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Abstract: Subspace clustering is one of the efficient techniques for determining the clusters in different subsets of 

dimensions. Ideally, these techniques should find all possible non-redundant clusters in which the data point 

participates. Unfortunately, existing hard subspace clustering algorithms fail to satisfy this property. Additionally, 

with the increase in dimensions of data, classical subspace algorithms become inefficient. This work presents a new 

density-based subspace clustering algorithm (S_FAD) to overcome the drawbacks of classical algorithms. S_FAD is 

based on a bottom-up approach and finds subspace clusters of varied density using different parameters of the 

DBSCAN algorithm.  The algorithm optimizes parameters of the DBCAN algorithm through a hybrid meta-heuristic 

algorithm and uses hashing concepts to discover all non-redundant subspace clusters. The efficacy of S_FAD is 

evaluated against various existing subspace clustering algorithms on artificial and real datasets in terms of F_Score 

and rand_index. Performance is assessed based on three parameters: average ranking, SRR ranking, and scalability on 

varied dimensions. Statistical analysis is performed through the Wilcoxon signed-rank test.  Results reveal that S_FAD 

performs considerably better on the majority of the datasets and scales well up to 6400 dimensions on the actual 

dataset.  

Keywords: subspace clustering algorithm; high dimensional clustering; meta-heuristic algorithm; Wilcoxon signed-

rank test; success rate ratio ranking; average ranking. 

1. Introduction 

 High-dimensional data means data with numerous features. High-dimensional data exist in various domains 

like recommendation systems, microarray data, social media data, and many more. Its rapid growth is seeking the 

attention of researchers and scientists for the last 2 decades(Steinbach et al., 2003)(Hans-Peter Kriegel et al., 2009). 

Clustering is a technique of finding groups of similar data based on their attributes. Effective clustering of the high-

dimensional dataset is an important research issue in the field of data mining (L. Abualigah et al., 2020; L. M. Q. 

Abualigah, 2019). It has many challenges. Traditional clustering algorithms like K-Means, DBSCAN, OPTICS, 

etc.(Fahad et al., 2014) perform clustering in full-dimensional space. These algorithms attempt to find the cluster using 

all attributes given for each object of data. However, it becomes computationally expensive to apply these algorithms 

in the case of a large number of attributes/dimensions. This problem is called the ³curse of dimensionality´(Steinbach 

et al., 2004). One of the reasons for this problem is that distance measure loses its importance as data points are sparse 

in high dimensional space. Clusters in such high dimensional space remain hidden under few relevant dimensions. 

Such relevant dimensions i.e., subsets of features are called subspaces. Irrelevant dimensions and noise completely 

mask the true clusters. Thus, classical clustering algorithms fail to determine clusters lying in different subspaces. One 

of the efficient ways of performing clustering in high-dimensional data is subspace clustering. 

Data mining research communities have given a number of techniques to perform clustering in high 

dimensional data (Ira Assent, 2012) (L. Abualigah, Gandomi, et al., 2021). To determine clusters lying in different 

subsets of dimensions, subspace clustering algorithms (Domeniconi et al., 2004; Parsons et al., 2004) are employed. 

Subspace clustering determines a similar group of objects in a set of relevant dimensions of the dataset. Subspace 

clustering algorithms are broadly classified into two categories: Hard subspace and soft subspace (Deng et al., 2016). 

Hard subspace determines precise subspaces for various clusters. However, subspaces can be overlapping on various 

clusters. Müller et. al (Emmanuel Müller et al., 2009) divided hard subspace clustering algorithms into three 

categories: cell-based algorithms, density-based algorithms, and clustering oriented based algorithms. In order to 

obtain better subspace clusters, researchers developed a number of algorithms in the literature. Some of the relevant 

work is discussed below.  
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The evolutionary algorithm has been incorporated to form effective subspace clusters (Agarwal & Mehta, 

2014, 2017) (L. Abualigah, Diabat, et al., 2021). The first study in this field was made by Sarafiset al. (Sarafis et al., 

2003). Authors inculcated genetic operators for determining subspaces in the subspace clustering algorithm. The 

experiment is performed on 80-dimensional datasets but not compared with existing algorithms. In 2011, Li et al. (Lu 

et al., 2011) introduced a technique for soft projected clustering of high dimensional data using particle swarm 

optimization algorithm (PSO). The algorithm addresses the problem of variable weighting in the projected clustering 

approach. The algorithm is evaluated up to a 2000-dimensional dataset. Timmerman et al. (Timmerman et al., 2013) 

presented a new variant of the subspace k-means algorithm for shaping clusters in all dimensions. The proposed 

algorithm was assessed against k-means, factorial k-means, mixture factor analysis, and reduced k-means. The 

evaluation was made on adjusted rand_index and cluster variance on a 9-dimensional dataset only. Lin et al.(Lin et 

al., 2014)suggested an evolutionary approach for determining subspaces. In order to improve clustering quality, the 

algorithm uses a hybrid genetic algorithm where local search is performed by PSO. The efficacy of the algorithm is 

assessed upon an error rate of up to 13-dimensional problems. Kaur and Datta(Kaur & Datta, 2015) presented an 

extended version of the SUBSCALE algorithm. The algorithm is examined based on F_Score up to 6144-dimensional 

dataset. However, no result of 6144-dimensional dataset is depicted in the paper. In 2016, Kumar et al. (Kumar et al., 

2016) projected the clustering algorithm to address the issues of big data. The algorithm (clusiVat) is compared with 

four existing algorithms on the basis of rand_index and time for 500-dimensional data only. A survey on nature-

inspired algorithms with evolutionary strategies and applications is illustrated in (Agarwal & Mehta, 2014). A 

comprehensive analysis of nature-inspired algorithms is shown in (Agarwal & Mehta, 2017). Comparative analysis of 

these algorithms on clustering is depicted in (Agarwal & Mehta, 2015). To improve clustering quality, an enhanced 

version of the flower pollination algorithm is also employed  (Agarwal & Mehta, 2016). Zhong and Pun (Zhong & 

Pun, 2020) have given a subspace algorithm to find similarities in data points and perform feature selection. The 

algorithm normalizes the column values and does not find overlapping clusters. The maximum dimensions evaluated 

were 6000. Yan et al. (Yan et al., 2020) have proposed a multi-view subspace clustering algorithm which is an 

extended version of the K-means algorithm. Clusters formed are mostly of spherical shape and include all samples 

hence maximal subspaces along with overlapping clusters and noisy points could not be found. An extended version 

of high dimensional data clustering using multivariate t-distribution is given by (Pesevski et al., 2018). The algorithm 

is evaluated on low dimension datasets i.e. maximum 8 dimensions. A novel subspace clustering technique for large 

number of samples is given by (Liu et al., 2020). Though algorithm discovers clusters in low time complexity, yet 

overlapping clustering could not be found. Another low rank subspace clustering algorithm is given by (Zhao et al., 

2019). Maximum dimensions evaluated are in hundreds only. Also, the algorithms developed are not compared with 

conventional subspace clustering algorithms.    

Though various subspace clustering algorithms have been developed yet there exist many challenges in finding 

subspace clusters in high dimensional data. There is scope for improvement in clustering quality and finding 

overlapping subspace clusters.  Existing algorithms are unable to find maximal subspace i.e., subspaces without 

redundant information. It should exclude noisy data points from clusters. Existing hard subspace clustering algorithms 

are not able to deal with high dimensional data i.e., data with thousands of attributes. Most of the existing studies for 

high dimensional clustering have been assessed on few hundreds of attributes only. Additionally, these algorithms 

require normalization of data in range 0-1 before performing clustering. Normalization is usually min-max type and 

GRHVQ¶W�KDQGOH�RXWOLHUV�SURSHUO\��$OVR� existing algorithms have limited capability to find clusters of varied densities. 

Generally, clusters found in subsets of dimensions are of the same density. This might cause few redundant data points 

to be included in a cluster or some relevant points left out from the cluster.  

 

The above reasons draw the motivation for developing a new subspace clustering algorithm. This paper is an 

extended version of work presented in (Agarwal & Mehta, 2019b). In previous work (Agarwal & Mehta, 2019b), the 

subspace algorithm presented is integrated with a differential evolution algorithm. However, the algorithm gets stuck 

in local solutions due to its limited capability to explore the complete search space. Also, it lags in maintaining a 

judicious balance of exploration and exploitation. One of the reasons is that the parameters of DBSCAN are not well 

found. These shortcomings are taken care in the presented work. Thorough analysis of the results and statistical 

analysis substantiates the performance of S_FAD with respect to  subspace_DE (subspace with differential evolution) 

(Agarwal & Mehta, 2019b) and other subspace clustering variants. 



 In this work a hybrid meta-heuristic subspace clustering algorithm named S_FAD is proposed. In S_FAD, 

a self-tuned DBSCAN algorithm is used to perform clustering. It begins clustering with one-dimensional data, once 

clusters in each dimension are formed, their details are stored in the hash table. S_FAD uses the concept of hashing 

for finding maximal subspace clusters. In each maximal subspace, DBSCAN algorithm is executed to form clusters. 

It employs a bottom-up subspace search method to determine subspaces. The self-tuned version of the DBSCAN 

algorithm is introduced in this work, wherein input parameters of the DBSCAN algorithm are automatically 

determined based on the dataset. This is achieved by a hybrid meta-heuristic algorithm named as FAD 

algorithm(Agarwal & Mehta, 2019a). The FAD is a combination of flower pollination, artificial bee colony, and 

differential evolution algorithm (named ABC_DE_FP in (Agarwal & Mehta, 2019a)). Experimentally it is observed 

that the S_FAD algorithm can find clusters up to 6400-dimensional dataset. It overcomes the shortcomings of the 

bottom-up approach by automatically determining the optimized parameters suitable for a given dataset. It is 

successful in determining the overlapping subspace clusters. Also, the algorithm does not need any parameter priory 

such as the number of clusters or number of subspaces. S_FAD eliminates duplicate subspaces by determining the 

maximal subspaces through hashing. It obtains all possible clusters where each data point participates. Along with it, 

S_FAD does not normalize the original dataset as done by most of the subspace clustering algorithms and finds 

arbitrary shaped clusters of varied densities. 

Performance of S_FAD is evaluated on standard artificial and actual datasets and compared with various conventional 

subspace clustering algorithms. Evaluation parameters for assessing the performance of the S_FAD algorithm are 

F_Score and rand_index. Using F_Score and rand_index, S_FAD is judged on the following measures: a)Average 

ranking, b) Success rate ratio ranking, c) Wilcoxon signed-rank test, d) Scalability in terms of dimensions. Results 

demonstrate that the proposed algorithm (S_FAD) is able to handle the challenges of subspace and high dimensional 

clustering considerably.  

The paper is organized under various sections. Section 2 describes the proposed algorithm in detail along with 

pseudocode. The experimental setup is depicted in section 3. Section 4 shows experimental results and the analysis of 

algorithms. Section 5 finally concludes the paper. 

 

2. Subspace Clustering in High Dimensional Data 

Clusters in high-dimensional data are mostly present in low dimension data. These dimensions may vary from cluster 

to cluster. Hence subspace clustering plays an important role in performing clustering in high dimensional data. 

Algorithms on subspace clustering explore the subspaces existing in datasets with two different search techniques 

(Parsons et al., 2004). These are top-down and bottom-up subspace search methods. The top-down approach is an 

iterative method that starts by finding clusters with full dimensions assuming all dimensions are of equal weights. 

Thereafter, according to the clusters formed, each dimension is allotted a certain weight. The modified weights of 

dimensions are used in the successive iteration for generating new clusters. The most crucial input parameter is the 

size of subspaces which is difficult to determine at an early stage. This approach has the drawback of finding disjoint 

subspaces of equal size. Some top-down-based search algorithms (Parsons et al., 2004) are PROCLUS, FINDIT, 

ORCLUS, etc. The bottom-up search method starts clustering from a single dimension. It follows the Apriori principle 

to reduce the search space. Only those dimensions containing dense units participate in the formation of higher 

subspaces. This approach finds overlapping clusters and subspace clusters of arbitrary shape. Input parameters used 

in this approach are density threshold and grid size. CLIQUE, DOC, etc. are subspace algorithms of a bottom-up 

approach. 

2.1 Proposed Algorithm (S_FAD) 

A novel density-based meta-heuristic subspace clustering algorithm is proposed for clustering high-dimensional data. 

The naming convention provided to this algorithm is S_FAD (subspace FAD) for ease of representation and 

comparison. S_FAD algorithm is inspired by (Kaur & Datta, 2015) and uses a bottom-up strategy of subspace 

clustering (Parsons et al., 2004) which is based on the Apriori principle (Agrawal et al., 1996). Accordingly, the data 

points that do not participate in lower-dimensional clustering are eliminated from high dimensional subspace 

clustering 

As shown in Figure 1, the algorithm begins by performing clustering on each attribute of the dataset (taking all tuples) 

using a self-tuned DBCAN algorithm (explained in the next subsection). Prior to clustering, every data point is allotted 



a large unique arbitrary integer named as the signature. In the S_FAD, this signature is considered as 15 digits natural 

number generated randomly for each record/tuple in the dataset. The signature of a cluster is the sum of signatures of 

data points belonging to the cluster. The large number is considered to avoid identical signatures of clusters. Cluster 

signatures act as the key to the hash table.  The clustered data points with summation of signatures (of respective data 

points) and dimensions are noted in the hash table. The signature of dense points forms the search key of the hash 

table. If any entered signatures in the hash table are the same then attributes are combined in a single entry as shown 

in figure 2. (Signatures are merely used to match the same clusters formed in the various attributes. Instead of matching 

each data point, signatures are matched.) This step ensures that attributes merged are part of the same subspace. 

Thereafter rows with the same subspaces/dimensions in the hash table are merged. Thus, relevant maximum subspaces 

are created with dense points. Thereafter, clustering in each subspace is performed to find dense units by a self-tuned 

DBSCAN algorithm. Final clusters in high-dimensional datasets are obtained in each subspace. 

 

 
Figure 1: Clustering in Single Dimensional Data 

 



 

Figure 2: S_FAD Algorithm 

 

Pseudocode of the S_FAD is presented in Algorithm 1. Assume a given dataset is X with m tuples and n attributes 

represented as {d1, d2, d3,...,dn).   
Algorithm 1 (S_FAD) 

Randomly generate m large integers (each of 15 digits) called signatures and map them to every data point. 

Initialize a clear hash table with columns as the sum of signatures sum, set of dense points D, and subspace S.  

H = {sum, D, S} 

For every dimension j of dataset X 
Run self-tuned DBSCAN algorithm with its parameters extracted from FAD. 
Add each clustered data point D (formed from step 4) and their respective sum of signatures sum(D) to cell 

array (data structure) DU. 

DU = {sum(D), D} 

For all entries of DU 

if any key of hash table H.hx==sum     //(hx, hy, hz are entries of hash table) 

add j dimension to subspace S of a hash table in row hx.S 

else 

adda new row in hash table H as{sum, D, j} 

end if  

end for 

end for  

for all rows of hash table H as{hx, hy, hz�«` 
if subspaces of some entries are the same i.e. hx.S== hy.S== hz�6  « 

append dense points D of hy.D, hz�'«�WR�Kx.D 

end if 



end for  

for every entry hx of hash table H 

Execute a self-tuned DBSCAN algorithm with its parameters extracted from FAD. 
end for 
Return clusters of maximal subspaces 

2.2 Self-tuned DBSCAN using FAD 

 

 In the proposed algorithm, the DBSCAN (Density-based spatial clustering of applications with noise) 

algorithm is used to perform clustering in each dimension of the data as well as in maximal subspaces formed in a 

hash table. The advantage of the DBSCAN algorithm over the partition-based algorithm (Fahad et al., 2014) is that it 

has the ability to find clusters of arbitrary shapes and detect noisy points. Moreover, it clusters the datasets even 

without any former information of a number of clusters. Two input parameters used in the DBSCAN algorithm are 

HSVLORQ��İ� and 0LQ3WV��Ĳ���İ is the distance measured between two points to form a neighbourhood. MinPts is the 

minimum number of points to form a cluster in the neighbourhood of any points within İ distance. The efficacy of the 

DBSCAN algorithm largely depends on the input parameters İ and MinPts. These are the sensitive parameters that 

vary from data to data and are hard to determine priory. Thus, with respect to datasets, the optimized values of these 

parameters are determined by a proposed meta-heuristic algorithm named FAD algorithm. Hence DBSCAN is named 

here as self-tuned DBSCAN as parameters are self-tuned in the algorithm.  

 FAD is a swarm intelligence based algorithm which is an amalgamation of flower pollination (FP)(X.-S. S. 

Yang, 2012), artificial bee colony algorithm (ABC)(Karaboga & Basturk, 2007), and differential evolution (DE) 

(Storn & Price, 1997) algorithm. FAD is a name given to the binary version of ABC_DE_FP algorithm (Agarwal & 

Mehta, 2019a) which was developed for a continuous optimization problem. It was established that ABC_DE_FP 

performed better as compared to existing meta-heuristic algorithms (Agarwal & Mehta, 2019a) on complex 

benchmark functions. Hence binary version of the algorithm is developed to optimize the parameter values of the 

DBSCAN algorithm i.e., Minpts and İ. 
 The FAD algorithm encodes each individual of the population in binary form. Each individual represents 

MinPts in bit string format (Karami & Johansson, 2014). (Since MinPts represent a discrete value hence binary version 

is applied instead of continuous version). 7KH�QXPEHU�RI�GLPHQVLRQV�µD¶�LV�WKH�QXPEHU�RI�ELWV�UHTXLUHG�WR�UHSUHVHQW�D�
decimal number (MinPts).  In FAD, the population of individuals is randomly initialized. Each individual represents 

the food source. The fitness of the food source is computed through an objective function. Here purity (shown in 

Equation 1 is the objective function used to get the best values of MinPts and İ. Purity is an external validation criterion 

for measuring the quality of clusters formed. Higher the purity, better the Minpts and ߝ. To compute purity, the most 

frequent class in a cluster is assigned to that cluster. Thereafter, the correctness of the class assignment to a cluster is 

determined by counting the number of data points assigned appropriately divided by a total number of points in the 

GDWDVHW�µN¶� 

ݕݐ݅ݎݑ݌     ൌ
σ ౣ౗౮భಬ೔ಬ೗ሺ೎೗ೌೞೞ೔ת��೎೗ೠೞ೟೐ೝೕሻೖ

ೕసభ
ಿ            (1) 

 

Where k is the actual cluster number, ith is the class already defined in the dataset and jth is the cluster formed from the 

clustering algorithm. The numerator term of Equation 1 signifies that jth cluster has a majority of data points of ith class 

such that ith class is assigned to jth cluster. 

 The working of FAD algorithm is divided into three phases: Employed bee, onlooker bee, and scout bee. In 

the employed bee phase, each food source is updated with mutation (Equation 2) and crossover strategies (Equation 

3) of differential evolution algorithm: 

௜ݒ      ൌ � ௔ݔ ൅ Ǥܨ ሺݔ௕ െ  ௖ሻ     (2)ݔ

Where ݒ௜ is the mutant food source, i ����«1��[a, xb, and xc are all distinct initial (target) food sources of the same 

population such that xa, xb, xc א N. Also, i is different from a, b and c. F is a scaling factor. In the present algorithm, F 

is randomly generated between the uniform distribution range betamin and betamax. Crossover is performed on mutant 

and target food source. New food source generated is called trial food source ݑ௜௝.  



௜௝ݑ    ൌ ቊ
௜௝ǡݒ ሾͲǡͳሿ݀݊ܽݎ�݂݅� ൑ ݆�ݎ݋�ݎܥ ൌൌ ݆௥௔௡ௗ
௜௝ǡݔ ݁ݏ݅ݓݎ݄݁ݐ݋�       (3) 

 

Where j is the selected index of dimension D, jrand is randomly chosen index from 1 to D. This is made to ensure that 

resultant vector uij receive the minimum single mutant vectorݒ�௜௝ . Cr is the rate of crossover which controls the choice 

of target or mutant vectors. Fitness of the updated solution is computed in the form of purity. If the purity value (fitness 

value) of the new solution is better than solution is updated in the population else its trial value is incremented by 1. 

Trial represents a counter maintained for each food source in the population. If a food source gets updated in the 

population, then its respective trial is reset to 0 else it is incremented. After the employed bee phase, food sources are 

updated in the onlooker bee phase. In this phase, the global and local search of food sources is controlled by switch 

probability p. Global search is made through the global pollination process of flower pollination algorithm (using 

Equation 4)  

௜ݔ    
௧ାଵ = ݔ௜

௧ + L (ݔ௜
௧ � െ�  (4)        (כ݃

Where ݔ௜
௧ is the ith food source at tth generation, ݃כ is the current best food source and L is a levy flight distribution 

given in (Pavlyukevich, 2007; X. S. Yang, 2012). If the algorithm switches to the local search process, then the 

mutation strategy of DE given in Equation 2 is applied. Thereafter crossover technique of DE given in Equation 3 is 

applied to obtain the new food source. If the fitness of the food source is improved then it is updated in a population 

otherwise its trial counter is incremented. Food sources with the highest fitness value (nectar amount) are memorized. 

If the trial counter of any food source outstrips the Limit value, then that particular food source is discarded and the 

scout bee explores for a new food source. The process continues unless the termination condition is satisfied. Here 

termination condition is maximum iterations.  

 

For calculating the fitness value of any food source, ߝ�is calculated using respective Minpts. Epsilon value �İ�� LV�
determined analytically (Daszykowski et al., 2001) from Minpts and data matrix x using the following Equation 5: 

ݏ݌ܧ   ൌ ቆሺς ௜ሻכ௞כ௰ሺ଴Ǥହ௡ାଵሻౣ౗౮ሺೣሻషౣ౟౤�ሺೣሻ
೔సభ

௠ξగ೙ ቇ
ଵȀ௡

           (5) 

Where m is the number of tuples and n is the dimension of each tuple of data matrix x. k is the MinPts, ߁ is a gamma 

function which generalizes the factorial of a given argument. 

FAD algorithm initializes the following input parameters: 

x Iterations- Number of times each individual is updated by an algorithm. 

x D- Number of bits used to represent MinPts.  

x N- Population size 

x betamin, betamax- Range of solution 

x Trial- a counter incremented when a solution does not improve 

x Limit- threshold value for calling scout bees (randomly initializing individual) 

x p- switch probability for selecting local and global search 

The flowchart of FAD is shown in figure 3. In DE, there are only two update functions of chromosomes i.e. mutation 

and crossover. While in FAD, there are three phases where mutation and crossover are used for exploitation, levy 

flight distribution is used for exploration. These steps in FAD algorithms helps in maintaining an appropriate balance 

between the local and global search and hence give better results as compared to DE. 

 

 
 
 
 



 
 Figure 3: FAD Algorithm 

 

 

3. Experimental Setup 



 The proposed algorithm (S_FAD) is compared with various well-known subspace clustering algorithms on 

actual as well as artificial datasets. Existing subspace algorithms (Emmanuel Müller et al., 2009) compared are 

SCHISM (Sequeira & Zaki., 2004), CLIQUE (Road & Jose, 1998), MINECLUS (Yiu & Mamoulis, 2003), DOC 

(Procopiuc, 2002), INSCY(I. Assent et al., 2008), SUBCLU (Kailing et al., 2004), FIRES(H.-P. Kriegel et al., 2005), 

P3C (Moise et al., 2006), PROCLUS (Aggarwal et al., 1999), and STATPC (Moise & Sander., 2008). S_FAD is also 

compared with the subspace clustering algorithm given by (Kaur & Datta, 2015) called SUBSCALE algorithm and 

(Agarwal & Mehta, 2019b) named SUBSPACE_DE. Conventional subspace clustering algorithms are implemented 

on an extended WEKA toolbox provided by (E Müller et al., 2009). This toolbox provides space for executing various 

subspace clustering algorithms. S_FAD, SUBSCALE, and SUBSPACE_DE algorithms are implemented on 

MATLAB R2013a. Evaluation metrics, parameter setting and dataset description used for comparison are described 

in subsections. 

 

3.1 Evaluation Metrics 

 

 

 Performance evaluation of the proposed algorithm (S_FAD) against various subspace clustering algorithms 

is made through classification. The true cluster labels (T) for data items in each dataset are already known. Each 

algorithm predicts the label for each data item in the dataset. Predicted and true labels for each data item in the dataset 

form a confusion matrix. This confusion matrix helps in determining various evaluation measures of clustering. In this 

study, evaluation measures used for testing the performance of S_FAD against various subspace algorithms are 

rand_index and F_Score. Subsequently average ranks and success rate ratio ranks are computed using F_Score and 

rand_index. Evaluation measures employed are briefly described as below: 

x Rand index- It is the evaluation measure for determining the quality of clusters formed by the clustering algorithm. 

It is defined by the ratio of correctly labelled data items to the total number of data items. Higher the rand_index, 

betters the algorithm. A good clustering algorithm predicts the cluster that best portrays the true cluster and thus 

SRVVHV¶�KLJK-quality clusters. 

x F Score- This measure defines that the predicted cluster should cover maximum data items from the true cluster 

and minimum items from other clusters (Emmanuel Müller et al., 2009). F_Score is expressed in Equation 6: 

 

݁ݎ݋ܿݏ�ܨ     ൌ ଵ
௠

σ ଶכ௥௘௖௔௟௟ሺ்೔ሻכ௣௥௘௖௜௦௜௢௡ሺ்೔ሻ
௥௘௖௔௟௟ሺ்೔ሻା௣௥௘௖௜௦௜௢௡ሺ்೔ሻ

௠
௜ୀଵ      (6) 

 

ZKHUH�µm¶�LV�WKH�QXPEHU�RI�WUXH�FOXVWHUV���+LJK�SUHFLVLRQ�FRUUHVSRQGV�WR�WKH�OHDVW�QXPEHU�RI�LWHPV�IURP�another 

cluster while high recall signifies maximum coverage of items from the true cluster. High F_Score denotes good 

clustering quality.  

x Average ranks- Average ranking is the primitive and simple method to rank algorithms. This ranking is defined 

in (Brazdil & Soares, 2000). According to this method, the rand_index and F_Score defined for each dataset by 

every algorithm are sorted and assigned the ranks. It is worth noting that the F_Score and rand_index  are treated 

independently while ranking the algorithms. The algorithm possessing the highest value will be assigned rank 

1,the second-highest will be assigned rank 2, and so on for each dataset independently. Thereafter, the overall 

average rank of each algorithm is computed by taking the mean of ranks on all datasets. Let us consider ݎ௝
௜  be the 

݆௧௛ algorithm rank for ݅௧௛ GDWDVHW��7KH�DYHUDJH�UDQN�RI�HDFK�DOJRULWKP�RQ�WRWDO�µn¶�GDWDVHWV�LV�FRPSXWHG�XVLQJ�the 

following Equation 7: 

௝ݎ      ൌ
σ ௥ೕ

೔೙
೔సభ

௡
      (7) 

x Success Rate Ratio Ranks (SRR)- SRR is a ranking method where the ratio of success rates is considered between 

the pairs of algorithms (Brazdil & Soares, 2000). This method is useful in estimating the magnitude of difference 

in rand_index (RI) obtained by algorithms. Also, this method aids in determining the significant differences in 

algorithms. If the difference is not significant then the success rate ratio is close to 1. SRR ranking starts by taking 

one algorithm and one dataset at a time and calculating its rand_index ratio with the rest of the algorithms. This 

ratio is computed by following Equation 8: 



ܴܵ ௝ܴǡ௞�ǡ௝ஷ௞
௜ ൌ

ோூೕ
೔

ோூೖ
೔       (8) 

:KHUH�µi¶�LV�WKH�GDWDVHW��µj¶�LV�WKH�DOJRULWKP�IRU�ZKLFK�VXFFHVV�UDWH�LV�calculated DQG�µk¶�LV�WKH�FRPSDUHG�DOJRULWKP�
different from µj¶. In this way, the success rate ratio is computed for the algorithm µM¶�with respect to algorithm 

µk¶�RQ�ith dataset. Similarly, SRR is computed for all datasets taking the same pair of algorithms. Thereafter, SRR 

for all datasets are added so as to obtain an overall SRR ratio for the given pair of algorithms using the following 

Equation 9: 

    ܴܵ ௝ܴǡ௞�ǡ௝ஷ௞ ൌ
σ ௌோோೕǡೖ�ǡೕಯೖ

೔೙
೔సభ

௡
     (9) 

:KHUH� µn¶� LV� WKH� QXPEHU� RI datasets. In this way, the success rate of the algorithm µM¶� is computed over the 

DOJRULWKP�µk¶��6LPLODUO\��the success rate of the DOJRULWKP�µj¶ is computed over each of the left algorithms. After 

computing the success rate ratio for all datasets and summing them, the mean success rate ratio is calculated for 

DQ�DOJRULWKP�µj¶�XVLQJ�the following Equation 10: 

    ܴܵ ௝ܴ ൌ
σ ௌோோೕǡೖ�ǡೕಯೖೖ

௠ିଵ
     (10) 

:KHUH� µm¶� LV� the total number of compared subspace algorithms. In this way, SRR for each algorithm on all 

datasets is computed and ranked in descending order as the higher the rand_index or F_Score, the better the 

algorithm.  

 

3.2 Parameter Tuning  

 

 Parameter values used in the S_FAD algorithm are shown in Table 1.  Values of these parameters are decided 

after replicating many experiments. The best values are chosen on the basis of an DOJRULWKP¶V�SHUIRUPDQFH�� 
 

Table 1: S_FAD Parameter Settings 

Parameter Values 

Signature 15 digit number 

Crossover(cr) 0.25 

[betamin, betamax] [0.2,0.8] 

Switch probability(p) 0.7 

Limit Population Size* number of decision  variables 

D 8 

The two other parameters used in the FAD algorithm are population size and iterations. These parameters are tuned 

by repeating the set of experiments on datasets. Population size and the number of iterations are decided by fixing any 

one component and varying the other. Table 2 to Table 5 depict the parameters for the best population size and iteration 

value to be selected for further experiments of the S_FAD algorithm. Datasets used for tuning the parameters are 

µ'��¶�artificial GDWDVHW�DQG�µVKDSH¶�actual dataset of 50 and 17 dimensions respectively. 

 

Table2:Varying population size with 10 iterations (for artificial dataset) 
Population 10 20 30 40 50 

F_Score 0.46 0.71 0.61 0.78 0.61 

Rand_index 0.77 0.92 0.87 0.94 0.88 

 

Table 3:Varying Iterations with 40 population size (for artificial dataset) 
Iterations 10 20 30 40 50 100 

F_Score 0.78 0.85 0.82 0.82 0.80 0.82 

Rand_index 0.94 0.97 0.95 0.95 0.95 0.96 



Table 4:Varying population size with 10 iterations (for actual dataset) 
Population 10 20 30 40 50 

F_Score 0.29 0.37 0.46 0.47 0.47 

Rand_index 0.4 0.59 0.71 0.72 0.71 

 

Table 5: Varying Iterations with 40 population size (for actual dataset) 
Iterations 10 20 30 40 50 100 

F_Score 0.47 0.52 0.46 0.51 0.48 0.5 

Rand_index 0.72 0.78 0.71 0.76 0.72 0.75 

 

Tables 2 and 3 correspond to the parameter tuning on an artificial dataset. It is perceived from Table 2 that for the 

population size of 40, the algorithm shows better rand_index and F_Score. Using population size as 40, Table 3 depicts 

variation in iterations. 20 iterations on the artificial dataset are selected for further experiments. In the case of the 

actual dataset (assume shape dataset), S_FAD¶V�performance variation in population size is shown in Table 4. It is 

observed that the algorithm perform better for 40 population size. Adopting this population size, variation in iterations 

is shown in Table 5. 20 iterations on the actual dataset are selected for further experiments. For the ease of 

implementation on higher-dimensional datasets (500 and above dimensions) (Bache & Lichman, 2006), population 

size is assumed to be 10 with 20 iterations.  

 Parameter values of other compared algorithms are obtained from their respective work. For SUBSCALE 

algorithm, parameter values are taken from the RULJLQDO�DXWKRU¶V�ZRUN�(Kaur & Datta, 2015). Set of parameter values 

for existing subspace clustering algorithms are defined in (E Müller et al., 2009). 

 

3.3 Dataset Description 

 

In order to establish the efficacy of the S_FAD algorithm against various subspace clustering algorithms, it 

is evaluated on artificial and actual datasets. The description of datasets is shown in Table 6 and Table 7. Artificial 

datasets used in this research work are composed of 10 to 75 dimensions. These datasets are used in work (Emmanuel 

Müller et al., 2009). Table 6 (also used in (Agarwal & Mehta, 2019b)) gives the name of artificial datasets along with 

their size. Real datasets used in this research work are divided into two categories: small dimensions and high 

dimensions.  These datasets are the standard datasets and have been used by various researchers for evaluation of the 

algorithm¶s performance (I. Assent et al., 2008; Moise & Sander., 2008; Sequeira & Zaki., 2004).  Table 7 depicts the 

number of dimensions and instances of each actual dataset used in experiments. The maximum dimensional dataset 

evaluated by S_FAD is DrivFace with 6400 attributes. 

 

Table 6: Description of Artificial Datasets  
Dataset Dimensions Records No. of clusters 

D10 10 1596 11 

D15 15 1596 11 

D20 20 1596 11 

D25 25 1596 11 

D50 50 1596 12 

D75 75 1596 12 

Table 7: Description of Actual Datasets 



 
4. Results and Analysis 

 

Thorough experiments are carried out for evaluating the performance of the proposed algorithm (S_FAD) on 

small and high dimensional datasets. S_FAD takes 30 independent runs on small dimensional datasets and the mean 

value is considered for comparison. For high-dimensional datasets (Madelon, Micromass, Gissette, and Drivface), 10 

independent runs of S_FAD are considered due to hardware limitations. F_Score and rand_index of various 

conventional algorithms except for SUBSCALE and SUBSPACE_DE are obtained by re-implementing on the 

extended WEKA framework provided by (E Müller et al., 2009). While S_FAD, SUBSCALE and SUBSPACE_DE 

are implemented on Matlab.  

 In order to explore the experimental outcome, this section is comprised of two subsections: section 5.1 

illustrates the comparison of S_FAD algorithm with various conventional subspace algorithms on different datasets. 

Section 5.2 depicts results of S_FAD on high-dimensional actual datasets.  

 

4.1 Comparison of Proposed Algorithm (S_FAD) with Conventional Subspace Clustering Algorithms  

 

Figure 4 and 5 depict the actual values of S_FAD and conventional subspace clustering algorithms for rand_index and 

F_Score respectively on artificial datasets. In these figures,  results of conventional subspace clustering algorithms are 

adapted from (Agarwal & Mehta, 2019b; Emmanuel Müller et al., 2009). It can be observed from Figure 4 that S_FAD 

attains more than 90% accuracy on the majority of artificial datasets. On small dimensions i.e. D10 dataset S_FAD 

gives better performance than all existing algorithms except SCHISM where it lags by approximately 4%. On the D15 

dataset, percentage enhancement in the accuracy of S_FAD is much higher than percentage decrease from DOC 

(approximately 5%) and SCHISM (approximately 4%). S_FAD lags by 4% only from INCY while superior to all 

other algorithms for D20. On the D25 dataset, S_FAD depicts better performance than compared algorithms except 

for MINECLUS and SCHISM where percentage lag is by 8% and 2% respectively.  On D50 and D75 dimensions, S-

FAD outperforms all algorithms in terms of rand_index. SCHISM and INSCY algorithms are capable of achieving 

good rand_index but fail to provide results for 50 and 75-dimensional datasets. A similar kind of trend is exhibited on 

F_Score which is shown in Figure 5.  

 



 
Figure 4: Rand_index of algorithms on artificial datasets 

 

 
Figure 5: F_Score of algorithms on artificial datasets 

 
Figure 6 and 7 shows the results of proposed algorithm against various conventional algorithms on liver disorder, 

glass, diabetes, shape, breast and vowel datasets in terms of rand_index and F_Score respectively. It can be witnessed 

from Figure 6 that the proposed algorithm (S_FAD) gives similar or better performance as compared to other various 

subspace clustering algorithms. For the glass dataset, S_FAD lags by 7.1% total from CLIQUE, SUBCLU, and INCY, 

while enhances by overall 171.3% from the rest of the algorithms. On the Diabetes dataset, S_FAD gives a comparable 

performance. It improves by overall 33.2% and worse by 6.9%. For the liver disorder dataset, S_FAD outperforms all 

other subspace clustering algorithms in terms of rand_index. For breast cancer and shape dataset, performance is very 

much similar to other algorithms. In the vowel dataset, S_FAD total percentage enhancement is much higher than 

total percentage decrement (11% from CLIQU, SCHISM, INSCY). For the pendigits dataset, S_FAD remains near to 



the best performing algorithm. It can be witnessed from the above observation that though S_FAD does not outperform 

on all actual dataset; however, the average percentage enhancement of the algorithm is much higher than average 

percentage decrement. Thus, S_FAD performs above average on actual datasets. Analysis for F_score  is similar to 

that of rand_index.  

 

 
Figure 6: Rand_index of algorithms on actual datasets 

Figure 7: F_Score of algorithms on actual datasets 
 



It can be noticed that SUBCLU could not cope with pendigits dataset as the dataset has 7494 instances. Thus, it 

can be concluded that in the terms of F_Score and rand_index, S_FAD gives a good performance as compared to other 

subspace clustering algorithms.  

In order to further establish the results, two well-recognized ranking methods - F_Score and rand_index are 

used for analysis (Brazdil & Soares, 2000). Also, the statistical significance of algorithms is portrayed using a 

Wilcoxon signed-rank test. The subsections included in this section are as follows. Section 4.1.1 depicts the average 

ranking of algorithms on artificial and actual datasets, section 4.1.2 shows the success rate ratio ranking of algorithms, 

section 4.1.3 describes Wilcoxon signed-rank test and final section 4.1.4 illustrates the scalability of S_FAD in terms 

of data dimensionality. 

 

4.1.1 Analysis on Average ranking 

The average ranking of S_FAD and various existing subspace algorithms on artificial datasets and actual datasets are 

computed independently based on F_Score and rand_index. Table 8 presents the average ranking of subspace 

algorithms on rand_index and F_Score values for artificial datasets (depicted in Figures 4 and 5). S_FAD attains the 

first rank based on both rand_index and F_Score. SCHISM occupies the second rank in terms of rand_index. Based 

on F_Score, DOC occupies the second rank which belongs to cell-based category. It can be concluded from the above 

analysis that next to S_FAD, cell-based algorithms depict approximately similar performances on artificial datasets 

while clustering-oriented-based algorithms occupy ranks in second-half positions (i.e. after 5th position). 

Table 9 represents the average ranking of subspace algorithms on actual datasets in connection with rand_index and 

F_Score. CLIQUE algorithm is a winning algorithm based on rand_index but in terms of F_Score, it stands in the 

third last position. However, S_FAD gives a very consistent behaviour and holds on the second position concerning 

both rand_index and F_Score. MINECLUS depicts the first and fifth positions with respect to F_Score and rand_index 

respectively. It can also be observed that two cell-based algorithms i.e., CLIQUE and MINECLUS depict extreme 

performance whereas S_FAD is consistent. Additionally, except for these two cell-based algorithms (CLIQUE and 

MINECLUS), none of the subspace algorithms gives good performance in connection with rand_index and F_Score. 

Thus, S_FAD shows sufficiently better results for both measures. 

Table 8: Average rank of algorithms on artificial datasets      Table 9: Average rank of algorithms on actual datasets 

  Rand_index F_Score 

S_FAD 1 1 

SCHISM 2 9 

INSCY 3 7 

SUBSPACE_DE 4 3 

FIRES 5 4 

SUBSCALE 6 8 

MINECLUS 7 5 

DOC 8 2 

P3C 9 10 

PROCLUS 10 5 

StatPC 11 11 

   

 
Rand_index F_Score 

CLIQUE 1 11 

S_FAD 2 2 

DOC 3 4 

SCHISM 3 8 

MINECLUS 5 1 

INSCY 5 5 

STATPC 7 6 

PROCLUS 8 7 

SUBCLU 9 10 

SUBSPACE_DE 10 3 

SUBSCALE 11 9 

P3C 12 12 

FIRES 13 13 

4.1.2 Analysis of Ranking on Success Rate Ratios 

 

 Success rate ratio (SRR) ranks of S_FAD and other existing subspace clustering algorithms are calculated on 

artificial and actual datasets. Table 10 depicts the SRR rank of all subspace algorithms concerning rand_index and 



F_Score on artificial datasets. It can be seen that the S_FAD wins the among various subspace algorithm and stands 

at the first position. The second position is occupied by SUBSPACE_DE with respect to rand_index and F_Score. 

These results indicate that density-based algorithms win over cell-based and clustering-oriented based algorithms. 

 
      Table 11: SRR Rank of Algorithms on Actual Datasets 
Table 10:SRR Rank of Algorithms on Artificial 
Datasets 

  Rand_index F_Score 

S_FAD 1 1 

SUBSPACE_DE 2 2 

FIRES 3 5 

SUBSCALE 4 7 

DOC 5 3 

MINECLUS 6 4 

P3C 7 10 

PROCLUS 8 6 

SCHISM 9 9 

INSCY 10 8 

STATPC 11 11 

  Rand_index F_Score 

S_FAD 4 5 

CLIQUE 1 10 

SCHISM 2 8 

INSCY 3 1 

STATPC 5 7 

SUBSPACE_DE 6 6 

DOC 7 3 

PROCLUS 8 4 

MINECLUS 9 2 

SUBCLU 10 11 

P3C 11 12 

FIRES 12 13 

SUBSCALE 13 9 

Table 11 depicts the ranking of various subspace algorithms based on the success rate ratio on actual datasets. 

S_FAD stands at the fifth and fourth position corresponding to F_Score and rand_index respectively. Conversely, its 

average rank is 2. The reason for such difference in average and SRR ranks is that S_FAD could not perform very 

well for few low dimensional datasets like pendigits, shape, and vowel. However, S_FAD gives a consistent 

performance as its ranks are approximately the same for rand_index and F_Score. The performances of CLIQUE, 

MINECLUS, DOC, PROCLUS, INSCY vary largely to rand_index and F_Score. CLIQUE algorithm holds the first 

position and gives the highest rand_index but at the same time, it gives poor F_Score on actual datasets. Whereas 

S_FAD that gives a comparable performance for both rand_index and F_Score on actual datasets.  

Also, it has been observed from the analysis that the overall percentage enhancement of S_FAD is better as 

compared to the percentage decrease from other subspace clustering algorithms. Thus, it can be concluded that S_FAD 

overall presents considerably good efficacy, better consistency, and reliability in view of rand_index and F_Score for 

the majority of small dimensional datasets. S_FAD is a hard subspace clustering algorithm that performs clustering 

on high-dimensional datasets (shown in section 5.2). The next section discusses the statistical significance of obtained 

results using the Wilcoxon signed-rank test. 

 

4.1.3 Statistical Significance of Results of proposed Algorithm (S_FAD) vs. Other Subspace Clustering 

Algorithms 

 

 To further strengthen the performance of S_FAD over conventional subspace clustering algorithms, a 

statistical hypothesis test is performed. This test is used to establish the statistical significance of results obtained 

through experiments. The test starts with the null hypothesis H0 and alternative hypothesis H1. These two hypothesis 

claims as follows: 

H0 = results of compared algorithms are statistically the same 

H1 = results of compared algorithms are statistically not the same 

For the problem given at hand, it is suitable to use a non-parametric test �'HPãDU������� as there are no assumptions 

on population distribution. Wilcoxon signed-rank statistical test is used to determine the significant difference in 

results obtained by various subspace algorithms on each dataset. It finds the difference, overlooking the signs in 

rand_index and F_Score on artificial and actual datasets. Thereafter, algorithms are ranked and compared considering 

positive and negative differences. The significance level is assumed 5% i.e. the probability of rejecting the null 



hypothesis when it is true is 5%. In this work, the significant difference of S_FAD algorithm with other subspace 

algorithms is determined based on rand_index and F_Score. 

 

x Results of Wilcoxon Signed Rank Test on Artificial Datasets 

 

Tables 12, 13, and 14 show the Wilcoxon signed-rank test of the proposed algorithm (S_FAD) versus density-based, 

cell-based, and clustering-oriented based subspace algorithms respectively on artificial datasets. It is examined from 

Table 12 that S_FAD shows a significant difference from SCHISM on F_Scores.  However, no significant difference 

(H0 TRUE) is obtained in performances of S_FAD versus cell-based algorithms on artificial datasets. This is because 

WKH�YDOXH�RI�SDUDPHWHU�µ:¶ surpasses the critical value of the Wilcoxon signed-rank test. 

Table 13 illustrates the outcomes of the Wilcoxon signed-rank test of S_FAD against density-based 

algorithms. It is observed that for FIRES, SUBSCALE, and SUBSPACE_DE DOJRULWKPV��SDUDPHWHU�µ:¶�LV�HTXDO�WR�
critical value i.e. 0, which means S_FAD outperformed all artificial datasets. Hence, it shows a significant difference 

with respect to these two algorithms. There is no significant difference between the S_FAD and INSCY algorithm 

with respect to rand_index and F_Score. S_FAD shows better results for the majority of datasets. Thus, it can be 

concluded that S_FAD shows overall better performance than existing density-based algorithms. Table 14 represents 

a statistical test of S_FAD against clustering-oriented subspace algorithms. It is observed that S_FAD surpasses 

subspace clustering-oriented based algorithms i.e., P3C, PROCLUS, and, STATPC in regards to rand_index and 

F_Score. It is also seen that W-=0 which means S_FAD outperforms on all datasets and depicts higher rand_index 

and F_Score than clustering-oriented based algorithms.   

 

Table 12:Wilcoxon signed-rank test of S_FAD vs. Cell-based 
  DOC MINECLUS SCHISM 

  Rand_index F_Score Rand_index F_Score Rand_index F_Score 

W+ 20 16 18 18 15 21 

W- 1 5 3 3 6 0 

W (min(W+,W-) 1 5 3 3 6 0 

Critical Value(From Table 
24) 

0 0 0 0 0 0 

Significant Difference H0 TRUE H0 TRUE H0 TRUE H0 TRUE H0 TRUE H0 False 

Table 13:Wilcoxon signed-rank test of S_FADvs. Density-based 
 FIRES INCY SUBSCALE SUBSPACE_DE 

  Rand_index F_Score Rand_index F_Score Rand_in
dex 

F_Score Rand_in
dex 

F_Score 

W+ 15 21 16.5 18 17 21 21 21 

W- 0 0 4.5 3 0 0 0 0 

W (min(W+,W-) 0 0 4.5 3 0 0 0 0 

Critical Value(From 
Table 24) 

0 0 0 0 0 0 0 0 

Significant 
Difference 

H0 False H0 False H0 TRUE H0 
TRUE 

H0 False H0 False H0 False H0 False 

Table 14:Wilcoxon signed-rank test of S_FAD vs. Clustering Oriented 
  PROCLUS P3C STATPC 

  Rand_index F_Score Rand_index F_Score Rand_index F_Score 

W+ 21 21 21 21 21 21 

W- 0 0 0 0 0 0 

W (min(W+,W-) 0 0 0 0 0 0 

Critical Value(From Table 24) 0 0 0 0 0 0 

Significant Difference H0 False H0 False H0 False H0 False H0 False H0 False 

 



x Results of Wilcoxon Signed Rank Test on Actual Datasets 

 

Table 15 shows the statistical significance test in form of the Wilcoxon signed-rank test of S_FAD versus the 

cell-based algorithm on actual datasets. Since the number of actual datasets considered for evaluation is 7 and two-

tailed tests have been employed, therefore critical value (seen from Wilcoxon signed-rank test table) is 2. It has been 

observed that S_FAD shows the statistical difference in results from the CLIQUE algorithm based on F_Score. Since 

W-=0, that means S_FAD performs better on all datasets. For the rest of the cell-based algorithms, S_FAD shows no 

significant difference (H0 TRUE).  

 

Table 15:Wilcoxon signed-rank test of S_FAD vs. Cell-based 
  DOC MINECLUS SCHISM CLIQUE 

  Rand_index F_Score Rand_in
dex 

F_Score Rand_in
dex 

F_Score Rand_inde
x 

F_Score 

W+ 27 11 10 9 16 23 13 27 

W- 7 17 5 19 12 5 15 0 

W (min(W+,W-) 7 11 5 9 12 5 13 0 

Critical Value(From 
Table 24) 

2 2 2 2 2 2 2 2 

Significant Difference H0 TRUE H0 TRUE H0 TRUE H0 TRUE H0 TRUE H0 TRUE H0 TRUE H0 False 

Table 16 demonstrates the Wilcoxon signed-rank test of S_FAD against density-based subspace algorithms on actual 

datasets. S_FAD depicts better performance with respect to F_Score and rand_index against FIRES, SUBCLU, 

SUBSCALE, and SUBSPACE_DE algorithms. While on INSCY, no statistically significant difference is pointed. 

Also for SUBCLU, SUBSCALE, and SUBSPACE_DE algorithms W-=0 which means S_FAD is superior on all 

datasets. 

 

Table 16:Wilcoxon signed-rank test of S_FAD vs. Density-based 
  FIRES INSCY SUBCLU SUBSCALE SUBSPACE_DE 

  Rand_in
dex 

F_Score Rand_in
dex 

F_Score Rand_
index 

F_Score Rand_
index 

F_Score Rand_in
dex 

F_Score 

W+ 27 27 19.5 10 28 28 21 28 21 11 

W- 1 1 8.5 18 0 0 0 0 0 0 

W 
(min(W+,W-) 

1 1 8.5 10 0 0 0 0 0 0 

Critical 
Value(From 
Table 24) 

2 2 2 2 2 2 2 2 2 2 

Significant 
Difference 

H0 False H0 
False 

H0 
TRUE 

H0 
TRUE 

H0 
False 

H0 False H0 
False 

H0 False H0 False H0 False 

Table 17:Wilcoxon signed-rank test of S_FAD vs. Clustering Oriented 
  PROCLUS P3C STATPC 

  Rand_index F_Score Rand_index F_Score Rand_index F_Score 

W+ 22 16 26 24 15 20 

W- 6 12 1 4 6 8 

W (min(W+,W-) 6 12 1 4 6 8 

Critical Value(From Table 24) 2 2 2 2 2 2 

Significant Difference H0 TRUE H0 TRUE H0 False H0 TRUE H0 TRUE H0 TRUE 

Table 17 represents the statistical difference of S_FAD versus clustering-oriented based subspace algorithms. S_FAD 

gives a statistically better rand_index than the P3C algorithm. However, value of :¶ exceeds the critical value of 

PROCLUS and STATPC and hence there is no significant difference in the performance of S_FAD in connection 

with rand_index and F_Score. It is noticeable that W+>W- even if there is no significant difference, that means S_FAD 



is a better performer for clustering-oriented based algorithms. From the above discussions, it can be established that 

S_FAD performs considerably superior to the majority of algorithms on most of the datasets.  

 

4.1.4 $OJRULWKP¶V�6FDODELOLW\�$QDO\VLV 

Scalability of algorithms means the performance of algorithms with increasing dimensions of data. Scalability could 

be shown only on artificial datasets as these datasets have the same number of instances with varied attributes.  In this 

work, scalability has been shown with respect to both rand_index and F_Score. The scalability of S_FAD versus cell-

based is shown in Figures 8 and 9 respectively. The scalability is represented in terms of rand_index/F_Score (y-axis) 

on data dimensionality (x-axis). It has been scrutinized that the proposed algorithm (S_FAD) depicts comparable 

performance from 10 to 25 dimensional datasets while it gives better performance on 50 and 75 dimensional datasets. 

DOC and MINECLUS reveal random behaviour with an increase in dimensionality. Figures 10 and 11 show the 

scalability of S_FAD on density-based algorithms. INCY performed very well with 25-dimensional dataset, however, 

an algorithm could not handle higher dimension dataset. S_FAD takes the lead on the 50 and 75 dimensional dataset. 

The scalability of S_FAD versus clustering-oriented based algorithms is depicted in figures 12 and 13. S_FAD gives 

better results in almost all datasets against clustering-oriented algorithms like STATPC, P3C, and PROCLUS.  

Figure 8: Scalability of S_FAD vs. Cell based on Rand_index  Figure 9: Scalability of S_FAD vs. Cell based on F_Score 

 
Figure 10: Scalability of S_FAD vs. density based on Rand_index  Figure 11: Scalability of S_FAD vs. density based on F_Score 



Figure 12: Scalability of S_FAD vs. clustering oriented on RI       Figure 13: Scalability of S_FAD vs. clustering oriented on F_Score 
 

Thus, S_FAD shows a good sign of improvement with scalability on data dimensionality as compared to various 

subspace clustering algorithms. The next section illustrates the performance of S_FAD on very high dimensional 

datasets. 

 

4.2 S_FAD on High Dimensional Actual Dataset 

 

To validate the efficacy of the proposed algorithm (S_FAD) on high-dimensional data, it is implemented on 

actual datasets with a large number of attributes. It is found that S_FAD is successful in forming subspace clusters on 

high-dimensional datasets. Table 18 and 19 present results in the form of best (maximum), worst (minimum), mean 

(average), median and standard deviation of F_Score and rand_index at 10 independent runs. Other subspace 

clustering algorithms could not cope up with high-dimensional datasets. Also, the results of any other clustering 

algorithm are not available on such high-dimensional datasets. SUBSCALE algorithm (Kaur & Datta, 2015) was 

attempted on the MADELON dataset but exact values of results are not revealed in their work. The actual datasets 

included for the study are MADELON, MICROMASS, GISSETTE, and DRIV FACE with 500, 1300, 5000, and 6400 

dimensions respectively.  

  

Table 18: F_Score of S_FAD on high dimensional actual datasets 
 

Dimension Best Worst Mean Median Std. Deviation 

MADELON 500 0.9905 0.9434 0.974 0.9797 0.0165 

MICROMASS 1300 0.8166 0.8141 0.8159 0.8166 0.0008 

GISSETTE 5000 0.5888 0.5668 0.5768 0.5772 0.0087 

DRIVFACE 6400 0.8864 0.8844 0.8852 0.8854 0.0008 

 

Table 19: Rand_index of S_FAD on high dimensional actual datasets 
 

Dimension Best Worst Mean Median Std. Deviation 

MADELON 500 0.9905 0.94 0.9731 0.9795 0.0176 

MICROMASS 1300 0.69 0.6865 0.6891 0.69 0.0012 

GISSETTE 5000 0.4181 0.3972 0.4053 0.4052 0.0077 

DRIVFACE 6400 0.797 0.7937 0.7951 0.7954 0.0012 

 

It is perceived from Tables 18 and 19 that the proposed algorithm (S_FAD) shows a high rand_index on MADELON, 

MICROMASS, and DRIV FACE datasets. In the case of the GISSETTE dataset, the DOJRULWKP¶V� HIILFDF\� LV� ORZ 

because of the sparse dataset. Since the standard deviation is very low, algorithms do not require many independent 

runs for obtaining the best results. 

 

Discussion 



 S_FAD is assessed against 11 subspace clustering algorithms on a total of 13 datasets including actual and 

artificial with respect to rand_index and F_Score. On small dimensions, it is found that the total percentage 

enhancement of S_FAD is higher than the total percentage lag (as compared to other algorithms). Subspace algorithms 

are also ranked on the basis of average ranking and SRR ranking on artificial and actual datasets independently. The 

Wilcoxon signed-rank test, is performed to validate the significant variation in results obtained by subspace 

algorithms. From the above experimental results and analysis, it is inferred that S_FAD reveals better performance in 

terms of F_Score and rand_index against most of the existing subspace algorithms on the majority of datasets. 

Additionally, S_FAD is executed on high-dimensional actual datasets. The results exhibit that the proposed algorithm 

scales very well on high-dimensional thin data sets. As the size of the dataset increases, some other measures like 

sampling are required to be inculcated to improve the efficacy. The time complexity of the S_FAD algorithm is 

O((2m).(nlogn)) where m is the number of dimensions and n is the number of records in the dataset. Hence, there is a 

trade-off between rand_index and time complexity. Although the time complexity of the proposed S_FAD algorithm 

is relatively high, it can provide near-optimal solutions on high-dimensional problems. On the contrary traditional 

subspace clustering algorithms are unsuccessful in providing the results for high dimensional data. Also, S_FAD finds 

overlapping subspace clusters with no redundant information. This property is hardly satisfied by any of the other 

subspace clustering algorithms. The unique property of S_FAD is it can determine subspace clusters of varied 

densities.  

 Hence it can be established that conventional subspace clustering algorithms are more suited for applications 

involving small dimensions and have time-sensitive requirements. However, for high dimension applications adopting 

the S_FAD algorithm would be a better choice.  

 

5. Conclusion 

Subspace clustering in a large number of attributes is a computational challenge in the data mining field. This 

challenge includes an unknown number of subspaces and dimensions involved in each subspace before clustering. 

Additionally, there can be an exponential number of subspaces for the high-dimensional dataset. To resolve these 

issues, a novel subspace clustering algorithm S_FAD is proposed. The efficacy of S_FAD is better in terms of F_Score 

and rand_index. Using these evaluation measures, the proposed algorithm is compared with various conventional 

subspace clustering algorithms on basis of 4 parameters i.e. average ranking, success rate ratio ranking, Wilcoxon 

signed-rank test, and scalability on dimensions. S_FAD provides considerably good performance when analysed on 

these parameters. It does not give any redundant information of subspaces as it performs clustering in maximal 

subspaces. S_FAD takes input data in its original form without normalization. It could determine overlapping subspace 

clusters of varied densities. Thus, S_FAD provides several advantages over existing subspace clustering algorithms 

and is successful in determining clusters in 6400-dimensional actual datasets. In the future, the S_FAD algorithm can 

be applied in applications of distributed databases such as vertical and horizontal fragmentation. Also, some useful 

techniques can be incorporated into the algorithm to cluster large datasets and improve clustering quality.  
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