IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 19 November 2022, accepted 12 December 2022, date of publication 2 January 2023, date of current version 9 January 2023.

Digital Object Identifier 10.1109/ACCESS.2022.3233671

== RESEARCH ARTICLE

Multi-Semantic Discriminative Feature Learning
for Sign Gesture Recognition Using
Hybrid Deep Neural Architecture

E. RAJALAKSHMI', R. ELAKKIYA1-2, V. SUBRAMANIYASWAMY !, L. PRIKHODKO ALEXEY3,
GRIF MIKHAIL 3, MAXIM BAKAEV 3, KETAN KOTECHA 4,
LUBNA ABDELKAREIM GABRALLA 5, AND AJITH ABRAHAM ', (Senior Member, IEEE)

!'School of Computing, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India

2Department of Computer Science, Birla Institute of Technology and Science, Pilani, Dubai Campus, Dubai International Academic City, Dubai,

United Arab Emirates

3Depa.rtment of Automated Control Systems, Novosibirsk State Technical University, 630073 Novosibirsk, Russian

4Symbiosis Centre for Applied Artificial Intelligence, Symbiosis International (Deemed University), Pune 412115, India

SDepartment of Computer Science and Information Technology, College of Applied, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
SFaculty of Computing and Data Sciences, FLAME University, Pune 412115, India

Corresponding authors: R. Elakkiya (elakkiyaceg @gmail.com) and V. Subramaniyaswamy (vsubramaniyaswamy @ gmail.com)

The financial support for the publication is done by Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2023R178), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

ABSTRACT The speech and hearing-impaired community use sign language as the primary means of com-
munication. It is quite challenging for the general population to interpret or learn sign language completely.
A sign language recognition system must be designed and developed to address this communication barrier.
Most current sign language recognition systems rely on wearable sensors, keeping the recognition system
unaffordable for most individuals. Moreover, the existing vision-based sign recognition frameworks do not
consider all of the spatial and temporal information required for accurate recognition. A novel vison-based
hybrid deep neural net methodology is proposed in this study for recognizing Indian and Russian sign
gestures. The proposed framework is aimed to establish a single framework for tracking and extracting multi-
semantic properties, such as non-manual components and manual co-articulations. Furthermore, spatial
feature extraction from the sign gestures is deployed using a 3D deep neural net with atrous convolutions. The
temporal and sequential feature extraction is carried out by employing attention-based Bi-LSTM. In addition,
the distinguished abstract feature extraction is done using the modified autoencoders. The discriminative
feature extraction for differentiating the sign gestures from unwanted transition gestures is done by leveraging
the hybrid attention module. The experimentation of the proposed model has been carried out on the novel
multi-signer Indo-Russian sign language dataset. The proposed sign language recognition framework with
hybrid neural net yields better results than other state-of-the-art frameworks.

INDEX TERMS Indian sign language recognition, isolated sign language recognition, deep neural network,
multi-semantic sign features, attention mechanism, gesture recognition, sign language.

I. INTRODUCTION communicate and express themselves adequately. Further-

Sign Language (SL) is the basic means of interaction for
the speech-impaired and hard-of-hearing populace. Like any
other language, Sign Language seems to have its under-
lying structure and grammatical rules that allow users to
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more, the SL is usually expressed through manual compo-
nents such as Hand motion, Hand position and non-manual
articulations such as eye gaze, facial expression, lip move-
ment, etc. The manual and non-manual components together
form the multi-semantic feature components. Mastering an
SL requires substantial effort for the hearing community,
which demands developing a Sign Language Recognition
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system (SLR). Recently developed Sign Language datasets
include American, Arabic [1], German, Chinese [2], Turkish
[3], Bhutanese [4], Russian, and Indian Sign languages (ISL)
[5]. SLR has been intensively investigated to help hearing
people comprehend sign language and make the everyday
lives of the speech-impaired and hard-of-hearing community
more convenient. The SLR frameworks aim to detect and rec-
ognize sign language performed by the sign interpreter from
a visual medium. Various concerns in developing an SLR
include signer-dependent variations, local and global ele-
ments, feature extrication from heterogeneous backgrounds,
large vocabulary and scalability, multi-modality, occlusion,
and movement epenthesis. Although countless research on
SLR has been undertaken, most issues remain unresolved.
Most of the developed SLRs leverage wearable sensors,
colour-coded gloves, or multiple depth sensor cameras to
capture the data, making the signer very uncomfortable con-
veying the sign gestures in real-life scenarios.

Moreover, deploying such sensors makes the recognition
system very costly and unaffordable for common people.
Although few SLR frameworks have been established, the
abovementioned concerns couldn’t be resolved completely
without leveraging external sensors. Most of the existing
SLRs impose some signer clothing restrictions to avoid
the complex background issues completely, while some
didn’t address all the multi-semantic feature learning. More-
over, occlusion and movement epenthesis complications still
plague the majority of SLR frameworks.

A novel vision-based Multilingual Sign Language Recog-
nition framework is proposed to track and extract multi-
semantic, manual co-articulations, including one-handed and
double-handed signs and non-manual elements, including
facial expressions, body, and lip movement. The funda-
mental motivation for designing the proposed work is to
promote a more natural style of signing with no clothing
restrictions, eradicate the use of wearable devices or sensors
or gloves, handle manual features such as one-handed and
two-handed signs and non-manual features, including facial
expression, body, and lip movement, and develop a unified
framework for multilingual Sign Language Recognition. The
proposed architecture intends to learn the multi-semantic fea-
tures by implementing two modules in Phase-I. The Manual
Articulation Tracking Module’s first module helps detect
the manual components from the full-frame sign images.
The Non-manual Element Tracking module’s second module
helps extract the signer facial features from the sign frames.
The extracted features are then learned using a hybrid Deep
Neural Net (hDNN) framework, including a 3-D neural net
with atrous convolution and Attention-based Bidirectional
LSTM (Bi-LSTM), for extraction of spatial, sequential, and
temporal components from the sign gestures. In Phase II,
the discriminative features are selected in the Discriminative
Feature Detection module. The main contributions of the
proposed hDNN approach are as mentioned below:

1. Create a novel, natural, multi-signer Indo-Russian Sign

Language Database comprising isolated sign gestures.
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2. Extract and select multi-semantic manual one-handed
and two-handed signs and Non-manual gestures such as
body movement and expressions

3. Develop hybrid deep 3-D Neural Net and Bi-LSTM to
extract spatial, sequential, and temporal feature compo-
nents. Using hybrid Autoencoders, extract more abstract
characteristics. Extract and select Discriminative fea-
tures using hybrid attention.

4. Track and Recognize Isolated sign gestures using the
novel Indo-Russian Sign Language database and eval-
uate the outcomes and performances using other state-
of-the-art approaches.

This article is split up into different segments. The review
of the literature and related works are covered in Section II.
Section III explains the Proposed Approach. The outcomes
and discussion are detailed in Section IV, and the concluding
remarks and future works are addressed in Section V.

Il. RELATED WORK

Many investigations have been performed in the realm of Sign
Language Recognition. Various researchers have already
published new variations for establishing the sign structure
in the perception of subunits analogous to phonology in
a spoken language [6], [7]. The SL’s components can be
defined using the Stokoe paradigm depending on the motion,
alignment, and shape [8]. The fingers’ layout and the palms’
orientation indicate the hand shape, whereas the hand posi-
tioning about the frame is defined. The Movement-Hold
model is typically composed of sequential [47] movement
organization and static posture that is continual signing [9].
Although the relationship between the motion and stances
of the hands has indeed been approximated in two-handed
signs, the approaches mentioned above are sufficient for one-
handed signs [10]. Vision-based (multi-semantic) and sensor-
based (multi-modality) are different SLRs. Physical sensors,
such as infrared depth and maps [13], [14], were employed
in the early efforts to attain multi-modality [11], [12] for
acquiring 3-D spatial intelligence. Researchers have explored
the integration of RGB and optical flow in a handful of works,
resulting in better outcomes on the PHOENIX-14 collection.
The development of an SLR poses a variety of obstacles. Even
though the same individual repeatedly gestures the same sign,
minor hand pace and location variations are noticed.

The major challenges in the SLR include hand segmen-
tation and tracking from various contexts and environments,
occlusion, illumination variation, hand orientation, etc. [15].
The isolated SLR research has lessened the barrier of track-
ing and segmentation by directly detecting location features
with devices on hands, such as coloured mittens or mark-
ings. An alternative paradigm was presented, including Sign
instructor steps for recognizing, evaluating, and categorizing
hands and faces [16]. Coloured gloves have been employed
in this project to make hand identification and segmentation
easier. A similar methodology was introduced using colour-
coded mittens, making human hand tracking easier. Tech-
niques used a multi-colour detection approach and an HMM
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for categorizing significant attributes from recordings. The
hand was considered the single identified item in a multi-
function extraction [17]. Some other authors presented a
directed histogram and classifications employing Euclidean
Distance and KNN to discern static, isolated signs with a 90%
accuracy [18]. An SLR with an Optimized Neural Net was
devised [19]. A similar model was developed using the open
pose to derive the posture cues of the Signing gestures [20].
In [21], different SVM and skin segment-based methods were
formulated.

An SLR was given a special twist when a sophisticated
background setting was combined with dynamic sign ges-
tures [22]. One of several projected works [23] also included
a dynamic SLR system for ISL. A grid-based system was
presented employing ISL [24] for real-time hand position
and sign recognition. An alternative Isolated Sign Lan-
guage Recognition (ISLR) with Bayesian KNN was deployed
for eliminating sign redundancies [15]. Some researchers
focused on differentiating between manual and non-manual
elements [25]. A word-level pose-based SLR also was
devised employing BERT and GCN [26]. Leveraging Neu-
ral Machine Translation, an SL translation system was con-
structed for end-to-end and pre-trained contexts [27]. In a
previous study, the researchers introduced a time-based accu-
mulative element detection for building ISLR. To retrieve the
manual aspects of the signing motions, a Convolution Neu-
ral Network was used to synthesize modelling-based hand
energy ISLR [28]. DeepArSLR, a robust ISLR method, was
developed to handle multi-signer constraints in Arabic SL
leveraging Deep Learning [29]. An ISLR with a word dataset
was developed in which the scheme learned domain invariant
descriptors by transferring knowledge of headline gestural
captions [30]. The attention mechanism model addressed
the complex background constraint for gesture detection
[34]. An ISLR has been accomplished by utilizing a neural
methodology deployed using CNN [33]. The SL Graph Con-
volution Network [32] has presented a dynamic sign recog-
nition. Spatio-temporal video-based ISLR with the Deep
Cascade model [31] was used in other approaches. A deep
neural architecture with CNN+Stacked LSTM [35] was built
to accommodate static and dynamic responses. Extensive
research has also been conducted on several regional SL.
For Sinhala word numeric sign detection, a Sinhala SLR
system was developed [36]. A database was collected for
Arabic SLR also [37]. Several implementations of SLR have
been built for the Indian SL system [38], [39]. Eventually,
an SLR framework was developed applying syntactically
directed Korean Sign Language recognition [40]. Various
image processing techniques [46] are also available for Sign
Language Recognition.

ill. PROPOSED METHODOLOGY

While examining a sign representation video for dynamic
motions, vy = {vs}}lf:l comprising F frames, the main goal
is to determine the relevant sign class, w;. The hDNN is
signer independent and has been shown to handle concerns
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such as varied complexion, illumination changes, compli-
cated backgrounds, facial expressions, and hand sizes, among
others. hDNN is developed to identify the Isolated Word
Sign Gestures. The framework mainly aims at discriminative
feature learning from isolated sign gestures.

A. DATA PREPARATION

For sign recognition, the videos were transformed into
frames. Depending on the duration of the sign activity, each
video generates a varying number of frames. So here, the
Frame Sampling (FS) technique has been used to cope with
these inconsistencies and bring uniformity to the series of
frame images produced by all sign videos. The FS approach
aids in extracting a set of predetermined frame images from
sign gesture videos. In FS, the average of the number of
frame images of every video, fuy,, is estimated and kept as the
threshold count and the f;,, is then set up as the predetermined
frame counts for each video. The f,¢, can be computed as
given in Eq. 1 where Cy indicates the total count of frame
images from all the sign videos and C, indicates the total
count of videos.

Cr

favg = a (D

The threshold value chosen is fguy, therefore the first fyq
frames from each video are retrieved for further processing.
Whenever the frame count in a sign video falls below the fg,,,
the very last image is duplicated for having the number of
frames for each video consistent as f,y¢. In this manner, the
number of frames produced by all the videos will get set to a
constant value i.e. fu,¢. Hence all the video clips will have a
consistent number of frames.

B. PROPOSED SLR FRAMEWORK WITH HYBRID DEEP
NEURAL NET

The proposed hybrid Deep Neural Net framework intends
to recognize multilingual, multi-semantic signer independent
Sign Language recognition (hDNN-SLR). The hDNN-SLR
framework deals with the semantic manual co-articulation
and non-manual element detection and spatial, sequential and
temporal component extraction. Figure 1 illustrates the pro-
posed hDNN-SLR framework. Since there is a lack of ISL and
Russian SL (RSL.) Database, the first step toward recognition
is the creation of a novel multi-signer SL dataset. The SL
dataset was created for isolated sign gestures. The next step
deals with the dataset preprocessing module wherein the SL
videos were prepared for recognition. In this module, the
Sign videos were first converted into frame images. Then,
all the frame images were resized, and frame sampling was
done to bring uniformity and consistency. Data Augmentation
was done to increase the SL dataset to have better train-
ing. The preprocessed frame images were then provided as
input for the Multi-semantic component Extraction module
for non-manual and manual element tracking from the video
frame images.
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FIGURE 1. Proposed hDNN-SLR framework.

The Multi-semantic Feature Extraction unit is divided into
submodules, namely Manual Articulation Tracking (MAT)
and Non-Manual Element Tracking (NMET) for feature
detection and Spatial Component Detection module (SCD),
Sequential-Temporal Component Extraction module (STCE)
for feature learning. In the MAT submodule, the tracking of
semantic manual articulations is carried out. In this module,
Holistic MediaPipe tracks hand, palm, and full pose skeletal
from the sign frame images. The Holistic Mediapipe gen-
erates skeletal pose and Landmark pixel coordinates from
the sign gestures. The skeletal posture is then given input to
the SCD module to extract spatial features. The landmark
coordinates generated by the Holistic MediaPipe are sent
to STCE Component to extract the temporal and sequential
components.

Furthermore, in the MAT module, Full RGB frames of the
sign videos are also used for feature extraction to overcome
the issues posed by Holistic MediaPipe. Optical Flow (OF)
is generated from the RGB sign frame images for tracking
the velocity of the motion of gestures, thereby analyzing
the sign articulations in depth. The RGB and Optical flow
frame images are input to the SCD module for spatial feature
extraction. The next module is the NMET module, wherein
the Non-Manual elements are detected and tracked from the
sign images. FaceMesh MediaPipe is leveraged to extract
the facial elements from the sign gestures in this module.
The skeletal face pose generated by the Face Detection mod-
ule (FD) is given as input to the SCD module for spatial
feature extraction. In contrast, the facial Landmark pixel
coordinates generated are inputted into the STCE module.

The SCD module gets the frame image inputs from the
MAT and NMET modules. The SCD module helps to extract
the spatial features from the sign gesture video frames by

VOLUME 11, 2023

Discriminative Feature Detection (DFD)

Genuine and Non-gesture Isolated Sign Feature Detection

using hybrid Attention Layer

A

segregation

leveraging a Deep 3-D Neural Net using Dynamic Atrous
Convolutions (DAC). The Feature Maps generated by the
SCD are then given as input to the SCTE module to extract the
temporal and sequential information from the sign gestures
using Attention-based Bi-LSTM (A-BiLSTM). The SCTE
module receives inputs from MAT, NMET, and SCD mod-
ules. The output from the SCTE module is further passed
to the autoencoders and decoders for extracting the distin-
guished abstract features. After the feature extraction from
the Multi-semantic Feature Learning module, the extracted
characteristics are given as input to the Discriminative Fea-
ture Learning module. In this module, discriminative features
are extracted using a hybrid Attention Layer that helps to
recognize the genuine and non-genuine features. The feature
extracted are then given to the Sign Recognition and Classi-
fication module for recognition of Isolated Sign Language.

1) MANUAL ARTICULATION TRACKING

The manual semantic co-articulations comprise hand shape,
palm and finger orientation, movement, etc. The manual
elements and full pose are extracted in the Manual Articu-
lation Tracking (MAT) module. The MAT module comprises
Pose Detection using Holistic MediaPipe, RGB Full-frame
feature detection, and Optical flow component tracking. The
full-body pose, hand orientation, and movements are tracked
and estimated using the MediaPipe Holistic pipeline in the
Full Pose Detection submodule (FPD). Google created a
cross-platform library called Mediapipe that offers incred-
ible pre-built machine learning (ML) solutions for com-
puter vision problems. For typical tasks like hand tracking
and pose tracking, MediaPipe offers foundational machine
learning models, addressing the same barrier in development
that affects various machine learning applications. Separate
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models for posture, face, and hand components are indi-
vidually integrated into the MediaPipe Holistic pipeline and
optimized for their respective fields. However, the input to
one component is not appropriate for the others due to their
disparate areas of expertise. For instance, a smaller, fixed-
resolution video frame (256 x 256) is used as input for the pos-
ture estimation model. But the picture quality would be too
low for precise articulation if the hand and facial areas were
cropped out of that image and given to the appropriate mod-
els. As a result, MediaPipe Holisticis created a multi-stage
pipeline that processes the various regions using an image
resolution suited for each one. FPD combines independent
models for the posture, face, and hand components, each
optimized for its realm. While reacting to quick gestures, FPD
utilizes posture prediction (on each frame) as an auxiliary
ROI to minimize the pipeline’s latency beforehand. Hence,
the framework preserves semantic consistency by limiting a
mix-up between the right and left hands or parts of the body.
The pose generated, tracing the sign gesture in the frame,
using FPD, is then given as input to the Spatial Component
Detection (SCD) for spatial feature learning from the full
pose generated.

Figure 2 shows the traced skeletal pose generated in the
FPD module. The FPD also detects a total of 543 land-
mark coordinates of a face (468), hand (21), and pose (33)
landmark coordinates along with the skeletal pose. These
landmark coordinate values are then fed to the Sequential and
Temporal Component Extraction (STCE) Module for further
feature learning. The Posture data perform poorly when the
hands face parallel to the floor/ceiling or perpendicular to
the camera. Hence, RGB Full-frame feature extraction and
Optical Flow (OF) component tracking is deployed along
with the skeletal pose estimation to overcome such issues
and for efficient tracking of the hand gesture movements.
The RGB Full-frame images are directly passed to the SCD
module for spatial component feature extraction. Optical flow
is a term used to track the motion in the frame. Optical
flow detects the velocity of points inside frames and predicts
where points might appear in the future frame image series.
Optical flow information is derived from successive images
to comprehend the dynamic movement of signers. M optical
flow images are inputted into the stream for optical flow
information using the TVL1 method [49], which is calculated
from M + 1 successive frame images. Hence the optical
flow from the Full frame is extracted and passed to the SCD
module.

(@) (b)

FIGURE 2. Sign skeletal pose generated by FPD module.
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2) NON-MANUAL ELEMENT TRACKING

The Non-manual components comprise Facial expression, lip
movement, eye gaze, etc. The proposed framework detects
and extracts the semantic Non-manual feature components
with the help of the Non-Manual Element Tracking (NMET)
Module. The NMET comprises two modules: Face Detection
using the FaceMesh module, FD, and Mouthing Cue Detec-
tion module, MCD. The FD module leverages the MediaPipe
FaceMesh pipeline for extracting the facial components. The
Facial Transform module of FaceMesh fills the gap between
accurate real-time augmented reality applications and face
landmark estimates. It creates a metric 3D space and then
estimates a face transformation inside it using the locations
of the facial landmark screens. The face transform data com-
prises typical 3D primitives such as a triangular face mesh
and a face position transformation matrix. The FD module
generates a real-time facial geometry framework that detects
468 3D facial landmark coordinates with the help of the
FaceMesh pipeline. It uses computer vision to deduce 3D
surface geometric features from regular camera inputs, elim-
inating a specialized depth sensor requirement. FD module
also leverages an approach based on attention with FaceMesh
pipeline to semantically relevant facial regions, anticipating
landmarks quite efficiently around irises, eyes, and lips at the
cost of more computation and the face landmark framework.
The landmark coordinates are then inputted to the STCE
module, and the facial skeletal pose traced and generated is
inputted to the SCD module for spatial feature extraction.
Mouth shape, eye gazing, and facial expressions are common
fine-grained cues in SL articulation. These cues fluctuate with
time and cover small spatial regions in the Spatio-temporal
pipes. As a result, they quickly vanish in subsequent convo-
lution and pooling. To sustain those fine-grained elements,
we employ an additional adaptive sampling to provide a
Facial Cue Enhancement (FCE) module highlighting them
with increased resolution.

3) SPATIAL COMPONENT DETECTION

The spatial features from the sign video frames are extracted
using a Spatial Component Detection (SCD) module that
leverages the Deep 3-D Neural Nets with Dynamic Atrous
Convolution (DAC). 3-D conv Neural Net employ a 3-D filter
on the input, traversing across three directions, to obtain
the low-level feature embedding. Its output is having a
3-D volume space. Dilated or Atrous convolution define the
space between units in filters. In this convolution type, the
kernels’ receptive view extends due to the space; for example,
the visual field acquired by the 3 x 3 kernels with a dilation
rate of 2 is identical to the field of vision acquired by the
5 x 5 kernel. The complexity maintains the same in this
circumstance, but distinct features are produced. The DAC
helps accelerate the feature extraction process for many sign
gesture frames. The feature map generated by combining the
temporal feature, ¢, can be represented as M € R’ xhxw Given
the coordinate points p = (p;, px, py) The sampling can be
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denoted by s € R¥*3. So we can have a 3 x3x 3 convolutional
operation generating k = 27 entries. So we have dilated map,
d € R>wx3 For the prediction of d, an input feature map x
is inputted to a basic 3 x 3 x 3 convolution dy. After generating
the feature map, we apply an addition operation by 1 with an
elu activation function, as illustrated in Eq. 2.

d =1+ elu(dy (x)) 2)

Essentially constrains the elements in d to the range [0, 00).
It was discovered that just engaging dr(x) with a ReLU activa-
tion eventually ends up in zero gradients. The Eq. 2 formula-
tion, on the other hand, yields far better gradients throughout
learning and superior inference outcomes. Parallel to this,
to generate a modulation map m € R/>MWxk a3 5 3 x
3 convolution my is adopted into x along with an activation
function, namely sigmoid. With coordinate pg, using DAC,
the output y is computed as illustrated in Eq. 3 where (p;-d (po)
indicates the multiplication of the sampling coordinate points
of the location p; and tuple with a dilation rate of 3 in d at pg.

¥(po) = Zm(Po,Pi) -w(pi) - x(po + (pi - d(po))) ()

pi€s

In each convolutional layer, the Dilation and Modulation
outcomes were concatenated. The dilation rates vary accord-
ing to the position of the signer inside the frame images. The
3-D Deep Neural Architecture is detailed in Table 1. Cross-
Entropy having a batch size of 128 with a learning rate of 1,
was employed for training. Figure 3 illustrates the framework
deployed for spatial, temporal and sequential feature learning
with SCD and STCE modules.

SCD Module

Pool DAC  DAC

Ve

FIGURE 3. Spatial, temporal and sequential feature extraction using SCD
and STCE module.

4) TEMPORAL AND SEQUENTIAL COMPONENT LEARNING

The temporal and sequential feature learning from the sign
frame images is done in the Sequential and Temporal Compo-
nent Extraction Module (STCE) by employing the Attention-
based Bi-LSTM (A-BiLSTM). The STCE module is divided
into 2 phases: Phase I for deploying A-BiLSTM for analyz-
ing MediaPipe-generated skeletal landmark coordinates and
Phase II for deploying A-BiLSTM for analyzing the feature
maps generated by the 3D Neural Net. In both Phases, the
underlying architecture is the same, while the input and the
outcome may differ accordingly. The input layer is the 1%
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TABLE 1. 3D deep neural net architecture with DAC.

Layers Filter Stride Dilation Feature
Rate Map
DAC 3x3x3 1x1x1 3Xx3x3 4
DAC 3x3x3 1x1x1 3x3x3 4
Max- 4x4x4 2X2X2 4
Pooling
DAC 3X3x3 1x1x1 3X3x3 8
DAC 3x3x3 1x1x1 3x3x3 8
Max- 4X4X4 2X2Xx2 8
Pooling
DAC 3x3x3 1x1x1 3Xx3x3 16
DAC 3x3x3 1x1x1 3x3x3 16
Max- 4x4%x4 2X2X%X2 16
Pooling

layer of A-BiLSTM. In Phase-1 of A-BiLSTM, the input
layer is the matrix form representing the x, y, z coordinates
of the skeletal pose generated by MediPipe. In contrast,
in Phase II of A-BiLSTM, the input layer is the matrix form
representing the 7, h, w as the temporal feature, height, and
width attributes. The Batch Normalization (BN) layer is the
second layer. Using a higher learning rate, the BN approach
[36] can cut down the number of learning steps involved
in network convergence without paying much attention to
dropouts and baseline parameters. As a result, a BN is utilized
to streamline and automate the Network’s training. The 2"¢
and 3, namely, Bl and B2, deploy Bi-LSTM, each having
192 units. The input of B2 layer is the sequential outcome of
the B1 layer. Two Bi-LSTM layers are added after the BN
layer since experiments have already established [37] that
over two recurrent layers are more effective in forecasting
temporal activities. The activation function utilized in this
Network is the Tanh function. Since the Tanh function’s out-
putis —1 to 1, which corresponds to the feature distributions
of most sequences focused on 0, it seems to have a higher
gradient than the Sigmoid function at the insight of 0, and
the model can indeed be faster to convergence. L2 emits
the hidden unit elements of all epochs (Al). The reverse
and forward LSTM make up Bi-LSTM, whereas the Input
gate, Forget gate and memory cell make up an LSTM mem-
ory block. The computations involved in the Bi-LSTM are
described in Eq. 4 to Eq. 2. In the given equations, F; denotes
the forget gate output, I; denotes the input gate outcome, O;
denotes the outcome of the output gate, M; denotes the cell’s
candidate outcome while M; denotes the state of the cell. The
outcome of the memory cell is denoted by B;, the outcome of
the forward and reverse LSTM is denoted by f} and ry. The
weight and bias entities are represented as w and b.

Fy = o(Wr [Hy-1). X¢] + br) 4
Iy = o (Wi [Hu-1), X¢ ] + br) S

M; = tanh (wy, * [Hq—1), X;] + bc) (6)
M; = FiM—1y + I *Mt) @)
O = o (wo x [Hy—1), X;] + bo) (8)
H; = O; % tanh (M;) &)
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fi = (wriXe + wpaH—1y) (10)
o =f (wrXi +wraHgy)) (11)
By = g (wo * fr +wo * rp) (12)

The Attention layer is employed based on the signifi-
cance of the sign gesture’s sequential and temporal essence.
Eq. 13 to Eq. 15 illustrates the integration of the Attention
layer to Bi-LSTM to deploy A-BiLSTM architecture where
i; denotes the unit of the hidden net, B; is considered as
the outcome of BiLSTM, the weight coefficient vector is
represented by a;, w, represents the weighted co-efficient
matrices from B2 to the Attention layer, j, represents the
outcome of the Attention layer, and b represents the bias
entity. In A-BiLSTM, the vector i, is utilized to extract the
temporal aspects.

iy = tanh(w,B; + b) (13)
a; = softmax (itTiw> (14)
jo=_aB; (15)

The dot product between i; and iy, helps to measure
the significance of characteristics. The value of a; is esti-
mated with the help of the softmax activation function. The
temporal attention mechanism imparts varying weights to
various aspects of sign gestures at distinct intervals, so signif-
icant aspects get greater attention, thereby improving gesture
recognition accuracy.

5) DISTINGUISHED ABSTRACT AND DISCRIMINATIVE
FEATURE DETECTION
Our framework used Variational Auto-Encoders (VA-E) to
learn distinguished abstract components from the sign ges-
tures, thereby removing the noise elements. Fingers, palm
radius, palm orientation, hand orientation, the separation
between fingertips and palm, and palm radius are among the
high-level parameters extracted utilizing the VA-E. The VA-E
is a regularized auto-encoder that guarantees that the latent
space has acceptable parameters for generative processes
and eliminates overfitting. Rather than a single point, VA-E
captures the knowledge as a dispersion all through the feature
space, yielding some latent space regularization. Provided
a base underlying probabilistic framework to characterize
the feature elements, the loss function of VA-E, consisting
of a reconstruction component and a regularization compo-
nent, might well be meticulously constructed by employing
the statistical model of variational inference. The loss func-
tion has been greatly reduced while training a VA-E. The
reconstruction component makes the encoding and decod-
ing design efficient. The regularization component on the
residual layer attempts to regulate the residual space orga-
nization by keeping the encoder distribution closer to a con-
ventional normal distribution. The regularisation component
is the Kulback-Leibler divergence between the conventional
Gaussian and the returned distributions.

The Dropout generalizes the Neural Net structure by
performing multiplication on various activations with 0 at
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random. In contrast, ReLU activation has enabled Neural
Nets to achieve convergence faster and better than the other
standard activation functions. The output of a neuron can be
determined using either of these methods. Regardless, the
two operate independently of one another. Furthermore, Zone
out regularizer multiplies the input with 1 in a stochastic
method. Hence to bring these three together, along with the
VA-E, GELU [41] activation function is employed. It helps to
have the result of the activation function deterministically by
incorporating three functions and stochastically performing
multiplication on input by 1 or 0. With the modified VA-E’s
help, we can extract high-level abstract features from the sign
gestures.

After abstract feature learning, the extracted components
are given to the Discriminative Feature Detection Module
(DFD). The DFD module comprises of hybrid Attention
mechanism (h-Attention). The h-Attention layer integrates
the Segmentation and Spatial attention along with Light-
BGM. The attention mechanism’s task is to provide context
and direct the attention of the decoder to specific encoder
range outcomes. The ultimate goal of attention mechanisms is
to produce a weighted representation of the source sequence
to assist in decoding. The terminology context vector
describes this summarization. Let U = [u], us..u,41] be the
hidden components, considering o, as each state component’s
output, a, and ¢, as the attention weight and context vector,
respectively, we can formulate the ¢, as given in Eq. 17.

a, = softmax(0, WU) (16)
cn = [apUyl (17

But, using this Attention method, it would not be easy
to distinguish between the weights of different semantic
cues. Hence h-Attention has been introduced that integrates
Spatial Attention (hSA) and Segmentation Attention (hSE).
The hSA generates a spatial attention map by exploiting the
inter-spatial interconnectedness of features. In contrast to
channel attention, where the focus is on channel placement,
hSA is complementary to channel attention and focuses on
the placement of the informational component. hSA con-
volves average-pool and max-pool layers with the channel
vectors to provide a meaningful feature descriptor for quan-
tifying spatial attention. The input has been taken from the
SCD output feature maps. To generate the hSA feature maps,
Sm(f) € RAxw, Sy, determines the components that are needed
to be emphasized. The channel information from the feature
maps is incorporated with fwo pooling operations, thereby
creating 2D feature maps. The 2D feature maps My © €
RIXPW and M ¢ RIXWW represent the corresponding
average and max pooling. By convolving and concatenating
the 2D feature maps generated, the hSA map is produced.
The hSA can be formulated as illustrated in Eq. 16. The o
notation denotes the sigmoid function and F7*7 denotes the
convolution operation with a filter size of 7 x 7. The final
feature map was flattened and concatenated with the hSE.

Su(f) = o(F"7([Avgpool (f) ; Maxpool(f)])) (18)
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Su(f) = o (FT((M8, M) (19)

The attention weights are assigned to each feature extracted
independently by the hSE method. The ¢, can be computed
using hSE with the help of Eq. 22. Here a, is segmented
uniformly across z + 1 channel.

Op = [On,l» Op2y v, 0n,z+1] (20)
ap = softmax(o, ;W.;U;) 2n
szl hoy] (22)

The hAttention mechanisms help to segregate the use-
ful genuine gestures from the non-useful gestures, thereby
reducing the computation for sign recognition. The output of
the h-Attention is then passed to the sign recognition task.
The sign recognition is done using the stacked Bi-LSTM
by stacking three layers of Bi-LSTM, thereby forming a
Bi-LSTMNet. The Bi-LSTMNet consists of varying hidden
layers for efficient recognition. The Bi-LSTM unit is the
recurrent unit for its capacity to handle long-term dependen-
cies. Bidirectional inputs are combined into forwarding and
backward hidden states by the BLSTM. To produce spoken
language translations, the hidden state of each time step is
transmitted via a fully-connected layer and a softmax layer.

cn = lan,1,uy, an2, w2, ..

IV. RESULTS AND DISCUSSIONS

A. DATASET

The lack of availability of the ISL and RSL datasets has
mandated the creation of a novel Sign Language database.
The proposed research involves collecting and creating a
novel, multi-signer Indian-Russian Isolated SL dataset. For
the Indian Isolated Word Sign dataset (ITWS), sign videos
were captured using a DSLR camera with 30-45fps. The sign
videos were created with the participation of seven volunteer
signers. Three female volunteers, ages 26, 23, and 25, and
four male volunteers, ages 24, 27, 30, and 33, participated
as volunteers for the IIWS sign gesture database collection.
While collecting the dataset, no clothing restrictions were
considered, and none of the wearable sensors or devices was
utilized. The videos were taken under varying illumination
conditions. IIWS comprises random 500-word sign gestures
that are used in our daily lives. At least five repetitions
from each signer have been considered for each word. After
applying Data Augmentation, the ITWS dataset consists of
3000-word sign videos (mp4), each having 1080p resolution.
All the videos were transformed into frame images in JPEG
format. Individuals with diverse complexion and hand sizes
were selected to acquire the data. The video clips were shot
in a closed environment with standard lighting.

Nearly 1100 unique, commonly used Russian word sign
videos have been created and collected regarding the
Russian dataset. A dataset comprising 1100 unique signs
and 37775 standard Russian sign representations was gen-
erated. Three separate native signer volunteers have helped
capture the Russian Signs, each with five repeats of each
sign. One female volunteer, age 25, and two male volunteers,
ages 27 and 33, participated as volunteers for the IIWS sign
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gesture database collection. The data were separated into
categories based on the words, type of movement, and hand
positions. The data was then categorized into idle, begin-
ning sign, and ending. The database contains approximately
800 handshapes for static sign gestures with seven different
signers in 12595 clips, each lasting about 3sec—5Ssec, yielding
377850 frame images.

B. PERFORMANCE EVALUATION METRICS
We assess all techniques using recognition accuracy criteria.
The performance evaluation of the proposed hDNN-SLR
framework was carried out in three phases. In the first phase
the proposed framework was evaluated by training through
multiple epochs and analyzed using the sign gesture recogni-
tion accuracy. In the second phase of performance evaluation,
the model was trained in three level, each level separately,
and the signer-based performance of the proposed model was
evaluated. For the first signer-based performance evaluation
level, the network was trained with a single signer dataset and
tested for unseen multi-signer dataset. For the second signer-
based performance evaluation level, the network was trained
with a three different signer dataset and tested for unseen
multi-signer dataset. For the third signer-based performance
evaluation level, the network was trained with a five signer
dataset and tested for unseen multi-signer dataset. In the third
phase the performance proposed framework was compared
with other baseline models concerning the accuracy metrics
using the WLASL database and thereby the scalability of the
proposed model was evaluated.

C. EXPERIMENTAL RESULTS FOR THE PROPOSED ISLR
FRAMEWORK

Our proposed hDNN-SLR has been implemented using the
newly created ISL and RSL datasets. The implementation
has been carried out using RTX 3060 GPU. The Network
was trained for 140 epochs. The Categorical Cross-Entropy
Loss was employed for estimating the loss. Cross-entropy is
used to fine-tune the BiLSTM for successful feature learning
and recognition, while L.1-1oss is smoothed using SGD as an
optimizer. Early stopping is used to stop training to improve
the model’s accuracy. The experimental findings were plotted
in a graph. The accuracy generated from training and valida-
tion for the ISL and RSL Dataset is illustrated in the graph
provided in Figure 4. The accuracy of the validation dataset
was 99.87 per cent, while the training accuracy was 98.71 per
cent. The loss plot generated from the train and validation of
the Static ISL and RSL Dataset is plotted and illustrated in
Figure 5.

D. EXPERIMENTAL RESULT FOR ISLR WITH VARYING
CONSTRAINTS

The proposed framework experimented with varying con-
straints for evaluating its performance. The performance
record based on the absence of each SCD module is shown in
Figure 6. The graphical plot illustrates the performance of the
proposed recognition framework without extracting certain
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FIGURE 5. Loss plot for proposed hDNN-SLR.

features, including feature learning from Full-frame RGB
images, posed extracted images, and Optical flow images.
It also shows poor recognition accuracy when the non-manual
features and the pose coordinates are not included during the
feature learning process. When we consider all the modules
from SCD, the recognition accuracy is noted to outperform
by a large margin.

For evaluating the performance of the proposed framework
with the multi-signer dataset, the test set has been divided
concerning the number of signers using three constraints. The
first constraint was to train the framework with a single signer
train dataset and test the framework with a new signer valida-
tion dataset. Figure 7 illustrates the recognition performance
for the first constraint. The second constraint was to train
the framework with three different signer train datasets and
test the framework with a set of new unseen signer validation
datasets. Figure 8 illustrates the recognition performance for
the second constraint. The third constraint was to train the
framework with five different signer train datasets and test
the framework with a set of new unseen signer validation
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datasets. Figure 9 illustrates the recognition performance for
the third constraint. When comparing the three graphs with
different multi-signer train-test ratios, we can see that the
framework performs well and tends to attain convergence
when the Network is well-trained with a multi-signer dataset.
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FIGURE 6. Accuracy concerning the presence of modules.
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FIGURE 7. Performance of framework having trained with single signer
and validation with the multi-signer dataset.

For evaluating the performance of the proposed framework
with the multi-signer dataset, the test set has been divided
concerning the number of signers using three constraints. The
first constraint was to train the framework with a single signer
train dataset and test the framework with a new signer valida-
tion dataset. Figure 7 illustrates the recognition performance
for the first constraint. The second constraint was to train
the framework with three different signer train datasets and
test the framework with a set of new unseen signer validation
datasets. Figure 8 illustrates the recognition performance for
the second constraint. The third constraint was to train the
framework with five different signer train datasets and test
the framework with a set of new unseen signer validation
datasets. Figure 9 illustrates the recognition performance for
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FIGURE 8. Performance of framework having trained with the
multi-signer dataset with three different signer datasets and testing with
the multi-signer dataset.
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FIGURE 9. Performance of framework having trained with the
multi-signer dataset with five different signer datasets and validation
with the multi-signer dataset.

the third constraint. When comparing the three graphs with
different multi-signer train-test ratios, we can see that the
framework performs well and tends to attain convergence
when the Network is well-trained with a multi-signer dataset.

E. EXPERIMENTAL RESULT FOR ISLR USING A
BENCHMARK DATASET

The framework is implemented on WLASL Dataset,
an American Isolated Word SL dataset. It comprises a
collection of WLASL100, WLASL300, WLASL1000, and
WLASL2000. The overall dataset’s performance of the
Top-1, Top-2, and Top-3 percentages was analyzed in
terms of accuracy for each dataset group. The perfor-
mance of the hDNN-SLR was evaluated with the other
cutting-edge models such as I3D [43], Pose-TGCN [43],
Pose-GRU [43], GCN-BERT [26], Multi-Stream [44], and
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Fusion-3 [45]. Table 2 shows the performance evaluation
of hDNN-SLR with other baseline architectures in terms
of Accuracy measures using the WLASL100, WLASL300,
WLASL1000 and WLASL2000 dataset consisting of 100,
300, 1000 and 2000 word sign videos. Our proposed work
tends to produce greater accuracy outcomes when compared
to other baseline models.

TABLE 2. Performance accuracy (%) comparison of hDNN-SLR with other
baseline architectures using benchmark datasets.

Model WLASL- WLASL- WLASL- WLASL-
100 300 1000 2000

13D 89.92 86.98 84.33 66.31

Pose-GRU | 85.66 76.05 70.15 61.38

Pose- 87.60 79.64 7191 62.24

TGCN

GCN-BERT | 88.67 80.93 - -

Fusion-3 90.16 86.22 84.71 75.71

Multi- 96.05 94.83 92.94 87.47

Stream

Proposed | 98.75 98.02 97.94 97.54

hDNN-

SLR

Nevertheless, when the quantity of the dataset grows, our
proposed method appears to be more efficient and adaptable
to a large vocabulary. The hDNN-SLR system we propose is
scalable and adaptable for Multilingual SLR. The proposed
work is better than other baseline models since it deals with
multi-semantic feature learning rather than just considering
only the manual feature. The proposed model considers all
the constraints the signers face in real-life scenarios.

V. CONCLUSION AND FUTURE WORK

A novel Sign Language Recognition system has been devel-
oped by deploying a multi-semantic discriminative feature
learning Deep Neural Net and spatial, temporal and sequen-
tial feature learning. The proposed hDNN-SLR framework
intends to extract semantic manual co-articulations and non-
manual elements, which are the key components necessary
for sign recognition. In addition, spatial, sequential, and
temporal features are also considered for accurate recogni-
tion. Furthermore, abstract and discriminative feature extrac-
tion is also carried out to segregate genuine and non-useful
gestures. The genuine gestures are then used for recogniz-
ing the Sign gesture representations, thereby reducing the
computation overhead. The experimentation of the proposed
hDNN-SLR framework has been deployed on the newly
created Indian and Russian Sign Language Datasets. The
results generated represent a good and efficient performance.
The performance of hDNN-SLR has also been compared
with other baseline frameworks using the WLASL dataset.
According to the analytical outcomes, the proposed hDNN-
SLR paradigm surpasses the existing baseline architectures.
Since the proposed work focuses on multi-semantic feature
learning rather than merely taking into account the manual
feature, it is superior to previous baseline models. The pro-
posed model considers every limitation that signers encounter
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in real-world situations. As a part of future work, we would

like

to extend our study toward continuous sign sentence

recognition. We would also like to design a framework for
handling the segmentation ambiguities and moment epenthe-
sis in continuous sign language recognition. The isolated
word gesture recognition framework could also be integrated
to enhance sign spotting from continuous sign video stream
for recognition sign sentences from continuous sign gestures.
We also intend to increase the dataset and publicly publish it
for further research.
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