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A B S T R A C T

Artificial intelligence research in the area of computer vision teaches machines to comprehend and interpret
visual data. Machines can properly recognize and classify items using digital images captured by cameras and
videos, deep learning models, and then respond to what they observe. Similarly, artificial intelligence has
also been able to learn complex images captured by Synthetic Aperture Radar (SAR) that are widely used for
various purposes but still leave room for improvements. Researchers have proposed numerous approaches in
this field, from SAR target detection to SAR target recognition. This paper presents a survey on the different
techniques and architectures proposed in the literature for various SAR image applications. The paper covers a
survey on target detection models and target recognition models and their respective workflow to analyze the
techniques involved and the performances of these models. This paper makes novel discussions, comparisons,
and observations. It highlights the advantages and disadvantages of different approaches to give researchers
the idea of how each technique can influence the performance for adoption in the future. The potential future
directions along with hybrid models on each processing method are also highlighted based on the study.
1. Introduction

Synthetic Aperture Radar (SAR) is an imaging radar usually
mounted on an unsteady platform. Being an active radar, SAR can
operate in good as well as bad weather days, leading to the application
of the acquired image in various fields such as disaster risk assessment,
natural oil slick detection, civil and military defense (Chaturvedi,
2019). Many earth observation companies are launching satellites
carrying SAR sensors; for example, Finnish company like ICEYE (ICEYE-
Finland, 2019) is expecting to have around eighteen or more SAR
sensors by the coming years. Also, Capella Space (Space, 2019) and
other small satellite startups are planning their own SAR missions (Ter-
rie, 2018). Therefore, with many SAR-carrying satellites coming up,
enormous volumes of data pose immense challenges to archiving, pro-
cessing, and analysis. The availability of SAR data does not imply their
accessibility as they are not easily interpretable. Hence, researchers
have applied various ways to process such images to extract meaningful
information from such SAR data. However, there still lies multiple
challenges in the process. The SAR modality has several characteris-
tics that distinguish it from optical imagery, thereby challenging the
interpretation and understanding of SAR images.
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D. Kandar).

In recent years, methods using machine learning, particularly deep
learning like convolutional neural networks, have effectively shown
improvement in the performance of SAR image processing and their
accuracies even exceed the conventional methods (Wang et al., 2017;
Shang et al., 2018; Zhong et al., 2018; Pei et al., 2018; Liu et al., 2019a;
Zeng et al., 2019; Huang et al., 2018; Küçük et al., 2016; Ndikumana
et al., 2018). However, a severe drawback of SAR image is that it is
polluted with speckle noise, making SAR image interpretation erro-
neous, even for post processing. Therefore, quite a number of methods
are being proposed in the literature for improving the interpretation
of SAR images to make it pertinent to real-world applications such as
detection of forest fires, classification of sea and ice in water bodies,
detection of oil slicks, reduction of disasters, detection of illegal min-
ing, detection of changes in geographical areas, military applications,
inspection of oceans, maritime detections and many more (Shang et al.,
2014; Xiang et al., 2018; Biondi, 2019; Solberg et al., 1999; Mercier
and Girard-Ardhuin, 2005; Solberg, 2012; Collard et al., 2005; Van
Wimersma Greidanus, 2008). Despite the ability to function day and
night and the capability to generate images irrespective of weather
status, several issues need to be focused on using SAR images for
such applications. Issues include improper recognition of targets due
https://doi.org/10.1016/j.engappai.2023.106305
Received 8 March 2022; Received in revised form 10 December 2022; Accepted 6
Available online 17 April 2023
0952-1976/© 2023 Elsevier Ltd. All rights reserved.
April 2023

https://doi.org/10.1016/j.engappai.2023.106305
https://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2023.106305&domain=pdf
mailto:alicia.passah@gmail.com
mailto:samar.sur@gmail.com
mailto:ajith.abraham@ieee.org
mailto:kdebdatta@gmail.com
https://doi.org/10.1016/j.engappai.2023.106305


A. Passah, S.N. Sur, A. Abraham et al. Engineering Applications of Artificial Intelligence 123 (2023) 106305
Table 1
Comparison table of the different survey papers related to SAR image target detection and recognition.

Paper Pre processing issues Detection Recognition Research issues challenges

Survey Architecture Future Survey Architecture Future
covered explained discussion covered explained discussion

El-Darymli et al. (2013) ✓ ✓ × ✓ × × × ✓

El-Darymli et al. (2016) ✓ × × × ✓ ✓ ✓ ✓

Zhu et al. (2017) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hachicha and Chaabane (2014) ✓ ✓ × × × × × ✓

Parikh et al. (2020) ✓ × × × ✓ × × ✓

Our work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
to the inability to determine features related to a specific target type
properly. This is mainly due to the characteristics of SAR systems that
generate very grainy images resulting from interference of signals that
reached the SAR receiver (Tomiyasu, 1978; Meyer et al., 2013; Shimada
et al., 2009; Rosen et al., 2008). Another issue that arises from this
is removing the unwanted features called noise from SAR images to
enhance image quality. This noise removal process is quite challenging
as it may also remove the most critical features, further resulting in an
imprecise outcome. Moreover, some detection-based applications faced
issues such as detecting a non-target as a target and vice versa due to
the inability to differentiate between the two.

Various works have been pondered in the literature, considering
several SAR image interpretation issues while still leaving room for
improvement. It may be noted that all techniques proposed in the
literature are unique in their way. Their uniqueness needs to be ex-
plored and understood to enable researchers to adapt and enhance
the same for future applications in the field of SAR image processing.
Various effective surveys have been done in the literature regarding the
processing of SAR images. Table 1 highlights the comparison between
our paper and the existing survey papers related to SAR imaging. Khalid
et al. have highlighted numerous research activities in the field of SAR
target detection, including future perspectives (El-Darymli et al., 2013).
On a different work, Khalid et al. have also assessed several state-
of-the-art works related to SAR target recognition (El-Darymli et al.,
2016). Zhu et al. have comprehensively reviewed numerous works,
including the challenges faced when using deep learning in SAR image
processing (Zhu et al., 2017). The paper includes a survey on detection,
and recognition of SAR images. Therefore, most of the survey works
cover only a part of the entire processing stages of SAR image analysis.
The deep learning architectures used by recent SAR image processing
are not explored in depth. Target detection and recognition are the vital
processing steps in SAR image interpretation. SAR image detection is
useful for detecting targets present on the ground through the captured
images for monitoring purposes by intentionally investigating within a
largely well-defined area. On the other hand, a target feature must be
distinguishable from the backdrop in order for detection to take place,
which is challenging in the case of SAR image analysis since SAR images
are distorted with background clutters and noise. In contrast, SAR
target recognition is useful for predicting the types of targets and scenes
in specific SAR applications. For instance, in military applications, the
types of military tanks are remotely determined with the help of target
recognition algorithms. The major difference between target detection
and target recognition is that in target detection, the presence and
position of the targets are determined irrespective of the type and
model of the targets, whereas, in target recognition, the description
and type of the target are of significant concern. A study incorporating
the works related to both these processing stages in a single survey
paper would help and ease researchers and those new to SAR imaging,
enabling them to be at par with recent advances in this area.

This has motivated us to conduct a survey on the different state-of-
the-art techniques related to SAR image interpretation, including target
detection and target recognition, by going into depth the techniques
and architectures involved, particularly deep learning. Following are

the main contributions of the paper:
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Fig. 1. The basic block diagram of a radar.

1. State-of-the-art techniques on SAR image processing comprising
detection and recognition are discussed.

2. The different architectures and parameter settings of each tech-
nique are also examined.

3. The significant advantages and disadvantages of the existing
techniques are also discussed to give researchers insights into
each method.

4. Necessary observations on each processing technique are dis-
cussed based on the study.

5. Future approaches to improving the existing techniques for per-
formance enhancement are also highlighted, along with few
potential models.

This survey paper considers the performances of various processing
approaches under SAR images, and a comparison of these methods
has also been made. These genuine comparisons will help researchers
understand and solve existing issues related to SAR image processing.
The rest of the paper is organized as follows. Section 2 describes the
general background study, which comprises SAR image processing,
a brief about deep learning, and convolutional neural networks. The
study and observations on various works associated with SAR target
detection and SAR target recognition are discussed in Sections 3 and 4,
respectively. Section 5 discusses various issues and challenges in SAR
image processing. The future approach associated with each SAR image
processing method is discussed in Section 6, followed by a conclusion
in Section 7. Fig. 2 shows the organizational summary and framework
of the paper.

2. Background

This section discusses the background study by introducing the
working of SAR and how images are acquired from SAR. We also in-
clude the definition of various SAR image processing methods, followed
by an explanation of deep learning and convolutional neural network.
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Fig. 2. Organization summary of the paper.
2.1. SAR

SAR is a sensing radar usually attached to an aircraft, spacecraft
and even in guided airborne ranged missiles for sensing the different
objects and scenes present on the ground. The primary characteristics
of a self-illuminating SAR radar include the day and night imaging
capabilities and the ability to function irrespective of the storm, rain,
or mists (Ulaby et al., 1981; Hänsch et al., 2016; Tomiyasu, 1978). The
characteristics of a SAR radar have made the processing of the gen-
erated images worthwhile for various applications (Chaturvedi, 2019).
Processing SAR images involves recording the reflected electromagnetic
waves of different ranges and azimuth, compressing the signal, and
generating the image. Fig. 1 shows the basic block diagram of a typical
radar (Chan and Koo, 2008). The SAR signal that is reflected back from
the ground gets collected at the antenna and retrieved by the receiver
for subsequent processing by the signal processing unit to obtain the
SAR image (Tomiyasu, 1978). It may be mentioned that the images
acquired by SAR are highly corrupted with undesirable features called
noise, which reasons the degraded quality of SAR images, resulting in
the loss of relevant details of the image. Fig. 3 shows how the relevant
information that could contribute to a better understanding of the
image for subsequent analysis, is being corrupted even after applying
denoising to the noisy image. It is observed from the zoomed image
shown in Fig. 3(d), that the image contains noticeable artifacts and
most of the image details have been washed out. Therefore, SAR images
are difficult to understand as can be seen in Fig. 3(b), and processing
them is equally challenging.

2.1.1. Image acquisition in SAR
The electromagnetic waves that are transmitted from the SAR radar

interact with the surface of the earth, and only a portion of the waves
is back-scattered to the receiving antenna whereby the returned signals
for the time 𝑇 from position 𝐴 to 𝐷 as shown in Fig. 4 are stored in
3

Fig. 3. Degradation of image quality after denoising. (a) Clean image, (b) Noisy
Image, (c) Denoised image, (d) A portion of the denoised image when zoomed (Image:
NWPU-RESISC Cheng et al., 2017).

the SAR processor as amplitudes and phases for subsequent preprocess-
ing. Wolff (2019), Inc. (1997) and for Remote Imaging Sensing and
(CRISP). The data generated from SAR is raw data that needs high sig-
nal processing techniques to convert these raw data into interpretable
images.
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Fig. 4. The flight path of a SAR mounted platform (Wolff, 2019).

.1.2. SAR image pre-processing
To enable SAR images to be applicable in several applications, they

eed to undergo different preprocessing stages to achieve the desired
utcome. One of the most vital preprocessing stages is called denoising,
r the noise removal stage that involves the removal of the unwanted
ranular features contained in SAR images. The noise that is present
n SAR images is multiplicative in nature and is known to be one
f the most catastrophic type of noise (Baltierra et al., 2022). There-
ore denoising SAR images is one of the challenging pre-processing
ask. Image denoising can be achieved using different approaches, for
xample, by using statistical re-evaluation of the pixels that formed
he image in an optimized manner or by automatically reconstructing
he desired image using deep learning models. Various state-of-the-art
orks have been proposed in the literature for SAR image denoising

hat has helped improve the image quality (Passah et al., 2021; Wang
t al., 2017; Zhang et al., 2018; Lattari et al., 2019). It may be
entioned that noise reduction algorithms may distort the signal to

ome degree (Singh et al., 2021). Therefore, radiometric correction is
lso one of the important pre-processing steps for SAR images as this
tep aims at precisely estimating the reflectance of an environment by
orrecting the distortions caused by the antenna, positioning glitch, and
everal other characteristics of the electronic components. It should
lso be noted that a SAR image can include several swaths or sectors.
herefore de-bursting is another preprocessing step wherein each swath

s merged into a single image, thereby reducing redundant lines and
lack separation lines on the SAR image. Segmentation is another
ignificant preprocessing stage of SAR image analysis. Segmentation
nvolves the concentration of the image around a particular area or
arget by highlighting the outlines and separating the image group-wise
ased on their characteristics. Segmentation of targets in SAR images
s an open field of research since segmentation models misinterpret
oise features as part of the targets, resulting in erroneous outcomes.
umerous works available in the literature have been proposed to
ddress the aforementioned issues (Feng et al., 2022; Sun et al., 2021;
u et al., 2021).

.2. Deep learning in SAR image processing

This section discusses one of the popular techniques under machine
earning called deep learning. Deep learning is a sub-field of machine
earning that deals with algorithms influenced by the structure and
apacity of the mind called artificial neural networks (Brownlee, 2016).
n other words, it reflects the working of human brains. Deep learning
ses numerous layers to extract higher-level features from raw inputs
rogressively. For instance, in image processing, lower layers may
istinguish edges, while higher layers may recognize human-significant
hings, for example, digits or letters or faces (Gu et al., 2018). The
eep in deep learning refers to the number of layers through which

the data is transformed. In most machine learning algorithms, the
features are handcrafted, except for deep networks in which this tedious
4

task is not required as it appears to be automatic and within the
network. The deeper the network, the more data it can train on,
and the better accuracy. The ability of deep networks to learn and
process from extensive unlabeled data gave it a distinct advantage over
previous algorithms (LeCun et al., 2015). Machine learning has recently
been used in SAR image processing; particularly, deep networks are
becoming an apple of the eye for various remote sensing applica-
tions (Zhong et al., 2018; Shang et al., 2018; Chen et al., 2016; Wang
et al., 2018a). The applications of deep networks in SAR have shown
considerable improvements in the results for target detection (Redmon
et al., 2016), target recognition (Furukawa, 2018; Pei et al., 2018),
denoising (Wang et al., 2017, 2018b), and other processing techniques.
On the other hand, SAR images are also highly corrupted by speckle
noises like any other images produced by coherent imagery systems.
Speckle noise refers to the type of noise that is multiplicative in nature
resulting from the impact of the surroundings on the imaging sensor
during image acquisition. This fact deteriorates the applicability of SAR
images in future fields of remote sensing. Also, this drawback of SAR
images causes severe complications in automatic image interpretation.
Therefore, researchers are still venturing into different ways to boost
the performance of SAR image processing. Several existing works based
on SAR image interpretation are discussed in the later sections. Next,
we present one of the most used deep learning models proposed in the
literature for SAR image analysis. However, speckle noise refers to the
type of noise that is multiplicative in nature resulting from the impact
of the surroundings on the imaging sensor during image acquisition.

2.3. Convolutional neural networks

Inspired by the structure of the visual cortex of a cat (Hubel and
Wiesel, 1968; Fukushima, 1980), a Convolutional Neural Network, also
known as CNN or ConvNet, is a class of neural networks that is one
of the most popular types of deep learning algorithms used in image
processing techniques. When an input image is fed to this network,
learnable weights and biases are assigned to different forms of objects
present in the image, resulting in the ability to distinguish one object
from another. The CNN requires less pre-processing in comparison
to other prior algorithms (Saha, 2018). CNN can automatically learn
filters or characteristics with enough training, unlike primitive methods
where filters are hand-engineered.

The CNN consists typically of the input, convolutional, subsampling,
fully connected, and the output layer (Albawi et al., 2017). It is a
two-stage process where the first stage comprising the convolutional
and subsampling layers, is used mainly to extract relevant features
from given inputs. In contrast, the second stage comprising the multi-
layer perceptron or fully connected layer is a classifier. The CNN used
in various applications consists of these two stages only. However,
their configurations differ from one application to another, resulting in
different performance accuracy. The proficiency of CNNs has enabled
researchers to employ them in various SAR image analysis, whereby
results therein have shown noticeable progress. This review paper
mainly focuses on works based on CNNs and how they are being
incorporated in various SAR image interpretations.

Few famous CNN architectures that are widely being inherited in
various computer vision applications includes the LeNet-5 (Lecun et al.,
1998), AlexNet (Krizhevsky et al., 2012), ZFNet (Zeiler and Fergus,
2014), InceptionVI (Szegedy et al., 2015), VGGNet (Simonyan and
Zisserman, 2015), ResNet (He et al., 2016), written in the order of
decreasing error rates and increasing number of layers as per the
ILSVRC (Russakovsky et al., 2015). The aforementioned CNN models
have shown substantial abilities in processing optical and medical
images (Vogado et al., 2018; Yuan et al., 2019; Liu and Wu, 2016;
Qin et al., 2019; Gong et al., 2019; Iqbal et al., 2021; Xu et al., 2021;
Tang et al., 2021; Lawrence et al., 1997; Cheng et al., 2022). This has
encouraged researchers to explore the models in various other research
areas. As such, merging and incorporating these models in SAR applica-
tions is also limited, leaving space for research in this field. Considering
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the current state-of-the-art in the field of SAR image processing and
its application, our paper aims to review the techniques, architectures,
and models adopted by all the existing works to benefit even the
fresh researchers that are new to SAR image analysis. However, the
primary focus of this review is to highlight the ideas of different works
related to the interpretation of Synthetic Aperture Radar(SAR) images,
particularly the deep learning approaches. The models, architectures,
and each work’s respective workflow are discussed in the later section.

2.4. Evaluation metrics used for illustrating results of various works

The evaluation measures that are utilized to illustrate the outcomes
of the various studies covered in this paper are discussed in this
section. The widely used metrics such as the precision, recall, F1-score,
accuracy, figure of merit (FOM), are discussed below.

• Precision: The precision metric P is utilized to calculate the overall
number of true class predictions, out of all the predictions gen-
erated by the model to be that class. The precision calculation
formula is written as.

𝑃 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
(1)

where, 𝑇𝑝 is the number of correctly predicted classes, 𝐹𝑝 is the
number of other classes predicted to be that class.

• Recall: Recall R quantifies the proportion of all correctly predicted
classes to all instances of that class in the dataset, and it is
calculated as.

𝑅 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
(2)

where, 𝐹𝑛 is the number of positive classes that are incorrectly
being predicted as negative.

• F1-score: F1-score, uses harmonic mean to get the average of
values by combining precision and recall. The F1-score is more
suited to determining the average of ratios and can be expressed
as.

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃 ∗ 𝑅
𝑃 + 𝑅

(3)

• Accuracy : The accuracy measure represents the proportion of
accurate predictions made by the model out of all possible pre-
dictions and can be expressed as.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑛 + 𝑇𝑝

𝑇𝑛 + 𝐹𝑝 + 𝑇𝑝 + 𝐹𝑛
(4)

where, 𝑇𝑛 is the number of correctly predicted negative classes.
• Figure of Merit : The Figure of Merit (FOM), also known as the per-

formance measure of interest for the purpose of target detection,
is the percentage of target patterns that are detected when the
false alarm rate is within acceptable bounds.

𝐹𝑂𝑀 =
𝑇𝑝

𝐹𝑝 + 𝑇𝑛
∗ 100% (5)

2.5. Open source benchmarks for SAR image analysis

This subsection highlights some of the available benchmarks for
SAR image analysis that are freely accessible for research purposes.
Unlike optical images, SAR images are tough to interpret and annotate
because of their highly complex nature. The SAR datasets are not
readily available to the research community. Nevertheless, few datasets
have been made available, which has benefited researchers in the
field of SAR image analysis. A summary of the existing benchmarks is
presented in Table 2.
5

3. Target detection

In this section, we focus on the detection of targets present in SAR
images by reviewing the literature that incorporated CNN in their ar-
chitectures with an aim to highlight the models and techniques adopted
therein. Target detection is the ability to detect targets from a mixture
of targets and non-targets present in an image (Smith, 1997; Changlin
and Xuelian, 2007). The targets, however, depend from one application
to another. In the case of SAR target detection, common applications
include detecting oil spills, detecting illegal ship transportation, detect-
ing targets on the ground in the presence of clutter, etc. However, with
the presence of speckles in SAR imagery, target detection becomes a
challenging task (Baltierra et al., 2022). Therefore, detecting targets
rapidly and precisely from SAR images has also become a research topic
at present (Steiniger et al., 2022). Fig. 5 depicts the concept of target
detection using bounding boxes in a SAR image.

Researchers have proposed various algorithms and techniques to
improve detection performance in SAR images. For instance, the au-
thors in Wang et al. (2012) use the magnitude of a selected term
in the coherence matrix to solve the issue of detecting non-reflecting
targets in SAR image but degrades the detection of urban structures.
Similarly, the authors in Sugimoto et al. (2013) suggested the use of
model-based decomposition to block sea surface scattering from the
sea target scattering. In a different work (Agrawal et al., 2015), the
authors have first segmented the targets in SAR images followed by
several processing stages such as normalization of the target position,
histogram equalization, and dilation. Extraction of features was then
carried out using scale-invariant feature extraction, and targets were
then detected using these features. A similar work (Yu et al., 2016)
was also proposed for SAR target detection that first segmented images
to produce superpixels. These superpixels are helpful for clutter dis-
tribution parameters estimation. The two-parameter CFAR followed by
superpixel clustering is then used to detect targets. The authors in Gao
et al. (2017) have used shadow proposal, saliency analysis, and single
class SVM to improve target detection in a cluttered SAR environment.

In the SAR target detection task, the samples used for training are
usually SAR images with multiple targets and complicated background
of an enormous scene. The most commonly used SAR detection mecha-
nism is the CFAR (Gao et al., 2009). The popular two-parameter CFAR
works by assuming the underlying clutter to agree on the Gaussian
distribution. It is shown that this method performs efficiently for non-
obstruction scenes, but the performance degrades on encountering
complex scenes like SAR scenes (Wang et al., 2019).

Therefore, considering the need to overcome such issues, various
works have been projected in the literature, many of which use deep
learning networks such as CNN based on SSD and CFAR. Still, another
issue arises in using CNNs for target detection in SAR images. Issues
include the non-availability of a large number of SAR datasets for
training a CNN leading to a few incorrect detection results. Hence the
use of most recent techniques like CNN becomes challenging for SAR
target detection, and several works that aim at solving such issues are
discussed in the following subsections. Table 3 shows a comparison
summary of the different target detection works.

3.1. SAR target detection based on SSD

The single-shot multibox detector (SSD) (Liu et al., 2016) is a real-
time object detection model that excludes the region proposal network
and uses multiscale convolutional bounding boxes connected to various
feature maps over the network, allowing desirable shapes of output
boxes. SSD employs lower resolution layers for the detection of large-
scale objects. The SSD is known to perform better as compared to
YOLO (Redmon et al., 2016). Other than detection capabilities in
optical images, SSD could also attain better accuracy in SAR images.
Hence various works in the literature have incorporated SSD in SAR

target detection tasks, of which few are highlighted below.
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Table 2
A summary of the existing benchmarks for SAR image analysis.

Dataset Description Coverage No. of images Labels Multiclass Links

SN6 MSAW
(Shermeyer et al.,
2020)

It is a multi-sensor all-weather mapping
dataset that features a combination of
Capella Space SAR imagery and Maxar
World View2 electro-optical imagery

120 km2 area of
Rotterdam,
Netherlands

48,000 Buildings, vehicles,
boats, etc.

Yes https://mediatum.ub.tum.
de/1474000

MSTAR (Ross et al.,
1998)

It is a dataset comprising of military
vehicles and tanks belonging to ten
different categories. Clutter images with
no targets are also available in this
dataset.

Military vehicles
and clutter

17,658 Vehicles namely
bulldozer, tanks,
etc.

Yes https:
//www.sdms.afrl.af.mil/
index.php?collection=mstar

PolSF (Liu et al.,
2019b)

It is also referred to as PolSAR images
of the San Francisco region, and was
obtained from various sensors, including
ALOS-1, ALOS-2, Sentinel-1, Sentinel-2,
GF-3, etc.

San Francisco region 3000 Annotations of land,
sea, buildings, etc.

Yes https://github.com/
liuxuvip/PolSF

OpenSARUrban
(Zhao et al., 2020)

It is captured by Sentinel-1. High and low rise
buildings, villas,
industrial and
vegetation areas
covering 21 cities in
China

33,358 Annotations of
general residentials,
high-rise buildings,
villas, airports, etc.

Yes https://ieee-dataport.org/
documents/opensarurban

So2Sat LCZ42 (Zhu
et al., 2020)

It is a dataset consisting of
corresponding SAR and multispectral
optical data captured by Sentinel-1 and
Sentinel-2 satellites along with a
corresponding label of local climate
zones (LCZ)

42 urban cities 400,673 Annotations of local
climate zones

Yes https://mediatum.ub.tum.
de/1483140

SARptical (Wang
et al., 2017b)

It is a dataset comprising of very
high-resolution SAR data extracted from
TerraSAR-X images.

Dense urban
agglomeration.

10,108 Corresponding
optical
representations of
SAR images

– https:
//syncandshare.lrz.de/dl/
figixjRV9idETzPgG689dGB/
SARptical_data.zip

OpenSARShip 2.0
(Li et al., 2017a)

The dataset consists of different ship
image patches obtained from Sentinel-1.

Ship images. 34,528 Labels include ship
details such as
cargo, tanker,
vessel, etc.

Yes https:
//opensar.sjtu.edu.cn/

SAR-Ship-Dataset
(Wang et al., 2019)

The dataset comprised of ship images
and was created by involving the 108
Sentinel-1 images and 102 GF-3 images.

Ship images. 39,729 Ship details and
types such as cargo,
tanker, windmill,
etc.

Yes https:
//github.com/CAESAR-
Radi/SAR-Ship-Dataset

SEN1-2 (Schmitt
et al., 2018)

The SEN1-2 dataset contains
corresponding pairs of Sentinel-1 and
Sentinel-2 images covering seasons of
different areas.

Different regions in
all seasons

2, 82, 384 Corresponding
optical images of
SAR data

– https://mediatum.ub.tum.
de/1436631

SEN12MS (Schmitt
et al., 2019)

The SEN12MS dataset is based on
Sentinel-1 data, Sentinel-2 images, and
MODIS (Terra and Aqua combined
Moderate Resolution Imaging
Spectroradiometer) land cover.

Inhabited continents
in all seasons

180,662 Geoinformation Yes https://mediatum.ub.tum.
de/1474000
Fig. 5. Target detection concept: Detection model outputs detection results with the help of bounding boxes (Image: NWPU-RESISC Cheng et al., 2017).
Fig. 6. F1 scores of different SSD based models in ascending order. RD: Random Initialization, DA1: Data Augmentation I, DA2: Data Augmentation II, TL: Transfer Learning, sub:
Subimages as channels, dup: Duplicate images as channels.
6

https://mediatum.ub.tum.de/1474000
https://mediatum.ub.tum.de/1474000
https://www.sdms.afrl.af.mil/index.php?collection=mstar
https://www.sdms.afrl.af.mil/index.php?collection=mstar
https://www.sdms.afrl.af.mil/index.php?collection=mstar
https://github.com/liuxuvip/PolSF
https://github.com/liuxuvip/PolSF
https://ieee-dataport.org/documents/opensarurban
https://ieee-dataport.org/documents/opensarurban
https://mediatum.ub.tum.de/1483140
https://mediatum.ub.tum.de/1483140
https://syncandshare.lrz.de/dl/figixjRV9idETzPgG689dGB/SARptical_data.zip
https://syncandshare.lrz.de/dl/figixjRV9idETzPgG689dGB/SARptical_data.zip
https://syncandshare.lrz.de/dl/figixjRV9idETzPgG689dGB/SARptical_data.zip
https://syncandshare.lrz.de/dl/figixjRV9idETzPgG689dGB/SARptical_data.zip
https://opensar.sjtu.edu.cn/
https://opensar.sjtu.edu.cn/
https://github.com/CAESAR-Radi/SAR-Ship-Dataset
https://github.com/CAESAR-Radi/SAR-Ship-Dataset
https://github.com/CAESAR-Radi/SAR-Ship-Dataset
https://mediatum.ub.tum.de/1436631
https://mediatum.ub.tum.de/1436631
https://mediatum.ub.tum.de/1474000
https://mediatum.ub.tum.de/1474000
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Table 3
Summarizing the concept of different SAR target detection networks.

Paper Dataset Transfer
learning

Augmen-
tation

Base
network

Pretrained
network

Novelty Architecture Advantages Disadvantages Future

TD-A (Wang et al.,
2019)

MSTAR Yes Yes SSD
+CNN

VggNet Own
augmentation
methods

SSD
+8ConvLayers

– – ResNet or
GoogleNet can
be explored to
replace the
pretrained
network

FMSSD (Wang et al.,
2020)

NWPU +DOTA No No SSD VggNet Uses feature
merged SSD

Atrous spatial
feature pyramid
with 5Conv
layers +multiple
atrous rates

Small objects
determined due
to new
area-weighted
loss function

Few missed
detections

Develop feature
fusion networks

MR-SSD (Ma et al.,
2018)

Marine
targets

Parameters
adopted from
SSD

Yes VggNet SSD FC layers
replaced by
convolutional
layers

Vgg16 layers+
SSD based layers

Could detect
targets other
than ships such
as windmills etc.

Could not detect
few targets

–

S-SSD (Du et al.,
2020)

miniSAR
+MSTAR

Yes No SSD VggNet Merging of
saliency maps
along with
original SAR
images

6 Dense
networks in each
subnetwork

Could suppress
clutter

Results in false
alarms, speed is
slower than SSD

Explore parallel
computing and
optimization
methods to
improve speed
and reduce false
alarms

CFAR-CNN (Wang
et al., 2018)

Maritime SAR
images

No Yes CFAR
+CNN

– Two stage CFAR
for local
detection and
global detection
respectively

CFAR+ 6Conv
Layer

Lower detection
time with 82%
accuracy

– –

MF-RCNN (Kang
et al., 2017)

Sentinel-1 Yes No Faster
R-CNN
+CFAR

VggNet Use of CFAR to
consider relevant
features from
false alarms

Vgg16+
FasterR-CNN+
CFAR

Could detect
multiscale ships

Increase in false
alarms

To perform data
augmentation
and explore
other pretrained
networks

CP-CFAR (Cui et al.,
2018)

MSTAR No No CFAR No Uses both
horizontal and
vertical sobel
operators in
CNN

Conv+ Pool+
CFAR+ median
filtering

Outperforms
CA-CFAR (Gao
et al., 2009) and
two-parameter
CFAR (Ai et al.,
2018)

– –

SER Faster R-CNN
(Lin et al., 2019)

Sentinel-1 Yes No Faster
R-CNN

VggNet Uses squeeze
and excitation
mechanism

5ConvLayer
+SER block

SE mechanism
played a role in
improving the
detection
accuracy

Complex model Simplify the
architecture and
use other
pretrained
networks

ConvLayers = Convolutional Layers.
3.1.1. TD-A
The work in TD-A (Target Detection with Augmentation) (Wang

et al., 2019) aims at detecting vehicles from miniSAR images con-
verted to three channeled using sub-aperture decomposition (Ferro-
Famil et al., 2003). TD-A employs CNN-based SSD (Liu et al., 2016) as
its base network whose parameters are initialized based on the learned
VggNet model trained on the ImageNet data (Russakovsky et al., 2015).
Different augmentation methods, namely DA1 and DA2, were also
performed in TD-A to increase the training data. The steps involved
in performing augmentations DA1 and DA2 are shown in Table 4. The
images are then fed to eight convolutional layers pipelined before the
finetuned SSD network. A convolutional predictor (Liu et al., 2016) was
then applied to the extracted features and used Non-Maximum Suppres-
sion (NMS) (Ren et al., 2015; Girshick, 2015; Girshick et al., 2014) to
remove redundant bounding boxes. TD-A outperforms the CFAR (Gao
et al., 2009) and Faster RCNN (Ren et al., 2015). When including the
transfer learning step and excluding the data augmentation process, or
vice versa, this method still outperforms the randomly initialized SSD
model. Fig. 6 shows the performance observations in ascending order
which gave rise to the proposed method TD-A. The known network that
emerged after VggNet called the ResNet can be explored and replaced
with the VggNet used in the pretraining part of this work to improve
accuracy. A possible increase in performance might be seen.

3.1.2. FMSSD
Another state-of-the-art work that uses SSD and pre-trained Vg-

gNet for SAR target detection is named the FMSSD (Wang et al.,
2020) comprising a feature-merged SSD network that blends multiple

and alike feature scale maps. FMSSD could detect objects of different
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Table 4
Augmentation techniques used in TD-A (Wang et al., 2019).

Augmentation Steps involved

DA1 (1) Sub-images are extracted from mini-SAR images.
(2) Gaussian noise is added to sub-images.
(3) Performs median filtering on sub-images.
(4) Rotate the images by 270◦.

DA2 (1) MSTAR images are padded with background pixels.
(2) Images are resized to the size of miniSAR
sub-images.

classes. An area-weighted loss function was also developed to give
equal importance to smaller targets in SAR images. FMSSD outperforms
RICNN (Cheng et al., 2016), SSD (Liu et al., 2016) and DSSD (Fu
et al., 2017). The latest trend on aggregating multiple features can be
explored for improved detection models.

3.1.3. MR-SSD
This work aimed at classifying marine targets at patch level (Ma

et al., 2018). An end-to-end detection technique was developed using
SSD (Liu et al., 2016) with multi-resolution inputs. This detection tech-
nique is named MR-SSD, an acronym for Multi-Resolution Single Shot
multibox Detector. Focusing on the detection part, which is of concern
in this section, the MR-SSD is the first work that detects other marine
targets such as windmills, iron towers, and platforms along with ships.
MR-SSD first transformed the single channeled GF3 SAR images into a
three-channeled RBG image using 2D Fourier transform and applying a
low pass filter with different values of 𝜆 shown in Table 5, after which
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Table 5
Hyper-parameters used in MR-SSD (Ma et al., 2018).

Parameters Values

𝜆 0.5, 0.25
Learning rate 0.0001
Weight decay 0.005

Table 6
Comparison of average precisions with different algorithms that uses same dataset (Ma
et al., 2018).

Target type Faster-RCNN SSD MR-SSD

Cargo 89.47 89.37 89.77
Container 79.78 87.08 88.69
Tower 68.79 74.55 80.07
Platform 89.61 89.96 90.43
Tanker 86.70 86.46 87.28
Windmill 78.19 86.34 88.04
MaP 82.09 85.62 87.38

Table 7
Comparison results on various SAR image detection methods: Faster-RCNN (Ren et al.,
2015), SSD (Liu et al., 2016), MR-SSD (Ma et al., 2018), TD-A (Wang et al., 2019),
S-SSD (Du et al., 2020).

Method Faster-RCNN SSD MR-SSD TD-A S-SSD

Recall (%) 92.97 94.53 95.31 93.45 96.00
Precision (%) 93.70 84.62 93.85 87.01 91.00
F1 (%) 93.33 89.30 94.57 90.11 94.00

the images are transformed to the time domain by inverse Fourier
transform. The three channeled inputs are then used for training the
MR-SSD model. This model was developed using VGGNet (Simonyan
and Zisserman, 2014) architecture with fully connected layers replaced
by convolutional layers having parameters adopted from the SSD. The
MR-SSD was trained using the hyper-parameters shown in Table 5.
Detection on large-scale SAR images was also done, where large-scale
SAR image first undergoes a land masking method, after which the land
parts are removed using the level set method (Li et al., 2010). Then
small overlapping patches are extracted and created from them to feed
the trained MR-SSD. The output is then mapped to a large image using
coordinates. MR-SSD achieved highest mean average precision (Zhu,
2004) compared to Faster R-CNN (Ren et al., 2015) and SSD (Liu et al.,
2016) as shown in Tables 6 and 7.

3.1.4. S-SSD
A similar work that is SSD-based is the S-SSD, acronym for saliency-

guided single shot multibox detector (Du et al., 2020). This work
appends the saliency information with the help of modified Itti’s
method (Itti et al., 1998) to its network, suggesting the model where
to focus, resulting in advanced representation in complex scenes. In
S-SSD, a dense network is used instead of SSD based simple network.
S-SSD outperforms SSD (Liu et al., 2016), CFAR (Gao et al., 2009) and
TD-A (Wang et al., 2019) by achieving an F1-score of 94. It may be
mentioned that the S-SSD also uses truncated VggNet as part of the
network. The MSTAR dataset was used in the implementation of the
S-SSD.

3.2. SAR target detection based on CFAR

Constant False Alarm Rate (CFAR) (Gao et al., 2009) is a detection
algorithm that works with the help of sliding windows and is used
adaptively in radar systems in order to detect targets from SAR data
contaminated with noise. The pixel-based CFAR is one of the most
widely used detectors in SAR image analysis, but the time complexity
is on the higher side because it is pixel-based. Researchers have made
efforts to improve the overall performance of the CFAR detector, which

is discussed in the following subsections.
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Table 8
Hyper-parameters used in CFAR-CNN (Wang et al., 2018).

Parameters Values

Learning rate 1
Batch size 2
Epoch 1

Table 9
Comparison results of multithreaded and multilevel CFAR (Wang et al., 2017a) and
CFAR-CNN (Wang et al., 2018).

Method #TOI DT MT FA RT FOM OD % % DFA

MTML-CFAR 17 15 2 3 76 0.75 88.23% 20%
CFAR-CNN 17 14 3 0 59 0.82 82.35% 0%

*MTML-CFAR - Multi-threaded and Multilevel CFAR; #TOI - Total target of
interest.
DT - Detected Target; MT - Missed Targets; FA - False Alarm, RT - Run Time
(in secs).
FOM - Figure of Merit; OD- Overall Detection; DFA - Detected False Alarm.

3.2.1. CFAR-CNN
CFAR-CNN (Wang et al., 2018) aims at detecting ships from SAR

images by incorporating CFAR (Gao et al., 2009) along with CNN.
The ship dataset rotated by 60◦, six times, used in CFAR-CNN consists
of both targets and clutter alone. In CFAR-CNN, CFAR is used twice:
once for global detection and next for local detection. A histogram
probability distribution function is first obtained from the clutter points
statistics of the entire SAR image during global detection. After setting
the first level CFAR values, a threshold is obtained for comparison with
each pixel on the image to differentiate between ship and clutter. This
results in an index matrix from which a detection region with a target
point as its center is detected and extracted using CFAR local detection
and acts as inputs to the CNN trained using the hyper-parameters
shown in Table 8, in order to determine whether the detected region is
a ship or a clutter. The CNN used in this method is a six-layered network
comprising three convolutional operations, two pooling layers, and one
fully connected layer. The outputs of the CNN model are then merged
into a single image, and ships are detected according to the areas of
the four connected regions. The performance of CFAR-CNN outperforms
the multi-threaded and multi-level CFAR (Wang et al., 2017a). The
comparisons are shown in Table 9. Comparing the detection time,
which is crucial in the case of target detection, CFAR-CNN achieved
lower detection time compared to Wang et al. (2017a), with the ability
to detect 82% of the targets. Therefore, this work, being a method that
achieved lesser detection time, the detection accuracy might further be
improved if the CNN used in this method is replaced with a pre-trained
network such as VggNet or ResNet.

3.2.2. MA-CFAR
MA-CFAR, which is short for Manifold Adaptation for Constant False

Alarm Rate (Schwegmann et al., 2015) is another SAR detection work
based on CFAR that involves converting the original scalar threshold
used by CFAR into a threshold manifold (Schwegmann et al., 2015)
adjusted by simulated annealing (SA) algorithm (Kirkpatrick et al.,
1983). This was done to enable the CFAR to adapt to information
related to different characteristics of ship targets since the experiment
was conducted on ship images. MA-CFAR attained a detection accuracy
of 85.1%. It may be mentioned that precise selections of thresholds
even avoid the computational shortcomings ordinarily connected with
SA.

3.2.3. MF-RCNN
MF-RCNN aims at detecting multi-scale ships from SAR images

(Kang et al., 2017) by modifying the Faster-RCNN. Hence we refer to
this work as MF-RCNN (Modified Faster-RCNN). There are several ship

detection methods in the literature such as CFAR (Gao et al., 2009),
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YOLO (Redmon et al., 2016), SSD (Liu et al., 2016) and Faster R-
CNN (Ren et al., 2015), but the multi-scale attribute of ships in SAR
images degrades the detection performances due to inability to learn
accurate features of multi-scale ships (Marino et al., 2015; Iervolino
et al., 2015; Iervolino and Guida, 2017). Therefore, MF-RCNN tried
solving this issue by modifying the Faster R-CNN with the help of
CFAR. The SAR images are first imported to a VggNet (Simonyan and
Zisserman, 2014) based CNN to obtain feature mapping, which is then
fed to a Faster R-CNN and a Region Proposal Network (RPN) (Ren et al.,
2015). The RPN results in bounding boxes with respective scores for
which the top 𝑛 positive object proposals are fed to the ROI pooling
of the faster R-CNN. The faster R-CNN then returns the classification
scores and is finally fed into the CFAR detection after undergoing
Non-Maximum Suppression (NMS) to remove overlapping bounding
boxes. The CFAR detector also takes another input: the refined regions
generated from the output of the faster R-CNN. The bounding boxes
with higher classification scores are taken to be targets, whereas those
with very low scores are considered false alarms. However, the boxes
with relatively low scores (0.3−0.8) are chosen by the CFAR, from which
it then determined the threshold value, where values exceeding this
threshold are considered as targets. Compared to Faster R-CNN, MF-
RCNN (Kang et al., 2017) achieved improved detection accuracy by
incorporating CFAR in the Faster R-CNN. Therefore, CFAR contributed
more towards the performance improvement by considering the rele-
vant features irrespective of the target structure. On the other hand,
MF-RCNN (Kang et al., 2017) gave rise to an increase in the false alarm,
unlike Faster R-CNN with lesser false alarms.

3.2.4. CP-CFAR
The Convolution and Pooling CFAR (CP-CFAR) (Cui et al., 2018)

is another CFAR based SAR target detection approach that uses con-
volutional layers and pooling layers for SAR target detection through
parallel GPU processing in SAR images. CP-CFAR uses the MSTAR
dataset for experimentation. Since CFAR is pixel-based, it consumes
more time on large scenes even if GPU is used. Therefore, inputs
are passed through the convolutional layer in CP-CFAR to distinguish
between targets and background, enter the pooling layer to reduce im-
ages’ dimensions, and finally enter the two-parameter CFAR, resulting
in improved detection performance. The CP-CFAR outperforms the CA-
CFAR and the two-parameter-CFAR (Ai et al., 2018) in terms of time
and accuracy.

3.3. Other CNN based method

Apart from detectors using CNNs based on SSD and CFAR, other
techniques involved encoder–decoder in the CNN networks and are
discussed below.

3.3.1. SER-Faster R-CNN
This work proposed a faster R-CNN-based network architecture to

improve detection performance in SAR images (Lin et al., 2019). The
main contribution of this work is the proposal of the squeeze and ex-
citation mechanism in the Faster R-CNN along with rank modification,
hence the name Squeeze and Excitation Rank Faster R-CNN (SER-faster
R-CNN). The squeeze and excitation mechanism is adopted in order
to improve the representation power of a CNN. Also, the ranking of
vectors in the SE block is done to suppress the redundant feature
maps. The last three convolutional layers of a VggNet (Simonyan and
Zisserman, 2014) trained on ImageNet is used as the first three layers
of the SER Faster R-CNN model. The feature maps from each of these
convolutional layers are normalized using L2 norm. The normalized
results are concatenated and convolved, resulting in a 512 channeled
input. This is then fed into RPN (Ren et al., 2015) to generate region
proposals. The sub-feature maps from the first three convolutional
layers of the SER-Faster R-CNN model are also extracted using ROI

pooling (Ren et al., 2015). These sub-feature maps are concatenated
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Table 10
Hyperparameters used in SER faster R-CNN (Lin et al., 2019).

Hyperparameters Values

Learning rate 1 × 10−4

Epoch 20 000
Stride size 2
RPN anchor scales(r) 1, 2, 4, 8
Aspect ratios 0.125, 0.25, 0.5, 1

and act as input to the SER block, which is convolved to 512 channels
using convolutional layer and pooled to 512𝐷 vector with the help of
global average pooling. This vector then goes through the encoding
decoding block whose encoding dimension depends on a particular
parameter 𝑟. This block outputs the top 𝐾 values preserved and used
to improve sub-feature mapping for the second classification stage.
Hyperparameters used in the SER Faster R-CNN model is shown in
Table 10. Detection performance realized from the concatenation of the
first three layers is effective and hence chosen. Also, the performance
of faster R-CNNs with SE block is effective. Performance on SE block
with top 256-rank vectors is also evaluated on different 𝑟 values, and
the model with 𝑟 = 1 achieved the highest F1 score.

3.3.2. MD1D
Other works have also been proposed recently for various SAR

image applications that involve SAR target detection. Wang et al. have
proposed a detection technique that detects harbors from complex SAR
images (Wang et al., 2021). In this work, the authors have incorpo-
rated multi-directional one-dimensional (MD1D) scanning to obtain the
control points on the sea-land masking. The representation vectors are
selected based on the control points. A one-dimensional CNN is then
used to discriminate the harbor features, after which the features are
finally merged to obtain the final detection results. It may be observed
that the CNN used in MD1D consists of only three convolutional layers.
This method shows significant results, and hence testing this technique
in the detection of maritime targets other than harbor can be explored
to benefit the surveillance of oceans using SAR images.

3.3.3. AM-TR
In another work, Wei et al. proposed a semi-supervised SAR target

detection model using the attention mechanism (Wei et al., 2021).
Hence we refer to this work as AM-TR (Attention Mechanism-based
Target Recognition). AM-TR uses CNN models by dividing the process
into four modules, the feature extraction module for extracting relevant
features from SAR images, the attention module for obtaining the
attention map, the scene recognition module for specifying whether the
input SAR image contains targets or not, and the detection module for
generating multiscale features. These multiscale features are used to
predict the targets through convolutional predictors to finally generate
the detection results. Though the work outperforms other SAR target
detection works (Ren et al., 2015; Zhang et al., 2016), issues such as
false alarms and missing targets prevail.

3.4. Observations

The different works discussed in the previous sections have shown
their respective contributions in the field of SAR target detection, of
which few are based on SSD and few on CFAR. It was observed from
TD-A (Wang et al., 2019) that the use of parameters from pre-trained
VggNET (Simonyan and Zisserman, 2014) in SSD (Liu et al., 2016)
plays a role in detection performance. However, a network such as
ResNet (He et al., 2016) outperforms VggNet. Therefore, ResNet can
be studied in the future and used in pre-training SSD networks in TD-
A (Wang et al., 2019). The detection method in CFAR-CNN (Wang
et al., 2018) has used dual CFAR. The output then feeds a simple
six-layered CNN architecture. This way, a lesser detection time is
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achieved, but few false alarms still exist. This is because CFAR results
in false alarms (Wang et al., 2019). Parameters for CNN used in CFAR-
CNN (Wang et al., 2018) can be adopted from pre-trained networks,
and this can be explored in future works, which might reduce false
alarms and improve the accuracy. The method in MF-RCNN (Kang
et al., 2017) modifies the Faster R-CNN with the inclusion of a VggNet
based CNN into its architecture before undergoing Faster R-CNN fol-
lowed by a CFAR detector. This method has proved that using a CFAR
detector for less scored regions has improved the detection performance
compared to Faster R-CNN. On the other hand, choosing the range
of scores to be included by the CFAR is challenging since the values
chosen in Kang et al. (2017) result in a few false alarms. The MR-
SSD (Ma et al., 2018) is similar to TD-A (Wang et al., 2019) in the
sense that both have connections to the SSD and VggNet. In MR-
SSD (Ma et al., 2018), the architecture used is the VggNet where the
fully connected layers are being replaced with SSD-based convolutional
layers, whereas in TD-A (Wang et al., 2019), parameters of VGGNet are
taken from SSD. The novelty of MR-SSD (Ma et al., 2018) is that it can
detect not only ships but also detect other maritime targets. It is also
observed in MR-SSD (Ma et al., 2018) that the idea of transforming
the single-channel SAR image into a multi-resolution three-channeled
image, though depending on some parameter 𝜆, has its role played
in the outcome. However, the challenge lies in choosing the value of
this parameter, as it differs based on application. The authors in Ma
et al. (2018) have proved their detection method on large-scale SAR
images, whereby it outperforms Faster R-CNN and SSD, while it still
has few false alarms. Sea land masking may be inaccurate at times (Lin
et al., 2019); therefore, this might have caused the false alarms. The
SER Faster R-CNN (Lin et al., 2019) have used the last convolutional
layers of a pre-trained VggNet to obtain shared feature maps for region
proposal. It is observed in Lin et al. (2019) that the use of Squeeze and
excitation mechanism to modify the RPN architecture along with the
ranking of excitation vectors have helped in improving the detection
performance.

In conclusion, we observe that the S-SSD (Du et al., 2020) and MR-
SSD (Ma et al., 2018) give better results in their respective datasets. A
comparison of the same can be made by studying them on the same
dataset in the future. On the other hand, S-SSD gives better results
compared to TD-A (Wang et al., 2019) on the same MSTAR dataset.
This is because the saliency information helps the S-SSD network
to accentuate relevant features, which further improves the overall
detection capability of the model. It is also observed that almost all the
methods have used VggNet as pre-trained networks. The ResNet, which
is known to achieve better accuracy than VggNet in the ImageNet
challenge, can be explored for application as pre-trained networks in
place of VggNet, which might improve target detection results. Also,
other deep learning networks like STDNet (Bosquet et al., 2020) that
are used for detecting small targets can be used in the form of a hybrid
network with those that detect larger objects to achieve better results,
especially in SAR images. It is also worth mentioning that none of the
work has preprocessed the SAR images, such as removing noise before
undergoing target detection, which might be a requirement when all
these techniques are applied to noisy SAR images. Also, crosschecking
of the existing target detection techniques on a very noisy SAR image
needs to be done in case we encounter such images in the future.
State of the art denoising models such as IDCNN Wang et al. (2017)
and Passah et al. (2021) can be studied and appended before the
detection models for better performance Table 3 shows a comparison
summary of the different target detection works.

4. Target recognition

This section discusses one of the most widely applied processing
methods in SAR visions called target recognition, along with recent
works and techniques. Target recognition is the ability to recognize a

target from among a group of other targets (Tait, 2005). Fig. 7 depicts
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the concept of target recognition with four classes being correctly iden-
tified and one class being mistakenly identified. Recognizing targets
from a given SAR image is challenging as the images produced from
SAR are not easy to interpret as those produced optically. SAR images
contain clutter along with noise; therefore, to be able to identify which
target is within the scope of the application is also a difficult job;
hence it has to undergo pre-processing such as suppression of noise
and detection of the region of interest. These processes can corrupt the
relevant features from images and decrease recognition accuracy. In
practical situations where time and cost are significant concerns, target
recognition becomes challenging. In other aspects, the unavailability
of labeled images in SAR also restricts the development of SAR target
recognition (Cui et al., 2018). Another challenge in SAR Automatic
Target Recognition (SAR-ATR) is automatically recognizing the same
target with a different pose. Thus, the SAR-ATR is challenging and has
become one of the research hotspots for remote sensing technology.
Several works on SAR target recognition have been projected in the
literature for the past decade. The authors in Dong et al. (2014)
have used a sparse representation of monogenic signal for SAR tar-
get recognition. The process also involves the augmentation of the
feature vectors, which are then fed to a sparse representation-based
recognition framework. The network could adapt to noisy images. In
the extended work Dong and Kuang (2015a), the authors have also
developed score level fusion for the sparse representation framework
along with a hybrid kernel learning that resulted in improved target
recognition performance. The authors in Dong and Kuang (2015b)
uses Riemannian geometry for recognition. The work also adopted
monogenic signals combined with the help of a covariance matrix to
identify SAR images. The authors developed two classification schemes:
first, that involved mapping the covariance matrix that feeds the sparse
representation framework, and second, that involved embedding of
Riemannian manifold.

Lately, deep learning has been known to attract researchers because
of its tremendous ability to learn without human interventions. Enor-
mous deep learning applications have been made in various computer
vision tasks resulting in noticeable results. This has led researchers to
explore deep learning for various SAR interpretation tasks (Li et al.,
2017b; Soldin, 2018). Various existing works on SAR target recogni-
tion, using deep learning, have been proposed in the literature, of which
a few state-of-the-art works that are based on CNNs are discussed in the
following subsection.

4.1. SAR target recognition based on CNN

Since CNNs are the most widely used deep learning class for analyz-
ing visual images, we review only those target recognition works based
on CNN, thereby giving insights on the approach followed while using
CNNs in SAR target recognition tasks. Few such works are highlighted
below.

4.1.1. ATR-CNN
At the time when recognition of targets was achieved only by

using handcrafted features, the work in Chen and Wang (2014) has
experimented with the use of CNNs in SAR target recognition. We
referred to the work as ATR-CNN (Automatic Target Recognition us-
ing CNN). ATR-CNN (Chen and Wang, 2014) first tries to learn the
kernel and bias by training the inputs using a sparse autoencoder.
Autoencoder usually learns the non-trivial identity function of the given
input (Goodfellow et al., 2016). The whole process was carried out by
first extracting patches from inputs and applying average value sub-
traction and Zone Component Analysis(ZCA) (Krizhevsky and Hinton,
2009) to each patch. The patches are then trained using sparse au-
toencoder with backpropagation to learn the kernels and bias. Overall,
this was unsupervised learning with no labels fed during training. The

model using labeled images is then trained using a single-stage CNN
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Fig. 7. Target recognition concept: Recognition model outputs recognition results (Image: SAR-ship dataset Wang et al., 2019).
uned to the learned kernel and bias followed by a softmax regres-
ion classifier to generate the final output. The sparse autoencoder
asically applies a sparsity constraint on the hidden layer, meaning
hat only a few neurons in the hidden layer will be activated. It may
e mentioned that the sparse penalty used in this case is based on
ullback Leibler(KL) divergence (Kullback and Leibler, 1951). In the
upervised learning stage, the single-stage CNN comprises a convolu-
ional layer and a pooling layer with kernels and bias learned from the
parse autoencoder. ATR-CNN achieved 84.7% accuracy on ten types of
STAR targets. Compared to techniques where features are extracted
anually (Zhang and Huang, 2013), the accuracy of ATR-CNN (Chen

nd Wang, 2014) is only 5% less. Therefore ATR-CNN (Chen and Wang,
014) have proved the capability of a single CNN to achieve accuracy
lose to that of handcrafted-based methods. This may also mean that if
e use deeper CNN, the recognition performance might improve and
utperform handcrafted recognition techniques.

.1.2. All-in-one CNN
This technique aims at recognizing MSTAR targets by taking into

rimary consideration the advantages of augmented data while at the
ame time enlarging the datasets for training a CNN (Ding et al., 2016).
ence, it developed three data augmentation techniques: target transla-

ion, speckle noising, and pose synthesis. Target translation is achieved
y the method of coordinate shifting with guard windows to restrict
rossing the image boundary. An experiment on single augmentation
ased on target translation was performed by shifting each sample
, 12, 21, 30 and 45 times respectively and found that the recognition
ccuracy achieved was 93.30% compared to SVM (Hearst et al., 1998).
t was also observed that the model trained on translation data does not
ork on noisy data. Therefore another augmentation on noising was

arried out. This was achieved by using exponential distribution with
ertain parameter 𝑎 set to 0.5, 0.5, 0.5, 1.0, 1.0, 1.0, 1.5, 1.5, 1.5 respectively

on each sample. An experiment on this single augmentation was also
conducted and observed that CNN trained with noising augmentation
data can perform better on noisy data than SVM. Lastly, for pose
synthesis, 𝐾 samples per class were randomly selected as base images to
enerate 5000 pose images with the help of a formula using azimuth an-
les. Experiments on different values of 𝐾 were conducted wherein the

highest accuracy achieved was when 𝐾 = 120. Therefore the authors
in Ding et al. (2016) combined all the three augmentations based on the
results on each augmentation and trained a CNN model for target recog-
nition. The model is named all-in-one CNN. These augmented data were
used in training the CNN comprising three convolutional layers, three
max-pooling layers, one fully connected layer, and a softmax layer.
The recognition capability of the all-in-one CNN (Ding et al., 2016)
was stronger compared to SVM and MINACE (Patnaik and Casasent,
2005). This is because MINACE can achieve translation invariance but
not distortion invariance, especially with SAR images. On the other
hand, SVM can handle distortions but not translation. Thus, the authors
have proved that the inclusion of the three augmentation methods has
contributed to improving SAR images’ recognition accuracy in a unique
way. A flowchart summarizing the technique in Ding et al. (2016) is
shown in Fig. 8.
11
Fig. 8. Flowchart summarizing the technique in all-in-one CNN (Ding et al., 2016).

4.1.3. ATR-CNNAD
The unavailability of labeled SAR images makes CNN training dif-

ficult and challenging as CNN requires extensive training labeled data
to learn more relevant features for future predictions. The work in Cui
et al. (2018), hereafter referred to as ATR-CNNAD (ATR based on CNN
with Assistant Decision), however, have tried to solve this issue for
target recognition in unlabeled MSTAR images comprising of military
vehicles. This was achieved by incorporating the concept of update
learning with the help of a pre-trained CNN along with SVM (Hearst
et al., 1998) as an assistant classifier. The CNN with three convolutional
layers, a max-pooling layer and two fully connected layers were first
pre-trained on a small labeled set called seed image set, along with
SVM. The new unlabeled images are then fed iteratively into the pre-
trained CNN in sync with the assistant classifier, and a decision was
made based on their probability matrix output. Finally, in view of this
decision, relevant images are added as new data with labels and retrain
the CNN with this new set of data in order to update its parameters.
This way, labeled data was increased while at the same time updating
the learning ability of the model for upcoming new unlabeled data. It is
also worth mentioning that each time the CNN is trained with a newly
generated dataset, the error rates decrease gradually after every update,
thereby improving recognition accuracy to 89%. Fig. 9 summarizes
the technique in ATR-CNNAD (Cui et al., 2018). To further improve
the recognition accuracy, improving the accuracy of each new training
dataset can be studied. The update learning process can be optimized
by improving the decision method, such as incorporating more than
one assistant classifier for a better decision.

4.1.4. MFCNN
The presence of noise in SAR images has made target recognition

challenging. This is because, to recognize a target in an image, the
features associated with the target need to be learned. If features
include noise features, the recognition performance gets degraded. To
address this issue, several works have used pre-processing and pose
information to lessen the effect of noise in target recognition (Srini-
vas et al., 2014; Dong et al., 2015; Deng et al., 2017). However, if
proper pre-processing is not done, it may result in inaccurate prediction
of targets because noise characteristics differ from image to image.
Therefore, the authors in Cho and Park (2018) have proposed a multi
feature-based convolutional neural network (MFCNN) for SAR target
recognition without an extra pre-processing step. The MFCNN involves



A. Passah, S.N. Sur, A. Abraham et al. Engineering Applications of Artificial Intelligence 123 (2023) 106305

t
a
F
o
m
f
r
d
t
r
o
o
2
r
2
l
M
5
2
m
r

4

(
c
t
i
a
r
p
w
t
o
a
i
i
o
b
f
c
s

t
w
g
e
w
i
r
d

4

j
p
n
f
d
u
v
i
T
c
w
r
m
w
f
t
R
m

4

f
s
t
i
b
A
t
a
C
c
i
a
n
f
t
t
t
b
o
a
t

Fig. 9. Flowchart summarizing the technique in ATR-CNNAD (Cui et al., 2018).

hree steps: multiple feature extraction, multiple feature aggregation,
nd target recognition. Multi-feature extraction comprises three stages
E1, FE2, FE3, whose details are highlighted in Table 12. The output
f FE1, FE2 and FE3 are then aggregated in the next step called the
ultiple feature aggregation step forming a single vector that is finally

ed to three fully connected layers, which is the final step for target
ecognition. The number of neurons in each fully connected layer is
etermined concerning VggNet (Simonyan and Zisserman, 2014), and
he number of neurons in the final output layer is ten. Experimental
esults show that MFCNN has an average recognition rate of 95.52%
n the MSTAR dataset (Ross et al., 1998; Laboratory, 2021) and it
utperforms the conventional methods (Zhan et al., 2016; Ding et al.,
016; Srinivas et al., 2014; Dong et al., 2015; Deng et al., 2017), the
eason being that in few approaches (Zhan et al., 2016; Ding et al.,
016), target features are extracted only from the final sub-sampling
ayer. The authors in Cho and Park (2018) additionally proved that
FCNN could attain a recognition accuracy of 94.85% even with only
0% of training data. In conclusion, the work in MFCNN (Cho and Park,
018) can be extended to a multi-target environment wherein accuracy
ay be recorded, accordingly leaving room for improvement of target

ecognition in multiple target images.

.1.5. VersNet
In most SAR target recognition works Ding et al. (2016), Cui et al.

2018) and Cho and Park (2018), single target chips are used in order to
lassify or recognize the object. The standard method usually involves
hree stages: detection, discrimination, and classification. The authors
n Furukawa (2018) have proposed one such method by incorporating
ll these stages within a single CNN for end-to-end based SAR target
ecognition on the MSTAR dataset and named it the Verification Sup-
ort Network (VersNet). This network takes arbitrary SAR image inputs
ith multiple targets of different classes and generates image output

hat specifies the class type, the target position, and pose information
f each target on the image. The VersNet model consists of an encoder
nd a decoder, where the encoder is used to extract features from
nputs. In contrast, the decoder converts the features to output the
mage recognition result. The encoder consists of ten blocks where each
f the first four blocks is made up of two convolutional layers followed
y a max-pooling layer. The fifth block consists of a convolutional layer
ollowed by a dropout layer, and the last block consists of a single
onvolutional layer. On the other hand, the decoder stage consists of a
ingle transposed convolutional layer which is finally used to generate
12
the output. It is worth mentioning that VersNet does not contain fully
connected layers, enabling the network to process images of arbitrary
sizes. The segmentation labels of the MSTAR data are first generated for
training the VersNet. As this method is expected to output the recog-
nition results with the help of classification and the location and pose
information results with the help of the segmentation, the experimental
results are thus evaluated individually. For classification, the VersNet
could attain an overall accuracy of 99.55 which means almost all
targets are recognized correctly. On the other hand, the segmentation
results show that the average Intersection over Union (IoU) on 10
classes along with 1 background and 1 foreground is 0.915. Finally,
he Versnet model was also tested on multiclass and multitarget inputs
here only visual results were displayed and seemed to be close to
round truth images. The VersNet (Furukawa, 2018) have proved the
ffectiveness of using encoder–decoder techniques in the CNN model
ithout any fully connected layer. The advantage of Versnet is that

t can accept random size inputs while improving the MSTAR target
ecognition performance. However, the challenge lies in including the
istorted images, which were excluded from the testing set of this work.

.2. Other target recognition methods

Several other SAR target recognition models have also been pro-
ected in the literature recently. The work in Jia et al. (2019) has
roposed a recognition model that is flexible and less sensitive to
oise and attitude angle. The deep features of the SAR image are
irst extracted using one-dimensional and two-dimensional SAR image
ata. For one-dimensional SAR image data, the stacked autoencoder is
sed for extracting deep features obtaining the one-dimensional feature
ector. In contrast, CNN is used for extracting the features resulting
n a two-dimensional feature vector for two-dimensional image data.
he two feature vectors are then combined and passed through fully
onnected layers to generate the recognition output. As seen from this
ork, feature fusion plays a role in improving the performance of SAR

ecognition. The work in Gao et al. (2019) proposes a target recognition
odel by merging a basic CNN model with SVM. The CNN model
as first trained by incorporating class separability as part of the cost

unction and uses softmax as a classifier, after which it was removed
o train the SVM using only the top features of the trained model.
ecognition accuracy on MSTAR targets has improved but still suffers
isclassification.

.3. Observations

This section briefly discusses the observations that can be concluded
rom the various SAR target recognition works reviewed in the previous
ection. Firstly, we observed from ATR-CNN (Chen and Wang, 2014)
hat the use of only a single CNN has also shown some effectiveness
n the performance of SAR target recognition and whose kernels and
ias are pre-trained on a sparse auto-encoder. However, the results of
TR-CNN have led to the urge to use more than one CNN to improve

he recognition performances further. Therefore, most of the works
re currently based on deep CNN networks. On the other hand, deep
NNs require more data to get trained to the desired results, which is
hallenging in SAR images. The all-in-one CNN (Ding et al., 2016) has
ncluded a technique for increasing the data by performing its own data
ugmentation techniques while at the same time improving the recog-
ition performances but is not end-to-end based. A way to club these
ragmented portions of pre-processing into a single model might help in
he future. Again, considering the unavailability of labeled SAR images,
he ATR-CNNAD (Cui et al., 2018) is able to undergo an improved
arget recognition method with the help of a seed amount of labeled set
y employing an assistant classifier and iteratively training the model
n new labeled data. In the future, the technique for improving the
ccuracy of each new training dataset can be studied to further improve
he recognition accuracy. The update learning process can be optimized
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Table 11
Summarizing the concept of different SAR target recognition networks.

Paper Aim Method Architecture Novelty Advantage Disadvantage Results Future

ATR-CNN (Chen and
Wang, 2014)

To recognize target
by using CNN rather
than handcrafted
features

Supervised +
Unsupervised stage

Sparse autoencoder
+ 1CNN

Uses KL-divergence as
sparse penalty

Accuracy at par
with handcrafted
features

When tested on
non-deformation
targets, accuracy
is 84.7%

90% accuracy Deeper CNNs may
help improve
accuracy further

All-in-one CNN (Ding
et al., 2016)

To recognize targets
in challenging
situation such as
translated targets
and pose synthesis

End to end +
posterior
augmentation

Target-translation
+Speckle-Noising
+Pose-synthesis
+Conv96@3x3, Conv96@3x3,
Maxpool, Conv256@3x3,
Maxpool, Fc, Softmax

Uses Three data
augmentation
techniques: target
translation, speckle
noising, pose synthesis

Outperforms SVM &
MINACE and
recognition accuracy
is improved

Domain specific 93.16% on
original data,
82.40% on
translated data,
91.89% on noisy
data

Deeper networks can
be explored for the
same

ATR-CNNAD (Cui
et al., 2018)

To use unlabeled
targets for training a
CNN to recognize
targets

Initial training +
Update learning

Conv32@9x9, pool,
Conv64@5x5, pool,
Conv128@3x3, pool, fc1000,
fc10, softmax

Uses iterative learning
strategy with the help
of pretrained CNN and
assistant classifier

Dynamically
generating labels

Inefficient
update
learning

89% accuracy Update learning
process can be
optimized by
incorporating more
than one assistant
classifiers.

MFCNN (Cho and
Park, 2018)

To implement
SAR-ATR without
using a separate
preprocessing process
or pose information

Three stages:
multiple feature
extraction + feature
aggregation +
recognition

(Conv3x3)x2, avgPool,
(Conv3x3)x2, maxpool.
(Conv3x3)x2, maxpool,
Conv3x3, maxpool,
(Conv3x3)x2, avgpool,
Conv3x3, avgpool.
fc1,fc2,fc3

Parallel use of
max-pool and avg-pool
to simultaneously
extract strong features
and to reduce noise
effects respectively

Could attain
accuracy 94.85%
with only 50% of
training data

Test not
extended to
multi target
environment

Avg. recognition
rate is 95.52%

The model can be
optimized and
explored to extend
its application in
multi target
environment

VersNet (Furukawa,
2018)

To perform SAR
target recognition
along with location
and pose information
from a multi target
image based on end
to end

End to end based
CNN

(Conv32@3x3, ReLU) x2,
maxpool, (Conv64@3x3,
ReLU) x2, maxpool,
(Conv128@3x3, ReLU) x2,
maxpool, (Conv256@3x3,
ReLU) x2, maxpool,
Conv512@6x6, Dropout,
Conv12@1x1,
32x32TransposedConv

Uses encoder decoder
mechanism in the
architecture with no fc
layer

Can accept random
size inputs because
of no fc layers

The model was
not tested on
the distorted
MSTAR images

99.5% overall
accuracy

–

*Conv = Convolution, Fc = Fully Connected, **Dataset used MSTAR.
Table 12
Feature extraction methods used in MFCNN (Cho and Park, 2018).

Feature extraction Methods Aim

FE1 Features are extracted using both maxpooling and average pooling operations. Aims at extracting mixed features.
FE2 Features are extracted using two max-pooling operations. Aims at extracting target features.
FE3 Features are extracted using two average-pooling operations. Aims at extracting features with reduced noise effect.
by improving the decision method, such as incorporating more than
one assistant classifier for a better decision. In most of the works
above, recognition performance may degrade when encountering noisy
SAR images. To deal with such images, the MFCNN (Cho and Park,
2018) have used a technique that can recognize targets from noisy SAR
images by extracting and aggregating target features as well as reducing
noise features, but the work can further be extended to multiple target
images in the future. Unlike ATR-CNN (Chen and Wang, 2014), all-
in-one CNN (Ding et al., 2016), ATR-CNNAD (Cui et al., 2018) and
MFCNN (Cho and Park, 2018) that deals with single target chip images,
the Versnet (Furukawa, 2018) have considered multiple target input
images of random sizes for recognition with the help of encoder–
decoder fully convolutional technique along with segmentation that has
led to performance improvement. A graph summarizing the average
results of several works is shown in Fig. 10, and a comparison summary
of the different target recognition works is shown in Table 11.

5. Research issues and challenges

Several issues and challenges with respect to target detection and
recognition from SAR images are of great concern. Detecting targets
promptly and precisely from SAR images is currently an open area of
research. With the occurrence of speckle noise in SAR images, target
detection becomes a challenging job. Since in SAR complex scenes,
clutter and targets resemble substantially, therefore identifying which
target is within the scope of the application is difficult in SAR images.
Even though noise removal techniques might be the remedy for the
clutter-target issue, the process of suppressing noise can corrupt the
most relevant features from images, resulting in the degradation of
detection and recognition accuracy. Also, as observed from this study,
the samples used for training are usually SAR images with numerous
targets and sophisticated backgrounds of large scenes. Even the pop-
ular CFAR (Gao et al., 2009) technique which performs efficiently for
target detection on non-obstructed scenes, degrades on encountering
13
Fig. 10. Graph depicting the recognition accuracy of different methods on MSTAR
targets.

complicated scenes like SAR scenes (Wang et al., 2019). Because of this,
SAR detection and recognition models experience false alarm issues.
Deep learning has shown a tremendous impact on the improvement
of various computer vision tasks (Zhu et al., 2017). However, the
use of deep learning, such as convolutional neural networks for SAR
image processing like detection or recognition, gave rise to issues
like overfitting due to the non-availability of massive SAR datasets
along with labeled images for training deep learning models resulting
in incorrect predictions (Cui et al., 2018). Hence the use of deep
learning also becomes challenging for SAR image detection and recog-
nition. Therefore, research on the different data augmentation methods
relevant to appropriately increasing the SAR image datasets is still
undergoing. Data augmentation helps in increasing the population of
the dataset making them relevant for training deep learning models.
Data augmentation also improves the generalization capacity of the
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Table 13
Summary of the different target detection and recognition approaches along with their significant outcome.

Ref Image processing approach Application environment Significant outcome

Wang et al. (2019) TD using SSD merged CNN Detecting vehicles using
MSTAR

Improved detection capability

Wang et al. (2020) TD using feature merged SSD based on CNN
and area-weighted loss function

Detecting multi scale objects Small objects are also given
importance

Ma et al. (2018) TD using a no FC VggNet based model with
SSD parameters

Detection of maritime targets Other than ships, could detect
other maritime targets

Du et al. (2020) TD by mapping saliency information to SAR
images to improve representation capability
in complex scenes

Detection of targets in
miniSAR images

Detection performance
improved with fewer
parameters

Wang et al. (2018) TD using CFAR based CNN with CFAR at two
places: local and global detection

Ship detection systems Lesser detection time

Kang et al. (2017) TD by modifying Faster R-CNN and giving
importance to low score bounding boxes

Detecting multi scale ships Reduces false alarms

Cui et al. (2018) Uses sobel operator for convolutional kernel
to improve contrast between target and
background

Detecting military targets
using MSTAR

Eliminates false alarms by
undergoing morphological
processing and median
filtering

Chen and Wang
(2014)

TR by using CNN based sparse auto encoder
with KL divergence as sparse penalty

MSTAR target recognition Performs better than hand
crafted features even with a
single CNN layer

Ding et al. (2016) CNN trained by focusing on target
translation, pose missing and speckle noising

MSTAR target recognition Feasible for translated targets
and missing pose

Cui et al. (2018) Uses assistant classifier along with CNN for
better decision regarding recognition

MSTAR target recognition Minimum labeled data is
enough to train the network

Cho and Park (2018) TR using multiple extracted and aggregated
features of SAR images with the help of CNN

MSTAR target recognition Attain better accuracy even
with only 50% of training data

Furukawa (2018) Uses encoder–decoder based CNN with no FC
layer

MSTAR target recognition The network could process
images with arbitrary sizes. It
also specifies target position
and pose information

TD = Target Detection, TR = Target Recognition, FC = Fully Connected.
model as it helps expand the dataset with some changes. Another chal-
lenge in SAR Automatic Target Recognition (SAR-ATR) is the ability to
recognize similar targets with different poses in SAR images. For cases
with mixed target size SAR images, detection performance deteriorates.
The performance of SAR detection models on mixed-size targets can be
improved if models such as STDNet (Bosquet et al., 2020) that are used
to detect small targets are incorporated. It should also be noted that
many other fields of research, such as astrophysics (Walmsley et al.,
2020) and medical imaging (Gong et al., 2019), are also affected by
some of the problems with deep learning applications, such as the
lack of high-quality training data. Even the faulty interpretations due
to the presence of noise in the data is another common issue faced
by many other areas of research other than SAR, such as bio-medical
applications (Gong et al., 2019; Qin et al., 2019; Zheng et al., 2016)
(see Table 13).

6. Future approach

As observed from this survey, the deep learning-based approaches
have shown improvement in the performances of various SAR images
interpretation, from detection, recognition, and classification. How-
ever, all these methods have advantages and disadvantages, which
can be further improved by adopting emerging ideas in the rele-
vant field as future works. Concerning the detection of SAR targets,
we observed that VggNet is the most used base architecture (Wang
et al., 2019; Kang et al., 2017; Ma et al., 2018; Lin et al., 2019).
Rarely could we find target detection models that incorporated other
architectures such as ResNet, UNet, GoogleNet. As per the Imagenet
competition (Russakovsky et al., 2015), ResNet (He et al., 2016) out-
performs VggNet (Simonyan and Zisserman, 2015). Therefore, in future
14
work, such architectures can be explored for SAR target detection by
modifying the parameters and improving detection performances. For
SAR images that include mixed target sizes, detection accuracy can
be improved if models such as STDNet (Bosquet et al., 2020) that
are used to detect small targets are incorporated, forming a potential
hybrid detection network. Fig. 11 depicts the possible future hybrid
model based on existing SAR detection works that may improve the
detection performances in SAR images. Inspired by the work in CNN-
MR (Bentes et al., 2018), the hybrid model takes in multiple resolution
inputs in order to enable the model to learn more relevant features
from SAR images. The incorporation of global and local CFAR in the
model can reduce possible false alarms since global CFAR determines
targets while local CFAR determines whether targets are actual targets
or false targets. The CNN used in local CFAR can be pretrained using
recent networks like EfficientNet (Tan and Le, 2019), GoogleNet, etc.
STDNet (Bosquet et al., 2020) is known for its ability to detect small
targets; therefore, to enable the model to detect both small and large
targets, STDNet is used parallelly along with the model whose output
is then concatenated with that of the prior model to get the final
detection results. A-ConvNet (Chen et al., 2016) is known to perform
better in classification problems using less number of parameters; it
can therefore be adopted for recognition purposes as well. This may
not only improve the performance but will also help to reduce the
number of parameters in target recognition models in the future. Also,
most of the recognition works reviewed in this paper have not explored
deeper architectures (Chen and Wang, 2014; Ding et al., 2016; Cui
et al., 2018). Therefore the performance of SAR target recognition
methods using deeper networks can be implemented and analyzed in
the future. Considering the advantages and disadvantages of all the
works reviewed in this survey paper, an implementation of a hybrid
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Fig. 11. A potential future model for SAR target detection based on existing works.
Fig. 12. A potential future model for SAR target recognition based on existing works.
architecture can be carried out in the future for recognition. It may
be mentioned that the hybrid network may be trained initially by
using the seed labeled images accompanied by the update learning
process. This idea of incorporating seed images is motivated by the
work in Shang et al. (2018), as this method leverages the need for a
15
large set of labeled images which is challenging to obtain in the case
of SAR images. In the hybrid architecture, encoder–decoder style CNN
can be adopted along with two other CNN models because, as observed
from the work in Furukawa (2018), encoder–decoder networks produce
better representations of features. The use of three networks in a single
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Fig. 13. Some of the existing deep-learning based approaches for SAR target detection and recognition. (TD: Target Detection, TD: Target Recognition, CFAR: Constant False Alarm
Rate, SSD: Single Shot multibox Detector).
model can be examined wherein the features from each network will
be aggregated to produce the recognition output. The multiple feature
aggregation method is inspired by the method in Cho and Park (2018)
that aims to gather the most relevant features for recognition pur-
poses. Furthermore, assistant classifiers help ensure the most probable
output (Cui et al., 2018); therefore, incorporating two other assistant
classifiers as part of the hybrid architecture before producing the final
output may help produce accurate results. The architecture of the
model is highlighted in Fig. 12.

7. Conclusion

Various SAR image processing techniques have been presented in
this paper, from SAR target detection to SAR target recognition. In tar-
get detection using SAR images, it can be observed that the detection of
false alarms is still a significant issue. Also, false recognition of targets
needs to be addressed when using SAR images for target recognition.
This paper discusses some of the recent works on target detection
and target recognition, highlighting their advantages and disadvantages
followed by future scope based on the study. The tree diagram shown
in Fig. 13 highlights the existing approaches adopted by various target
detection and target recognition works in the literature. After analysis,
it is observed that most works for SAR target detection have incor-
porated VggNet as part of the proposed architecture. Therefore, the
performance of SAR target detection may be enhanced by adopting
recent deep learning architectures such as Inception and EfficientNet.
Further, the integration of features in deep learning models is less
explored for detecting and recognizing targets in SAR images, and the
same can be studied in the future. Future approaches have also been
highlighted in this paper based on the study. Research issues and chal-
lenges concerning SAR target detection and recognition have also been
discussed as depicted in Fig. 14. Possible future models built from the
study for both SAR target detection and recognition are also presented
in this paper. In conclusion, this paper encapsulates the significant SAR
processing works comprising target detection and recognition and their
advantages and disadvantages, intending to benefit the researchers and
ease them to develop new algorithms in the future. The paper will

also help researchers in other fields of image analysis and computer

16
vision, as some of the ideas that were used for SAR image processing
such as the integration of features to recognize targets, especially from
noisy data, will also benefit other image processing fields, as this
technique helps in reducing the noise features (Cho and Park, 2018)
leading to a better understanding of the image information for better
interpretations. Additionally, the blending of the local CFAR and global
CFAR for target detection purposes in other fields apart from SAR also
helps, as this is beneficial for reducing false alarms and hence can be
globally adopted.
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