
Engineering Applications of Artificial Intelligence 116 (2022) 105345

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Survey paper

Resource schedulingmethods for cloud computing environment: The role of
meta-heuristics and artificial intelligence
Rajni Aron a,<, Ajith Abraham b,c

aMPSTME, NMIMS University, Mumbai, India
bMachine Intelligence Research Laboratories, Auburn, WA 98071, USA
c Center for Artificial Intelligence, Innopolis University, 420500 Innopolis, Russia

A R T I C L E I N F O

Keywords:
Cloud computing
Resource provisioning
Scheduling
Heuristic methods
Scheduling algorithms

A B S T R A C T

The growth and development of scientific applications have demanded the creation of efficient resource
management systems. Resource provisioning and scheduling are two core components of cloud resource
management systems. Cloud resource scheduling is the most critical problem to solve efficiently due to the
heterogeneity of resources, their inter-dependencies, and unpredictability of load in the cloud environment.
In this paper, we review the background of scheduling and state-of-the-art scheduling techniques in cloud
computing. We first introduce the general background, and phases of scheduling. A comprehensive survey
of existing resource scheduling problems proposed so far is presented considering high-level taxonomy. This
high-level taxonomy considers Virtual Machine (VM) placement, Quality of Service (QoS) parameters, heuristic
methods, and other miscellaneous techniques for resource scheduling. This study also discusses scheduling in
Infrastructure as a Service (IaaS) clouds and comparison based on important parameters is also investigated.
The importance of meta-heuristic methods and artificial intelligence for resource scheduling methods in cloud
computing is discussed thoroughly. The objective of this work is to help the researchers to understand the basic
concepts related to scheduling and facilitate the process of designing new scheduling methods by addressing
issues raised in the scheduling and studying the existing methodologies.

1. Introduction

Cloud resource management systems provide the facility of re-
source provisioning as per the demand of scientific application’s exe-
cution. Foster et al. (2008) defined cloud computing as it provides the
facility of the cloud users to use the resources over the Internet, for the
execution of their applications as per the requirement. The manage-
ment of resources in cloud environment is an NP-hard problem. Thus,
it is challenging (Xhafa and Abraham, 2010). A low-quality resource
management system can potentially result in a long processing time and
high cost. The main goal of the cloud resource management systems
is to interact with the underline hardware infrastructure and control
the provisioning and scheduling of the resources for the successful
execution of the application as per the user’s requirements. Resource
scheduling has become an important core field of cloud resource man-
agement system as it is responsible for orchestrating the resources to
both cloud providers and cloud users. Resource scheduling algorithm
plays an important role in the process of managing the huge number
of resources of cloud data centers in an efficient manner to achieve the
target of quality requirements with the help of resource monitoring,
by managing the decision of resource-job mapping process. Cloud

< Corresponding author.
E-mail addresses: rajni3387@gmail.com, rajni@nmims.edu (R. Aron).

service provider Amazon allows cloud users to lease different types
of instances by using elastic compute cloud and storage volumes by
elastic block storage and storage object with the help of simple storage
service on demand. Resource prices are varied as per the different
pricing models (Irwin et al., 2010). In a shared environment, users may
compete for resources to meet their timing deadlines and budget too.
In such a scenario, resource scheduling plays a critical part in meeting
an application’s expectations (Shamsi et al., 2013).

There is a need to consider key points such as fair resource alloca-
tion and execution of application at the time of problem formulation
of cloud resource scheduling (Lee and Katz, 2011). In this paper,
basic building blocks of scheduling are presented. It describes the
basic characteristics of scheduling and phases of scheduling in cloud
computing. Scheduling in different Infrastructure as a Service (IaaS)
clouds is presented. Then, we focus on heuristic, meta-heuristic, and
hyper-heuristic methods. Heuristic and meta-heuristic methods are ap-
parent for solving many computationally hard problems in an efficient
manner (Xhafa and Abraham, 2010). The main intent of this study is
to show the usefulness of heuristic methods, especially for scheduling
and resource allocation problems in the cloud computing domain. The

https://doi.org/10.1016/j.engappai.2022.105345
Received 4 May 2022; Received in revised form 5 August 2022; Accepted 15 August 2022
Available online xxxx
0952-1976/© 2022 Elsevier Ltd. All rights reserved.



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

importance of meta-heuristic methods is discussed in detail. An analysis
of heuristic methods is done to show the out-performance of these
methods in comparison to the traditional scheduling techniques. The
survey of scheduling techniques done in research articles (Tsai and
Rodrigues, 2014; Zhan et al., 2015; Arunarani et al., 2019) is mostly
based on schemes.

Also, the study conducted by Lucas-Simarro et al. (2013) Zhan et al.
(2015) Kumar et al. (2019) Houssein et al. (2021), Konjaang and Xu
(2021), Singh et al. (2022) considers only meta-heuristic methods while
presenting the classification of scheduling techniques. In Lucas-Simarro
et al. (2013), the authors have discussed meta-heuristic algorithms
for solving the scheduling problems by placing them in a unified
framework. The two major factors, i.e., intensification and diversifi-
cation are considered in the survey to study about meta-heuristic in
cloud computing. In Zhan et al. (2015), scheduling in the application
layer, virtualization layer, and deployment layer are focused. They
have emphasized on layer wise scheduling method using evolutionary
techniques. Resource scheduling on the basis of scheme and types are
not considered. In Arunarani et al. (2019), task scheduling related
algorithm and performance matrices related research work is discussed.
VM based resource scheduling algorithms are not studied. In Lucas-
Simarro et al. (2013), a broker is designed for multiple clouds by using
different VM strategies. In Kumar et al. (2019), scheduling scheme
based resource provisioning and resource scheduling algorithms are
studied. In Houssein et al. (2021) Singh et al. (2022), task scheduling
algorithms along with meta-heuristic methods are emphasized. In Kon-
jaang and Xu (2021), workflow scheduling algorithms are discussed in
detail.

Fu et al. (2021) focused on scheduling problem in manufacturing
systems. They have emphasized on swarm intelligence and evolution-
ary algorithm only. Sandhu (2021) presented comparative analysis
of various cloud-based big data frameworks. However, the schedul-
ing techniques implementing the cloud environment have not been
studied in detail. The present survey categorized resource schedul-
ing algorithms based upon problems addressed ; compared different
scheduling techniques, and identified future research challenges in
cloud computing environment.

The main objective of this paper is to provide a comprehensive
survey of existing scheduling approaches. We want to convey the com-
plexity involved at the time of scheduling, key taxonomy of scheduling
methods and open issues and challenges.

1.1. Motivation

The main intent of the survey is to scrutinize the best techniques for
the selection of appropriate resources for mapping of jobs for resource
scheduling. This also includes stating the importance of cloud comput-
ing for accomplishing optimum resource utilization. A comparison of
scheduling approaches using different IaaS providers is also discussed.
It presents an exhaustive survey of cloud scheduling methods and
compares those using different metrics. The following points are listed
as those which motivated to conduct this survey:

• In a cloud computing environment, there is a requisite to under-
stand the existing scheduling techniques.

• Resource scheduling in the cloud is a process of making schedul-
ing decisions involving the allocation of jobs to ingredient re-
sources. Consequently, we realized the need to emphasize cloud
scheduling techniques by considering different scheduling criteria
and different application requirements too.

• As cloud computing has emerged as a computing paradigm to
provide the high-performance solution in comparison to the tra-
ditional supercomputing environment, diverse facets need to be
considered to make effective cloud resource management sys-
tems. With its multitude of heterogeneous, geographically dis-
tributed, and dynamic nature of resources, resource provision-
ing and scheduling in the cloud is required for improving the
performance of the cloud resource management system.

• To address the resource scheduling problem, it is mandatory
to understand the requirement of applications. Cloud resource
scheduling problems can be considered as a whole family of
problems as there are many factors involved while addressing
resource scheduling issues.

• A cloud service provider must provide the optimal solution for
a highly dynamic geographical distributed environment, which
emerges the intricate nature of efficient resource utilization and
performance-driven solutions for application execution.

We identified the necessity of a methodical literature survey of
cloud scheduling, as research in cloud resource scheduling is escalating
these days. Therefore, we have summarized the available research
based on broad and methodical search in existing archive and discussed
issues and challenges for advanced research. An important issue here
is how to formally choose an IaaS provider for scheduling problems in
clouds. In this paper, we have presented the most important and useful
aspects of scheduling in IaaS providers for this purpose.

1.2. Our contributions

The main intent of the research paper is to provide an overview of
the scheduling concept and presents an exhaustive survey on cloud re-
source scheduling methods along with the importance of meta-heuristic
methods. Our contributions are discussed as follows:

• A systematic survey of cloud resource scheduling methods along
with merits and demerits.

• A taxonomy on resource scheduling algorithm is derived on the
basis of both types of resources (Physical and logical resources)
and resource scheduling scheme.

• Categorization and comparison of scheduling techniques have
been done based on important characteristics and properties.

• Scheduling in different cloud service providers such as Amazon
and Google Cloud is also discussed.

• A detailed study on optimization methods dedicated to optimiza-
tion resource scheduling in cloud computation optimization is
done.

• Analysis of challenges ahead and potential future research direc-
tions in the area of big data processing jobs, analytics as a service
in the cloud are presented.

1.3. Organization

The rest of the survey article is organized as follows: Section 2 gives
an overview of cloud resource management systems and the role of
resource provisioning and scheduling in cloud computing. Section 3
presents the basic terminology of scheduling in cloud computing. It de-
scribes the basic characteristics of scheduling and phases of scheduling
in cloud computing. Section 4 discusses the results of the systematic
review. It also presents a taxonomy of scheduling in cloud computing
systems that can be used to compare different scheduling algorithms
on the basis of features and their analysis. Open issues and challenges
for future work are also discussed in Section 5. Section 6 concludes the
paper.

2. Cloud resource management systems: Background

This section outlines the basic concept of cloud computing along
with its characteristics. The significance to manage the resources by
keeping QoS parameters in consideration is presented. Few facts are
also discussed to use cloud computing as a strategy of attaining the
optimum cost and time for executing the application on clouds. The
main role of resource provisioning and scheduling for the execution of
the applications is also explained.

2



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

Fig. 1. Basic Cloud Architecture.

2.1. Cloud resource management systems

The term cloud computing originated and became the buzzword,
driven largely by marketing and service offerings from big corporate
players like Google, Microsoft, and Amazon. They offered on-demand
access to infinite computing resources. The globalization of computing
has now been made possible through clouds and the technology is
now being offered in a pay-as-you-use service model (Rittinghouse
and Ransome, 2009). Cloud services have been evolved as metered
services (Foster et al., 2008).

In cloud computing, there are three service models and four de-
ployment models that are used to provide the service to the users. The
above definition makes cloud services distinct from traditional hosting
by insisting on five key characteristics (1) on-demand self-service (2)
dynamic and rapid elasticity (3) measured service (4) resource pooling
(5) broad network access (Geelan et al., 2009; Mell and Grance, 2009).
Based on the kind of services provided; three broad service models
(as shown in Fig. 1) have been defined named as (1) Software-as-a-
Service (SaaS) (2) Platform-as-a-Service (PaaS) and (3) Infrastructure-
as-a-Service (IaaS). Analytics as a Service (AaaS) is also emerging
as a service to provide the solution for big data processing jobs in
cloud computing. It refers to the provision of analytic software and
operations through web-delivered technologies. These solutions help in
the development of hardware setup to provide business analytics. AaaS
provides services for data analysis as IaaS offers computing resources.
There are four deployment models named as (1) Private (2) Community
(3) Public and (4) Hybrid.

Cloud computing has emerged as a much-awaited realization of a
dream of transforming computing power into a utility that is commodi-
tized and delivered as other existing utilities. It has the potential to
transform the entire computing industry into a more attractive and
easily accessible utility (Armbrust et al., 2010; Buyya et al., 2013).
Capacity here is almost infinite, scalability is instantaneous, and con-
sumers need to pay only for the resources they use as per the duration
of use. In such an environment, there is a huge need to manage a large
number of resources and providing ease of use to consumers as well.

Resource management system can be defined as a process of allocat-
ing the information system resources such as networking, storage, soft-
ware, etc as per the requirement of application to meet the target and
attain the better solution (Fox et al., 2009; Goyal and Dadizadeh, 2009;
Jennings and Stadler, 2015). Efficient management of the dynamic
nature of resource over geographical areas affect the performance of
the deployment of the cloud for running applications. As there are many
applications, hosted in the cloud environment to complete their task.

In cloud computing, there are different stages of resource manage-
ment system such as resource provisioning, resource monitoring and

jobs from job submission to job execution. In cloud resource man-
agement systems, we have considered mainly two stages: (i) resource
provisioning and (ii) resource scheduling. Resource provisioning is
defined as the stage to identify ingredient resources for a job based
on the user’s requirement for application execution whereas resource
scheduling is the process to map jobs to appropriate resources so that
the users get an optimal response.

2.2. Why do we choose clouds for application execution

Cloud computing has emerged as more optimized platform for the
completion of application’s task in an efficient way in comparison to
the existing computing paradigms. In addition to provide the facility of
on-demand resources and elastic services to different sectors such as e-
commerce industry, scientific community; it also offers in the mapping
of task to an ingredient resource.

The first objective of cloud scheduling is to identify the appropriate
number of resources needed for the completion of a task as per the
user’s demand. For optimum scheduling of resources, an efficient re-
source provisioning strategy is required. The second objective is to meet
the target of QoS parameters such as cost, time, resource availability,
and resource utilization by allocating the proper resources to the jobs.
For example, suppose a person has to order food in the food court.
As per the requirement of food, the user will select the option of
vegetarian or non-vegetarian by keeping the cost and time criteria into
consideration (Rajni and Chana, 2013). However, the main point is that
the implementation technologies of cloud computing make distributed
computing a more optimized and efficient platform for the execution
of the application.

Due to the facility of on-demand resources feature of cloud com-
puting, we can use a huge number of resources for the execution
of the application whenever required. Because of the multi-tenancy
feature, cloud computing helps to enhance resource utilization and
reduce energy consumption (Owusu and Pattinson, 2012). The maxi-
mum utilization of the resources support is provided by multi-tenancy
and virtualization. Besides minimizing cost and time with the help
of virtualization and multi-tenancy, cloud computing can be consid-
ered for the execution of different kind of applications using resource
scheduling algorithms. Efficient resource scheduling algorithms support
the process of minimizing real-time parameters, i.e., cost and time by
keeping high resource utilization. The role of resource scheduling in
clouds is discussed in the next Section 2.3.

2.3. Importance of cloud resource provisioning and scheduling

Cloud resource management systems consider as central environ-
ment for the execution of applications to attain high performance in
a timely manner. Clouds can be handled in a more predictable way
through a well-designed provisioning strategy. Resource provisioning
and resource scheduling techniques are considered mandatory to attain
high performance for the cloud computing environment.

Cloud resources are distributed over geographical, dynamic in na-
ture, and modeling of the resources is done into the discrete units so
that provisioning of resource could be done to the user in a proper
manner (Rajni and Chana, 2010). There are QoS parameters associated
with the application for the execution and to provide the guaranteeing
QoS with resource provisioning in a timely manner is a challenging is-
sue. Provisioning is a more complex problem in comparison to queuing
process as the user has to select the sophisticated resource allocation
decision (Joseph, 2009).

The process of resource scheduling aims to provide the facility of
efficient resource usage by executing application. The main intent of
the scheduling strategies is to fulfill the basic requirements of the
services by considering specified QoS parameters. Consequently, the
enhancement in resource utilization helps to reduce cost and time. In
other words, the process of reducing time and cost for the application’s

3



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

execution and the increasing levels of resource utilization (poor, av-
erage, higher) are not mutually exclusive occurrences. This is evident
from the truth that if resources are over-utilized, it demands more time
and cost. The state of resource under-utilization leads a node not to
perform optimally, increase idle time, whereas an over-utilization state
helps a resource to function in a proper way but sometimes it leads to
degrade the performance of the resource too. Various resource schedul-
ing algorithms, intent to enhance resource utilization simultaneously to
reduce cost and time, are discussed in Section 5.

3. Cloud scheduling

3.1. Definition and basic terminology

Scheduling problems demand the task of allocating the resources
to the jobs to attain objective function within specified constraints of
resources. In classical scheduling problems, there is a need to define the
sequence for allocating jobs on the resources as resources are fixed. In
online scheduling, there is no need of future knowledge at the time
of resource allocations. However, in cloud computing domain, service
providers can add and release resources as per the requirement of user’s
application and thus control the number of resources being used to
complete the task of application’s execution. There are two types of
scheduling exist in cloud computing: (i) client side: the mapping of task
on VMs and (ii) provider side: the mapping of the virtual machines to
physical machines. In this paper, we will study client-side scheduling in
which the mapping of tasks on VMs is considered. We have described
the scheduling terminology used in the cloud computing as follows:

Task: A task is a computation unit that will run in the cloud
computing environment. As per the application’s requirements, tasks
are defined. A task can be independent and dependent. It cannot be
further divided into smaller units.

Job: A job is designed by combining different tasks those having
different processing capabilities. Every job may have different resource
requirements too.

Workflow: A workflow is defined as a series of activities that need
to be performed to execute the application.

VM: A virtual machine creates virtual environment with its own
CPU, memory, storage and network on host computer system.

Cloud: Cloud can be defined as a model that helps to provide the
services such as infrastructure, platform, software, data, analytics, etc
to the clients on the basis of their requirements.

Provisioning: The formal allocation of the resources can be termed
as provisioning.

Scheduling: The exact mapping of the job to an ingredient resource
is called scheduling that aims to provide optimal solution.

Application: An application is designed to solve a large-scale prob-
lem in the cloud computing environment. An application consists of
many jobs which require computations at the different level. An appli-
cation can be considered as monolithic in which the whole application
is assigned a complete computational node for the completion of the
task.

Resource: A resource is considered as a computational unit that
is used to complete the execution of the application’s computational
requirements. CPU, memory and network software, etc are the basic
characteristics of the resource. It can be a source of information and
expertise. A resource is a fundamental requirement for performing any
task. There are different parameters associated with resources such as
processing capabilities, data speed, storage space, and workload.

Schedulers: Schedulers are processes that decide which task and
process should be accessed and run at what time by the available
resources. It helps to keep the performance of the cloud at the highest
level by scheduling in optimized way. Based on the frequency of
schedule’s operations, categorization is done: local scheduler, global
scheduler and enterprise scheduler, etc.

Virtualization: The main task of virtualization is to create abstrac-
tion layer for running virtual instances. Virtualization simulated the
hardware functionality.

3.2. Characteristics of scheduling

Efficient resource management, being the key to a successful cloud
environment, banks hugely on a planned, effective, and efficient schedul-
ing. Cloud scheduling still has to offer a tremendous scope of research
due to its unique characteristics. While focusing on cloud scheduling,
almost all its characteristics should be keenly observed and taken care
of. Some of the obvious characteristics worth being aware of while
focusing on cloud scheduling are discussed as below.

• Huge infrastructure: A cloud involving a plethora of resources
spanning across the globe is obviously a huge structure. The range
of tasks, jobs, and applications that need to get catered at any
point of time too can be in large scale. To handle these small
activities related to resources, an efficient resource management
is required. Scheduling in this environment cannot be simple,
one technique based, and fixed. A complex, dynamic and multi-
faceted scheduling is the basic requirement to address the issues
of compute-intensive and data-intensive applications.

• Scalable nature of clouds: Due to the dynamic nature of cloud, the
resources belonging to different administrative domains keep on
joining and leaving the system in a rapid manner. Being owned by
different organizations, the resources offer minimal control over
them.

• Resource heterogeneity: Resources in the cloud environment are
highly diversified in nature, capacity, working style, and admin-
istrative domains.

• Highly diversified applications: There being no restriction on the
source, nature, and purpose of applications being catered under
a cloud environment, the presence of smart strategies is always
expected. Jobs can be computation-intensive, data-intensive, a
complete set of self contained applications, or an atomic task. A
well-planned scheduling design can make a good balance among
executions and fetch good solution.

• Diversity in resource connectivity techniques: There is no fixed
technique to establish the connection with cloud resources.

• Decentralized resource ownership: In cloud computing environ-
ment, there is no single central resource provider.

3.3. Phases of scheduling

Al-khateeb et al. (2009) define cloud scheduling as the mapping
of the job to the ingredient resources to get the optimal solution.
Cloud scheduling involves two main stages: resource provisioning and
scheduling.

• Resource provisioning: Resource provisioning means the formal
allocation of resources in the cloud computing domain. There is
a need to focus on other parameters such as application profiling
and analogical benchmarking to provide the appropriate sched-
ule. The allocation of the resources as per the specification given
by user to particular application is called provisioning.

• Scheduling: Scheduling means the mapping of the task to the
appropriate resources for the completion of the execution of
applications.

3.4. Scheduling approaches

There are many different perspectives considered while studying
cloud scheduling methods (Dong and Akl, 2006). Scheduling problems
can be categorized as local vs global, static vs dynamic, centralized
vs decentralized, co-operative vs non-cooperative, immediate vs batch,
and approximation vs heuristic that are described as follows:

1. Local versus Global: In local scheduling, the main task is to
select the process residing on a single CPU. In global scheduling,
the information of resources is used to allocate the processes to
different processors to get the optimal solution (Dong and Akl,
2006).

4



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

2. Static versus Dynamic: In static cloud scheduling, informa-
tion about the resources and tasks is available at the time of
scheduling. In dynamic scheduling, information is not available
at the prior level. The basic information about the resource
up-gradation and degradation will be keep posted (Li et al.,
2011).

3. Centralized versus Decentralized: In centralized cloud schedul-
ing, there is more responsibility on the cloud scheduler as the
cloud scheduler having complete control over the resources.
Cloud scheduling has to take best decision to manage the re-
sources efficiently. There are many issues faced in centralized
cloud scheduling problems, such as scalability, local balancing,
and fault tolerance. In decentralized scheduling, there is no
centralized control over the resources. The monitoring of the
resources is done by the local scheduler (Xhafa and Abraham,
2010).

4. Co-operative versus Non-cooperative: In co-operative schedul-
ing, each scheduling will have their own responsibility to man-
age their tasks to achieve the target. The mapping of the re-
sources to a task is done as per the designed policy. In the
non-cooperative cloud scheduling, each scheduler takes an in-
dependent decision for allocation of the resources and act as an
autonomous entity (Dong and Akl, 2006).

5. Immediate versus Batch: In the immediate mode of scheduling,
whenever a job will be entered into system, jobs will be sched-
uled immediately. In batch mode, tasks are grouped together to
schedule for the execution of the application.

6. Approximation versus Heuristics: Approximation algorithms
provide a worst-case performance guarantee in both computa-
tional time and solution quality, research on heuristics typically
focuses on the average empirical behavior of the algorithms.
In common scheduling problems, to get the satisfied solution,
approximate algorithms are used. The usage of approximation
algorithms is not possible as cloud resources are huge and dy-
namic in nature. The main reason not to use the approximation
algorithm to solve cloud resource scheduling problems is that
approximation algorithms are too slow for the large and dynamic
scenarios considered in these problems. There is a need to focus
on heuristic methods to solve large scale scheduling problems
in distributed computing environments such as grid and cloud.
Heuristic methods are considered as a de-facto standard for
solving the grid scheduling issues as resources in the cloud
environment are more dynamic in nature and distributed over
the geographic areas (Vivekanandan et al., 2011).

4. A taxonomy of cloud resource scheduling algorithms

The main elements of cloud scheduling algorithms are discussed
in this section. Basis, pros, cons, scheduling methods, experimental
parameters, and performance matrices are compared with the existing
scheduling methods. A detailed taxonomy is described as shown in
Fig. 2.

4.1. Resource scheduling algorithms in cloud computing

In cloud computing, the level of resource utilization and scheduling
are inter-related terms. Resource utilization has a great impact on the
scheduling decision as the under-utilized resource consume more time
and cost in comparison to proper-utilized resources.

In a cloud resource management system, resource provisioning and
scheduling are co-related terms. After completing the resource provi-
sioning, the scheduling is performed to achieve the optimal solution.
Four main categories of resource scheduling algorithms are presented.
A high-level taxonomy of resource scheduling algorithms is shown in
Fig. 2. Table 1 shows the keyword used in google scholar to filter
resource scheduling research papers.

Table 1
Keyword used in google scholar.
Problem related
keyword used in
problem

Scheduling related
keyword

Heuristic based
keyword

Cloud resource
management system

resource scheduling heuristic

Resource provisioning Task scheduling Meta-heuristic

QoS based resource
scheduling

Workflow
scheduling

Genetic algorithm
based scheduling

4.1.1. VM based scheduling algorithm
Virtualization is an important technology which helps to achieve

the goal of cloud computing. In VM scheduling, cloud service provider
schedules the virtual machines on physical machines whenever user
will request for the resources to execute the applications. In VM place-
ment problem, the static part of the physical resources is shared among
users (Jennings and Stadler, 2015). In this section, major types of VM
placement are discussed as follows:

• Dynamic VM placement: In dynamic VM placement, the allocation
and re-allocation of a virtual machine is done dynamically. The
main aim of dynamic VM placement approach is to utilize the
resource efficiently (Tighe et al., 2013). Dynamic VM placement
is an important step to achieve system maintenance. To schedule
resources across data centers, live migration is a more substantial
method to improve fault management and to maintain the load
balancing among physical machines too. Dynamic VM placement
can enable a cloud service provider to achieve the main character-
istics of cloud, i.e., elasticity. Tighe et al. (2013) presented a fully
distributed approach for dynamic VM management. Their main
concern is to decrease bandwidth consumption and enhance the
power performance by removing centralized systems.
Keller et al. (2014) investigated a hierarchical approach to data
center management to improve scalability. They have created
the hierarchy leveraging the data center network topology. In
a hierarchical approach, they encapsulated VM migration and
communication with the management scope. Tighe and Bauer
(2014) have designed an algorithm for the automatic scaling
of applications. They have considered the benefits from both
perspectives, i.e., cloud client and provider.
Sun et al. (2015) used the concept of online live migration for
multiple correlated VMs. The Virtual Data Center (VDC) Migra-
tion (VDC-M) algorithm has been designed to solve the migra-
tion issue. After the process of remapping migration request, the
task of computing the migration path is done. Finally, resource
bandwidth is allocated to migrated VM.
Tordsson et al. (2012) designed a multi-cloud resource provi-
sioning architecture including a scheduling algorithm for the
deployment of applications. The base of the scheduling algorithm
is integer programming and other QoS related parameters such
as budget and user’s preference for selection of VM are also
considered.
Gutierrez-Garcia and Sim (2013) designed scheduling algorithm
for bag-of-task applications. Agent based approach is used to de-
sign the scheduling algorithm. They have focused on concurrent,
parallel selection of resources in the cloud environment. Table 2
shows the comparison of existing Dynamic VM placement based
scheduling algorithm in cloud computing.

• Energy aware VM placement: Energy consumption is a major is-
sue which is faced by cloud providers. By using server consol-
idation, optimizing operation on physical machines, and using
dynamic voltage scaling processors, energy consumption can be
reduced. Hu et al. (2010) presented a scheduling algorithm for
load balancing of VM resources by using a genetic algorithm. The
main intent of the algorithm is to provide information about the

5



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

Fig. 2. Taxonomy of Resource Scheduling Algorithms in Clouds.

Table 2
Comparison of dynamic VM placement based scheduling algorithms.
Author Basis Merits Demerits Scheduling method Experimental

environment
Performance
metrics

Tordsson et al. (2012) Optimized placement of
applications in
multi-cloud
environments.

Better Price and
performance,
Provided load
balancing

Ignored security and
energy efficiency at
time of scheduling

Integer
programming
formulations

Amazon EC2 Throughput, number
of jobs

Gutierrez-Garcia and
Sim (2013)

Scheduling of
Bag-of-tasks based on
allocation times of
virtualized cloud
resources

Makespan Ignored cost Heuristic algorithm Testbed Makespan, overhead
time

Tighe and Bauer (2014) Proposed auto-scaling
algorithm alongside a
dynamic VM allocation
algorithm

Reduce a number of
migrations

No optimization
criteria

Rule based heuristic DC Sim Power, SLA,
Migrations

Tighe et al. (2013) Focused on trade-off
between VM migration
and SLA violation

Consider energy and
SLA

More bandwidth
usage

First fit algorithm DCSim Power consumption,
number of
migrations, SLA
violations

Keller et al. (2014) To reduce the
management scope by
managing data center
with the help of hosts

Reducing the
overhead in the
data center
management
network

High complexity Greedy algorithm DCSim Power, number of
migrations, average
number of racks,
active hosts

Sun et al. (2015) Considered virtual data
center to solve VM
migration issues

Low complexity Fixed bandwidth Heuristic algorithm Simulated
environment

VM migration cost
and time

resource on the basis of historical data and the current scenario
of the system.
After completing this process, it selects the least effective solu-
tion, through which it achieves the main motive of algorithm
‘‘load balancing’’ and avoids dynamic migrations. This algorithm
reduces high migration costs. Dabbagh et al. (2015) presented
an integrated energy-aware resource provisioning framework for
cloud data centers. The proposed resource provisioning frame-
work caters to a prediction approach to predict both the number
of VM requests and the number of cloud resources associated
with each request. In this approach, authors have combined ma-
chine learning clustering and stochastic theory. Bui et al. (2016)
designed an optimal energy-efficient architecture to orchestrate
cloud systems. They have used prediction techniques to enhance
the usefulness of monitoring statistics. They have tried to cut the
running physical machines by stack VM.

A decentralized architecture of the energy-aware resource man-
agement system for cloud data center is presented in Beloglazov
and Buyya (2010). They have introduced an approach for al-
location of VMs in run-time by applying live migration. After
getting the information of the current utilization of resources,
the authors have done live migrations. The main intent of the
authors is to minimize energy consumption by attaining quality of
services. A comparison of existing energy-aware VM placement-
based scheduling algorithms in cloud computing is shown in
Table 3.

• Network aware VM placement: An ever-increasing number of cus-
tomers for executing the application on cloud impact the pro-
liferation of network traffic. It has become essential to share
the network bandwidth without hurting the VMs quality of ser-
vice (Breitgand and Epstein, 2012). In the cloud computing en-
vironment, to establish communication with other application

6



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

Table 3
Comparison of energy aware VM placement based scheduling algorithms.
Author Basis Merits Demerits Scheduling

method
Experimental
environment

Performance
metrics

Hu et al. (2010) Focused on vm
resources for load
balancing

Reduced migration cost
and help to improve
load imbalance

Ignored security and
time

Genetic algorithm Open nebula Number of
migrations, migration
cost, load of physical
machine

Beloglazov and Buyya
(2010)

Optimization of systems
resource by monitoring
currently available
resources such as CPU,
ram and network etc.

Do not depend on a
particular type of
workload and No prior
information about
applications executing
on VMs

Ignored cost and
time

Heuristic algorithm CloudSim Energy, Average SLA,
migrations

Dabbagh et al. (2015) Presented energy-aware
resource management
decisions

Improved performance No optimization
criteria, high
complexity

K-means clustering Testbed Average CPU and
Network utilization

Bui et al. (2016) To maintain balance
between energy
efficiency and quality
of service

Low complexity Ignored cost,
scalability

Greedy first fit
algorithm

Simulated
Environment

Energy, Memory, CPU

and system components, VMs access a PM’s network interface.
Hypervisors typically treat a PM’s resource such as network inter-
faces, switch links as un-managed resources. Hypervisors do not
provide a guaranteed allocation to individual VMs. It is relying
on statistical multiplexing and the fact that VMs are unlikely
to simultaneously maximize the use of their nominally assigned
bandwidth. However, this means that there is potential for VMs
to affect each other’s performance due to contention for network
interface resources. A stable traffic-aware VM placement study
is discussed in Biran et al. (2012). They have proposed Min Cut
Ratio-aware VM placement algorithm to solve the placement solu-
tions resilient to traffic bursts in deployed services, by minimizing
the maximum load ratio over all the network cuts. Yu et al.
(2017) proposed a novel dynamic programming-based algorithm
to embed virtual clusters survivable in the cloud data center
by optimizing virtual clusters. They have computed the most
resource-efficient embedding given a tenant request.
Li et al. (2021) designed a reinforcement learning based schedul-
ing algorithm by analyzing different scheduling schemes for radio
resources using the Vienna 5G SL simulator. Kondikoppa et al.
(2012) deployed global MapReduce over federated clusters to
utilize the computing effectively. They have provided network
awareness to the FIFO and FAIR schedulers in Hadoop. An ex-
tended architecture for NFV and network-aware scheduling in
OpenStack is presented in Lucrezia et al. (2015). The authors have
presented the extension of network-aware scheduler to optimize
the VM placement. This step is an essential part of deploying
virtual network functions service graphs. Rampersaud and Grosu
(2016) developed sharing-aware online algorithms for addressing
VM Packing issues. Two strategies best fit and worst fit are used
to define resource scarcity metric in the paper. Table 4 shows
the comparison of existing network-aware VM placement based
scheduling algorithms in cloud computing.

4.1.2. QoS parameter(s) based scheduling algorithm
In this section, we present the scheduling algorithm with the Quality

of Service (QoS) requirements of applications. The main focus of QoS
parameter(s) based scheduling algorithms is to not only reduce real-life
based factors, i.e., cost and time, but also to help in the decision process
of scheduling in the cloud resource management systems. A cloud
resource management system needs to satisfy the quality requirements
of an application. It is very important to figure out the real stakehold-
ers to list down the requirements of the system. A categorization of
stakeholders along with quality requirements is shown in Table 4. For
instance, cloud service provider wants to maximize profit by ensuring

that all user requirements to execute an application is fulfilled by
proper utilization of resources. Cloud service providers are also worried
about the operation costs which occur due to unnecessary executions.
To operate high-performance system, energy consumption is increasing
at a high pace and it also leads to failure of the system. Cloud users who
submit jobs to the cloud resource management system expect response
time and cost to be minimum. They want to execute their job in a secure
environment by fulfilling SLA requirements.

Table 5 shows the quality requirements for designing scheduling
algorithms under QoS based resource scheduling algorithms. Resource
scheduling algorithms are designed to achieve the target set by the user
to get the optimal solution to the scheduling problem. With the help
of one scheduling algorithm, it is really difficult to meet the different
quality of requirement at the same time. For instance, the well-known
deadline aware scheduling algorithms only concentrate on mapping
of the job to an ingredient resource to provide the response of the
application before time and user requirements. In this section, we study
resource scheduling algorithms from the perspective of fulfilling the
quality requirements. We defined the most common quality attributes
considered at the time of designing scheduling algorithms.

1. Cost based scheduling algorithm: Cost aware resource scheduling
algorithms play an important role in cloud resource management
systems as the main intent of clouds is to provide the resources
on-demand and work on pay-as-you-go principle.
Yuan et al. (2017a) proposed a scheduling algorithm by keeping
the aim to increase profit and by giving guaranteeing service
delay bound of delay-tolerant tasks. To solve the task scheduling
problem, the author has focused on the heuristic algorithm
PSO and SA. In Yuan et al. (2016), authors have focused on
cost-aware load scheduling to achieve high throughput at less
price. Yuan et al. (2017b) have designed an algorithm to mini-
mize the cost. In Yuan et al. (2018) research paper, the authors
have proposed workload-aware revenue maximization algorithm
to schedule the application in software defined networking en-
ables data centers. They have not only focused to reduce the
network latency but also considered virtual machine latency
too (Ghahramani et al., 2017).
Bi et al. (2015) proposed architecture for multi-tier web applica-
tions that helps in the self-management of the data centers. To
identify the total number of virtual machines required for the
execution of an application, a hybrid queuing model is designed.
In Bi et al. (2016), authors have designed a scheduling algorithm
for temporal requests. They have seriously considered the delay
parameters. A cloud task scheduling framework is presented by
using two stage strategy. They have focused on QoS parameters
cost and deadline factors (Zhang and Zhou, 2018).

7



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

Table 4
Comparison of network aware VM placement based scheduling algorithms.
Author Basis Merits Demerits Scheduling method Experimental

environment
Performance
metrics

Yu et al. (2017) Service provisioning in
an IaaS cloud
environment

To achieve the high
availability goal of
tenant services

High complexity Heuristic algorithm Simulator Average VM
consumption ratio,
average running time

Kondikoppa et al.
(2012)

Designed Hadoop
scheduler aware of
network topology

Improved data locality Ignored cost, energy,
security

FIFO Eucalyptus based
testbed

Execution time, delay
for scheduling task

Lucrezia et al.
(2015)

Investigated to what
extent OpenStack needs
to be modified to
support the deployment
of network service
graphs

Increased throughput Analyzing time is more,
Ignored
policy-constraints in
order to define
administration rules

Brute force
algorithm

KVM hypervisors VM locations, traffic
throughput and latency

Biran et al. (2012) Consideration of traffic
bursts in deployed
services

Minimizing the
maximum load ratio
over all the network

Ignored energy
consumption

Greedy heuristic
algorithm

Testbed Average packet delivery
delay, placement
solving time

Rampersaud and
Grosu (2016)

Focused on VM packing
problem

Consideration of the
potential for memory
sharing when making
allocation decisions

High complexity Linear programming
technique

Simulated
environment

Memory reduction,
number of excess
servers

Table 5
Quality of service requirements.
Stakeholder QoS requirements

Cloud service providers Operation cost, Time, Profit,
Energy efficiency, Reliability

Cloud users Execution cost, response time,
security

Arabnejad and Bubendorfer (2015) proposed a Proportional
Deadline Constrained (PDC) algorithm, for workflow scheduling
in the cloud computing environment. The main intent of the
proposed algorithm is to reduce cost by targeting deadline con-
straints. A Budget Distribution with Trickling (BDT) algorithm is
presented to handle the trade-off between cost and time for the
workflow scheduling (Arabnejad et al., 2016). The authors have
used already provisioned resources to reduce the execution time
for the workflow scheduling.
Zuo et al. (2015) proposed a resource cost model that can be
used to define the task demand for resources in detail. They
have used Ant Colony Optimization (ACO) algorithm to design
the model. The main concern was to optimize the scheduling of
performance and user costs.
Wu et al. (2012) proposed scheduling methods to address admis-
sion control services. They considered multi-objective resource
provisioning strategies. The objectives of the proposed work are
to minimize resource consumption and penalty costs as well as
minimizing SLA violations.
Ari and Muhtaroglu (2013) designed a smart scheduler that can
dynamically select some of the required parameters, partition
the load and schedule it in a resource-aware manner. Lee et al.
(2012) developed a pricing model using processor-sharing for
clouds. They have proposed algorithms for scheduling service
requests and prioritizing their data accesses in the cloud with
the main aim of maximizing profit. A three-tier cloud structure,
which is a representative cloud system model has been adopted
in Lee et al. (2012). Mangla et al. (2021) discussed scheduling
techniques to provide the optimal solution. Their main intent is
to achieve maximum utilization and user satisfaction. Table 6
presents a comparison of cost-based scheduling algorithms.

2. Time based scheduling algorithm: Yuan et al. (2017c) proposed
a time-aware task scheduling algorithm in green data centers.
The authors have used a meta-heuristic algorithm by combin-
ing particle swarm optimization and simulated annealing to

design scheduling algorithm. The algorithm helps to investigate
temporal variations. The algorithm is used to consider delay
bounds. Khojasteh Toussi and Naghibzadeh (2021) and Priya
et al. (2019) considered the multi-dimensional resource allo-
cation problem. They have proposed a scheduling algorithm
to achieve the main target of load balancing. Arabnejad et al.
(2017) considered the problem of deadline constrained scien-
tific workload scheduling. In this paper, proportional deadline
constrained and Deadline Constrained Critical Path (DCCP) is
designed to provide the solution of workflow scheduling. To
provide the facility of task communication on the same instance,
critical paths are determined.
Thomas et al. (2015) introduced user priority-based scheduling
algorithm. The main focus of the improved algorithm is to con-
sider cloud user requirements and resources obtain-ability. They
have used min–min method to reduce the makespan. A data-
aware scheduling algorithm was designed for cloud providers by
in Van den Bossche et al. (2013). The authors proposed schedul-
ing algorithms for deadline-constrained bag-of-tasks applications
while considering data locality. They have focused on task run-
time discrepancies. In this scheduling technique, a static set of
applications has been considered for scheduling on both public
and private cloud infrastructure.
Xu et al. (2011) proposed Berger model-based job scheduling
algorithm. The main base of the Berger model is the distribution
theories of social wealth. The algorithm focused on dual fairness
constraints: (i) On the basis of QoS preferences, user’s task clas-
sification and to provide the fairness among resource selection
while meeting expectations and (ii) to define resource fairness
fitness function for the evaluation of the resources allocation
scheme.
Frîncu (2014) presented scheduling algorithms for achieving
high availability. They have used the concept of component-
based architecture. Erdil (2013) proposed proxies-based schedul-
ing algorithm. Information about resources is available with the
help of proxies. To provide an optimal solution, a bottom-up
approach is used. Table 7 presents a comparison of time-based
scheduling algorithms.

3. Energy based scheduling algorithm: Energy-aware resource schedul-
ing helps to extract the total amount of energy consumed for
the processing of an application, depending upon the ingredi-
ent resource for executing jobs. There is a need to focus on
energy-aware resource scheduling methods as these methods

8



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

Table 6
Comparison of cost based scheduling algorithms.
Author Basis Merits Demerits Scheduling

method
Experimental
environment

Performance
metrics

Yuan et al. (2017a,b) Proposed scheduling
algorithm by
emphasizing on profit
maximization

Handles service
delay bound

High complexity PSO and SA Simulation
environment

Revenue

Bi et al. (2015, 2016) Designed an
architecture for self
management of data
centers

Considered temporal
request of multi-tier
web applications

Does not consider
security parameters

Queuing approach Trace-driven
simulation

Cost

Wu et al. (2012) Focused on VM
placement issue on the
basis of time

Up to 40% cost
saving

Does not support
security and energy
efficient

Admission control
and scheduling
algorithm

CloudSim Average response
time, total profit

Ari and Muhtaroglu
(2013)

Discussed finite
Element Analysis cloud
services and job
scheduling issues

Throughput
improvement and
resource utilization

Ignored cost Adaptive algorithm Testbed Throughput and
time

Lee et al. (2012) Presented the
personalized features of
the user request and
the elasticity of SLA
properties

Reduced operational
costs and increase
profits

Objectives conflict
with each other

Binary integer
programming

CloudSim Average utilization,
average net profit
rate, average
response time

Mangla et al. (2021) Focused on scheduling
techniques

Reduce cost and
time

Ignored reliability
and security

Optimum scheduling
algorithm

CloudSim Cost and Time

Arabnejad and
Bubendorfer (2015)

Focused to re-use of
pre-provisioned
instances for scheduling

Less complexity Ignored security and
energy efficiency

Deadline early Tree
algorithm

CloudSim Cost and deadline

Zuo et al. (2015) Multi-objective Task
Scheduling

Improved
performance

Ignored energy
consumption

Ant colony
optimization

CloudSim Cost, makespan,
deadline violation
rate

play important role in the data centers to reduce energy con-
sumption (Calheiros and Buyya, 2014). Data is increasing at a
very high speed and there is a need to process the data by server
and disks in the specified time frame. Due to above-mentioned
reason, there is a huge wastage of idle power that increases
energy consumption (Beloglazov et al., 2012). Bessis et al.
(2013) have developed a model for efficient message exchange
systems for distributed systems. Their main aim is to reduce
energy consumption and total makespan.
Bi et al. (2017) have proposed a dynamic meta-heuristic al-
gorithm for scheduling in virtualized data centers. Their main
aim is to enhance energy efficiency and increase profits by
fulfilling SLA conditions. Zhu et al. (2017) proposed dynamic
power resource model of the cloud data centers. Based on three-
dimensional CPU, RAM, and bandwidth, a virtual resource (VR)
scheduling method is also developed to save energy. Moreover,
they have considered how to keep balance among cloud data
centers. An efficient prediction model is designed for energy-
aware scheduling, by Duan et al. (2017). The base of the model
is fractal mathematics. The authors tried to handle the energy
consumption during peak hours in heterogeneous clouds.
Quarati et al. (2013) presented a cloud brokering algorithm.
QoS parameters energy consumption, revenue, and user sat-
isfaction are considered at the time of scheduling. A cloud-
aware scheduling algorithm has been proposed by Calheiros and
Buyya (2014). Moreover, their main concern is to use the Dy-
namic Voltage and Frequency Scaling (DVFS) factor to maintain
the voltage level of CPU processors at the time of scheduling.
Deadline constraint is considered for scheduling of bag-of-tasks.
A new VM scheduler has been developed by Ding et al. (2015).
Their main focus to reduce energy costs for the scheduling of ap-
plications by fulfilling deadline constraints. Li et al. (2016) used
heuristic method to provide energy based scheduling algorithm
solution for workflow applications.
Kim et al. (2014) presented a model to predict the energy
consumption of each virtual machine. This model works on the

basis of in-processor events generated by the VM. This model
incorporated the scheduling algorithm for mapping the tasks to
the resource under the energy constraint. Van Do and Rotter
(2012) designed an analytical performance model for handling
energy efficiency requests at the time of scheduling of applica-
tions. Interactions between cloud users and service providers are
focused to fix energy issues.
Garg et al. (2011) designed scheduling algorithm to address
the energy consumption issues for cloud service providers. A
cloudlet-based mobile cloud computing model (DECM) has been
presented to solve the issue of energy consumption (Gai et al.,
2016). A comparison of existing energy-aware based scheduling
algorithms with respect to scheduling parameters is done in
Table 8.

4. Reliability based scheduling algorithm:Malik et al. (2012) designed
a reliability assessment model for cloud infrastructure. Fault
tolerance parameter is handled by checking the reliability of
nodes in this model at the time of scheduling of applications.
Adhikari et al. (2020) designed scheduling algorithm for a work-
flow using the firefly approach. Their main intent is to reduce
makespan while achieving reliability.
Jing et al. (2015) have introduced a model to handle fault-
tolerant scheduling issues by considering the communication of
network interfaces along with processor resources. To improve
reliability, authors have used the replication mechanism and
reliability estimation.
Latiff et al. (2016) proposed a Dynamic Clustering League Cham-
pionship Algorithm (DCLCA) scheduling method. The main func-
tion of the proposed method is to provide the solution of load
balancing by considering fault tolerant nodes. These techniques
have emphasized the available resources and handle the failure
of independent tasks.
Tang and Tan (2016) introduced a reliability and energy-aware
task scheduling architecture. In this model, parallel applica-
tions are considered while addressing energy consumption as
QoS parameter. The single processor failure rate model has

9



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

Table 7
Comparison of time based scheduling algorithms.
Author Basis Merits Demerits Scheduling

method
Experimental
environment

Performance
metrics

Priya et al. (2019) Considered load
balancing time at the
time of scheduling

Reduce latency time Ignored security and
High complexity

Fuzzy Method Simulated
Environment

Response time

Thomas et al. (2015) Focused on task length
aware scheduling

Lesser makespan
and increased
resource utilization

No comparison with
existing algorithm

Min–min Cloud Sim Makespan

Van den Bossche et al.
(2013)

Presented migration of
VMs as desired to
adjust to varying
performance needs,
scheduling algorithms
for deadline-based
workloads in a hybrid
cloud setting

Minimize cost and
time

Does not handle
multiple workflows

Hybrid scheduling
approach

Simulator Total Cost, application
deadline met,
turnaround time, data
transferred

Yuan et al. (2017c) Concentrated on task
scheduling in green
data centers

Investigate temporal
variations

Ignored energy
consumption and
cost

PSO and SA Simulated
Environment

Delay bound and time

Arabnejad et al. (2017) Addressed the problem
of workflow scheduling
in dynamically
provisioned commercial
cloud environments.

Evaluation of task
selection algorithms
reveals impact of
workflow symmetry

High complexity Rank method CloudSim Response time, Cost

Xu et al. (2011) Worked on Berger
model and assign tasks
on optimal resources to
meet user’s qos
requirements

Optimal completion
time

Ignored cost and
energy efficiency,
security

Resource allocation
algorithm and then
followed by job
scheduling

CloudSim Time, bandwidth

Frîncu (2014) Considered the method
of scaling to be known
a priori and focus on
searching for an
optimal allocation of
components on nodes
in order to ensure a
homogeneous spread of
component types on
every node.

Minimizing the
application cost

Centralized
approach represents
a single point of
failure

Nonlinear-
programming

Simulator platform Average load per node,
optimal allocation,
reliability

Erdil (2013) Disseminated
information as agents
of dissemination
sources for resource
scheduling

Availability of
resource state,
reduces
dissemination
overhead

Ignored cost as
parameters

Adaptive proxy
algorithm

Scalable simulation
network framework

Query satisfaction rates,
random walk hop count
limit

been proposed to address the reliability issues of applications.
Reliability-Energy aware scheduling heuristic method has been
designed to execute the application with an aim to get trade-
off among reliability and energy consumption. A comparison of
existing reliability based scheduling algorithms with respect to
scheduling parameters is done in Table 9.

5. Security based scheduling algorithm: In this section, security-aware
scheduling algorithms have been presented as security is one of
the major constraint to be satisfied by the scheduling algorithm.
In a security-aware cloud computing environment, the main
responsibility of the VM scheduler is to provide security along
with minimizing the response time of the application’s execution
simultaneously (Kashyap and Vidyarthi, 2014).
Chejerla and Madria (2017) proposed a game theory-based
scheduling method for application’s execution in the cloud com-
puting environment. They have used Bayesian network to design
an algorithm. While scheduling, they took the decision on the ba-
sis of output that comes from the game. Through a new method,
authors able to design a security-aware scheduling algorithm. A
novel VM placement algorithm is designed to handle the security
issues (Shetty et al., 2016). They have discussed VM placement
strategies and VM vulnerabilities to address security concerns at
the time of scheduling.
Zeng et al. (2015) designed a security-aware and budget-aware
scheduling method for workflow applications. The main intent

of the author is to focus on communication-intensive workflows
by considering different types of datasets. Security, resource
utilization, and budget requirements as QoS requirements are
considered. Kashyap and Vidyarthi (2014) proposed a new
credit allocation policy for solving the dual objective scheduling
problem. They have designed a real-time security maximization
scheme to fix deadline constraints along with security issues for
VM allocation.
A novel authenticated key exchange scheme is designed to facili-
tate security to the scientific applications in the cloud computing
environment (Liu et al., 2013). The base of the scheme is the
randomness-reuse strategy and the Internet Key Exchange (IKE)
scheme. Wang et al. (2012) designed a cognitive trust model by
incorporating a dynamic level scheduling algorithm. The main
function of the model is to reduce the failure probability of the
task assignments.
Afoulki et al. (2011) proposed a security-aware scheduler for
cloud environment. They have embedded these policies in VM
placement and migration algorithms. The proposed scheduler
will place VM’s on the same PC’s by avoiding security risk. Bilo-
grevic et al. (2011) have presented a privacy-preserving method
to address server scheduling problems. To compute common user
availabilities, the authors have used the concept of homomor-
phic properties of well-known crypto-systems. Duan et al. (2019)

10



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

Table 8
Comparison of energy based scheduling algorithms.
Author Basis Merits Demerits Scheduling

method
Experimental
environment

Performance
metrics

Bi et al. (2017) Dynamic Scheduling
algorithm for reducing
energy consumption’s

Focused on
performance and
energy cost

High complexity
due to virtualized
Data centers

Meta heuristic
methods

Simulated
environment

Profit, CPU
utilization

Zhu et al. (2017) Focused to keep data
center in balance stage
while saving power
consumption

Improved
management of VM
resource

High complexity Multi-dimensional
vector bin packing
problem based
heuristic

CloudSim SLA violations,
resource utilization

Duan et al. (2017) Scheduling of VM
machines

Improved the CPU
load prediction

No optimization Ant colony
optimization

CloudSim Energy Consumption

Ding et al. (2015) Dynamic VMs
scheduling

Increased Processing
Capacity

Ignored VM
migration, power
penalties of status
transitions of
processor

FCFS Simulated
environment

Deadline, Energy
consumption

Calheiros and Buyya
(2014)

Exploited intelligent
scheduling combined
DVFS capability

Improved energy
efficiency

Ignored Network
and Storage energy
consumption

Rank method Cloud Sim Energy consumption

Quarati et al. (2013) Emphasized on the
reservation of a quota
of private resources

Reduced energy
consumption and
carbon emission

Lacks
implementation on
a real-world cloud
platform

Round robin
algorithm

Discrete Event
Simulator

User satisfaction,
energy saving,
energy consumption

Kim et al. (2014) VM energy
consumption estimation
model

Reduced cost,
power consumption

More complex to
implement, Ignored
time

Power aware
scheduling
algorithm

Xen 4.0 hypervisor Energy
consumption, error
rate

Van Do and Rotter
(2012)

Presented interaction
aspects between
on-demand requests
and the allocation of
virtual machines

Reduced energy
consumption

No cost and time
optimization

Power aware
scheduling
algorithm

Numerical
Simulation

Average Energy
consumption,
average heat
emission

Garg et al. (2011) Focused on optimal
scheduling policies

Reduced energy
cost, energy
consumption

Ignored security Meta-scheduling
policies

Simulated
environment

Average energy
consumption,
average carbon
emission, arrival
rate of application

Gai et al. (2016) Considered
functionality of
cloudlets for energy
reduction

Reduced energy
consumption

No time
consideration

FCFS scheduling
policy

DECM-Sim Energy consumption

Li et al. (2016) Presented scheduling
algorithm to reduce
energy consumption
while meeting the
deadline constraint

Focused on energy
consumption

Ignored processing
power energy
consumption, VM
migration

Heuristic method Simulated
environment

Energy consumption

Bessis et al. (2013) Focused on improving
communication for
Distributed systems
while scheduling

Improved system
performance

High complexity Graph theory
concepts

SIMIC Makespan, latency
times

presented a scheduling algorithm to attain the target of energy
efficiency by providing security. A comparison of existing secu-
rity based scheduling algorithms in cloud computing is presented
in Table 10.

4.1.3. Heuristic based scheduling algorithms
Most of the aforementioned QoS parameters based scheduling al-

gorithms have focused on providing efficient mapping of resources at
the internal logical level. For solving NP-complete scheduling problems,
there is a need to use heuristic methods. Heuristic methods help to
design efficient scheduling plans to fulfill the requirements as per
user’s applications. Pandey et al. (2010) presented a Particle Swarm
Optimization (PSO) based heuristic method for scheduling of the appli-
cation in the cloud computing environment. Computation cost and data
transmission cost are considered at the time of scheduling of applica-
tions. Akbar and Irohara (2020) focused on dual constrained resource
allocation problems. They have emphasized the multi-task schedul-
ing problem. G°sior and Seredy´ski (2016) proposed a parallel and

distributed scheduling method in cloud computing environment. Two
methods such as multi-objective genetic algorithm with Spatial Pris-
oner’s Dilemma game and the Sandpile CA model are used to provide
the optimal solution by minimizing job completion time. Mateos et al.
(2013) proposed a cloud scheduler based on bio-inspired techniques
like ant colony optimization and swarm intelligence for parameter
sweep experiments. The scheduler considers job priority. They have
minimized flowtime and makespan as QoS parameters for independent
job/s execution. Kousiouris et al. (2011) suggested a black-box method
to handle the degradation prediction ability of resource. The proposed
method is based on artificial neural network method. A comparison of
heuristic methods based scheduling algorithms is done in Table 11.

Torabzadeh and Zandieh (2010) proposed a cloud theory-based
simulated annealing solution for two-stage assembly flow-shop prob-
lems where there are m number of machines in the first stage and an
assembly machine in the second stage. Mezmaz et al. (2011) designed
a new parallel bi-objective hybrid genetic algorithm for the scheduling
of parallel applications that takes into account, not only makespan

11



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

Table 9
Comparison of reliability based scheduling algorithms.
Author Basis Merits Demerits Scheduling

method
Experimental
environment

Performance
metrics

Latiff et al. (2016) Focus on uncountable
numeric nodes for
resource in clouds

Lower makespan No optimization League
championship
algorithm

CloudSim Failure ratio, the
failure slowdown
and the performance
improvement rate

Tang and Tan (2016) Reliability and energy
aware task scheduling
architecture

To get good trade
off among
performance,
reliability, and
energy consumption

No support for cost
optimization

Heuristic method Discrete event
simulation
environment

Schedule length,
Energy
consumption,
Application
reliability.

Adhikari et al. (2020) Focused on workflow
scheduling

Focused on the
enhancement of
resource utilization

Reliability and
Ignored security and
Cost

Firefly Method Simulation
Environment

Reliability,
Makespan

Malik et al. (2012) A reliability assessment
mechanism for
scheduling resources

Reliability
assessment
algorithms for
general applications
and real time
applications.

No security and
energy parameters
consideration

Max–min Amazon EC2 cloud Fault tolerance, time

Jing et al. (2015) A model for
fault-tolerant aware
scheduling

Low complexity No cost, time
optimization

Adaptive secure
scheduling
algorithm

Simulated
environment

Reliability

Table 10
Comparison of security based scheduling algorithms.
Author Basis Merits Demerits Scheduling

method
Experimental
environment

Performance
metrics

Duan et al. (2019) Focused on secure
scheduling

Data privacy Complex to
implement

Security based
algorithm

Simulation
environment

Energy, Security

Kashyap and
Vidyarthi (2014)

Secure aware
scheduling of real time
based applications

Improved response
time and overall
security

High complexity Priority Algorithm Hypervisor Deadline, security

Liu et al. (2013) Scheme for security
aware scheduling

Reduced the
computational load
and execution time

No cost
optimization
involved

Adaptive secure
scheduling
algorithm

KVM hyper-visor Time unit consumed
per computational
load

Wang et al. (2012) Focus on uncountable
numeric nodes for
resource in clouds

Provided scheduling
of resources in
secure way

Ignored cost Bayesian algorithm CloudSim Trust value, average
schedule length

Afoulki et al. (2011) Handled security risks
with in cloud

Less complexity Consolidation issues
while implementing
policies

Greedy Algorithm Simulated
environment

VM placement time

Bilogrevic et al.
(2011)

Scheduling services on
the cloud for mobile
devices

Enhance
Performance

No support cost
optimization,
Ignores power
consumption by the
network

Privacy aware
scheduling schema

Testbed Time, Data
exchanged, privacy
in approach

Zeng et al. (2015) To provide robust
scheduling algorithm
for resource utilization

Low complexity Ignored energy
consumption

Clustering and
prioritization
algorithm

Simulated
environment

Makespan and speed
up

Chejerla and Madria
(2017)

Scheduling of resources
in cloud integrated
Cyber–physical Systems

Consideration of
security, time

High complexity Heuristic algorithm Simulated
environment

Speed up, resource
utilization,
makespan

Shetty et al. (2016) Considered VM
placement techniques
to reduce security risks

Reduced computing
costs and
deployment costs

No optimization
criteria

Heuristic algorithm Simulated
environment

Cost, security risks

but also energy consumption. They have investigated the problem by
considering makespan and energy consumption as QoS parameters.

Su et al. (2013) presented a cost-efficient task-scheduling algorithm.
Two heuristic methods are used for the mapping of the tasks on the
ingredient resources. In the first heuristic method, Pareto dominance is
used to mapping the task on VM by considering cost as an important
factor. In the second heuristic method, authors tried to reduce the
monetary costs and makespan of non-critical tasks simultaneously. Abr-
ishami et al. (2013) proposed workflow scheduling algorithms named
IaaS cloud Partial Critical Paths (IC-PCP), and IaaS cloud Partial Critical
Paths with Deadline Distribution (IC-PCPD2). IC-PCPD2 is designed

by enhancing the Partial Critical Path (PCP) algorithm. The main
difference between these two algorithms is that IC-PCP handles the
scheduling process in one phase by selecting once the critical path for
mapping the tasks on a single instance and IC-PCPD2 assign deadlines
to the tasks and then assign tasks to the resources on the basis of sub
deadline. QoS parameters such as deadline and cost are considered at
the time of scheduling.

LD and Krishna (2013) have used Artificial Bee Colony (ABC) for
load balancing algorithm in cloud computing environments. This algo-
rithm has taken into the consideration the priorities of tasks. They have
only considered priority as QoS parameters. Bousselmi et al. (2016)

12



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

Table 11
Comparison of heuristic based scheduling algorithms.
Author Basis Merits Demerits Scheduling

method
Experimental
environment

Performance
metrics

Akbar and Irohara
(2020)

Focused on resource
allocation problem

Improved time High complexity Simulation
environment

Tabu search Time

Kousiouris et al. (2011) Virtual machines affect
the performance of
other VMs executing on
the same node

Reduce performance
overhead

Lacks
implementation on
a real-world cloud
platform

Genetic algorithm Simulated
environment

Degradation, test
score delay

Abrishami et al. (2013) Cost-optimized,
deadline-constrained
execution of workflows
in cloud. Considered
required runtime and
data estimates in order
to optimize workflow
execution

Minimize execution
cost with in
deadline

Ignored data
transfer time,
security

PCP algorithm Simulated
environment

Normalized cost

Torabzadeh and
Zandieh (2010)

Considered flowshow
job problem

Minimized
makespan and mean
completion time

Not considered cost Simulated annealing Simulated
environment

Computation time

Mezmaz et al. (2011) Addressed the
precedence-constrained
parallel applications for
cloud computing.

Reduced energy
consumption

High complexity of
implementation and
operation

Genetic algorithm Simulated
environment

Energy, speed up

Su et al. (2013) Cost-efficient
task-scheduling
algorithm using two
heuristic strategies

Reduced monetary
costs

Ignored security Heuristic strategies Numerical
experiments

Makespan

LD and Krishna (2013) Based priority of tasks,
designed load balancing
algorithm

Maximize
throughput

High operational
complexity

Honey Bee
algorithm

CloudSim Makespan, Number
of task migrations

Bousselmi et al. (2016) Designed scheduling
algorithm

Consideration of
QoS parameters

High complexity Parallel Cat Swarm
Optimization

Simulated
environment

Execution time,
execution and
storage cost,
availability of
resources and data
transmission time

Devi and Valli (2021) Focused on resource
scheduling with the
help of workload
prediction

Considered cost Ignored Time and
security

Genetic algorithm Simulation
environment

Cost, Resource
utilization

G°sior and Seredy´ski
(2016)

A novel parallel and
distributed scheme for
scheduling jobs

Multi-objective
optimization,
consideration of
security risks also

No cost
consideration

Genetic algorithm Simulation Testbed Flow time,
makespan,
turnaround time

Mateos et al. (2013) Designed scheduler for
job scheduling, consider
static cloud

Minimize weighted
flowtime and
makespan

Does not handle
energy consumption

Ant colony
optimization and
swarm intelligence
approach

CloudSim Makespan

used a Parallel Cat Swarm Optimization (PCSO) heuristic method for
scheduling the scientific workflows. The main intent of the authors is
to reduce execution time, cost and to handle data placement issues
simultaneously at the time of scheduling. Devi and Valli (2021) de-
signed scheduling algorithm by calculating the total number of virtual
machines at the advance stage. They have used a genetic algorithm
to address the scheduling issue. Hu and Li (2021) proposed improved
heuristic job scheduling method. The method named Densest-Job-Set-
First (DJSF) method schedules jobs by maximizing the number of
completed jobs per unit time, aiming to decrease the average Job
Completion Time (JCT) and improve the system throughput. Attiya
et al. (2022) designed a novel hybrid swarm intelligence method, using
a modified Manta-Ray Foraging Optimizer (MRFO) and the Salp Swarm
Algorithm (SSA) for scheduling IoT applications on Cloud.

4.1.4. Resource allocation based scheduling algorithms
In this section, resource allocation based scheduling algorithms are

discussed. To maximize the under-utilized resources, the resource allo-
cation step needs to be performed prior to the scheduling step. Nathani

et al. (2012) proposed scheduling algorithm based on dynamic plan-
ning. The proposed scheduling algorithm is implemented on the Haizea
framework. In the Haizea framework, the lease approach is used.
Whenever, there is a need to start a new VM for application execution,
a new lease is adopted. Four different policies such as immediate,
best effort, advanced reservation, and deadline sensitive are used in
Haizea framework to provide an efficient resource allocation for the
scheduling.

Ma et al. (2019) designed resource scheduling algorithm to mini-
mize the cost for smart grids. They have used the concept of cooperative
learning. A new priority-based job scheduling algorithm (PJSC) in cloud
computing has been proposed by Ghanbari and Othman (2012). The
base of the proposed algorithm is decision making model that depends
on multiple criteria. Li et al. (2012) proposed online dynamic resource
allocation algorithms in the federated heterogeneous cloud systems for
preempt-able applications. Mateescu et al. (2011) have introduced a
hybrid High-Performance Computing (HPC) infrastructure architecture.
The main function of the HPC infrastructure architecture is to utilize the
resource provided by different cloud service providers for the execution
of scientific applications.

13



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

Table 12
Comparison of resource allocation based scheduling algorithms.
Author Basis Merits Demerits Scheduling

method
Experimental
environment

Performance
metrics

Nathani et al. (2012) Proposed dynamic
planning based
scheduling algorithm
that can admit new
leases and prepare the
schedule whenever a
new lease can be
accommodated

Offers deadline
based optimization

Increased
complexity for
implementation

Backfilling and
swapping techniques

Haizea Simulator Number of deadline
leased, average
system utilization

Mateescu et al. (2011) Based on a hybrid
infrastructure for
predictable execution of
HPC workloads

Advance reservation Ignored cost VM allocation
algorithm

Amazon cloud Availability,
performance

Huang et al. (2013) Based on a
decentralized
scheduling algorithm
without requiring
detailed node
information

Reduced average
job slowdown

High complexity Community-aware
scheduling
algorithm

Magate Simulation Resource uptime,
resource usage

Ghanbari and Othman
(2012)

Based on priority of
jobs for job scheduling

Considered
multi-criteria

Lacks
implementation on
a real-world cloud
platform

Priority based job
scheduling

No experimental
setup detail

Makespan algorithm

Li et al. (2012) Based on resource
allocation mechanism
in cloud systems for
preemptable tasks

Decreased energy
consumption

Longer
computational time

DCLS and DCMMS Simulated
environment

Average execution
time, energy
consumption

Ma et al. (2019) Focused on resource
allocation strategy

Reduced cost Difficult to
implement

Artificial bee colony Simulation
environment

Cost

Shenai et al. (2012) surveyed the scheduling algorithms in cloud
computing. They did not consider different types of scheduling tech-
niques and QoS parameters that can be used at the time of comparison
for scheduling algorithms in cloud computing. Various resource allo-
cation based scheduling algorithms are compared in Table 12. Huang
et al. (2013) introduced a decentralized dynamic scheduling approach
entitled the community-aware scheduling algorithm (CASA). In the
proposed algorithm, the decision for job allocation is done by consid-
ering real-time responses of nodes. Rescheduling of the tasks facility is
provided by CASA to handle unpredictable circumstances of resource
allocations. They have used a set of heuristic methods to attain the
target of optimized performance.

4.1.5. Miscellaneous techniques
Few resource scheduling algorithms are listened in miscellaneous

techniques as these algorithms could not be listed in the above-discussed
categories. Bi et al. (2017) focused on the issues of resource provi-
sioning in a virtualized cloud data center. The goal of the research
work is to reduce electricity prices and number of rejected requests
between cloud consumers and providers. Chen et al. (2018) designed
an unceRtainty-aware Online Scheduling Algorithm (ROSA) to schedule
dynamic and multiple workflows with deadlines. Their main intent is to
establish a good trade-off among cost, deviation, resource utilization,
and fairness. Chen et al. (2017) developed a novel scheduling approach
to schedule workflow tasks. Their main intent is to minimize both
the makespans and monetary costs for executing workflows in clouds
while improving VMs’ resource utilization. Zhu et al. (2015) focused on
the multi-objective optimization algorithm for scheduling workflows
on IaaS. They have proposed a set of new genetic operators, the
evaluation function and the population initialization scheme for task
instance assignment problem by minimizing cost and time simulta-
neously. Alamer and Basudan (2020) designed secure placement of
tasks for vehicles. They have tried to maintain the privacy of vehicles
in Fog cloud computing environment. Shukla et al. (2020) addressed
scheduling problems of computing systems. They have used the concept
of fuzzy sets to solve the optimization problem while achieving energy

efficiency. Burkimsher et al. (2013) surveyed scheduling metrics such
as fairness, response time and resource utilization, etc. A Projected-
Schedule Length Ratio (SLR) policy was designed using SLA metrics
that helps in scheduling decisions. They have shown that SLR metric
can be beneficial for mutually dependent workload as SLA metric helps
to provide a critical path for the workload’s execution.

Amiri and Mohammad-Khanli (2017) has presented state-of-art of
application prediction models by considering different aspects for the
execution of applications. A dynamic sampling model is designed for
the estimation of the bandwidth for cloud scheduling problems. The
base of the model is the data size and estimated capacity of the
network in Yildirim et al. (2013). Their main intent is to provide
optimization services to the application by considering data transfer
parameters. Vasile et al. (2015) have explored the resource provi-
sioning step that occurs before the scheduling. They have tried to
accumulate the information of available resources and tasks before
formal allocation of jobs on ingredient resources. In Sirbu et al. (2017),
authors have used the stochastic process to provide information about
resources for resource provisioning. In Thierens and Bosman (2013),
authors have focused on the hierarchical problems to provide solution
for complex system. They have used Linkage Tree Genetic Algorithm
(LTGA) for hierarchical problems. Bosman et al. (2016) introduced
Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) family to
solve permutation optimization problems by using the random keys
encoding of permutations. Hsu and Yu (2015) proposed a new evolu-
tionary algorithm, called DSMGA-II, to efficiently solve optimization
problems via exploiting problem substructures. In the proposed algo-
rithm, the pairwise linkage detection from DSMGA is used to design a
new linkage model. Komarnicki et al. (2020) have proposed compara-
tive mixing operator by extending the functionality of restricted mixing
operator. The main intent of the proposed operator is to change linkage
information, obtained by DSB based linkage model. Przewozniczek and
Komarnicki (2020) focused on linkage learning techniques for local
optimization. Saini et al. (2020) have discussed the new approached
by using scalarization function to solve the optimization problems. Pan
et al. (2021) used adaptation mechanism to design evolutionary al-
gorithm to solve flow shop scheduling problem. Goldman and Punch

14



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

(2014) have focused on parameter-less population pyramid evolution-
ary technique to solve the optimization problem. They have used
adaptive strategy to set feedback probability for each iteration. By using
this method, parameter tuning is not required and very effective for
overlapping problem in binary domain. In this section, all scheduling
problem related to other applications domains are discussed.

4.2. Comparison of resource management systems

4.2.1. Eagle
The main motive of the eagle scheduler is to use the sticky batch

probing at the time of scheduling. It works as a hybrid data center
scheduler for data-parallel programs (Delgado et al., 2016). The main
intent of the eagle is to do partitioning of the data center’s node for
the execution of short and long-duration jobs. Eagle job scheduler is
very efficient for data center scheduling as data center scheduling is
a very challenging task due to many reasons. The main issues in data
center scheduling are handling the different types of workloads and the
parallel nature of jobs and scaling of data centers. Eagle addresses all
these issues for data center scheduling. Load balancing can be used with
the help of eagle.

4.2.2. Hopper
Hopper (Ren et al., 2015) is a job scheduler that can be used to

amalgamate the trade-offs associated with speculation into job schedul-
ing decisions. It basically helps to dynamically allocate the capacity of
extra slots by using the marginal value concept. Hopper considers many
factors such as corporate data locality, fairness, DAGs of tasks at the
time of job scheduling. It works for the centralized and decentralized
prototype for both.

4.2.3. Kubernetes
The first version of Kubernetes was first released in June, 2014.

Kubernetes is written in Go Language. Kubernetes is an open-source or-
chestrator developed by Google for automating container management
and deployment (Anon, 2018a). Unlike Swarm, the basic deployable
object here is a Pod which consists of one or several containers that
run in a shared context. It is used to run and manage multiple docker
containers with a REST API that allows users to declare how the
various containers should scale and talk to each other. Kubernetes
is an abstraction over an application which creates containers. With
Kubernetes there is no direct contact with the actual servers that run
the containers, we use the API for description such as what to run
and how many copies of it. YAML-based deployment mode is used by
Kubernetes. Many other features such as load balancing, auto-scaling,
and secret management are provided by Kubernetes.

4.2.4. Tetris
Tetris (Grandl et al., 2015) is a cluster scheduler that aims to

match multi-resource task requirements with resource availabilities. It
considers both disk and network requirements of the application at the
same time. Tetris provides many objectives such as fairness, minimizing
job completion time, and minimizing cluster makespan for scheduling
of multi-packing of the resources for tasks.

4.2.5. Fawkes
Fawkes (Ghit et al., 2014) is multi-cluster system. It is designed to

deploy a new abstraction layer for mapreduce frameworks. The main
aim of Fawkes is to do resource balancing dynamically. Provisioning
strategies are used for scheduling of mapreduce jobs in multi clusters.
All these strategies work on the basis of dynamic weights.

4.2.6. Omega
Omega (Schwarzkopf et al., 2013) is parallel scheduler architec-

ture that uses the concept of parallelism, shared state, and lock-free
optimistic concurrency control.

Fig. 3. Types of Heuristic Methods.

4.2.7. OurGrid instead of omega
OurGrid (Andrade et al., 2003; Cirne et al., 2006) is developed at

Universida de Federal de Campina Grand, Brazil. OurGrid works as a
centralized scheduler. The main vision of OurGrid is to bring together
all labs for preparing a massive worldwide computing platform. It
provides an isolated environment for application execution. Security
constraints are very strict. OurGrid provides the facility of resource
sharing in an equity fashion. OurGrid was designed to solve the issue
of negotiation among users and resource providers. The main function
of OurGrid is to be used for the execution of bag-of-tasks applications.

4.2.8. Sparrow
Sparrow (Ousterhout et al., 2013) is used to furnish the facility

of fine-grained task scheduling. It acts as a complementary facility
to resource managers. Sparrow does not initiate new processes for
each task. It can be used for providing high throughput and lower
latency based applications. The main intent of the sparrow is to do
approximation whenever there is a trade-off among many features at
the time of scheduling. Sparrow uses a randomized sampling approach
for scheduling and bestows optimal performance using batch sampling
and late binding techniques.

4.2.9. Yarn
Apache Hadoop YARN (Vavilapalli et al., 2013) acts as a resource

management system. It is used to schedule the jobs in the open-source
Hadoop distributed processing framework. The main liability of the
YARN is to allocate the systems resources to different applications in
the Hadoop cluster. It supports many QoS features such as scalability,
higher efficiency, and fair resource usage. The two main components
of resource manager are scheduler and applications manager. The main
task of the scheduler is to allocate the resources to different applications
as per the requirements as shown in Fig. 3. The capacity scheduler is
used for predictable sharing of cluster resources by using hierarchical
queues. job submissions, negotiating with the first container for exe-
cuting the application is done by the application manager. Resource
monitoring and container management would be performed by the
node manager and the status of resources should be sent to the resource
manager.

4.2.10. Mesos
Mesos (Hindman et al., 2011; Anon, 2018b) provides the API for

resource management and scheduling in data centers. The main intent
of the Mesos is to abstract CPU, memory, storage, and other com-
pute resources away from machines. It enables the facility to build a
distributed system fault-tolerant. Mesos, a thin resource sharing layer
that helps to furnish fine-grained sharing by providing a common
interface among different cluster frameworks. It helps the resource
management system to achieve high utilization, respond quickly to
workload changes, by maintaining the system’s capability in terms of
scalability and robustness.

15



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

Table 13
Comparison of different resource management systems.
RMS /Property Architecture Usage Open source Support Applications Programming

framework

Eagle Hybrid Differentiates short
and long jobs

EPFL IC IINFCOM
LABOS, Switzerland

Spark Different workloads
and Parallel jobs

Python, Java, PHP,
Python, Ruby

Hopper Decentralized Speculation-aware
job scheduler

Microsoft Research Spark CPU intensive Java, Php, .net

Kubernetes Centralized Fine-grained
allocation in Docker
containers

Cloud Native
Computing
Foundation and
Google Borg

Generic
Applications,
Custom
implementation for
spark

CPU and Data
intensive

Java, Python

Tetris Centralized Multi-resource
bin-packing

Microsoft Generic applications CPU intensive Python, Perl, Java,
PHP, Ruby, Node.js,
Erlang, Scala,

Fawkes Centralized Dynamic resource
balancing

TU Delft Mapreduce
frameworks

Data intensive Python, Java, PHP,
Python, Ruby

Omega Decentralized Shared state
abstraction

University of
Cambridge

Custom applications Parallel applications Java, Php, .net

OurGrid Centralized Equitable Resource
Sharing

Universidade
Federal de
CampinaGrand,
Brazil

Generic applications Bag of Tasks Java, Python

Sparrow Decentralized Randomized
sampling approach

U.C. Berkeley
AMPLab

Spark CPU intensive Python, Perl, Java,
PHP, Ruby, Node.js,
Erlang, Scala,
Clojure, .Net

Yarn Monolithic Resource requests
with containers

Hadoop Spark Data intensive Python, Java, PHP,
Python, Ruby,
Clojour

Mesos Two way protocol Pessimistic resource
offers

University of
California, Berkeley

Spark CPU and Data
Intensive

Python, Perl, PHP,
Rest, Ruby, .net, C#

HT Condor Two way protocol To execute
computational
workloads

University of
Wisconsin–Madison

Custom applications CPU intensive Python, Perl, PHP

4.2.11. HTCondor
HTCondor (Thain et al., 2005) was designed at the University of

Wisconsin. The main reason to design condor for distributed systems to
provide the features such as consistency, availability, and performance
for distributed applications. HTCondor is a specialized workload man-
agement system for compute-intensive jobs. It uses queueing approach
for the scheduling of the jobs. There are many features available for
resource management systems in condor like scheduling policy, priority
scheme, resource monitoring. Jobs can be submitted in parallel forms
and after the completion of the execution process, results will be
sent back to users. The main use of the condor is for applications
those demand high throughput computing. A comparison of different
resource management system is shown in Table 13.

4.3. Scheduling in IaaS: State-of-art

In this section, scheduling in IaaS clouds has been compared with
respect to their properties such as pricing plan, service level agreement,
number of data centers, monitoring types, web APIs, and programming
frameworks. We have considered seven cloud service providers for
comparison of scheduling in IaaS clouds as shown in Table 14. By using
IaaS the cloud consumers need not to invest in hardware upfront, so the
development and deployment of applications became faster.

4.3.1. Amazon EC2
A Scalable computing facility is provided by Amazon Elastic Com-

pute Cloud (Amazon EC2). In Amazon web service, cloud users can
start virtual servers as per the requirement. There is no restriction
on the number of virtual servers. Security and network configuration
services are also provided by Amazon EC2. Whenever the demand for
virtual servers increases, Amazon EC2 scales up or down as demand
decreases (Anon, 2015).

For executing an application on elastic compute cloud, different
types of VM instances are provided as per the requirement. Users can
control costs also by stopping instances when not in use. EC2 scheduler
is the main scheduler, used in AmazonEC2 for providing the facility of
start and stop instances for completing the task. Resource capacity can
also be controlled.

4.3.2. Microsoft Window Azure
Microsoft Window Azure is used for deploying, building, and man-

aging applications and services. There are different types of services
such as compute, storage, and networking that are provided by Azure.
Different types of programming frameworks and tools are supported
by Azure. The Azure scheduler is very robust. It provide the facility
to create, update, delete the jobs. The Azure scheduler can be used
for complex schedules such as daily maintenance, performing backups,
and recurring application scenarios, etc. The main task of the Azure
scheduler is to allow users to create jobs. Users can invoke the job inside
or outside of the Azure environment by calling HTTP endpoints. The
Azure scheduler switches to other data centers whenever the demand
for resources is increased (Anon, 2014).

4.3.3. Rackspace
Rackspace, formerly known as Mosso, for providing the Infrastruc-

ture as a Service. The main task of the Rackspace is to provide the
backup for data (Anon, 2016a). Scheduling is also considered an impor-
tant aspect in the Rackspace. To create a scheduled task on the cloud
site, five components are used. The round robin algorithm is mostly
used to main the load balance among nodes. After creating each cron
job, the task of selecting the best resource as per the job requirement is
started.This algorithm helps in directing traffic in a particular manner
to achieve the target of load balancing simultaneously. Encryption and
compression facility is also provided by Rackspace.

16



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

Table 14
Comparison of different IaaS models.
Provider /Property Pricing SLA Data Centers Monitoring Web APIs Programming

framework

Amazon EC2 Pay-as-you-go or Year,
reserved, spot

99.95% 8 Good Extensive Python, Java, PHP,
Python, Ruby

Microsoft window
azure

Pay-as-you-go, semester,
year

99.90% 8 Average Good Java, Php, .net

Rackspace Pay-as-you-go 100% 6 Extensive Good Java, Python

HP Cloud Pay as you go 99.95% 3 Poor Average Python, Perl, Java,
PHP, Ruby, Node.js,
Erlang, Scala,
Clojure, .Net

Cloud sigma Pay-as-you-go 100% 3 Good Average Python, Java, PHP,
Python, Ruby,
Clojour

Soft layer Pay-as you go, monthly 99% 12 Extensive Good Python, Perl, PHP,
Rest, Ruby, .net, C#

Go grid Pay-as-you-go or Monthly,
semester, year

100% 5 Poor None Python, Perl, PHP

4.3.4. HP cloud
HP cloud solutions help to build and operate own private cloud

with HP cloud system. Their main aim is to deliver a highly secure
environment for enterprise workloads and leverage the HP public cloud
for open, enterprise-class storage, compute, and networking solutions.

In the HP cloud, the main task of the scheduler is to identify the
node for the task as per the requirement. HPE Helion OpenStack 4.0,
freezer scheduler help in managing all operation related to scheduling.
Open stack nova concept, compute host facility is used by freezer
scheduler. Nova concept helps in the process of identifying logical
separation within the cloud on the basis of physical isolation. The
Nova scheduler provides the facility of filtering and weighting to make
scheduling decisions (Anon, 2016b).

4.3.5. Cloud sigma
The main intent of the cloud sigma is to maintain the balance

between public and private cloud service providers. The virtualization
of Cloud sigma is based on KVM and it also supports para-virtualization
too. It offers full-spectrum solution to cloud users to balance their
workloads. Cloud sigma can be used for critical applications such as
disaster recovery management, early forest fore detection, to attain
low latency targets by combining private technology. Resource manage-
ment system of cloud sigma helps to decrease the cost of an application
execution on the public cloud. For the execution of the application,
cloud sigma provides the solution of networking as a service and
secure data center facility too. Cloud sigma is considered as the best
choice for hybrid hosting due to the patch up with private technology
(Anon, 2016c).

4.3.6. Soft layer
SoftLayer provides cloud infrastructure as a service solution, pro-

posed by IBM Company (Anon, 2016d). There are many advantages
associated with soft layers as it is an easy-to-use platform, having robust
API for accessing all services. It also supports network within network
topology structure. In softlayer, users can submit 2600 jobs per minute.
Softlayer scheduler is efficient in handling all the jobs dynamically.
Scheduler having capacity planning activity to predict the workload
in advance. Due to this feature, horizontal scaling can be done. In the
updated version of cloud sigma, vertical scaling is possible by adding
one dynamic workload broker who handles the task of adding resources
as per the resource utilization parameters.

4.3.7. GoGrid
GoGrid helps in cloud hosting on both windows and Linux cloud

servers. It provides all services on infrastructure as a service space. The

main intent of GoGrid is to build a secure hybrid infrastructure for web
hosting as per the user’s requirement. Load balancing is also supported
by GoGrid to attain the optimal balance among nodes (Anon, 2016e).
In GoGrid, the job can be submitted on dedicated servers, directly
managed by the user. After the job submission, dedicated servers are
not shared with other entities. These dedicated servers reside on the
private network.

All important parameters of IaaS clouds such as pricing plan, ser-
vice level agreement, number of data centers, monitoring types, web
APIs, and programming frameworks have been discussed. Table 8
comparison of scheduling in IaaS clouds.

• Pricing Plan: This attribute represents the estimated cost in US$
for 1 CPU and 1 GB Ram. It does not include data transfer costs.
There are different types of plans such as monthly plans, hourly
plans, yearly and discounts for members. Users can select plans
as per the requirement for application’s execution. Pay-as-you go
model is considered the best pricing plan.

• Service Level Agreement: SLA means a mutual agreement be-
tween cloud consumers and cloud service providers. For compar-
ison, we have considered CPU uptime SLA offered by different
cloud service providers.

• Number of Data centers: It states the number of data centers
offered as a choice when users want to deploy cloud server.

• Monitoring Type: In this field, monitoring of resources is consid-
ered after the starting application’s execution process. Few cloud
service providers take the monitoring type of service from third
parties to provide the monitoring solutions.

• Web APIs : This field describes the company offers APIs to interact
with the servers or not to cloud users.

• Programming Framework: In the programming framework, we
have listed down the language which cloud users can use for
the execution of an application on different service providers as
shown in Table 14.

4.4. Heuristics and meta-heuristics methods for cloud scheduling

The process of mapping jobs to ingredient resources in cloud schedul-
ing is called an NP-complete problem (Braun et al., 2001). Heuristic
methods are used to solve the NP-complete problems. There are many
issues related to cloud scheduling such as heterogeneity of the re-
sources, dynamic and autonomous nature of cloud resources, which can
be addressed by using heuristic methods. Different heuristic methods
are studied and compared in Braun et al. (2001). Fig. 3 shows the
categorization of existing heuristic methods in cloud computing.

17



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

4.4.1. Greedy heuristic approaches
Greedy algorithms are called intuitive heuristics. The reason to

called intuitive heuristic is that greedy choices are selected to achieve
the main target (Merz and Freisleben, 2002). In greedy heuristic,
feasible solutions are constructed from scratch by selecting appropriate
choices in each step. To solve optimization problems, there is a need to
add elements in the partial solution that helps to provide the highest
gain.

Opportunistic Load Balancing : In opportunistic Load Balancing (OLB),
the main intent of the algorithm is to place each job, in order of arrival,
on the next available machine. The expected execution time of the task
for that particular machine is computed (Armstrong et al., 1998). The
main target of OLB is to keep all machines busy and it does not consider
the execution time which results in poor makespan.

Minimum Execution Time: In minimum execution time heuristic
methods, tasks are assigned to machines as per arrival order. While
assigned task, the best expected execution time is calculated (Braun
et al., 2001). The main aim of the minimum execution time method
is to assign the task best machine for the execution of the application.
There are high chances of load imbalance between processors as it does
not consider the load of the resources.

Minimum Completion Time: The main motive of Minimum Comple-
tion Time (MCT) is to reap the advantages of both OLB and MET. In
the minimum completion time algorithm, each task is assigned to the
machines in arbitrary order. While assigning the task, the minimum
expected completion time for each task is emphasized (Armstrong et al.,
1998).

Min–min: In the min–min heuristic method, all tasks with the known
set of minimum completion time is considered. The main base of
the min method is the minimum completion time. After checking all
un-mapped tasks, the task with the overall minimum completion is
considered to assign the machine (Armstrong et al., 1998; Freund
et al., 1998). In each mapping decision, all un-mapped tasks will be
considered but the minimum completion task for the one task is focused
at a time.

Max–min: In max–min heuristic methods, all un-mapped task will
be considered and the task with the overall maximum completion time
is selected for the allocation of the machine. The main intent of max–
min methods is to reduce the overhead of tasks having high execution
time (Armstrong et al., 1998; Freund et al., 1998). In max–min, load
balancing factor is considers for the better utilization of the resources.
For example, one application having one task with a high execution
time and the rest task having a shorter execution time. The max–min
method will allocate the higher execution to the best available machine
so that all other shorter running tasks can run simultaneously. But this
is not the case with min–min heuristic methods.

Duplex: Duplex heuristic method is the merger of max–min and
min–min heuristic methods. Both min–min and max–min algorithms
are checked for a better solution. Then the task will be assigned to a
particular machine (Braun et al., 2001).

4.4.2. Meta-heuristics
Meta-heuristics algorithms having an iterative process that instructs

the operations of subordinate heuristic methods to get the better solu-
tions. These methods are used to assist in the decision process of many
applications such as scientific, engineering, business, and economic
within a defined time frame (Stefan, 2001). There many advantages
associated with meta-heuristic methods as these methods are flexible to
solve many real-time problems, robust, and uses global optimizer. The
main drawback of the meta-heuristic method is that result can vary for
the same problem when different methods are applied. There is no the-
oretical approach so that optimality is not guaranteed. Metaheuristics
required extensive knowledge of heuristic and problem domain to get
the good solution.

Local Search based Meta-Heuristic Methods: Local search heuristic
methods explore the solution space by selecting an initial solution. To

construct the path for solution space, each solution is explored during
the searching process (Xhafa and Abraham, 2010). The main intent of
the local search heuristic method is to find the feasible solution quickly
by searching neighborhood solution space and local search heuristic
approaches (Cappanera and Trubian, 2005). These methods are used
to solve industrial-level problems.

Tabu Search: Tabu Search (TS) is a meta-heuristic method, proposed
by Gover in 1986. TS methods explore solution space by avoiding
the trap of local minima (Glover, 1989). There are many advantages
associated with tabu search methods as it is very simple in comparison
to other meta-heuristic methods such as genetic algorithm, simulated
annealing, and particle swarm optimization, etc. It is used to solve the
combinatorial optimization problems. There is one drawback with this
method that it has stepped into the trap of local optima while shifting
from one local optima to another due to low global search capability.

Hill Climbing : Hill climbing heuristic method is a local search-based
method. It is very simple to implement in comparison to other heuristic
methods. This heuristic method is implemented in those situations
where the current path along with the successor node can be extended.
It is a useful method as there are no more than one maxima and min-
ima (Xhafa and Abraham, 2010). The main drawback of this method is
that the solution is better in comparison to the neighborhood area but
not in the another solution space area.

Simulated Annealing : Simulated Annealing (SA) heuristic method is
an iterative technique in which one solution is considered. Kirkpatrick
et al. designed a simulated annealing method in 1983 (Gelatt et al.,
1983). In this method, system is melted at a high temperature for
optimization and then the temperature will be slow at the various levels
until the system freezes (Theys et al., 2001). Simulated annealing meth-
ods use probabilistic approach to get the optimal solution. The initial
implementation of SA is modified to get the refined solution (Braun
et al., 2001). There are many benefits to use this approach as it is easy
to code, guaranteed to converge in asymptotic time. SA can be applied
to multi-objective optimization problems due to the robust nature of
the method. The main difficulty of SA is to select multiple parameters
and time consumption is more. It is not easy to define the cooling
temperature too.

Population based Meta-Heuristic approaches: Population-based heuris-
tic methods are used to solve scheduling problems in a distributed
computing environment such as Grid and cloud computing (Xhafa and
Abraham, 2010).

Genetic Algorithms: Genetic Algorithm (GA) was designed for solving
optimization problems, by Holland (1975). It is a stochastic optimiza-
tion algorithm, used to provide an optimal solution (Theys et al.,
2001). Genetic algorithm can be used to solve issues in performance
tuning and classification applications. In genetic algorithm, there are
different operations such as genetic inheritance, crossover, mutation,
and reproduction (Hsu, 2004). In the first step, a set of parameters
are defined in search space to represent the genes. A set of genes
is considered as a chromosome. A set of chromosome is defined as
population. In the second step, the fitness value of each chromosome
will be evaluated. The fitness function is designed as per the problem
requirement (Abraham et al., 2000). On the basis of fitness values,
genes will be selected for the reproduction. In the third step, the
reproduction step will be performed by taking two genes to pass their
genes to the next generation.

Crossover is the most important step of genetic algorithm. After se-
lecting two parents, the crossover will be performed in the fourth step.
In the fifth step, the mutation will be done to ensure that there is no
point with zero probability in the search space. It avoids premature con-
vergence. Genetic algorithm terminates if the population has converged
achieved global optimum solution (Kokilavani and Amalarethinam,
2010; Braun et al., 2001; Judy and Ramadoss, 2012). In a cloud com-
puting environment, genetic-based heuristic methods are used to solve
the scheduling problem (Sfrent and Pop, 2015). There are many advan-
tages of GA as it does not require analytical knowledge and derivatives

18



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

during implementation. GA can easily apply for solving large-scale
combinatorial optimization problems. There is a major drawback of
premature convergence issue. Genetic algorithm only provides local
optimum solutions to the problem in a short span of time.

Memetic Algorithm: Memetic Algorithm (MA) is considered as an
extended version of genetic algorithm. The advantages of both local
search methods and genetic algorithm methods are combined in MA.
These algorithms are applied in local search methods to get the refined
solution. As the base of the memetic algorithm is a genetic algorithm,
the population is varied to avoid premature convergence. It is used to
solve real-world problems like university timetables, in the prediction
process of protein structures, and the design of space-craft trajecto-
ries (Hart et al., 2004). The main use of MA is to solve the non-linear
continuous multi-objective combinatorial optimization problems.

Ant Colony Optimization: In 1992, Marco Dorigo has proposed Ant
Colony Optimization (ACO) (Colorni et al., 1991). The main strength of
the ACO algorithm is that ants keep real power in their colony brain as
it is found in brain-like structures. On their way, ants release a molecule
of pheromone to alert the other ants to go in one direction (Merloti,
2004). Due to non-deterministic algorithm, ACO relies on other sub
heuristic algorithm to find out the optimal solution (Dorigo and Gam-
bardella, 1997). There are numerous advantages of ACO (Dorigo et al.,
1996): ACO is versatile algorithm that can be applied to solve job shop
scheduling problem and quadratic assignment problem. After doing the
few changes, ACO helps to solve static and dynamic combinatorial
optimization problems. Due to good convergence criteria, ACO can
help to solve the discrete problem too. ACO meta-heuristic method
can easily adapt as per real-time for applications. There is one major
drawback of ACO as there is no centralized control for solving traveling
salesman problem. Theoretical analysis of ACO is also difficult.

Particle Swarm Optimization: Particle Swarm Optimization (PSO) was
introduced in 1995 by Kennedy (2011). In PSO, there is no need for
the explicit knowledge of gradient to solve the problem. PSO helps in
stimulation, i.e., the process of a swarm bird praying. PSO is applied
to solve numerical optimization problems due to the ability of global
searching. A group of particle is randomly generated. In PSO, the first
step is to represent each particle as a possible solution. In the second
step, each particle’s fitness value will be evaluated as per the designed
objective function. In the third step, if the particle’s fitness is the best
from global solution (gbest) then gbest will be updated. Then particle
will be evaluated with the current best solution(pbest). In the fourth
step, if the particle is better then the current best solution is updated.
Each particle moves in the group to find the best solution. In the
fifth step, the velocity vector will be used to update the position of
each particle. There are many advantages associated with PSO as it
is a robust optimization method due to many factors as there are no
crossover and mutation operators. It is easy to implement and having
global search ability. PSO cannot be applied for few applications due
to the slow convergence rate.

Bacterial Foraging Optimization: Bacterial Foraging Optimization (BFO)
algorithm was designed by Passino (2002). BFO is based on the foraging
behavior of Escherichia coli bacteria. In the foraging concept, the main
intent of the Escherichia coli bacteria is to find out the nutrients in such
a manner so that energy intake per unit time (E/T) is maximized. In the
foraging process, each bacteria move region to region in the search of
the food to get maximum energy. There are three basic steps performed
in BFO: Chemotaxis, Reproduction, and Elimination-dispersal event.
In the chemotaxis step, the behavior of E. coli bacteria is stimulated
by doing operation swimming and tumbling. E. coli bacteria release
attractants to provide the alert message to other bacteria to swarm
together. In the second step, the fitness of each bacteria will be
evaluated. The week bacteria will die with time and healthy bacteria
will produce two new bacteria so that swarm size will be constant. In
the last step, elimination will occur due to sudden change such as an
increase in temperature etc. Elimination and dispersal steps can react
in both ways as it can be useful in the scenario when bacteria is trapped

in the useless region or it can be harmful when bacteria was already
in a healthy region for food (Dasgupta et al., 2009). There are a lot
of advantages of BFO algorithm as it is more adaptive in comparison
to ACO, PSO. There is no issue of premature convergence as it can be
applied to real-world problems such as projector scheduling, resource
scheduling, etc. BFO is easy to implement as there is no complex
operator for the computation.

A comparison of heuristic methods is shown in Table 15. After
analysis, it can be concluded that BFO is a more appropriate method
for resource scheduling in cloud computing in comparison to other
heuristic methods. BFO provides the more optimal solution.

4.4.3. Hybrid-heuristics
Hybrid methods are designed to exploit the main advantages of

meta-heuristic methods. Genetic algorithm is combined with local
search methods such as tabu search, hill climbing, and simulated an-
nealing, etc to get the optimal results. Hybrid heuristic provides better
convergence and more efficient in comparison to other algorithms.
Due to simplicity nature of hybrid heuristic methods, it can be easily
implemented in shared memory parallel architectures (Talbi, 2002).
The main drawback of the hybrid heuristic method is that it is not an
easy to implement and time-consuming method.

4.4.4. Hyper-heuristics
Hyper-heuristic selects heuristic from the set of low-level heuristic

to solve the combinatorial optimization problems. It is considered as
a high-level methodology that provides a set of low-level heuristics as
per the problem requirements (Burke et al., 2013). There is no need for
extra knowledge of low-level heuristic at each decision point to solve
the problem.

The main advantage of the hyper-heuristic algorithm is that it
adapts to the problem environment. Chakhlevitch and Cowling (2008)
has defined few problems while implementing hyper-heuristic algo-
rithm. Few hyper-heuristic methods are verified on benchmark prob-
lems such as traveling salesman problem, project planning problem,
etc. It also requires few parameters to tune at the advance stage for
the better selection of low-level heuristic to solve real-world problems.

After the thorough analysis of heuristic methods, it has been con-
cluded that local search methods cannot be applied to solve all large-
scale problems to get the optimal solution in the reasonable time
frame. So, meta-heuristic methods can be sued to solve such prob-
lems but it requires an ample amount of knowledge of the prob-
lem and expensive to solve the problem too. In comparison to meta-
heuristic, hyper-heuristic methods can be used to solve combinatorial
optimization problems (Burke et al., 2013). The key difference between
meta-heuristic and hyper-heuristic is that meta-heuristics start directly
working on the problem to find out the solution but hyper-heuristic
method generates low-level heuristic to solve the problem as per the
problem specifications. Hyper-heuristic is considered a more viable
methodology in-comparison to other heuristic methods such as hybrid
heuristic, meta-heuristics. For distributed environments like grid and
cloud computing, hyper-heuristic methods are considered appropriate
for solving scheduling optimization problems.

5. Open issues and challenges

Recently, the promising performance of cloud resource management
system has allured attention in the cloud computing environment. The
state-of-the-art in the considered field was presented in the previous
sections and it is found that there are many issues and challenges that
need to be addressed. In future studies, there is a need to work on the
unexplored issues. In this section, open issues and prospective research
directions have also been discussed. After studying the existing work,
few important key issues are listed as follows:

19



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

Table 15
Comparison of different heuristic approaches.
Heuristics/
Features

Parameters Convergence Premature
convergence

Services Local/Global search Optimization
problems

Tabu search Less parameters Guaranteed
convergence

Prevent premature
convergence

conceptual, Simpler,
easy to implement,
no special memory
requirement

Low global search Combinatorial
optimization

Hill climbing Less functions No guaranteed Prevent premature
convergence

Simpler and straight
forward

Local search Simple Optimization
Problem

Simulated
annealing

Less Functions Converge In
asymptotic time

Premature
convergence

Easy to code, robust
heuristic

Local search Combinatorial
optimization
Problems

Genetic
algorithm

More functions No guaranteed premature
Convergence

No need analytical
knowledge, easy to
run and implement

Global search
capability

Multi objective
optimization

Memetic
algorithm

More functions Guaranteed
convergence

Less chance of
premature
Convergence

Flexible Global search Complex objective
functions, non-linear
multi objective
Combinatorial
optimization
Problems

Ant colony
optimization

Less functions Guaranteed
convergence

avoid the premature
Convergence

Versatile, robust Global search Static and dynamic
Combinatorial
optimization
Problems

Particle swarm
optimization

No function like
genetic algorithm

Slow convergence
rate

Less chance of
premature
Convergence

Robust Global search Stochastic
optimization

Bacterial
foraging
optimization

No function like
genetic algorithm

Better convergence
rate

Avoid premature
Convergence

Flexible & Robust Global search Real-world
optimization

Load Balancing: Efficient distribution of the jobs/tasks across geo-
graphically distributed cloud computing environment can re-
duce the costs by dynamically reallocating the workload to a
place where the computing resources and access to computing
resources are cheaper. Load balancing is also one of the major
part of cloud resource management and scheduling. VM migra-
tions and server consolidation techniques can be used at the time
of load balancing. If the workload is distributed evenly then it
will enhance the performance of the system. There would be
less chance of node failure and user will get the result of ap-
plication’s execution on time at a very less price as cloud offers
as you use you pay. There is a need to work to maintain the
balance between data-locality and load-balancing to maximize
throughput and minimize delay simultaneously.

Resource Utilization: Resource utilization is also one of the most im-
portant QoS parameters for cloud scheduling. A cloud schedul-
ing algorithm should be well equipped to enhance the resource
utilization in an efficient and effective manner. It is a required
to design resource utilization aware techniques to reduce cost
and increase the speed of the application’s execution. In a cloud
computing environment, the cloud resources and the user re-
quests can change dynamically. Therefore, a scheduling ap-
proach should be smart enough to make real-time responses
to a changing environment. A multi-objective nature is inher-
ent in cloud resource scheduling, as the objectives of cloud
providers, cloud users, and other stakeholders can be inde-
pendent. For example, a cloud service provider may try to
minimize the cost of the application’s execution via a resource
utilization-aware scheduling algorithm. Even among cloud users
themselves, different users or the same user at different times
may have different QoS requirements, such as minimum com-
putational costs, faster execution of applications, and so on.
Therefore, a multi-objective based resource scheduling problem
could become more and more significant in the future of cloud
computing.

Edge Computing and Fog Computing: Due to the increased edge
and fog computing computational power available, significant
activities can also be conducted on edge devices. Many IoT de-
vices are connected and do computation a lot. Thus, scheduling
must balance between activities that can take place on the edge
(fog) or needs to be conducted in the cloud.

Scheduling Challenges arising from use of Containers: Container
used virtualization technology to provide the abstraction at OS
level. Containers are joined in a virtual network. The challenge
here is to assure that containers between users do not create
security or violate privacy issues. Also, the access to potentially
elevated system privileges may cause other issues. Therefore,
systems such as singularity offer users an isolated use of con-
tainers within traditional HPC queuing systems to mitigate that
issue. Such challenges must be integrated into a scheduling
strategy when adding containerized cloud resources.

Challenge in Serverless Computing: To handle the growing traffic,
the cost of infrastructure is the big issue that needs to be
addressed in serverless computing paradigm. There is a need
to design scheduling algorithm to meet the demand of the
infrastructure efficiently.

Risk Analysis: Risk management on a daily basis is a thing of the
past as there are higher volatiles. To maintain competitive ad-
vantages in real-life scenarios like in banking, health sector;
there is a need to evaluate their models continuously, including
the performance of the production models. Another aspect to
analyze risk in a cloud computing environment helps cloud con-
sumers assessing their risk before putting their critical data in a
security sensitive cloud. Work needs to be done in establishing
the relationship between risk matrices (trust, SLA violation ratio,
availability, and elasticity) and SLA to provide effective risk
management to the users.

20



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

Security: Security is a crucial concern in cloud computing. Data se-
curity is an open issue in the cloud computing environment as
there is no access to security systems of data centers to the cloud
service providers. Cloud service providers have to depend on the
infrastructure service provider to take access to the security sys-
tem. Even for a virtual private cloud, the cloud provider can only
identify the security setting distantly, without knowing whether
it is completely implemented or not. It is dangerous to form trust
procedures at each architectural layer of the cloud. Initially, the
hardware layer must be reliable using hardware reliable plat-
form segment. Furthermore, the virtualization platform needs to
be confidential using secure VM observers. VM migration should
only be permitted if both sender and receiver servers are confi-
dential. There are many issues related to security aspects such
as privacy-preserving computations on outsourced, encrypted
data in the cloud computing environment. Whenever two-party
computation occurs, thus allowing a wide applicability that can
range from private genome processing to cloud computing. In
order to improve the security of the confidentiality information,
there is a need to lower the high communication complexity
between the cloud and the proxy server.

Energy Efficiency: In cloud data centers, energy consumption is one
of the major problems. Some research projects have already
started to investigate advanced energy-aware resource manage-
ment systems to build a strong foundation of prior works in
cloud computing. The virtual machines communicate with one
another in a network of different topologies. If the allocation of
resources is not done in an optimized way, then many migra-
tions of processes will occur. Data transfer would be increased
because CPUs are logically hosted on distant physical servers.
In this case, the communication could become a bottle-neck
as it involves switches, access points, and routers that also
consume more power. So it will also give results in form of
delaying packets because packets requisite to travel across the
network. To eliminate the data transfer delays, costs and reduce
power consumption, setting an appropriate communication pat-
tern among CPUs is important. Therefore, more work is needed
to place CPUs on the same or different cloud to reduce energy
consumption.

It has been assessed that the price of powering and refrigeration
accounts for 53% of the entire operational spending of data
centers. In 2006, data centers in the US consumed more than
1.5% of the total energy produced in that year, and the pro-
portion is estimated to grow 18% yearly. Consequently, cloud
service providers started to look into the area of how can they
decrease energy consumption via considering government rules
and environmental standards. Energy-aware task scheduling and
server consolidation techniques are two good procedures that
help to decrease energy consumption by releasing ideal systems.

Big Data: Cloud computing has not been flourished as a successful
business model that has been widely adopted by the enterprises
to store their big data assets. As structured and unstructured
data is increasing at a very high speed, to handle a large amount
of complex data, cloud computing can provide a solution Data
as a Service (DAAS) in the future. Analysis of big data is a very
complex task so there is a need to design a tool for analyzing
the big data. As it demands many steps such as cleaning, struc-
turing, understanding, choosing proper methods, and analyzing
the results. There are mainly five critical issues related to the
growth of big data in cloud computing such as 1. Bottlenecks
in Data Transfer, 2. Performance Unpredictability, 3. Scalable
Storage, 4. Occurrence of Bugs in Large Distribution Systems
and 5. Quick Scaling On Demand. Everything from the ability to
run analytically at a scale in a virtual environment to ensuring

information processing and analytics authenticity are the issues
that need solutions and have to be fixed. Designing scalable,
elastic, and autonomic multi-tenant database systems is another
important challenge that must also be addressed. In addition,
ensuring the security and privacy of the data outsourced to the
cloud is also an important problem for ensuring the success of
data management systems in the cloud.

Analytics as a Service: Cloud-based data analytics has been growing
rapidly in an effort to reap all the benefits of the clouds. There
are two main research challenges: (1) big data analytics and (2)
fast data analytics. There is a need to provide analytics as a ser-
vice by reaping the advantages of cloud computing. Streamline
analytics is an on-demand, cloud-based, analytics and reporting
service, which transforms data into easy-to-use, actionable dash-
boards, benchmarks, and metrics-driven analytics. Traditionally,
hospital reports and analytics were generated on a one-off ba-
sis, often requiring resource-heavy and inefficient processes.
Frequently limited to selected departments and personnel, the
data was often out of date and difficult to interpret and use.
Streamline analytics techniques are required for quick response.
It requires a secure, integrated framework for aggregating fi-
nancial, operational, and clinical data from disparate systems.
There is a need to investigate and develop technology to provide
Analytics-as-a-Service (AaaS). Several challenges are involved
in order to build a platform to provide AaaS, which include
SLA definitions, QoS monitoring techniques, pricing, analysis
and management of unstructured data, and business models.
Analytics-as-a-Service issues need to be addressed through three
main categories: descriptive, predictive, and prescriptive. There
is no information in streamline analytics.

Other Issues: Some of the current challenges are suggested as follows:
(i) Real-Time Location Intelligence and Recommendation En-
gines; (ii) Cloud Computing and Service-Oriented Thinking; (iii)
Component-based Service Orientation Fosters in Cloud Com-
puting for Reusability, Substitutability, Extensibility, Scalabil-
ity, Customizability, Reliability, Low Cost of Ownership and
Economy of Scale.

6. Conclusions

In this paper, we have presented the basic concept of cloud schedul-
ing, their types, and the need of scheduling in the cloud computing
environment. We surveyed scheduling problems along with their so-
lutions in the cloud computing. After analyzing scheduling problems,
it can be concluded that cloud scheduling problem is more complex
in comparison to other distributed platforms such as grid computing
and cluster computing, etc. It also reveals that the hyper-heuristic
methods are more appropriate to solving the scheduling problem in
the cloud environment. The detailed study of heuristic and meta-
heuristic methods is also done along with their importance for the
design of efficient scheduling algorithms. This paper gives a clear image
for choosing the best heuristic method for addressing cloud resource
scheduling problems. Open issues and challenges are also discussed in
detail. This will help researchers to frame the research problems in the
field of cloud resource management systems.

CRediT authorship contribution statement

Rajni Aron: Conceptualization, Methodology, Taxonomy prepara-
tion, Writing – original draft. Ajith Abraham: Visualization, Writing –
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

21



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

Data availability

No data was used for the research described in the article.

Acknowledgments

This work was supported by the Analytical Center for Government
of the Russian Federation under Grant 70-2021-00143 dd. 01.11.2021
and Grant IGK000000D730321P5Q0002.

References

Abraham, A., Buyya, R., Nath, B., 2000. Nature’s heuristics for scheduling jobs on
computational grids. In: The 8th IEEE International Conference on Advanced
Computing and Communications. ADCOM 2000, pp. 45–52.

Abrishami, S., Naghibzadeh, M., Epema, D.H., 2013. Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds. Future Gener. Comput.
Syst. 29 (1), 158–169.

Adhikari, M., Amgoth, T., Srirama, S.N., 2020. Multi-objective scheduling strategy for
scientific workflows in cloud environment: A firefly-based approach. Appl. Soft
Comput. 106411.

Afoulki, Z., Bousquet, A., Rouzaud-Cornabas, J., 2011. A security-aware scheduler for
virtual machines on iaas clouds. Report 2011.

Akbar, M., Irohara, T., 2020. Metaheuristics for the multi-task simultaneous supervision
dual resource-constrained scheduling problem. Eng. Appl. Artif. Intell. 96, 104004.

Al-khateeb, A., Abdullah, R., et al., 2009. Job type approach for deciding job scheduling
in grid computing systems. J. Comput. Sci. 5 (10), 745–750.

Alamer, A., Basudan, S., 2020. An efficient truthfulness privacy-preserving tendering
framework for vehicular fog computing. Eng. Appl. Artif. Intell. 91, 103583.

Amiri, M., Mohammad-Khanli, L., 2017. Survey on prediction models of applications
for resources provisioning in cloud. J. Netw. Comput. Appl. 82, 93–113.

Andrade, N., Cirne, W., Brasileiro, F., Roisenberg, P., 2003. OurGrid: An approach
to easily assemble grids with equitable resource sharing. In: Workshop on Job
Scheduling Strategies for Parallel Processing. Springer, pp. 61–86.

Anon, 2014. Microsoft Azure. URL https://azure.microsoft.com/en-in/services/
scheduler/.

Anon, 2015. Amazon EC2. URL https://aws.amazon.com/ec2/.
Anon, 2016a. Rackspace. URL https://www.rackspace.com/en-in/why-rackspace.
Anon, 2016b. HP cloud. URL https://docs.hpcloud.com/hos-4.x/helion/operations/

compute/creating_aggregates.htm.
Anon, 2016c. Cloud sigma. URL https://www.cloudsigma.com/features/.
Anon, 2016d. Softlayer. URL http://www.softlayer.com/about-softlayer.
Anon, 2016e. GoGrid. URL https://www.datapipe.com/gogrid/.
Anon, 2018a. Kubernates. URL https://github.com/kubernetes/kubernetes.
Anon, 2018b. Mesos. URL http://mesos.apache.org/getting-started/.
Arabnejad, V., Bubendorfer, K., 2015. Cost effective and deadline constrained sci-

entific workflow scheduling for commercial clouds. In: Network Computing and
Applications (NCA), 2015 IEEE 14th International Symposium on. IEEE, pp.
106–113.

Arabnejad, V., Bubendorfer, K., Ng, B., 2016. A budget-aware algorithm for scheduling
scientific workflows in cloud. In: High Performance Computing and Communica-
tions; IEEE 14th International Conference on Smart City; IEEE 2nd International
Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2016 IEEE 18th
International Conference on. IEEE, pp. 1188–1195.

Arabnejad, V., Bubendorfer, K., Ng, B., 2017. Scheduling deadline constrained scientific
workflows on dynamically provisioned cloud resources. Future Gener. Comput. Syst.
75, 348–364.

Ari, I., Muhtaroglu, N., 2013. Design and implementation of a cloud computing service
for finite element analysis. Adv. Eng. Softw. 60, 122–135.

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al., 2010. A view of cloud computing.
Commun. ACM 53 (4), 50–58.

Armstrong, R., Hensgen, D., Kidd, T., 1998. The relative performance of various
mapping algorithms is independent of sizable variances in run-time predictions. In:
Heterogeneous Computing Workshop, 1998.(HCW 98) Proceedings. 1998 Seventh.
IEEE, pp. 79–87.

Arunarani, A., Manjula, D., Sugumaran, V., 2019. Task scheduling techniques in cloud
computing: A literature survey. Future Gener. Comput. Syst. 91, 407–415.

Attiya, I., Abd Elaziz, M., Abualigah, L., Nguyen, T.N., Abd El-Latif, A.A., 2022. An
improved hybrid swarm intelligence for scheduling IoT application tasks in the
cloud. IEEE Trans. Ind. Inf..

Beloglazov, A., Abawajy, J., Buyya, R., 2012. Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing. Future Gener.
Comput. Syst. 28 (5), 755–768.

Beloglazov, A., Buyya, R., 2010. Energy efficient resource management in virtualized
cloud data centers. In: Proceedings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing. IEEE Computer Society, pp.
826–831.

Bessis, N., Sotiriadis, S., Pop, F., Cristea, V., 2013. Using a novel message-exchanging
optimization (MEO) model to reduce energy consumption in distributed systems.
Simul. Model. Pract. Theory 39, 104–120.

Bi, J., Yuan, H., Tan, W., Li, B.H., 2016. TRS: Temporal request scheduling with
bounded delay assurance in a green cloud data center. Inform. Sci. 360, 57–72.

Bi, J., Yuan, H., Tan, W., Zhou, M., Fan, Y., Zhang, J., Li, J., 2017. Application-aware
dynamic fine-grained resource provisioning in a virtualized cloud data center. IEEE
Trans. Autom. Sci. Eng. 14 (2), 1172–1184.

Bi, J., Yuan, H., Tie, M., Tan, W., 2015. SLA-based optimisation of virtualised resource
for multi-tier web applications in cloud data centres. Enterp. Inf. Syst. 9 (7),
743–767.

Bilogrevic, I., Jadliwala, M., Kumar, P., Walia, S.S., Hubaux, J.-P., Aad, I., Niemi, V.,
2011. Meetings through the cloud: Privacy-preserving scheduling on mobile devices.
J. Syst. Softw. 84 (11), 1910–1927.

Biran, O., Corradi, A., Fanelli, M., Foschini, L., Nus, A., Raz, D., Silvera, E., 2012. A
stable network-aware vm placement for cloud systems. In: Cluster, Cloud and Grid
Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on. IEEE, pp.
498–506.

Bosman, P.A., Luong, N.H., Thierens, D., 2016. Expanding from discrete cartesian to
permutation gene-pool optimal mixing evolutionary algorithms. In: Proceedings of
the Genetic and Evolutionary Computation Conference 2016. pp. 637–644.

Bousselmi, K., Brahmi, Z., Gammoudi, M.M., 2016. Qos-aware scheduling of workflows
in cloud computing environments. In: Advanced Information Networking and
Applications (AINA), 2016 IEEE 30th International Conference on. IEEE, pp.
737–745.

Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M., Reuther, A.I.,
Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D., et al., 2001. A comparison of
eleven static heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems. J. Parallel Distrib. Comput. 61 (6), 810–837.

Breitgand, D., Epstein, A., 2012. Improving consolidation of virtual machines with
risk-aware bandwidth oversubscription in compute clouds. In: INFOCOM, 2012
Proceedings IEEE. IEEE, pp. 2861–2865.

Bui, D.-M., Yoon, Y., Huh, E.-N., Jun, S., Lee, S., 2016. Energy efficiency for cloud
computing system based on predictive optimization. J. Parallel Distrib. Comput..

Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R., 2013.
Hyper-heuristics: A survey of the state of the art. J. Oper. Res. Soc. 64 (12),
1695–1724.

Burkimsher, A., Bate, I., Indrusiak, L.S., 2013. A survey of scheduling metrics and
an improved ordering policy for list schedulers operating on workloads with
dependencies and a wide variation in execution times. Future Gener. Comput. Syst.
29 (8), 2009–2025.

Buyya, R., Vecchiola, C., Selvi, S.T., 2013. Mastering Cloud Computing: Foundations
and Applications Programming. Elsevier, Amsterdam,The Netherlands.

Calheiros, R.N., Buyya, R., 2014. Energy-efficient scheduling of urgent bag-of-tasks
applications in clouds through DVFS. In: Cloud Computing Technology and Science
(CloudCom), 2014 IEEE 6th International Conference on. IEEE, pp. 342–349.

Cappanera, P., Trubian, M., 2005. A local-search-based heuristic for the demand-
constrained multidimensional knapsack problem. INFORMS J. Comput. 17 (1),
82–98.

Chakhlevitch, K., Cowling, P., 2008. Hyperheuristics: Recent developments. In: Adaptive
and Multilevel Metaheuristics. Springer, pp. 3–29.

Chejerla, B.K., Madria, S.K., 2017. Qos guaranteeing robust scheduling in attack resilient
cloud integrated cyber physical system. Future Gener. Comput. Syst. 75, 145–157.

Chen, H., Zhu, X., Liu, G., Pedrycz, W., 2018. Uncertainty-aware online scheduling for
real-time workflows in cloud service environment. IEEE Trans. Serv. Comput. 14
(4), 1167–1178.

Chen, H., Zhu, X., Qiu, D., Liu, L., Du, Z., 2017. Scheduling for workflows with security-
sensitive intermediate data by selective tasks duplication in clouds. IEEE Trans.
Parallel Distrib. Syst. 28 (9), 2674–2688.

Cirne, W., Brasileiro, F., Andrade, N., Costa, L.B., Andrade, A., Novaes, R.,
Mowbray, M., 2006. Labs of the world, unite!!! J. Grid Comput. 4 (3), 225–246.

Colorni, A., Dorigo, M., Maniezzo, V., et al., 1991. Distributed optimization by ant
colonies. In: Proceedings of the First European Conference on Artificial Life, Vol.
142. Paris, France, pp. 134–142.

Dabbagh, M., Hamdaoui, B., Guizani, M., Rayes, A., 2015. Energy-efficient resource
allocation and provisioning framework for cloud data centers. IEEE Trans. Netw.
Serv. Manag. 12 (3), 377–391.

Dasgupta, S., Das, S., Abraham, A., Biswas, A., 2009. Adaptive computational chemo-
taxis in bacterial foraging optimization: an analysis. Evol. Comput. IEEE Trans. on
13 (4), 919–941.

Delgado, P., Didona, D., Dinu, F., Zwaenepoel, W., 2016. Job-aware scheduling in eagle:
Divide and stick to your probes. In: Proceedings of the Seventh ACM Symposium
on Cloud Computing. ACM, pp. 497–509.

Devi, K.L., Valli, S., 2021. Multi-objective heuristics algorithm for dynamic resource
scheduling in the cloud computing environment. J. Supercomput. 1–29.

Ding, Y., Qin, X., Liu, L., Wang, T., 2015. Energy efficient scheduling of virtual
machines in cloud with deadline constraint. Future Gener. Comput. Syst. 50, 62–74.

Dong, F., Akl, S.G., 2006. Scheduling Algorithms for Grid Computing State of the Art
and Open Problems. Technical report.

Dorigo, M., Gambardella, L.M., 1997. Ant colonies for the travelling salesman problem.
BioSystems 43 (2), 73–81.

22



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

Dorigo, M., Maniezzo, V., Colorni, A., 1996. Ant system: Optimization by a colony of
cooperating agents. IEEE Trans. Syst. Man Cybern. B 26 (1), 29–41.

Duan, H., Chen, C., Min, G., Wu, Y., 2017. Energy-aware scheduling of virtual
machines in heterogeneous cloud computing systems. Future Gener. Comput. Syst.
74, 142–150.

Duan, Y., Lu, Z., Zhou, Z., Sun, X., Wu, J., 2019. Data privacy protection for edge
computing of smart city in a DIKW architecture. Eng. Appl. Artif. Intell. 81,
323–335.

Erdil, D.C., 2013. Autonomic cloud resource sharing for intercloud federations. Future
Gener. Comput. Syst. 29 (7), 1700–1708.

Foster, I., Zhao, Y., Raicu, I., Lu, S., 2008. Cloud computing and grid computing 360-
degree compared. In: Grid Computing Environments Workshop, 2008. GCE’08, Ieee,
pp. 1–10.

Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D.,
Rabkin, A., Stoica, I., 2009. Above the clouds: A berkeley view of cloud computing.
Dept. Electrical Eng. and Comput. Sci. Univ. Calif. Berkeley, Rep. UCB/EECS 28
(13), 2009.

Freund, R.F., Gherrity, M., Ambrosius, S., Campbell, M., Halderman, M., Hensgen, D.,
Keith, E., Kidd, T., Kussow, M., Lima, J.D., et al., 1998. Scheduling resources in
multi-user, heterogeneous, computing environments with SmartNet. In: Heteroge-
neous Computing Workshop, 1998.(HCW 98) Proceedings. 1998 Seventh. IEEE, pp.
184–199.

Frîncu, M.E., 2014. Scheduling highly available applications on cloud environments.
Future Gener. Comput. Syst. 32, 138–153.

Fu, Y., Hou, Y., Wang, Z., Wu, X., Gao, K., Wang, L., 2021. Distributed scheduling
problems in intelligent manufacturing systems. Tsinghua Sci. Technol. 26 (5),
625–645.

Gai, K., Qiu, M., Zhao, H., Tao, L., Zong, Z., 2016. Dynamic energy-aware cloudlet-
based mobile cloud computing model for green computing. J. Netw. Comput. Appl.
59, 46–54.

Garg, S.K., Yeo, C.S., Anandasivam, A., Buyya, R., 2011. Environment-conscious
scheduling of HPC applications on distributed cloud-oriented data centers. J.
Parallel Distrib. Comput. 71 (6), 732–749.

G°sior, J., Seredy´ski, F., 2016. Metaheuristic approaches to multiobjective job schedul-
ing in cloud computing systems. In: Cloud Computing Technology and Science
(CloudCom), 2016 IEEE International Conference on. IEEE, pp. 222–229.

Geelan, J., et al., 2009. Twenty one experts define cloud computing. Cloud Comput. J.
4, 1–5.

Gelatt, C., Vecchi, M., et al., 1983. Optimization by simulated annealing. Science 220
(4598), 671–680.

Ghahramani, M.H., Zhou, M., Hon, C.T., 2017. Toward cloud computing QoS architec-
ture: Analysis of cloud systems and cloud services. IEEE/CAA J. Autom. Sin. 4 (1),
6–18.

Ghanbari, S., Othman, M., 2012. A priority based job scheduling algorithm in cloud
computing. Procedia Eng. 50, 778–785.

Ghit, B., Yigitbasi, N., Iosup, A., Epema, D., 2014. Balanced resource allocations
across multiple dynamic MapReduce clusters. In: ACM SIGMETRICS Performance
Evaluation Review, Vol. 42, no. 1. ACM, pp. 329–341.

Glover, F., 1989. Tabu search-Part I. ORSA J. Comput. 1 (3), 190–206.
Goldman, B.W., Punch, W.F., 2014. Parameter-less population pyramid. In: Proceedings

of the 2014 Annual Conference on Genetic and Evolutionary Computation. pp.
785–792.

Goyal, A., Dadizadeh, S., 2009. A Survey on Cloud Computing. University of British
Columbia Technical Report for CS, 508, pp. 55–58.

Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., Akella, A., 2015. Multi-resource
packing for cluster schedulers. ACM SIGCOMM Comput. Commun. Rev. 44 (4),
455–466.

Gutierrez-Garcia, J.O., Sim, K.M., 2013. A family of heuristics for agent-based elastic
cloud bag-of-tasks concurrent scheduling. Future Gener. Comput. Syst. 29 (7),
1682–1699.

Hart, W.E., Krasnogor, N., Smith, J.E., 2004. Recent Advances in Memetic Algorithms,
Vol. 166. Springer Science & Business Media.

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D., Katz, R.H.,
Shenker, S., Stoica, I., 2011. Mesos: A platform for fine-grained resource sharing
in the data center. In: NSDI, Vol. 11, no. 2011. pp. 22–22.

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. U
Michigan Press.

Houssein, E.H., Gad, A.G., Wazery, Y.M., Suganthan, P.N., 2021. Task scheduling in
cloud computing based on meta-heuristics: Review, taxonomy, open challenges,
and future trends. Swarm Evol. Comput. 100841.

Hsu, W.H., 2004. Genetic Algorithms. Tech. Rep. 66506–2302, Department of Comput-
ing and Information Sciences, Kansas State University, 234 Nichols Hall, Manhattan,
KS, USA.

Hsu, S.-H., Yu, T.-L., 2015. Optimization by pairwise linkage detection, incremental
linkage set, and restricted/back mixing: DSMGA-II. In: Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation. pp. 519–526.

Hu, J., Gu, J., Sun, G., Zhao, T., 2010. A scheduling strategy on load balancing of virtual
machine resources in cloud computing environment. In: Parallel Architectures,
Algorithms and Programming (PAAP), 2010 Third International Symposium on.
IEEE, pp. 89–96.

Hu, Z., Li, D., 2021. Improved heuristic job scheduling method to enhance throughput
for big data analytics. Tsinghua Sci. Technol. 27 (2), 344–357.

Huang, Y., Bessis, N., Norrington, P., Kuonen, P., Hirsbrunner, B., 2013. Exploring
decentralized dynamic scheduling for grids and clouds using the community-aware
scheduling algorithm. Future Gener. Comput. Syst. 29 (1), 402–415.

Irwin, D., Shenoy, P., Cecchet, E., Zink, M., 2010. Resource management in data-
intensive clouds: opportunities and challenges. In: Local and Metropolitan Area
Networks (LANMAN), 2010 17th IEEE Workshop on. IEEE, pp. 1–6.

Jennings, B., Stadler, R., 2015. Resource management in clouds: Survey and research
challenges. J. Netw. Syst. Manage. 23 (3), 567–619.

Jing, W., Liu, Y., Shao, H., 2015. Reliability-aware DAG scheduling with
primary-backup in cloud computing. Int. J. Comput. Appl. Technol. 52 (1), 86–93.

Joseph, J., 2009. Cloud Computing-Patterns for high availability, scalability, and
computing power with windows azure. MSDN Mag. 60.

Judy, M., Ramadoss, B., 2012. An enhanced solution to the protein folding problem
using a hybrid genetic algorithm with G-bit improvement strategy. Int. J. Model.
Optim. 2 (3), 356.

Kashyap, R., Vidyarthi, D.P., 2014. Security-aware real-time scheduling for hypervisors.
In: Computational Science and Engineering (CSE), 2014 IEEE 17th International
Conference on. IEEE, pp. 1520–1527.

Keller, G., Tighe, M., Lutfiyya, H., Bauer, M., 2014. A hierarchical, topology-aware
approach to dynamic data centre management. In: Network Operations and
Management Symposium. NOMS, 2014 IEEE, IEEE, pp. 1–7.

Kennedy, J., 2011. Particle swarm optimization. In: Encyclopedia of Machine Learning.
Springer, pp. 760–766.

Khojasteh Toussi, G., Naghibzadeh, M., 2021. A divide and conquer approach to
deadline constrained cost-optimization workflow scheduling for the cloud. Cluster
Comput. 24 (3), 1711–1733.

Kim, N., Cho, J., Seo, E., 2014. Energy-credit scheduler: An energy-aware virtual
machine scheduler for cloud systems. Future Gener. Comput. Syst. 32, 128–137.

Kokilavani, T., Amalarethinam, D.D.G., 2010. Applying non-traditional optimization
techniques to task scheduling in grid computing–An overview. Int. J. Res. Rev.
Comput. Sci. (IJRRCS) 1, 33–38.

Komarnicki, M.M., Przewozniczek, M.W., Durda, T.M., 2020. Comparative mixing for
DSMGA-II. In: Proceedings of the 2020 Genetic and Evolutionary Computation
Conference. pp. 708–716.

Kondikoppa, P., Chiu, C.-H., Cui, C., Xue, L., Park, S.-J., 2012. Network-aware schedul-
ing of mapreduce framework ondistributed clusters over high speed networks. In:
Proceedings of the 2012 Workshop on Cloud Services, Federation, and the 8th Open
Cirrus Summit. ACM, pp. 39–44.

Konjaang, J.K., Xu, L., 2021. Meta-heuristic approaches for effective scheduling in
infrastructure as a service cloud: A systematic review. J. Netw. Syst. Manage. 29
(2), 1–57.

Kousiouris, G., Cucinotta, T., Varvarigou, T., 2011. The effects of scheduling, work-
load type and consolidation scenarios on virtual machine performance and their
prediction through optimized artificial neural networks. J. Syst. Softw. 84 (8),
1270–1291.

Kumar, M., Sharma, S.C., Goel, A., Singh, S.P., 2019. A comprehensive survey for
scheduling techniques in cloud computing. J. Netw. Comput. Appl. 143, 1–33.

Latiff, M.S.A., Madni, S.H.H., Abdullahi, M., et al., 2016. Fault tolerance aware
scheduling technique for cloud computing environment using dynamic clustering
algorithm. Neural Comput. Appl. 1–15.

LD, D.B., Krishna, P.V., 2013. Honey bee behavior inspired load balancing of tasks in
cloud computing environments. Appl. Soft Comput. 13 (5), 2292–2303.

Lee, G., Katz, R.H., 2011. Heterogeneity-aware resource allocation and scheduling in
the cloud. In: HotCloud.

Lee, Y.C., Wang, C., Zomaya, A.Y., Zhou, B.B., 2012. Profit-driven scheduling for cloud
services with data access awareness. J. Parallel Distrib. Comput. 72 (4), 591–602.

Li, J., Qiu, M., Ming, Z., Quan, G., Qin, X., Gu, Z., 2012. Online optimization for
scheduling preemptable tasks on IaaS cloud systems. J. Parallel Distrib. Comput.
72 (5), 666–677.

Li, L., Shao, W., Zhou, X., 2021. A flexible scheduling algorithm for the 5th-generation
networks. Intell. Converged Netw. 2 (2), 101–107.

Li, W., Tordsson, J., Elmroth, E., 2011. Modeling for dynamic cloud scheduling
via migration of virtual machines. In: Cloud Computing Technology and Science
(CloudCom), 2011 IEEE Third International Conference on. IEEE, pp. 163–171.

Li, H., Zhu, H., Ren, G., Wang, H., Zhang, H., Chen, L., 2016. Energy-aware scheduling
of workflow in cloud center with deadline constraint. In: Computational Intelligence
and Security (CIS), 2016 12th International Conference on. IEEE, pp. 415–418.

Liu, C., Zhang, X., Yang, C., Chen, J., 2013. CCBKE session key negotiation for fast
and secure scheduling of scientific applications in cloud computing. Future Gener.
Comput. Syst. 29 (5), 1300–1308.

Lucas-Simarro, J.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M., 2013.
Scheduling strategies for optimal service deployment across multiple clouds. Future
Gener. Comput. Syst. 29 (6), 1431–1441.

Lucrezia, F., Marchetto, G., Risso, F., Vercellone, V., 2015. Introducing network-aware
scheduling capabilities in openstack. In: Network Softwarization (NetSoft), 2015
1st IEEE Conference on. IEEE, pp. 1–5.

Ma, K., Liu, X., Li, G., Hu, S., Yang, J., Guan, X., 2019. Resource allocation for smart
grid communication based on a multi-swarm artificial bee colony algorithm with
cooperative learning. Eng. Appl. Artif. Intell. 81, 29–36.

23



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

Malik, S., Huet, F., Caromel, D., 2012. Reliability aware scheduling in cloud computing.
In: Internet Technology and Secured Transactions, 2012 International Conference
for. IEEE, pp. 194–200.

Mangla, N., et al., 2021. Resource scheduling on basis of cost-effectiveness in cloud
computing environment. In: Mobile Radio Communications and 5G Networks.
Springer, pp. 429–442.

Mateescu, G., Gentzsch, W., Ribbens, C.J., 2011. Hybrid computing where HPC meets
grid and cloud computing. Future Gener. Comput. Syst. 27 (5), 440–453.

Mateos, C., Pacini, E., Garino, C.G., 2013. An ACO-inspired algorithm for minimizing
weighted flowtime in cloud-based parameter sweep experiments. Adv. Eng. Softw.
56, 38–50.

Mell, P., Grance, T., 2009. The NIST definition of cloud computing. Natl. Inst. Stand.
Technol. 53 (6), 50.

Merloti, P.E., 2004. Optimization algorithms inspired by biological ants and swarm
behavior. San Diego State University, Citeseer.

Merz, P., Freisleben, B., 2002. Greedy and local search heuristics for unconstrained
binary quadratic programming. J. Heuristics 8 (2), 197–213.

Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y.C., Talbi, E.-G., Zomaya, A.Y., Tuyttens, D.,
2011. A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for
cloud computing systems. J. Parallel Distrib. Comput. 71 (11), 1497–1508.

Nathani, A., Chaudhary, S., Somani, G., 2012. Policy based resource allocation in IaaS
cloud. Future Gener. Comput. Syst. 28 (1), 94–103.

Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I., 2013. Sparrow: distributed, low
latency scheduling. In: Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. ACM, pp. 69–84.

Owusu, F., Pattinson, C., 2012. The current state of understanding of the energy
efficiency of cloud computing. In: Trust, Security and Privacy in Computing and
Communications (TrustCom), 2012 IEEE 11th International Conference on. IEEE,
pp. 1948–1953.

Pan, Z.-X., Wang, L., Chen, J.-F., Wu, Y.-T., 2021. A novel evolutionary algorithm with
adaptation mechanism for fuzzy permutation flow-shop scheduling. In: 2021 IEEE
Congress on Evolutionary Computation. CEC, IEEE, pp. 367–374.

Pandey, S., Wu, L., Guru, S.M., Buyya, R., 2010. A particle swarm optimization-based
heuristic for scheduling workflow applications in cloud computing environments.
In: Advanced Information Networking and Applications (AINA), 2010 24th IEEE
International Conference on. IEEE, pp. 400–407.

Passino, K.M., 2002. Biomimicry of bacterial foraging for distributed optimization and
control. Control Syst. IEEE 22 (3), 52–67.

Priya, V., Kumar, C.S., Kannan, R., 2019. Resource scheduling algorithm with load
balancing for cloud service provisioning. Appl. Soft Comput. 76, 416–424.

Przewozniczek, M.W., Komarnicki, M.M., 2020. Empirical linkage learning. IEEE Trans.
Evol. Comput. 24 (6), 1097–1111.

Quarati, A., Clematis, A., Galizia, A., D Agostino, D., 2013. Hybrid clouds brokering:
Business opportunities, QoS and energy-saving issues. Simul. Model. Pract. Theory
39, 121–134.

Rajni, Chana, I., 2010. Resource provisioning and scheduling in grids: issues, challenges
and future directions. In: Computer and Communication Technology (ICCCT), 2010
International Conference on. IEEE, pp. 306–310.

Rajni, Chana, I., 2013. Bacterial foraging based hyper-heuristic for resource scheduling
in grid computing. Future Gener. Comput. Syst. 29 (3), 751–762.

Rampersaud, S., Grosu, D., 2016. Sharing-aware online virtual machine packing
in heterogeneous resource clouds. IEEE Trans. Parallel Distrib. Syst. 28 (7),
2046–2059.

Ren, X., Ananthanarayanan, G., Wierman, A., Yu, M., 2015. Hopper: Decentralized
speculation-aware cluster scheduling at scale. In: ACM SIGCOMM Computer
Communication Review, Vol. 45, no. 4. ACM, pp. 379–392.

Rittinghouse, J.W., Ransome, J.F., 2009. Cloud Computing: Implementation,
Management, and Security. CRC Press.

Saini, B.S., Hakanen, J., Miettinen, K., 2020. A new paradigm in interactive evolution-
ary multiobjective optimization. In: International Conference on Parallel Problem
Solving from Nature. Springer, pp. 243–256.

Sandhu, A.K., 2021. Big data with cloud computing: Discussions and challenges. Big
Data Min. Anal. 5 (1), 32–40.

Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J., 2013. Omega: Flexible,
scalable schedulers for large compute clusters. In: Proceedings of the 8th ACM
European Conference on Computer Systems. ACM, pp. 351–364.

Sfrent, A., Pop, F., 2015. Asymptotic scheduling for many task computing in big data
platforms. Inform. Sci. 319, 71–91.

Shamsi, J., Khojaye, M.A., Qasmi, M.A., 2013. Data-intensive cloud computing:
Requirements, expectations, challenges, and solutions. J. Grid Comput. 11 (2),
281–310.

Shenai, S., et al., 2012. Survey on scheduling issues in cloud computing. Procedia Eng.
38, 2881–2888.

Shetty, S., Yuchi, X., Song, M., 2016. Security-aware virtual machine placement in
cloud data center. In: Moving Target Defense for Distributed Systems. Springer,
pp. 13–24.

Shukla, A.K., Nath, R., Muhuri, P.K., Lohani, Q.D., 2020. Energy efficient multi-
objective scheduling of tasks with interval type-2 fuzzy timing constraints in an
Industry 4.0 ecosystem. Eng. Appl. Artif. Intell. 87, 103257.

Singh, R.M., Awasthi, L.K., Sikka, G., 2022. Towards metaheuristic scheduling tech-
niques in cloud and fog: An extensive taxonomic review. ACM Comput. Surv. 55
(3), 1–43.

Sirbu, A., Pop, C., ìerb†nescu, C., Pop, F., 2017. Predicting provisioning and booting
times in a metal-as-a-service system. Future Gener. Comput. Syst. 72, 180–192.

Stefan, V., 2001. Meta-heuristics:The state of the art. In: Nareyek, A. (Ed.), Local Search
for Planning and Scheduling. In: LNAI 2148, Springer-Verlag, Berlin Heidelberg, pp.
1–23.

Su, S., Li, J., Huang, Q., Huang, X., Shuang, K., Wang, J., 2013. Cost-efficient task
scheduling for executing large programs in the cloud. Parallel Comput. 39 (4),
177–188.

Sun, G., Liao, D., Zhao, D., Xu, Z., Yu, H., 2015. Live migration for multiple correlated
virtual machines in cloud-based data centers. IEEE Trans. Serv. Comput. 11 (2),
279–291.

Talbi, E.-G., 2002. A taxonomy of hybrid metaheuristics. J. Heuristics 8 (5), 541–564.
Tang, X., Tan, W., 2016. Energy-efficient reliability-aware scheduling algorithm on

heterogeneous systems. Sci. Program. 2016, 14.
Thain, D., Tannenbaum, T., Livny, M., 2005. Distributed computing in practice: The

condor experience. Concurr. Comput.: Pract. Exper. 17 (2–4), 323–356.
Theys, M.D., Braun, T.D., Siegal, H., Maciejewski, A.A., Kwok, Y., 2001. Mapping

tasks onto distributed heterogeneous computing systems using a genetic algorithm
approach. In: Solutions to Parallel and Distributed Computing Problems: Lessons
from Biological Sciences. John Wiley & Sons, New York, NY, pp. 135–178.

Thierens, D., Bosman, P.A., 2013. Hierarchical problem solving with the linkage tree
genetic algorithm. In: Proceedings of the 15th Annual Conference on Genetic and
Evolutionary Computation. pp. 877–884.

Thomas, A., Krishnalal, G., Raj, V.J., 2015. Credit based scheduling algorithm in cloud
computing environment. Procedia Comput. Sci. 46, 913–920.

Tighe, M., Bauer, M., 2014. Integrating cloud application autoscaling with dynamic
vm allocation. In: Network Operations and Management Symposium. NOMS, 2014
IEEE, IEEE, pp. 1–9.

Tighe, M., Keller, G., Bauer, M., Lutfiyya, H., 2013. A distributed approach to
dynamic VM management. In: Network and Service Management (CNSM), 2013
9th International Conference on. IEEE, pp. 166–170.

Torabzadeh, E., Zandieh, M., 2010. Cloud theory-based simulated annealing approach
for scheduling in the two-stage assembly flowshop. Adv. Eng. Softw. 41 (10),
1238–1243.

Tordsson, J., Montero, R.S., Moreno-Vozmediano, R., Llorente, I.M., 2012. Cloud
brokering mechanisms for optimized placement of virtual machines across multiple
providers. Future Gener. Comput. Syst. 28 (2), 358–367.

Tsai, C.-W., Rodrigues, J.J., 2014. Metaheuristic scheduling for cloud: A survey. Syst.
J. IEEE 8 (1), 279–291.

Van den Bossche, R., Vanmechelen, K., Broeckhove, J., 2013. Online cost-efficient
scheduling of deadline-constrained workloads on hybrid clouds. Future Gener.
Comput. Syst. 29 (4), 973–985.

Van Do, T., Rotter, C., 2012. Comparison of scheduling schemes for on-demand IaaS
requests. J. Syst. Softw. 85 (6), 1400–1408.

Vasile, M.-A., Pop, F., Tutueanu, R.-I., Cristea, V., Ko™odziej, J., 2015. Resource-aware
hybrid scheduling algorithm in heterogeneous distributed computing. Future Gener.
Comput. Syst. 51, 61–71.

Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R.,
Graves, T., Lowe, J., Shah, H., Seth, S., et al., 2013. Apache hadoop yarn: Yet
another resource negotiator. In: Proceedings of the 4th Annual Symposium on Cloud
Computing. ACM, p. 5.

Vivekanandan, K., et al., 2011. A study on scheduling in grid environment. In:
International Journal on Computer Science and Engineering. IJCSE, Citeseer.

Wang, W., Zeng, G., Tang, D., Yao, J., 2012. Cloud-DLS: Dynamic trusted scheduling
for cloud computing. Expert Syst. Appl. 39 (3), 2321–2329.

Wu, L., Garg, S.K., Buyya, R., 2012. SLA-based admission control for a software-as-a-
service provider in cloud computing environments. J. Comput. System Sci. 78 (5),
1280–1299.

Xhafa, F., Abraham, A., 2010. Computational models and heuristic methods for grid
scheduling problems. Future Gener. Comput. Syst. 26 (4), 608–621.

Xu, B., Zhao, C., Hu, E., Hu, B., 2011. Job scheduling algorithm based on berger model
in cloud environment. Adv. Eng. Softw. 42 (7), 419–425.

Yildirim, E., Kim, J., Kosar, T., 2013. Modeling throughput sampling size for a cloud-
hosted data scheduling and optimization service. Future Gener. Comput. Syst. 29
(7), 1795–1807.

Yu, R., Xue, G., Zhang, X., Li, D., 2017. Survivable and bandwidth-guaranteed
embedding of virtual clusters in cloud data centers. In: IEEE INFOCOM.

Yuan, H., Bi, J., Tan, W., Li, B.H., 2016. CAWSAC: Cost-aware workload scheduling
and admission control for distributed cloud data centers. IEEE Trans. Autom. Sci.
Eng. 13 (2), 976–985.

Yuan, H., Bi, J., Tan, W., Li, B.H., 2017a. Temporal task scheduling with constrained
service delay for profit maximization in hybrid clouds. IEEE Trans. Autom. Sci.
Eng. 14 (1), 337–348.

Yuan, H., Bi, J., Tan, W., Zhou, M., Li, B.H., Li, J., 2017b. TTSA: An effective scheduling
approach for delay bounded tasks in hybrid clouds. IEEE Trans. Cybern. 47 (11),
3658–3668.

24



R. Aron and A. Abraham Engineering Applications of Artificial Intelligence 116 (2022) 105345

Yuan, H., Bi, J., Zhou, M., Ammari, A.C., 2017c. Time-aware multi-application task
scheduling with guaranteed delay constraints in green data center. IEEE Trans.
Autom. Sci. Eng. 15 (3), 1138–1151.

Yuan, H., Bi, J., Zhou, M., Sedraoui, K., 2018. WARM: Workload-aware multi-
application task scheduling for revenue maximization in SDN-based cloud data
center. IEEE Access 6, 645–657.

Zeng, L., Veeravalli, B., Li, X., 2015. SABA: A security-aware and budget-aware
workflow scheduling strategy in clouds. J. Parallel Distrib. Comput. 75, 141–151.

Zhan, Z.-H., Liu, X.-F., Gong, Y.-J., Zhang, J., Chung, H.S.-H., Li, Y., 2015. Cloud
computing resource scheduling and a survey of its evolutionary approaches. ACM
Comput. Surv. 47 (4), 63.

Zhang, P., Zhou, M., 2018. Dynamic cloud task scheduling based on a two-stage
strategy. IEEE Trans. Autom. Sci. Eng. 15 (2), 772–783.

Zhu, Z., Zhang, G., Li, M., Liu, X., 2015. Evolutionary multi-objective workflow
scheduling in cloud. IEEE Trans. Parallel Distrib. Syst. 27 (5), 1344–1357.

Zhu, W., Zhuang, Y., Zhang, L., 2017. A three-dimensional virtual resource scheduling
method for energy saving in cloud computing. Future Gener. Comput. Syst. 69,
66–74.

Zuo, L., Shu, L., Dong, S., Zhu, C., Hara, T., 2015. A multi-objective optimization
scheduling method based on the ant colony algorithm in cloud computing. IEEE
Access 3, 2687–2699.

25


