size with increment in the number of 
iterations. This adaptive step size is calculated using: 

stepj(t + 1) =
1
t

|((bestf (t)− fj(t))/(bestf (t)− worsf (t)))|
(16) 

Fig. 4. Representation of 2D histogram for (a) training image ‘sitar’ from BSD data set (b) 2D Otsu method (c) EGGA method (d) NLV method.  
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where, t = number of generations of Cuckoo search; fj (t) = fitness value 
of the objective function, j denotes the j th Cuckoo, j = 1, 2,…, N, bestf(t) 
= best fitness value at t; worsf(t) = worst fitness value at t. The 
convergence value becomes better with the implementation of adaptive 
step size and approaches the global optimum solution in lesser time as 
compared to CS. The new optimum solution is given as: 

sj(t + 1) = sj(t) + rand × stepj(t + 1) (17)  

4.3. Squirrel search algorithm (SSA) 

This new algorithm proposed by Jain et al. (2019) is based on the 
dynamic foraging strategy of southern flying squirrels. These squirrels 
follow an intelligent means of locomotion in the form of gliding. Gliding 
facilitates this mammal in covering more distances in less time with the 
consumption of minimum amount of energy. Extreme weather condi
tions, scarcity of food resources and higher risk of predation (due to loss 
of forest cover) make survival a challenging task for the squirrels during 
winter. Hickory nuts fulfill greater energy requirements than acorn nuts. 
Thus, these squirrels save up the hickory nuts for consumption in winter 
when their body demands greater energy and in order to do so they feed 
on the acorn nuts which are abundantly available during favorable 
conditions. Depending on the current and consequent locations of the 
mammals foraging procedure is divided into 3 categories: 

Flying squirrels present on acorn trees and moving towards hickory 
trees. 

sat(t + 1) = sat(t) + dg × gc × (sht(t) − sat(t)) (18) 

Those present on normal trees and approaching acorn trees. 

snt(t + 1) = snt(t)+ dg × gc × (sat(t) − snt(t)) (19) 

Those squirrels present on normal trees and gliding towards hickory 
trees. 

snt(t + 1) = snt(t)+ dg × gc × (sht(t) − snt(t)) (20)  

where, dg and gc are the gliding distance and gliding coefficient which 
are constants. It must be noted that the above equations are valid if the 
predation probability constant is satisfied else random allocation occurs. 
A seasonal constant monitors the end of winter when the mammals are 
again free to travel and get randomly dispersed. The performance of the 
algorithm is evaluated on 26 standard benchmark functions and 
compared with genetic algorithm (GA), particle swarm optimization 
(PSO), firefly optimization (FF), multi-verse algorithm (MVA), krill herd 
(KH). SSA outperformed the rest. The analysis of the experimental re
sults shows that the convergence rate is appreciable. However, search 
space exploration could have been better. A majority of the graphs 
reflect a sudden fall in the convergence rate and this steep slope is a 
negative indicator of good exploitation quality. 

4.4. Proposed hybrid ACS-SSA 

In ACS, the introduction of adaptive steps maintains an exploration 
and exploitation balance. Here, the search strategy is conveyed as a 
series of steps with each step being influenced by the outcome of the 
previous steps. This methodology has proven excellent for a quicker 
convergence. However, there is no inbuilt constraint in the ACS to 
evaluate the search strategy when the abandon probability becomes 
very less (less than 0.1). Hence, the dynamic foraging behavior of SSA is 
supplemented to achieve better results. 

When rand < pa, 

sj(t + 1) = sj(t) + rand × fc × (bestf (t) − fj(t)) (21) 

Here, we have incorporated a constant called flying coefficient 
fctogether with the difference between the current and the best fitness 
values. This helps in augmenting the exploitation capacity of the 

algorithm. We have fixed the value of fcat 1.9. For abandon probability 
greater than 0.1, the original equation of ACS is kept intact.  

Pseudo-code for ACS-SSA: 
Begin: 
Define input parameters 
Define an objective function 
Declare the number of host nests N 
Random initialization of host nests (d-dimensional) as sj = (sj

1, sj
2, … , sj

d) for j = 1 to N 
Calculate value of objective function for the host nest for 1st iteration 
while(termination criterion is not satisfied) 

Begin 
Calculate bestf and worsf 
Then calculate the step size using Eq. (16) 
Calculation of new position of Cuckoo nest 
if (rand < pa) 

use Eq. (21) 
else 

use Eq. (17) 
Objective function of host nests is then evaluated 
Determine the best nest comparison with other nests 
Abandonment of worst nests 
End 

Best solutions are obtained in descending order 
End  

4.5. Performance evaluation of ACS-SSA 

In order to evaluate the performance of our proposed algorithm, it is 
tested using 14 benchmark test functions. They are from CEC 2005 
benchmark test functions (García et al., 2009). These test functions have 
again been divided into 2 categories: unimodal and multimodal. These 
are given in Tables 1 and 2, respectively. Table 3 represents expanded 
test functions. The proposed algorithm is compared with that of CS, ACS 
and SSA. 

Where F7(X) is the Griewank’s Function 

F7(X) =
Z2

i

4000
−
∏d

i=1
cos
(

Yi
̅̅
i

√

)

+ 1 

F6(X) is Rosenbrock’s Function 

F6(X) =
∑d− 1

i=1

(
100
(
Z2

i − Zi+1
)2

+ (Zi − 1)2
)

F(W,X) = 0.5+

(
sin2
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

W2 + X2
√ )

− 0.5
)

(
1 + 0.001

(
X2 + W2

) )2 

In Table 4, we present the various control parameters used in CS, 
ACS, SSA and hybrid ACS-SSA. The results obtained are the best of re
sults of over 50 independent runs for each test function. These control 
parameters are selected based on the output obtained by extensive 
simulation. 

Smaller steps result in greater convergence time while large steps 
give low precision results. Our algorithm strikes a perfect balance be
tween the both. The performances of different algorithms are displayed 
in Figs. 5–10. Fig. 5 gives the performance comparison of different al
gorithms for fitness function F3. It is clearly visible that SSA converges 
faster than other algorithms. However, fast convergence is not always 
the only criteria to judge an algorithm. On detailed analysis, it is seen 
that the slope of SSA is steep; the steps taken are huge and undesirable. 
Thus, here the exploration and exploitation capacity is very poor. This 
may impair the quality of results. On the other hand, our proposed al
gorithm maintains a healthy exploration–exploitation balance together 
with a good convergence rate. A similar notion is again observed for the 
fitness function F4. Huge steps badly influence the output quality of SSA. 
However, the adaptive steps of ACS coupled with the gliding coefficient 
condition of SSA make the proposed hybrid technique a decent 
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algorithm. 
In Fig. 7, it is seen that SSA fails to explore the entire search space. All 

other algorithms exhibit good search capability. ACS takes lesser 
convergence time as compared to CS due to the presence of less number 
of parameters in the later. Moreover, ACS-SSA out beats the others by 
having a faster convergence rate. This may be attributed to the intro
duction of a new condition. Even in Fig. 8, our algorithm outperforms 
the rest. SSA with its poor search strategy is unable to converge down. 
This may be due to the limitations of the algorithm. While our method 
does it efficiently in less time. For fitness function F11, it is observed that 

ACS performs more efficiently than the rest (Fig. 9). For fitness function 
F15, ACS-SSA performs well in less time (Fig. 10). 

The performance of the optimization technique can be evaluated by 
using various statistical parameters like best value, mean value and 
standard deviation. The best fitness value is the best result and in our 
case it is the minimum fitness value. The mean value denotes the 
average of all fitness values for a given fitness function. Standard devi
ation reflects the value by which the obtained result is different from the 
ideal value. This parameter must be as less as possible. The average time 
column is inserted to track down the time taken by each algorithm for a 
specific fitness function. The lesser is the convergence time, the better is 
the performance of the algorithm. However, it is not the sole criteria. A 
decent convergence time is always appreciable. These results are an 
average of over 50 independent runs. The best results are displayed in 
bold face. 

Table 5 gives the performance comparison of all the 4 algorithms for 
unimodal fitness functions (1–5). These fitness functions have been 
discussed earlier in table 1. The best, mean and standard deviation 
values are obtained after a series of 50 iterations for each technique. 

Table 1 
Unimodal functions (d = 30).  

Function Description Range of ‘X’ f bias  Global optimal 

Shifted sphere function F1(X) =
∑d

i=1Z2
i + f bias1  [− 100, 100]d F1(X*) =

f bias1 = − 450  
X* = 0  

Shifted Schwefel’s problem 1.2 F2(X) =
∑d

i=1

(∑i
j=1Zj

)2
+ f bias2  

[− 100, 100]d F2(X*) =
f bias2 = − 450  

X* = 0  

Shifted rotated high conditioned elliptic function 
F3(X) =

∑d
i=1
(
106)

i − 1
d − 1Y2

i + f bias3  

[− 100, 100]d F3(X*) =
f bias3 = − 450  

X* = 0  

Shifted Schwefel’s problem 1.2 with noise in fitness 
F4(X) =

⎛

⎝
∑d

i=1

(
∑i

j=1
Zj

)2
⎞

⎠*

(1 + 0.4|N(0, 1) | ) + f bias4  

[− 100, 100]d F4(X*) =
f bias4 = − 450  

X* = 0  

Schwefel’s problem 2.6 with global optimum on bounds F5(X) = max(|AiX − Bi| ) + f bias5  [− 100, 100]d F5(X*) =
f bias5 = − 310  

X* = 0   

Table 2 
Multimodal functions (d = 30).  

Function Description Range of ‘X’ f bias  Global optimal 

Shifted Rosenbrock’s Function F6(X) =
∑d− 1

i=1

(
100

(
Z2

i − Zi+1
)2

+ (Zi − 1)2
)

+f bias6  

[− 100, 100]d F6(X*) =
f bias6 = 390  

X* = 0  

Shifted rotated 
Griewank’s Function without bound F7(X) =

∑d
i=1

Z2
i

4000
−
∏d

i=1cos
(

Yi
̅̅
i

√

)

+ 1+ f bias7  
[0, 600]d F7(X*) =

f bias7 = − 180  
X* = 0  

Shifted rotated 
Ackley’s with global optimum on bounds F8(X) = − 20exp

⎛

⎝ − 0.2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
d
∑d

i=1
P2

i

√ ⎞

⎠−

exp

(
1
d
∑d

i=1
cos(2πPi)

)

+ 20 + e + f bias8  

[–32, 32]d F8(X*) =
f bias8 = − 140  

X* = 0  

Shifted Rastrigin’s Function F9(X) =
∑d

i=1

(
(Zi)

2
− 10cos(2πZi) + 10

)

+f bias9  

[− 5, 5]d F9(X*) =
f bias9 = − 330  

X* = 0  

Shifted Rotated Rastrigin’s Function F10(X) =
∑d

i=1

(
(Ri)

2
− 10cos(2πRi) + 10

)

+f bias10  

[− 5, 5]d F10(X*) =
f bias10 = − 330  

X* = 0  

Shifted Rotated Weierstrass’s Function 
F11(X) =

∑d
i=1

(
∑20

k=0
0.5kcos

(
2π3k(Ui + 0.5)

)
)

−

d
∑20

k=0
0.5kcos

(
2π3k.0.5

)
+ f bias11  

[− 0.5, 0.5]d F11(X*) =
f bias11 = 90  

X* = 0  

Schwefel’s problem 2.13 F12(X) =
∑d

i=1(Ai − Bi(X) )2
+ f bias12  [− π, π]d F12(X*) =

f bias12 = − 460  
X* = 0   

Table 3 
Expanded functions (d = 30).  

Function Description Range of ‘X’ f bias  Global optimal 

Shift Expanded Griewank’s plus Rosenbrock’s Function F13(X) = F7(F6(Z1,Z2) ) + F7(F6(Z2,Z3) ) + ......+

F7(F6(Zd− 1,Zd) ) + F7(F6(Zd,Z1) ) + f bias13  

[− 5, 5]d F13(X*) =
f bias13 = − 130  

X* = 0  

Shift Expanded Scaffer’s Function F14(X) = EF(Z1,Z2, ....Zd) = F(Z1 ,Z2) + F(Z2, Z3)

+...... + F(Zd− 1,Zd) + F(Zd ,Z1) + f bias14  

[− 100, 100]d F14(X*) =
f bias14 = − 300  

X* = 0   

Table 4 
Parameters chosen.  

Algorithm Parameters 

CS N = 25, α = 1, λ = 1.5, pa = 0.25, tmax = 2000 
ACS N = 25, pa = 0.25, tmax = 2000 
SSA N = 25, gc = 1.9, dg = 9 to 25, pp = 0.1, tmax = 2000 
ACS-SSA N = 25, pa = 0.1, fc = 1.9, tmax = 2000  
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ACS-SSA performs better than the rest of the techniques. Table 6 gives 
the results comparison for multimodal fitness functions (6–12). Even 
here ACS-SSA outperforms. Extended multimodal fitness functions 13 
and 14 with their results are given in Table 7. 

5. Multi-level thresholding of brain MR images using ERCE 
technique 

Here, 100 slices (slice #20 to slice #119) of brain MR images with T2 
modality from the Harvard Medical School database are used to evaluate 
our proposed technique. T2 weighted structure is preferred over other 
available modalities, because it yields better results for intra-tissue 

Fig. 5. Iteration vs fitness value of fitness function number 3.  

Fig. 6. Iteration vs fitness value of fitness function number 4.  

Fig. 7. Iteration vs fitness value of fitness function number 6.  
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segmentation. The experiment is performed using a computer having a 
4 GB RAM, Intel core i-5 processor, Windows 10 operating system. The 
uniqueness of our paper lies in the method of construction of the 2D 
histogram of the input image. In order to evaluate the robustness of this 
technique, the results are compared with other 2D histogram construc
tion methods like counterpart EGGA and the conventional 2D Otsu 
method. Our proposed soft computing technique is compared with 3 
different established techniques. The new algorithm (adaptive cuckoo 
search-squirrel search algorithm) which is the combination of both the 

techniques was found to perform better than the individual algorithms 
(it is comprised of). Adaptive cuckoo search is a much more robust and 
efficient technique than a cuckoo search algorithm (Naik & Panda, 
2016). Squirrel search is a new algorithm in the field of soft computing. 
The hybridization of both the algorithms is a significant improvement in 
the area of exploration and exploitation of search space. This alludes to 
the results obtained in the tables mentioned. In order to gauge the ef
ficiency of our method, 8 different performance evaluation metrics are 
verified. This new algorithm is found to surpass its counterparts in the 

Fig. 8. Iteration vs fitness value of fitness function number 10.  

Fig. 9. Iteration vs fitness value of fitness function number 11.  

Fig. 10. Iteration vs fitness value of fitness function number 15.  
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majority of the cases. An optimization algorithm requires an objective 
function, which upon maximization or minimization yields the optimal 
values. Here, 2D row class entropy is used as the objective function, this 
when maximized gives the threshold values. It may be noted that since 
random values are used to generate the initial solution in an optimiza
tion technique, the solution obtained in the first iteration is usually 
unreliable, and thus, the results that are considered in this paper are 
obtained after 100 complete iterations of each individual algorithm. 

5.1. Results and discussion 

There are 2 methods of image quality assessment (IQA) – i) Subjec
tive methods: these are based on human perception and ii) Objective 
methods: these evaluate a fixed set of assessment algorithms (Kuo et al., 
2016). Structural Similarity index (SSIM) is an efficient objective IQA 
metric with low computation complexity. SSIM takes into consideration 
the structure, contrast and brightness of the images. Thus, a higher SSIM 
value means a better threshold image. Table 8 gives the average SSIM 
values of the threshold image computed using different methods. The 
results indicate that ACS-SSA gives greater SSIM value than other soft 
computing methods at the same threshold level. This value is found to 
increase with the increase in threshold levels. On further analysis at 
threshold level 4, we see that the performance of ACS-SSA is better than 
others. The superiority of ACS-SSA is established by its better search 
space exploration and exploitation capability. We can also see that the 
results obtained for ERCE using ACS-SSA at threshold level 4 is greater 

than EGGA and 2D Otsu method. The reason may be attributed to the 
preservation of edge information without truncation of very high values 
in ERCE method. In Table 9, we discuss the FSIM values of the thresh
olded image. Feature Similarity Index (FSIM) is a novel image quality 
assessment index where the gradient magnitude (GM) and the phase 
congruency (PC) of an image are taken into consideration (Zhang et al., 
2011). A high FSIM value is desirable for a good segmented image. It can 
be noted that with the increase in threshold levels, the FSIM value 
increases. 

We also note that the values are consistently high for our proposed 
method. It is better than 2D Otsu and EGGA. Incidentally, for FSIM, all 
the information is pushed to the edge which enhances the gradient 
magnitude. Moreover, the normalization of this edge gradient preserves 

Table 5 
Statistical Performance Analysis.  

Function Algorithm Best value Mean value Std. 
deviation 

Avg. time 

F1  CS 3.02E− 23 3.79E− 21 8.56E− 21 5.76E +
00 

ACS 2.98E− 23 3.73E− 21 8.43E− 21 4.56E þ
00 

SSA 2.28E− 11 5.04E− 10 8.04E− 10 5.88E +
00 

ACS-SSA 2.94E− 23 3.67E− 21 8.23E− 21 4.76E +
00 

F2  CS 1.96E− 13 1.07E− 11 1.71E− 11 6.02E +
00 

ACS 1.87E− 13 1.02E− 11 1.63E− 11 4.78E þ
00 

SSA 1.44E− 05 4.75E− 05 2.36E− 05 6.26E +
00 

ACS-SSA 1.81E− 13 9.89E− 12 1.55E− 11 4.92E +
00 

F3  CS 4.96E− 01 1.42E + 01 7.30E + 00 2.16E +
01 

ACS 2.12E− 01 7.21E + 00 3.83E + 00 2.02E þ
01 

SSA 5.21E− 01 1.49E + 01 7.66E + 00 2.27E +
01 

ACS-SSA 2.08E− 01 7.06E þ 00 3.75E þ 00 2.17E +
01 

F4  CS 1.59E− 01 4.54E + 00 2.22E + 00 9.76E +
00 

ACS 2.45E− 02 1.60E + 00 1.36E + 00 7.80E þ
00 

SSA 1.67E-01 4.77E + 00 2.33E + 00 1.02E +
01 

ACS-SSA 2.40E− 02 1.57E þ 00 1.33E þ 00 7.95E +
00 

F5  CS 1.31E− 01 2.70E + 01 1.68E + 01 7.89E +
00 

ACS 8.28E− 02 2.25E + 01 1.64E + 01 5.56E þ
00 

SSA 1.37E− 01 2.84E + 01 1.77E + 01 8.28E +
00 

ACS-SSA 8.11E− 02 2.20E þ 01 1.61E þ 01 5.85E +
00 

Bold values indicate best results. 

Table 6 
Statistical Performance Analysis.  

Function Algorithm Best value Mean value Std. 
deviation 

Avg. 
time 

F6 CS 1.50E− 02 3.36E− 02 2.15E− 02 6.74E +
00 

ACS 5.17E− 03 1.59E− 02 5.36E− 03 5.59E þ
00 

SSA 1.57E− 02 3.53E− 02 2.26E− 02 7.07E +
00 

ACS-SSA 5.07E− 03 1.56E− 02 5.25E-03 5.88E +
00 

F7 CS − 9.31E +
03 

− 8.13E +
03 

5.50E + 02 6.48E +
00 

ACS − 9.53E +
03 

− 8.84E +
03 

2.93E + 02 5.35E þ
00 

SSA − 9.34E +
03 

− 7.97E +
03 

5.62E + 02 6.80E +
00 

ACS-SSA ¡9.77E þ
03 

¡9.28E þ
03 

2.79E þ 02 5.84E +
00 

F8 CS 3.67E− 01 5.87E + 01 1.79E + 01 6.36E +
00 

ACS 3.30E− 01 5.22E + 01 1.83E + 01 5.22E þ
00 

SSA 3.74E− 01 5.99E + 01 1.04E + 01 6.68E +
00 

ACS-SSA 3.14E− 01 4.97E þ 01 9.87E þ 00 5.52E +
00 

F9 CS 1.04E− 04 5.27E− 01 6.86E− 01 6.31E +
00 

ACS 2.54E− 11 8.63E− 08 2.44E− 07 5.07E þ
00 

SSA 1.09E− 04 5.53E− 01 7.20E− 01 6.62E +
00 

ACS-SSA 2.49E− 11 8.45E− 08 2.40E− 07 5.97E +
00 

F10 CS 4.59E− 10 2.57E− 03 1.75E− 03 6.86E +
00 

ACS 0.00E + 00 4.64E− 04 1.28E− 03 5.67E þ
00 

SSA 4.82E− 10 2.70E− 03 1.77E− 03 7.20E +
00 

ACS-SSA 0.00E þ 00 4.54E− 04 1.22E− 03 6.56E +
00 

F11 CS 8.47E− 08 2.64E− 01 3.06E− 01 1.88E +
01 

ACS 2.97E− 20 6.49E− 03 3.56E− 02 1.68E þ
01 

SSA 8.90E− 08 2.77E− 01 3.21E− 01 1.98E +
01 

ACS-SSA 2.91E− 20 6.36E− 03 3.49E− 02 1.75E +
01 

F12 CS 2.71E− 09 4.94E− 01 2.01E + 00 1.88E +
01 

ACS 1.11E− 21 3.44E− 04 1.88E− 03 1.59E þ
01 

SSA 2.84E− 09 5.19E− 01 2.11E + 00 1.97E +
01 

ACS-SSA 1.09E− 21 3.38E− 04 1.84E− 03 1.66E +
01 

Bold values indicate best results. 
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all the information with greater efficiency and a higher GM directly 
indicates a high FSIM value. 

Table 10 shows the average contrast values of all the algorithms 
using all soft computing techniques discussed in this paper. It is seen 
that, out of all the algorithms, performance of 2D Otsu is least satis
factory and ERCE method achieves the highest result. Similarly, out of 
all CS, ACS, SS and ACS-SSA, our proposed technique gives the best 
value. It is also to be noted that these values gradually increase with the 
increase in threshold levels. 

A good segmentation technique demands for the preservation and 
enhancement of the brightness information. Considering ERCE opti
mized by ACS-SSA at threshold level 4, the results that we get are greater 
than EGGA and 2-D Otsu method. Even when we consider only ERCE, 
the performance is better when ACS-SSA is used as compared to CS, ACS, 
and SSA, respectively. 

Table 11 gives another contrast enhancement metric called Inverse 
Difference Moment (IDM). Its value is the inverse of the contrast values 
that have been discussed earlier. Hence, a lesser IDM value denotes a 
better segmented image. Interestingly, the IDM values attained for ERCE 
are consistently high. Table 12 gives the comparison result of average 
Peak to Signal Ratio (PSNR) values. PSNR is a very simple, efficient and 
widely used performance evaluation metric. The PSNR of a thresholded 
image can be calculated by the formula: 

PSNR(m, n) = 10log10(2552/MSE(m, n)) (22)  

where, ‘m’ is the reference image and ‘n’ is the test image. 
Due to the reason that PSNR is a ratio of signal to noise, a higher 

value PSNR indicates greater information and lesser noise in the 
thresholded image. In this Table 12, it is clearly visible that ERCE out
performs rest of the methods employed. It is evident that with the in
crease in threshold levels, we get better results. The incorporation of 
ACS-SSA in order to maximize the fitness function gives the best re
sults. Upon rigorous analysis, it is seen that the average PSNR value for 

Table 7 
Statistical Performance Analysis.  

Function Algorithm Best value Mean 
value 

Std. 
deviation 

Avg. time 

F13 CS 9.39E− 01 9.39E− 01 7.67E− 08 1.76E + 00 
ACS 9.39E− 01 9.36E− 01 1.21E− 16 1.65E þ

00 
SSA 9.86E− 01 9.86E− 01 8.05E− 08 1.84E + 00 
ACS-SSA 9.20E− 01 9.20E− 01 1.18E− 16 1.72E + 00 

F14 CS 5.72E− 04 6.77E− 04 7.12E− 04 5.82E− 01 
ACS 4.21E− 04 6.43E− 04 1.04E− 05 5.05E− 01 
SSA 6.01E− 04 7.11E− 04 7.47E− 04 6.11E− 01 
ACS-SSA 4.13E− 04 6.30E− 04 1.02E− 05 5.35E− 01 

Bold values indicate best results. 

Table 8 
SSIM values (average of 100 slices).  

M Optimization technique Algorithm 

2-D Otsu EGGA ERCE 

2 CS  0.92850  0.96701  0.99274 
ACS  0.93755  0.99046  0.99456 
SS  0.92632  0.95331  0.99200 
ACS-SSA  0.96307  0.99123  0.99149 

3 CS  0.92903  0.90129  0.99255 
ACS  0.95954  0.99557  0.99551 
SS  0.93350  0.94119  0.96638 
ACS-SSA  0.96992  0.99499  0.99561 

4 CS  0.94758  0.98296  0.99365 
ACS  0.97397  0.99684  0.99567 
SS  0.94276  0.95434  0.97777 
ACS-SSA  0.97194  0.99607  0.99681 

5 CS  0.95483  0.98495  0.99187 
ACS  0.97919  0.99649  0.99714 
SS  0.95263  0.96887  0.98196 
ACS-SSA  0.99619  0.99672  0.99743 

Bold values indicate best results. 

Table 9 
FSIM values (average of 100 slices).  

M Optimization technique Algorithm 

2-D Otsu EGGA ERCE 

2 CS  0.92060  0.97722  0.99136 
ACS  0.97720  0.99170  0.99140 
SS  0.92441  0.96692  0.99143 
ACS-SSA  0.96507  0.99720  0.99227 

3 CS  0.93657  0.98596  0.99542 
ACS  0.97732  0.99612  0.99574 
SS  0.93574  0.97142  0.99329 
ACS-SSA  0.97976  0.99956  0.99612 

4 CS  0.96376  0.99268  0.99640 
ACS  0.97843  0.99719  0.99780 
SS  0.94021  0.98298  0.99600 
ACS-SSA  0.97902  0.99948  0.99894 

5 CS  0.97899  0.99305  0.99689 
ACS  0.98419  0.99864  0.99919 
SS  0.95987  0.98885  0.99641 
ACS-SSA  0.97912  0.99928  0.99928 

Bold values indicate best results. 

Table 10 
Contrast values (average of 100 slices).  

M Optimization technique Algorithm 

2-D Otsu EGGA ERCE 

2 CS 1.0534e + 03 1.2871e + 03 1.7710e + 03 
ACS 1.1078e + 03 1.6045e + 03 1.7854e þ 03 
SS 1.0361e + 03 1.2333e + 03 1.7640e + 03 
ACS-SSA 1.2502e + 03 1.7423e + 03 1.7709e + 03 

3 CS 1.2988e + 03 1.6279e + 03 1.7513e + 03 
ACS 1.4542e + 03 1.7489e + 03 1.7596e + 03 
SS 1.2162e + 03 1.3977e + 03 1.7506e + 03 
ACS-SSA 1.4642e + 03 1.7913e + 03 1.7710e þ 03 

4 CS 1.5050e + 03 1.7180e + 03 1.7759e + 03 
ACS 1.5632e + 03 1.8276e + 03 1.7531e + 03 
SS 1.4995e + 03 1.7199e + 03 1.7683e + 03 
ACS-SSA 1.5460e + 03 1.7807e + 03 1.7831e þ 03 

5 CS 1.4999e + 03 1.7681e + 03 1.4886e + 03 
ACS 1.5699e + 03 1.7853e + 03 1.7897e + 03 
SS 1.5215e + 03 1.7454e + 03 1.7699e + 03 
ACS-SSA 1.5703e + 03 1.7999e + 03 1.7939e þ 03 

Bold values indicate best results. 

Table 11 
IDM values (average of 100 slices).  

M Optimization technique Algorithm 

2-D Otsu EGGA ERCE 

2 CS  0.04838  0.03986  0.03161 
ACS  0.04581  0.03494  0.03177 
SS  0.04595  0.03989  0.03256 
ACS-SSA  0.04220  0.03246  0.03141 

3 CS  0.04431  0.03898  0.03161 
ACS  0.04281  0.03694  0.03173 
SS  0.04448  0.03940  0.03188 
ACS-SSA  0.03998  0.03202  0.03134 

4 CS  0.04371  0.03777  0.03178 
ACS  0.04201  0.03215  0.03284 
SS  0.04387  0.03832  0.03176 
ACS-SSA  0.03862  0.03307  0.03111 

5 CS  0.46174  0.03635  0.04002 
ACS  0.42203  0.03519  0.03225 
SS  0.43114  0.36698  0.03264 
ACS-SSA  0.38306  0.03254  0.03172 

Bold values indicate best results. 
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ERCE obtained using ACS-SSA at threshold level 4 is 11% higher than 
that obtained from 2D Otsu methods. The high value is a clear indication 
of the fact that ERCE preserves maximum information than the con
ventional 2D Otsu method. The reason may be due to the non- 
consideration of the off-diagonals eliminate the sizeable amount of in
formation in 2D Otsu’s method. Similarly, comparison of the PSNR value 
for ERCE and EGGA shows that EGGA lags behind ERCE by almost 3%. 
The possible reason may be the loss of information due to the presence of 
high magnitude peaks. It is reiterated that the results obtained while 
using ERCE method is the best. The PSNR values of an image have a 
direct relationship with the SSIM values (Hore & Ziou, 2010). Thus, the 
results obtained is at par with the above statement. A good image seg
mentation technique tries to preserve information from the original 
image as much as possible. 

Contrast is another feature of an image which, when preserved or 
enhanced to improve the quality of the resulting output image. Table 13 
gives the average Absolute Mean Brightness Error (AMBE) values of the 
100 slices. AMBE is an IQA which is widely used in contrast enhance
ment method. It gives the relation between the mean of the input image 
and the mean of output image. Although our paper does not focus on 
contrast enhancement techniques, the evaluation of AMBE values can 
help us gauge the amount of brightness that gets preserved in the entire 
process. It is calculated using the formula: 

AMBE(I, J) =
1

1 + |E(I) − E(J)|
(23)  

where, E(I) is the mean brightness of the input image, E(J) gives the 
mean brightness of the output image. Thus, lesser is the value of the 
absolute difference, the smaller is the brightness loss. This in turn de
mands higher AMBE value. Hence, a high AMBE value indicates a better 
quality of the output image. It is clearly observed that we get better 
AMBE values on increasing the number of threshold levels. Our pro
posed optimization technique ACS-SSA, when applied, out beats rest 
other combinations for most of the times. The results obtained from the 
implementation of ACS-SSA at threshold level 4 with ERCE as the his
togram construction method is around 5% better than the results ob
tained using the 2D Otsu method. This clearly indicates that picking up 
only the diagonal elements does a damage to the brightness information 
of the image. Similarly, it is found that results for ERCE is better than 
EGGA. This means that the normalization of the histogram peaks pre
serves better brightness than EGGA. Another important area to be 
considered while IQA is related particularly to edge enhancement. An 
important metric regarding this characteristic of an image is Edge Based 
Contrast Measure (EBCM). This is an efficient parameter with high 
sensitivity to edges (Beghdadi & Le Negrate, 1989). Another interesting 
characteristic of this objective metric is that it is based on human 
perception mechanism (Sumaiya & Kumari, 2014). 

Table 14 gives the average EBCM values of the output images taken 
over 100 slices from Harvard Medical School database. EBCM is calcu
lated using the formula: 

EBCM =
∑M

i=1

∑N

j=1

c(i, j)
MN

(24)  

where c(i,j) is the contrast of the image and M × N is the size of the 
image. 

It is observed that the quality of results gets better with the increase 
in the threshold levels, and thus, the edges get preserved. However, it 
must be noted that there is also a limit to the threshold levels, because a 
very high number of threshold levels may result in an over segmented 
image (where the non-edges may also appear as edges). Considering the 
values at threshold level 4, we can see that ACS-SSA gives the best results 
as compared to its counterparts. It is seen that these results are consis
tently best for ERCE. Upon an in-depth analysis, it is seen that the results 
obtained for ERCE at threshold level 4 using ACS-SSA is greater than 2-D 
Otsu and EGGA. Thus, it is concluded that edge information is efficiently 
preserved using our proposed technique. 

The normalized contrast measure is another effective parameter to 

Table 12 
PSNR values (average of 100 slices).  

M Optimization technique Algorithm 

2-D Otsu EGGA ERCE 

2 CS  61.3948  71.2345  78.4678 
ACS  68.6554  73.3968  80.4099 
SS  60.3691  63.2486  64.5984 
ACS-SSA  70.8092  78.3079  78.6158 

3 CS  64.3366  76.2456  79.3880 
ACS  71.9392  77.6037  81.8682 
SS  62.1141  66.6716  66.9589 
ACS-SSA  73.2122  80.9955  79.5156 

4 CS  69.3196  78.5960  80.4690 
ACS  72.3621  81.3539  80.9610 
SS  65.6963  69.3342  70.9358 
ACS-SSA  76.1065  81.1720  81.3127 

5 CS  73.1796  79.4628  76.4351 
ACS  73.1641  80.8673  81.3857 
SS  67.1472  70.5621  72.0067 
ACS-SSA  76.6438  82.4576  84.5077 

Bold values indicate best results. 

Table 13 
AMBE values (average of 100 slices).  

M Optimization technique Algorithm 

2-D Otsu EGGA ERCE 

2 CS  0.15494  0.17854  0.16531 
ACS  0.17756  0.19636  0.19711 
SS  0.15351  0.17140  0.17742 
ACS-SSA  0.19354  0.20003  0.20047 

3 CS  0.16415  0.19361  0.19826 
ACS  0.18788  0.19869  0.19935 
SS  0.16567  0.18118  0.19256 
ACS-SSA  0.19635  0.20051  0.20138 

4 CS  0.16842  0.19369  0.19374 
ACS  0.19850  0.19983  0.20101 
SS  0.16948  0.19014  0.19985 
ACS-SSA  0.20082  0.20088  0.20152 

5 CS  0.19081  0.20140  0.19756 
ACS  0.19959  0.20146  0.20197 
SS  0.17563  0.20078  0.19881 
ACS-SSA  0.20099  0.20570  0.20211 

Bold values indicate best results. 

Table 14 
EBCM values (average of 100 slices).  

M Optimization technique Algorithm 

2-D Otsu EGGA ERCE 

2 CS  0.15494  0.17854  0.16531 
ACS  0.17756  0.19636  0.19711 
SS  0.15351  0.17140  0.17742 
ACS-SSA  0.19354  0.20003  0.20047 

3 CS  0.16415  0.19361  0.19826 
ACS  0.18788  0.19869  0.19935 
SS  0.16567  0.18118  0.19256 
ACS-SSA  0.19635  0.20051  0.20138 

4 CS  0.16842  0.19369  0.19374 
ACS  0.19850  0.19983  0.20101 
SS  0.16948  0.19014  0.19985 
ACS-SSA  0.20082  0.20088  0.20152 

5 CS  0.19081  0.20140  0.19756 
ACS  0.19959  0.20146  0.20197 
SS  0.17563  0.20078  0.19881 
ACS-SSA  0.20099  0.20570  0.20211 

Bold values indicate best results. 
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measure the contrast enhancement in an image. We have tested this 
technique using this metric. Interestingly, this metric is a function of 
EBCM and is given as: 

CMn =
1

1 +
1− EBCM(J)
1− EBCM(I)

(25)  

where EBCM (J) gives the EBCM value of output image and EBCM (I) is 
the EBCM value of the input image. Thus, the greater is the value ofCMn, 
the better is the resulting image. The table shows that the best values are 
obtained for ERCE. Taking ERCE method for construction of histogram, 
different optimization technique gives different values and it is distinct 
that our proposed soft computing technique dominates over other 
methods. Apart from these, it can also be analyzed that CMnvalues (see 
Table 15). 

increase with increasing the number of threshold levels. Taking the 
average of the results obtained from ERCE method using ACS-SSA at 
threshold levels 1, 2, 3 and 4, it is found that our proposed method is 
better than both EGGA and 2-D Otsu method. This result is justified since 
CMn is a function of EBCM and the EBCM values for our proposed 
method are the best. Thus, the resulting image quality is greatly 
enhanced with greater human perceptivity. 

Table 16 gives the comparison results of normalized discrete entropy 
(DEn) of the segmented image. The authors have considered evaluating 
this parameter since it is a standard IQA for determining the contrast 
enhancement of an image. For instance, if we take I as the input image, J 
as the output image and DE as their discrete entropies then DEnis 
calculated as: 

DEn =
1

1 +
log256− DE(J)
log256− DE(I)

(26) 

Thus, a higher DEn value signals better entropy of the output image 
and hence better segmentation. From the Table 16, it is found that the 
DEnvalues are higher for ERCE for most of the iterations. Greater 
DEnvalue means greater details are preserved. This serves our purpose of 
segmentation where we want to reflect the hidden details in the 
segmented image. Again, here, as the number of threshold levels in
creases, the metric value also increases. When the fitness function is 
optimized for ERCE using ACS-SSA, satisfactory results are obtained. 
Greater information is preserved, because normalization of the histo
grams does not allow the system in getting away with high magnitude 
peaks. However, it is also seen that in certain cases, the performance of 
EGGA is better than ERCE. Ironically, the possible reason may be the 
normalization method in NLV. Possibly in ERCE for those incidences 
where the peak value is low, normalization of the histogram may cause a 

greater loss to the image than any significant advantage. 
Box plots have also been implemented in this paper. These are given 

in Figs. 11 and 12. These are an interesting and easy method to monitor 
the performance of any method and also compare it with other methods. 
Fig. 11 (a) gives the box plot of average SSIM values for 2-D Otsu method 
optimized with CS, ACS, SS and ACS-SSA. The performance of ACS-SSA 
is the best both visually and experimentally. Similarly, Fig. 11 (b) and (c) 
are the box plots for EGGA and ERCE respectively. Fig. 12 is the box plot 
for PSNR values where Fig. 12 (a), (b) and (c) are for 2-D Otsu, EGGA 
and ERCE, respectively. It can be clearly observed that for most of the 
cases ERCE is the best among its counterparts. Its characteristic feature 
of manually normalizing the histogram may be the possible reason. The 
performance of EGGA is also not far behind. However, ERCE fine tunes 
the available values from EGGA. Moreover, the introduction of a new 
condition for abandon probability makes our proposed hybrid ACS-SSA 
out beat other soft computing techniques for most of the times. How
ever, for certain cases, ACS performs better than our proposed hybrid. 
The possible reason may be that ACS is already a powerful optimization 
tool and its introduction of the new condition may not be always 
necessary. 

The brain MR image segmentation at threshold levels 1, 2, 3 and 4 for 
a single slice (slice #074) computed using hybrid ACS-SSA optimization 
technique, and having a fitness function obtained from the ERCE his
togram construction technique, are given in Fig. 13. The image obtained 
at threshold level 1 does not carry much information. Here, the edges are 
not distinct and it could be possibly eliminated for any further analysis. 
This is a gap area of bi-level thresholding. The complexities of the brain 
cannot be accurately reflected using a single threshold level. For this 
reason, multilevel thresholding operations of the brain MR image are 
performed. It is to be noted from the figures that the quality of visual 
perceptivity of these images increases with the increase in threshold 
levels. The image which is segmented at threshold level 4 clearly dis
tinguishes various edges and visually seems very informative. Interest
ingly, we see that the quality of visual perception of the thresholded 
image and their performance evaluation using several metrics goes hand 
in hand. In the former, image segmented at threshold level 4 gives the 
best visual perception. Later, the best results for the performance eval
uation metrics are obtained (at the same threshold level 4). 

6. Conclusion 

A new method of constructing the 2-D histogram is investigated in 
this paper. The normalization of the local variance information pre
serves the high frequency content of an image, because the magnitude 
limiting problem is eliminated. The contributions of this paper are 

Table 15 
CMn values (average of 100 slices).  

M Optimization technique Algorithm 

2-D Otsu EGGA ERCE 

2 CS  0.48560  0.49006  0.48868 
ACS  0.49238  0.49816  0.49845 
SS  0.48554  0.48967  0.48991 
ACS-SSA  0.49729  0.49931  0.49944 

3 CS  0.48834  0.49731  0.49875 
ACS  0.49554  0.49889  0.49910 
SS  0.48825  0.49003  0.48954 
ACS-SSA  0.49816  0.49946  0.49973 

4 CS  0.48962  0.49733  0.49735 
ACS  0.49883  0.49924  0.49916 
SS  0.49196  0.49519  0.49614 
ACS-SSA  0.49955  0.49957  0.49977 

5 CS  0.49625  0.49974  0.49854 
ACS  0.49917  0.49976  0.49992 
SS  0.49335  0.49688  0.49660 
ACS-SSA  0.49969  0.49979  0.49999 

Bold values indicate best results. 

Table 16 
DEn values (average of 100 slices).  

M Optimization technique Algorithm 

2-D Otsu EGGA ERCE 

2 CS  0.24764  0.28566  0.29075 
ACS  0.32385  0.45061  0.45341 
SS  0.30074  0.35964  0.36722 
ACS-SSA  0.41188  0.47353  0.47319 

3 CS  0.28167  0.41405  0.42405 
ACS  0.37909  0.46549  0.46698 
SS  0.31220  0.40571  0.40417 
ACS-SSA  0.42818  0.47373  0.47475 

4 CS  0.28790  0.42232  0.42880 
ACS  0.43929  0.47037  0.48045 
SS  0.35661  0.41038  0.42085 
ACS-SSA  0.47487  0.47583  0.48699 

5 CS  0.39721  0.43439  0.43493 
ACS  0.46208  0.48372  0.48366 
SS  0.39323  0.42667  0.43230 
ACS-SSA  0.48275  0.48521  0.49381 

Bold values indicate best results. 
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manifold – 1) construction of 2-D histogram using ERCE method, 2) a 
firsthand fitness function, 3) investigation of a new hybrid ACS-SSA 
method for optimization, 4) an entropic method for multilevel thresh
olding using 2-D row class Entropy, 5) its application to brain MR image 
thresholding. The incorporation of a flying coefficient together with a 
new condition for the evaluation of the abandon probability in ACS 
technique effectively enhances the exploration and exploitation of the 

newly proposed algorithm (hybrid ACS-SSA). Our suggested hybrid 
ACS-SSA algorithm performs better than the others – CS, ACS and SSA, 
which is implicit from the best, mean and standard deviation values 
shown in Tables 5-7. Moreover, it exhibits a better convergence rate. The 
resulting threshold values could effectually segment the brain MR image 

Fig. 11. Box-plot representation of average SSIM value for (a) 2-D Otsu (b) 
EGGA (c) ERCE. 

Fig. 12. Box plot of average PSNR values for (a) 2-D Otsu (b) EGGA (c) ERCE.  
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into several components. In addition, it preserves the edge information 
well suited for clinical diagnosis. Various performance evaluation met
rics are computed which shows the competency of our proposed method. 
Finally, it is concluded that the proposed method fare well in all aspects 
and may significantly contribute to the field of brain MR image seg
mentation using multilevel thresholding. The new fitness function pro
posed may be useful for many more image processing applications like 
color image segmentation, registration etc. 
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