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A B S T R A C T

Breast cancer is a leading cause of cancer-related deaths among women. The multi-omic data has revolutionized
the methodology to unravel molecular heterogeneity in breast cancer. As genetic variations captured from Copy
Number Variation (CNV) data are considered the most stable amongst the multi-omic data, it leads to robust
biomarkers. Thus, this paper targets the discovery of a set of CNV biomarkers for dissecting this heterogeneity.
The existing algorithms yield biomarkers, too huge to be interpreted clinically. So, in this paper, we have
proposed XAI-CNVMarker—an explainable AI-based post-hoc biomarker discovery framework to discover a
small set of interpretable biomarkers. We exploit the power of deep learning to build DLmodel—a deep learning
model for breast cancer classification. Subsequently, the trained model is analyzed using different explainable
AI methods to arrive at a set of 44 CNV biomarkers. Using 5-fold cross-validation, we obtained a classification
accuracy of 0.712 (± 0.048) at a 95% confidence interval. Gene set analysis revealed 37 subtype-specific
enriched Reactome and Kegg pathways, 21 druggable genes, and 13 biomarkers linked with the prognostic
outcome. Finally, we validated the efficacy of the identified biomarkers on METABRIC. Thus, the proposed
framework demonstrates the role of explainable AI in discovering clinically reliable biomarkers.
1. Introduction

Breast cancer has emerged as a leading cause of mortality among
women, causing 685 thousand deaths worldwide in 2020 [1]. It is a
highly heterogeneous disease marked by variations at molecular and
cellular levels. Traditionally, it has been labeled as in situ or invasive
or classified based on histological grading, and TNM Staging. Also,
Immunohistochemistry (IHC) markers (Estrogen Receptor (ER), Proges-
terone Receptor (PR), and human epidermal growth factor receptor
2 (Her2)) have been used to label the patients [2] with molecular
subtypes as Basal, Her2, LumA, LumB, and Normal like. Whereas LumA
and LumB subtypes are associated with positive levels of ER and PR re-
ceptors, LumA is characterized by Her2 negative with low Ki67, while,
the LumB subtype is characterized by Her2 with high Ki67. Further, the
Her2 subtype is ER/PR negative and Her2 positive. Basal-like subtype is
characterized by the negative levels of all three receptors, namely, ER,
PR, and Her2 [3–5]. Normal-like subtype, although somewhat similar
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to LumA in terms of IHC markers bears a slightly worse prognosis than
LumA and corresponds to normal breast profiling.

The advent of next-generation sequencing techniques has created
a wider scale of genomic, transcriptomic, and epigenomic data, in the
form of copy number variation, gene expression, and methylation levels
respectively. The exploration of these multi-omic data has revolution-
ized the way molecular mechanisms are unraveled [6–12]. Analysis
of multi-omic data aids in better molecular classification of breast
cancer into Basal, Her2, LumA, LumB, and Normal molecular subtypes.
Towards this end, [13] proposed an intrinsic molecular classification of
breast cancer, based on a set of 50 genes (called PAM50). PAM50 is con-
sidered the gold standard due to significantly better clinical and prog-
nostic outcomes as compared to IHC-based classification [14,15] and is
widely employed in practice for breast cancer classification [16–18].

As the variation in the number of copies of genes/chromosome
segments is known to be associated with several cancers such as lung,
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colorectal, and breast cancer [19–21], the paper investigates copy num-
ber data. Copy number data is available in two forms, namely, Copy
Number Alteration (CNA) and Copy Number Variation (CNV). Whereas
CNA indicates the somatic changes in the structure of chromosomes in
terms of loss or gain of DNA segments that may occur during cancer
progression, CNV relates to the loss or gain in terms of the number
of copies of a particular gene across different patients. The variations
in the copy number aid in prognosis and survival outcome [6,22].
Further, as compared to other omic data, variations in copy number
are more stable [6,21]. A specific form of cancer is marked by ampli-
fication in copies of associated oncogenes and deletion of copies of the
corresponding tumor suppressor genes [23,24].

Although several researchers have used CNV data in unsupervised
settings with the intent to discover new clinically and prognostically
relevant subtypes [25,26], a number of research leverage CNV data
for discovering biomarkers for differentiating amongst the intrinsic
molecular breast cancer subtypes [10,21,27] in supervised settings.
Filter-based methods have been popularly used to identify gene signa-
ture [21,28,29]. Subsequently, based on the identified gene signature,
standard machine learning techniques such as logistic regression, Naive
Bayes, rule-based classification, support vector machine (SVM), and
Random Forest (RF) have been used for the classification of breast
cancer subtypes [21,28,30]. Inspired by the success of deep learning
approaches in various application domains, there has been a surge
in the application of deep learning techniques for the selection of
an optimal set of features and for the classification of breast cancer
subtypes based on the selected features [10,27,31–34]. Indeed, the deep
learning approaches have also been useful for inferring the missing
gene expression data [35].

As mentioned above, the discovery of CNV biomarkers representing
different breast cancer subtypes is an active area of research [10,
21,27,28]. Pan et al. [21] proposed a feature selection approach for
identifying informative CNV genes. They used the Monte Carlo feature
selection method to identify an initial set of genes which was fed
to a two-stage incremental feature selection method to arrive at the
final gene signature, comprising 8715 genes. These biomarkers were
used in the dagging classifier, and ensemble classifier using several
base classifiers to differentiate amongst the IHC-defined breast cancer
subtypes and obtained classification accuracy of 0.675 and 0.647 on
METABRIC and TCGA datasets respectively. Tao et al. [28] deployed
Sequential minimization optimization multiple kernel learning (SMO-
MKL) for labeling IHC-defined breast cancer subtypes for patients of the
TCGA dataset. For identifying features for the classification task, they
used the Benjamini–Hochberg False Discovery Rate (BH-FDR) to adjust
the p-values obtained by applying the Wilcoxon rank-sum test. Finally,
the genes with p-values less than 0.05 were shortlisted. They reported
a mean accuracy of 0.613 obtained using CNV data when performing
binary classification taking two subtypes at a time, however, for the
multi-class classification problem at hand, they reported approximately
0.45 accuracy. Lin et al. [10] proposed DeepMO, a deep learning net-
work based on multi-omic data incorporating mRNA, DNA methylation,
and CNV data. They used a chi-squared test for selecting the top 5000
features for each omic data. The selected feature set was provided as an
input to a deep neural network comprising an encoding subnetwork and
classification subnetwork. They reported mean 5-fold cross-validation
accuracy of 0.525 on the TCGA dataset using CNV data. However, as
mentioned above, because of the limitation of IHC-defined subtypes,
another category of research incorporated widely accepted PAM50 gold
standard-defined subtypes. Cristovao et al. [27] used probe-level copy
number data from the TCGA repository to study heterogeneity defined
by PAM50 breast cancer subtypes. Each sample comprised a vector of
1.3 million values. Pearson correlation coefficient was used to merge
similar nearby regions, assigning the average copy number count to
the merged region. Thus, they were able to reduce the copy number
values to 384 per patient. They experimented with several supervised
2

and semi-supervised techniques and achieved maximum accuracy of
0.706 ± 0.037 using Logistic Regression with L1 regularization (see
Fig. 1).

The conventional (above-mentioned) approaches make consider-
able use of several machine learning and statistical methodologies for
biomarker discovery. Although these approaches succeed to varying
degrees in identifying CNV biomarkers for breast cancer subtypes,
the contribution of the specific biomarkers remains a mystery to the
end user. To ameliorate this issue, we have proposed an explainable
AI-based post-hoc biomarker discovery framework—XAI-CNVMarker
which intends to discover a small set of genes that exhibit variations at
copy number (genomic) level across breast cancer subtypes. To the best
of our knowledge, the suggested XAI-driven deep learning architecture
for biomarker discovery is a unique approach to biomarker discovery.
The framework would not only help with breast cancer subtyping but
it may also be used by medical practitioners to develop treatment
strategies. The framework incorporates the explainable AI methods,
namely, (i) Gradient*Input, (ii) Integrated Gradient, (iii) Epsilon Lay-
erwise Relevance Propagation, and (iv) DeepLIFT to arrive at a set
of potential biomarkers. We first exploit the power of deep learning
to build DLmodel—a deep learning model comprising an autoencoder
for dimensionality reduction and a feed-forward neural network for
breast cancer classification. Next, the above-mentioned explainable AI
methods are used to analyze the DLmodel trained on the TCGA breast
cancer CNV dataset to mark the relevance scores of the genes. Subse-
quently, a set of potential genes marked relevant by all the explainable
AI techniques. This ensures that the most relevant genes are coherent
across different interpretation methods. Further, to ensure the stability
of results, the entire experimentation framework is repeated for ten
random seeds leading to different weight initialization of DLmodel.
Finally, only those potential genes are shortlisted as biomarkers (44)
which are in the top set across 50% of the runs. While several of
these 44 biomarkers are confirmed by other studies [10,21,28], we
also discovered some new biomarkers such as SNOU109, MIR4642,
SRGAP2B, and C1orf192. These genes encode for small nucleolar RNAs
(snoRNAs), microRNAs, and proteins which play critical roles in several
biological processes. These could be further studied to understand
tumor heterogeneity and exploit their potential for discovering new
diagnostic and therapeutic strategies.

In summary, the contributions of the paper are as follows:

1. An explainable AI-based generic framework for the discovery of
copy number biomarkers associated with a clinical condition. Be-
ing comprehensible, the biomarkers so obtained will be worthy
of trust for the end user.

2. Discovery of a novel set of 44 CNV biomarkers. Using these
biomarkers, we achieved a five-fold cross-validation classifica-
tion accuracy of 0.712 (± 0.048) at a 95% confidence interval,
which is comparable to state-of-the-art approaches.

3. Relevance of discovered biomarkers in distinguishing different
breast cancer subtypes determined using SHapley Additive ex-
Planations (SHAP).

4. Gene set analysis revealed:

(a) 37 enriched Reactome and Kegg pathways, such as GRB7
events in ERBB2, Signaling by FGFR1 in disease,
MAPK1/MAPK2 signaling pathway, and PI3K-Akt signal-
ing pathway, known to be closely linked with different
Breast Cancer subtypes.

(b) Presence of 21 druggable genes.
(c) Presence of 13 genes linked with the prognostic outcome.

5. Efficacy of identified CNV biomarkers, established on an inde-
pendent cohort.

The remainder of the paper is organized as follows: in the second
section, we describe the datasets and the proposed framework, in
the third section, we provide the experimental details, results, and a
discussion of the findings. Finally, the last section concludes the paper

with a summarization of the results and the scope of future work.
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Fig. 1. Workflow of the proposed approach.
Fig. 2. DLmodel comprises an autoencoder module and classifier module. The encoder part of the autoencoder produces the compact representation of size 500 which is fed as
input to another feed-forward classifier module.
2. Materials and methods

This section describes the datasets used for experimentation and
provides a detailed description of the XAI-CNVMarker—Explainable
AI-based post-hoc biomarker discovery framework. As part of this
framework, we have developed a DLmodel for breast cancer classifica-
tion and an Explainable AI-based CNV Biomarker Discovery Algorithm
(CBDA) for identifying CNV biomarkers. Fig. 1 presents the workflow
of the proposed approach. The code of the proposed framework can be
accessed via https://github.com/SheetalRajpal/cnv-marker.

2.1. Dataset

The dataset used in this study is collected under TCGA (The Cancer
Genome Atlas) [36] project which provides multi-omic data for sev-
eral cancer types. The data set is accessed from the Xena repository
maintained by the University of California. The proposed work uses
gene-level CNV data. The data values include negative, zero, and posi-
tive values where the negative count indicates the number of deletions
i.e., loss in the number of copies of the gene, and the positive count
signifies the number of insertions (amplifications) i.e. the gain in the
number of copies of genes. Although the Xena repository includes gene-
level CNV data for 24,776 genes involving 1080 patients, the present
study considers only 831 patients for whom PAM50 subtype labels
(Basal: 135, Her2: 67, LumA: 415, LumB: 192, and Normal-like: 22) are
available.

To validate the proposed framework on an independent cohort, we
have used gene-level CNV data provided by METABRIC (Molecular
Taxonomy of Breast Cancer International Consortium). The dataset is
obtained from cBioPortal [37,38]—a multi-omic repository for Cancer
Genomics. The experimentation was performed on CNV gene data for
1689 patients for whom PAM50 subtype labels were available.
3

2.2. DLmodel: CNV-based deep learning model for breast cancer classifica-
tion

In this paper, we have proposed 𝐷𝐿𝑚𝑜𝑑𝑒𝑙 (Fig. 2)—a deep learning
model for breast cancer classification. It comprises two sub-modules.
Since the high dimensional nature of the genome data poses a challenge
for any classifier, in the first module, we compress the CNV data
for 24 776 genes using an autoencoder. An autoencoder comprises
an encoder and a decoder. The encoder network compresses a large
number of input features to a small number of outputs. The outputs
of the encoder network are fed to the decoder network which tries
to reconstruct the original input data. The weights of the autoencoder
network are optimized using the available training data by minimizing
the loss of information as the inputs to the network are compressed
and decompressed. In the proposed network architecture, the encoder
comprises three layers. The first, second, and third layers comprise
5000, 2000, and 500 nodes, respectively. Thus, the autoencoder net-
work maps 24,776 CNV genes to a vector of size 500. The fourth, fifth,
and sixth layers of the network comprising 2000, 5000, and 24,776
nodes, respectively, form the decoder. While the hidden layers employ
the ReLU activation function to handle the vanishing gradient problem,
the output layer makes use of the linear activation function.

The second module of 𝐷𝐿𝑚𝑜𝑑𝑒𝑙 is a classifier modeled as a feed-
forward neural network that takes as input, the output of the encoder
module of the autoencoder (a vector of size 500). The network com-
prises a hidden layer having 200 nodes, followed by an output layer
comprising five nodes representing the five breast cancer subtypes.
The hidden layer and the output layer deploy the ReLU and softmax
activation functions respectively. Batch normalization has been ap-
plied to deal with the internal covariate shift problem, while Dropout
(dropout rate 0.5) has been used to avoid overfitting. Fig. 2 depicts the
architecture of the classifier DLmodel.

https://github.com/SheetalRajpal/cnv-marker
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Algorithm 1: CNV Biomarker Discovery Algorithm (CBDA) for Copy Number Variation Data
Input: DLmodel: Trained Breast Cancer classification Model

X: TCGA breast cancer CNV dataset of size 𝑁 ×𝑀 , where 𝑁 denotes number of patients and 𝑀 denotes
number of genes.

Methods Used:
explainAIMethod(𝐷𝐿𝑚𝑜𝑑𝑒𝑙, 𝑋): For every patient x of dataset X, the function returns relevance score

of each gene in classifying the patient using the trained network DLmodel.
elbowMethod(𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡𝑟𝑖𝑥): For each patient in the given set, function returns top genes with maximum

relevance score computed using elbow method.
topAverageGenes(𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡𝑟𝑖𝑥, 𝑛): For each subtype in the given set, function returns top n genes with

maximum average relevance score.
select(𝑙𝑖𝑠𝑡, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑): Returns those genes from the given list, having threshold as its minimum count of

occurrence.
frequentAcrossMethods(𝑙𝑖𝑠𝑡, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑): Returns those genes from the given list, having threshold as its

minimum count of occurrence.
frequentAcrossSeeds(𝑙𝑖𝑠𝑡, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑): Returns those genes from the given list, having threshold as its

minimumcount of occurrence.
def subtypeSpecificMarkers (DLmodel, X) :

1. for 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 in 𝑃𝐴𝑀50_𝑆𝑢𝑏𝑡𝑦𝑝𝑒𝑠 do

(a) 𝑔𝑒𝑛𝑒𝑆𝑒𝑡𝑉 𝑒𝑐𝑡𝑜𝑟[𝑠𝑢𝑏𝑡𝑦𝑝𝑒] ← {}

2. for 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 in 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡*𝑖𝑛𝑝𝑢𝑡, 𝐸𝑝𝑠𝑖𝑙𝑜𝑛𝐿𝑅𝑃 , 𝐷𝑒𝑒𝑝𝐿𝐼𝐹𝑇 , 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡, do

(a) 𝑠𝑐𝑜𝑟𝑒𝑠 ← 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑(𝐷𝐿𝑚𝑜𝑑𝑒𝑙, 𝑋)
(b) for 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 in 𝑃𝐴𝑀50_𝑆𝑢𝑏𝑡𝑦𝑝𝑒𝑠 do

i. 𝑡𝑜𝑝𝐺𝑒𝑛𝑒𝑠 ← 𝑒𝑙𝑏𝑜𝑤𝑀𝑒𝑡ℎ𝑜𝑑(𝑠𝑐𝑜𝑟𝑒𝑠[𝑋[𝑠𝑢𝑏𝑡𝑦𝑝𝑒]])
ii. 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑙𝑒𝑛(𝑋[𝑠𝑢𝑏𝑡𝑦𝑝𝑒])∕5

iii. 𝑔𝑒𝑛𝑒𝑆𝑒𝑡[𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑, 𝑠𝑢𝑏𝑡𝑦𝑝𝑒] ← 𝑠𝑒𝑙𝑒𝑐𝑡(𝑡𝑜𝑝𝐺𝑒𝑛𝑒𝑠, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) ∪ 𝑡𝑜𝑝𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐺𝑒𝑛𝑒𝑠(𝑠𝑐𝑜𝑟𝑒𝑠[𝑋[𝑠𝑢𝑏𝑡𝑦𝑝𝑒]], 𝑛)
iv. 𝑔𝑒𝑛𝑒𝑆𝑒𝑡𝑉 𝑒𝑐𝑡𝑜𝑟[𝑠𝑢𝑏𝑡𝑦𝑝𝑒] ← 𝑔𝑒𝑛𝑒𝑆𝑒𝑡𝑉 𝑒𝑐𝑡𝑜𝑟[𝑠𝑢𝑏𝑡𝑦𝑝𝑒] ∪ 𝑔𝑒𝑛𝑒𝑆𝑒𝑡[𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑, 𝑠𝑢𝑏𝑡𝑦𝑝𝑒]

3. for 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 in 𝑃𝐴𝑀50_𝑆𝑢𝑏𝑡𝑦𝑝𝑒𝑠 do

(a) 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑆𝑒𝑡[𝑠𝑢𝑏𝑡𝑦𝑝𝑒] ← 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐴𝑐𝑟𝑜𝑠𝑠𝑀𝑒𝑡ℎ𝑜𝑑𝑠(𝑔𝑒𝑛𝑒𝑆𝑒𝑡𝑉 𝑒𝑐𝑡𝑜𝑟[𝑠𝑢𝑏𝑡𝑦𝑝𝑒], 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

4. Return [potentialSet[subtype1], potentialSet[subtype2], potentialSet[subtype3], potentialSet[subtype4], potentialSet[subtype5]]

def biomarkerDiscovery( ) :

1. 𝑆ℎ𝑜𝑟𝑡𝑙𝑖𝑠𝑡𝑒𝑑𝐺𝑒𝑛𝑒𝑠 ← {}
2. for 𝑠𝑒𝑒𝑑 in 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡_𝑘_𝑆𝑒𝑒𝑑𝑠 do

(a) 𝑚𝑜𝑑𝑒𝑙 ← 𝐷𝐿𝑚𝑜𝑑𝑒𝑙(𝑠𝑒𝑒𝑑,𝑋)
(b) 𝑆ℎ𝑜𝑟𝑡𝑙𝑖𝑠𝑡𝑒𝑑𝐺𝑒𝑛𝑒𝑠[𝐴𝑙𝑙𝑠𝑢𝑏𝑡𝑦𝑝𝑒𝑠] ← 𝑆ℎ𝑜𝑟𝑡𝑙𝑖𝑠𝑡𝑒𝑑𝐺𝑒𝑛𝑒𝑠[𝐴𝑙𝑙𝑠𝑢𝑏𝑡𝑦𝑝𝑒𝑠] ∪ 𝑠𝑢𝑏𝑡𝑦𝑝𝑒𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑀𝑎𝑟𝑘𝑒𝑟𝑠(𝑚𝑜𝑑𝑒𝑙)

3. for 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 in 𝑃𝐴𝑀50𝑆𝑢𝑏𝑡𝑦𝑝𝑒𝑠 do

(a) 𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟𝑠[𝑠𝑢𝑏𝑡𝑦𝑝𝑒] ← 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐴𝑐𝑟𝑜𝑠𝑠𝑆𝑒𝑒𝑑𝑠(𝑆ℎ𝑜𝑟𝑡𝑙𝑖𝑠𝑡𝑒𝑑𝐺𝑒𝑛𝑒𝑠[𝑠𝑢𝑏𝑡𝑦𝑝𝑒], 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

4. Return 𝐵𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟𝑠
2.3. CBDA: CNV biomarker discovery algorithm: an explainable AI ap-
proach

In this section, we have proposed a CNV Biomarker Discovery Algo-
rithm (CBDA) that uses an explainable AI modeling approach to identify
CNV biomarkers for breast cancer subtype classification. Explainable
AI intends to uncover the contribution of input features by analyzing
the behavior of deployed computational models. Thus, it helps in
building the trust of clinicians in the methodology and the discovered
biomarkers. The details of the approach appear in Algorithm 1. In this
work, we use four explainable AI methods, namely, Gradient*input,
Integrated Gradient, Epsilon Layerwise Relevance Propagation, and
DeepLIFT (description mentioned in appendix) to discover a small set
of CNV biomarkers.

The execution of the CBDA algorithm begins by invoking the func-
tion 𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦. First, an empty set of 𝑆ℎ𝑜𝑟𝑡𝑙𝑖𝑠𝑡𝑒𝑑𝐺𝑒𝑛𝑒𝑠 is cre-
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ated (step 1). In step 2, it builds 𝑘 (= 10) DLmodel (one for each seed)
for breast cancer subtype classification using CNV data (step 2a). Each
of the models is analyzed using function 𝑠𝑢𝑏𝑡𝑦𝑝𝑒𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑀𝑎𝑟𝑘𝑒𝑟𝑠 and
the genes contributing towards the model’s prediction are shortlisted
(step 2b). For patients of each subtype, the function
𝑠𝑢𝑏𝑡𝑦𝑝𝑒𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑀𝑎𝑟𝑘𝑒𝑟𝑠 selects the most differentiating genes
(𝑔𝑒𝑛𝑒𝑆𝑒𝑡𝑉 𝑒𝑐𝑡𝑜𝑟) using four explainable AI methods. The function
𝑠𝑢𝑏𝑡𝑦𝑝𝑒𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑀𝑎𝑟𝑘𝑒𝑟𝑠 begins with an empty vector of a set of genes
𝑔𝑒𝑛𝑒𝑆𝑒𝑡𝑉 𝑒𝑐𝑡𝑜𝑟, each component of which is associated with a subtype
(step 1a). 𝑔𝑒𝑛𝑒𝑆𝑒𝑡𝑉 𝑒𝑐𝑡𝑜𝑟 is updated incrementally in step 2b(iv) by
adding genes relevant to each specific subtype for all the explainable
AI methods. 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝐴𝐼𝑀𝑒𝑡ℎ𝑜𝑑 method is used to compute the 𝑠𝑐𝑜𝑟𝑒𝑠
(relevance) of various genes by analyzing the 𝐷𝐿𝑚𝑜𝑑𝑒𝑙 using the
entire dataset 𝑋 (step 2a). Next, given a 𝑠𝑢𝑏𝑡𝑦𝑝𝑒, we pick the 𝑡𝑜𝑝𝐺𝑒𝑛𝑒𝑠
based on their relevance scores using 𝑒𝑙𝑏𝑜𝑤𝑀𝑒𝑡ℎ𝑜𝑑 (step 2b(i)). For
each subtype, we finally select a set of genes (𝑔𝑒𝑛𝑒𝑆𝑒𝑡𝑉 𝑒𝑐𝑡𝑜𝑟) that are
included in the set of 𝑡𝑜𝑝𝐺𝑒𝑛𝑒𝑠 for a fraction (threshold of 20%) of

patients of this subtype (steps 2b(ii) and 2b(iii)). Moreover, we also
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include those genes in the 𝑔𝑒𝑛𝑒𝑆𝑒𝑡𝑉 𝑒𝑐𝑡𝑜𝑟 with the maximum average
relevance score for the subtype in consideration.

Finally, from the subtype-specific genes (𝑔𝑒𝑛𝑒𝑆𝑒𝑡𝑉 𝑒𝑐𝑡𝑜𝑟),
those genes are shortlisted as potential biomarkers which are marked
as relevant by all the four explainable AI methods (step 3a). These
subtype-specific copy number biomarkers are returned to function
𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 after the interpretation of every trained model
initialized using different seeds (step 4). In the 𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦
function, finally, only those genes are selected as biomarkers for each of
the subtypes which are identified as most contributing to the predicted
class for at least 50% of the seeds (step 3a).

3. Experimental results and discussion

In this section, we present details of experiments and results. We
begin with a description of data preprocessing and hyperparameter tun-
ing. Next, we discuss the discovery of CNV biomarker genes using the
proposed framework XAI-CNVMarker and their effectiveness in breast
cancer subtype classification. Further, we evaluate the trustworthiness
of the discovered biomarkers in terms of their biological relevance.
In this regard, we report the results of Reactome pathways enriched,
potentially druggable genes, and prognostic analysis of the identified
CNV biomarkers. Finally, we report the results of validation on an
independent cohort.

3.1. Experimental details

All experiments have been performed in Python 3.7 in the Google
Colaboratory using a runtime environment for NVIDIA Tesla K80 GPU.
For data pre-processing, model construction, and visualization, Python
libraries namely, Pandas, Numpy, Imblearn, Keras, Matplotlib, Scikit-
Learn, and Seaborn have been used. Methods of the DeepExplain tool
and SHAP libraries have been applied for the purpose of explainability.

3.1.1. Data pre-processing
For 831 patients under study, We mapped PAM50 subtypes, namely,

Basal, Her2, LumA, LumB, and Normal to numerical values of 0, 1,
2, 3, and 4. Further, each subtype was transformed into the corre-
sponding one-hot encoding vector. For evaluating the performance of
the classifier, 5-fold stratified cross-validation is used with an equal
fraction of samples of each class in each fold. The classification process
is repeated five times, retaining one of the folds as the test data and
the combined data in the remaining folds as the training data. Further,
1∕10𝑡ℎ of the 80% of the data used for training is used as a validation
set for steering model construction. In view of the skewed distribution
of samples (see Fig. 3), we applied a Synthetic Minority Oversampling
Technique (SMOTE) filter [39] on the training data to avoid the risk of
the trained model is biased towards the majority class.

3.1.2. Hyperparameter tuning of DLmodel
As mentioned in Section 2, hidden layers of the DLmodel employ the

ReLU activation function to overcome the vanishing gradient problem.
The first sub-module of DLmodel comprising autoencoder uses the
mean squared loss function and Adam optimizer with a learning rate
of 0.0002. We used a batch size of 80 during training. To prevent the
network from overfitting, early stopping criteria (decrease in validation
loss (𝛿) = 0.001, patience level = 100) was used. We also experimented
with shallower architectures of autoencoder, however, the resulting
classifiers did not work well. We observed that the model stopped
learning after a few iterations. In the feed-forward classifier network
of the second sub-module of DLmodel, categorical cross entropy loss
function and Adam optimizer (learning rate = 0.0002) were used. We
have trained the model for 1000 epochs, using a batch size of 64.
Further, during training, we used checkpoints to save the weights of
the network yielding the maximum validation accuracy.
5

Fig. 3. Class distribution of samples.

3.1.3. Neural network classifier results based on 24,776 input genes
Two sub-networks of DLmodel are trained separately. The encoded

representation of CNV data obtained from the autoencoder is passed
to the second sub-network that classifies breast cancer patients into
five PAM50-defined subtypes. The trained model is used for evalu-
ating the performance on the test set using 5-fold cross-validation.
Using the entire set of 24,776 genes, we obtained classification accu-
racy of 0.683 ± 0.05 at 95% confidence interval using 5-fold cross-
validation. Thus, we conclude that the proposed framework is quite
stable. However, it uses the entire set of genes.

3.2. Using explainable AI for selection of biomarkers and their classification
performance

We have applied the CNV Biomarker Discovery Algorithm (CBDA)
algorithm of the proposed framework XAI-CNVMarker described in Sec-
tion 2.3 for discovering the CNV biomarkers for breast cancer subtypes.
In CNV Biomarker Discovery Algorithm (CBDA), we initially experi-
mented with several model-specific explainable AI methods, namely,
Gradient, Guided Backpropagation, Smooth Gradient, Gradient*input,
Integrated Gradient, Epsilon Layerwise Relevance Propagation, and
DeepLIFT, to examine the trained DLmodel. The candidate gene set
discovered by each of the methods was evaluated independently to as-
sess their efficacy in distinguishing different breast cancer subtypes. We
found that the methods, namely, Gradient, Guided Backpropagation,
and Smooth Gradient yielded gene sets leading to lower accuracy in
the range (63, 66). Moreover, the gene set identified as relevant by
these methods shared very little overlap with each other or with the
other methods used. In contrast, Gradient * input, Integrated Gradient,
Epsilon Layerwise Relevance Propagation, and DeepLIFT, yielded gene
sets leading to higher accuracy (> 67). To ensure the trustworthiness
of the identified biomarkers, in CBDA, we selected only those genes in
the final set of biomarkers that were marked relevant by each of the
aforementioned four methods.

As discussed earlier, we analyzed the 𝐷𝐿𝑚𝑜𝑑𝑒𝑙 using different ex-
plainable AI methods to arrive at a set of 44 biomarkers for breast can-
cer classification. These biomarkers include ANKRD11, ANO1, ATAD2,
C1orf189, CASC8, CCND1, CDK12, CTSF, DDR2, DDX19A, ERBB2,
ERLIN2, FADD, FAM91A1, FGF19, FGF4, FGFR1, GADD45A, GPR124,
GRB7, IKZF3, ISG20L2, KRT6C, LCAT, LMOD1, MIEN1, MIR4642,
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Fig. 4. Classification performance of CatBoost classifier using 5 fold cross-validation for TCGA breast cancer CNV data.
MIR4728, ORAOV1, OXR1, PGAP3, PNMT, POU5F1B, PPFIA1,
PPP1R1B, PSMB4, SRGAP2B, STARD3, TCAP, TPCN2, TXNIP, VSTM2B,
ZNF536, and snoU109.

To estimate the efficacy of the set of 44 CNV biomarkers discovered
by the proposed framework for breast cancer classification, we experi-
mented with different classifiers. CatBoost classifier, trained using these
genes achieved the best classification accuracy of 0.712 ± 0.048 at
95% confidence interval using 5-fold cross-validation. The details of the
performance of the CatBoost classifier appear in Fig. 4. Diagonal entries
in the confusion matrix (see Fig. 4(a)) indicate the number of samples
of each class that have been correctly classified. While the model is able
to predict most of the Basal (84%) and LumA (78%) samples correctly,
it yields moderate performance on LumB (56%), Her2 (57%), and
Normal-like breast cancer (45%) subtypes with several samples misclas-
sified as LumA. For the Her2 subtype, the classifier is able to predict
67% of the samples correctly. The heatmap in Fig. 4(c) summarizes the
classification performance in terms of precision, recall, and F1-score for
five breast cancer subtypes. The model yields precision, recall, and F1-
score of approx 0.80 for each of Basal and LumA. However, precision,
recall, and F1-score values for Her2 and LumB were in the range [0.54,
0.57]. The model witnessed the least performance for the Normal-
like subtype with precision, recall, and F1-score being 0.33, 0.45,
and 0.38 respectively. However, such performance is only expected,
considering a small number (22) of instances of Normal-like class.
To visualize variation in performance amongst the folds during 5-fold
cross-validation, box plots for accuracy, precision, recall, and F1-score
the values are shown in Fig. 4(d). Note that the classifier yields the
least variation for Luminal A, Luminal B, and Basal subtypes without
6

any outlier highlighting stable results for the subtypes as compared to
Luminal A and Normal-like subtype with relatively lesser samples.

We have relied upon PAM50 labels derived from transcriptomic data
since PAM50 intrinsic subtypes are known for their ability to predict
breast cancer survival. We also tested the PAM50 genes for their differ-
ential ability at copy number level. In this regard, we have compared
the classification accuracy of the set of discovered 44 biomarker genes
(see Fig. 4) obtained from CBDA and the set of PAM50 genes (see
Fig. 4(b)), using the same CatBoost classifier. Although these two gene
sets are derived from different genomic data, the analysis revealed the
performance of the discovered set of 44 biomarkers is comparable to
PAM50 genes (five-fold accuracy of 0.712 (±0.048) vs. 0.705 (±0.035)
at 95% confidence interval, respectively), which again highlights the
importance of CBDA derived genes.

Effect of SMOTE on CNV biomarker selection

Using SMOTE, XAI-CNVMarker yielded 44 CNV biomarkers with
an accuracy of 0.712 ± 0.048. However, without using SMOTE, the
framework XAI-CNVMarker yielded 67 genes and attained a reduced
accuracy of 0.597 ± 0.043 at a 95% confidence interval (using 5-fold
cross-validation). The confusion matrix and heatmap (Fig. 5) illustrate
that most of the instances are categorized as being in the Luminal A
or Luminal B class, both of which are majority classes (with almost
the least number of instances classified as the Normal subtype), given
the skewed class-wise distribution (Basal: 135, Her2: 67, LumA: 415,
LumB: 192, and Normal-like: 22). Thus, the results of experimentation
done without SMOTE show that the model got biased towards the
dominant classes (Luminal A and Luminal B), which resulted in several
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Fig. 5. Classification performance of CatBoost classifier using 5-fold cross-validation for TCGA breast cancer without using SMOTE.
.

Table 1
Classification Performance for breast cancer classification on TCGA breast cancer dataset

Method Features Accuracy Macro-F1

XAI-CNVMarker 44 0.712 ± 0.048 0.624
DeepSSC [40] 248 0.705 0.606
Cristovao et al. [27] 384 0.706 ± 0.037 0.4414

CNV biomarkers being representative of the Luminal A and Luminal B
classes. Not surprisingly, several instances were wrongly classified as
belonging to the majority class.

Using SHAP to estimate marginal contribution of discovered 44 CNV
biomarkers using SHAP

To estimate the marginal contribution of each gene in the discov-
ered biomarker set, we applied the SHAP method to compute their
SHAP values. Ranking of the genes in descending order of relevance
(quantified by the average impact on model output magnitude) in the
breast cancer classification task has been shown in Fig. 6. Each bar is
split into five colors, namely, blue, purple, pink, brown, and green that
refer to the breast cancer subtypes Luminal A, Luminal B, Basal, Her2,
and Normal respectively. The width of the colors within a bar acts as a
measure of the contribution (computed in terms of SHAP values) of the
gene in subtype prediction. For example, GADD45A gene contributes
most significantly towards the prediction of the subtype Luminal A,
followed by Basal, Luminal B, Normal, and Her2 subtype in decreasing
order of significance. Also, Figures in 7(a), 7(b), 7(c), 7(d), and 7(e)
depict 15 most significant genes for Basal, Her2, Luminal A, Luminal
B, and normal like subtypes respectively. In these figures, for each
gene on the 𝑦-axis, the horizontal bar against it indicates the influence
of copy number variation of the gene on the model’s prediction. Red
and blue colors indicate the amplification and deletion of copies of the
genes respectively. For example, for the Basal subtype (see Fig. 7(a)),
KRT6C is the most significant gene. Deletion of copies of KRT6C gene
(indicated by blue color) favors the classifier in predicting the Basal
class (positive impact on model’s output) and amplification in its copies
favors the classifier in predicting against the Basal class, i.e., breast
cancer subtypes other than Basal.

3.3. Comparison with state-of-the-art frameworks

In this section, we show a comparison of our work with two state-of-
the-art works: Cristovao et al. [27], Le et al. [40]. Cristovao et al. [27]
7

used copy number alteration (CNA) data from the TCGA repository to
distinguish between five PAM50 subtypes of breast cancer. Each sample
comprised a probe-level vector of 1.3 million values. Pearson correla-
tion coefficient was used to merge similar nearby regions, assigning the
average copy number count to the merged region. Thus, they were able
to reduce the copy number values to 384 per patient. Using logistic
regression with L1 regularization, they achieved maximum accuracy
of 0.706 ± 0.037. Le et al. [40] proposed a deep learning model
DeepSSC for classifying TCGA BRCA patients using gene-level copy
number data. They employed a denoising autoencoder for extracting
compact representation followed by a feed-forward neural network
for classification. They leveraged Integrated Gradients to identify a
set of the top 248 genes. Although they experimented with several
classifiers, they obtained the best classification accuracy of 0.705 using
the random forest classifier. It is evident from Table 1 that our proposed
framework- 𝑋𝐴𝐼 − 𝐶𝑁𝑉𝑀𝑎𝑟𝑘𝑒𝑟 not only yields a smaller set of 44
biomarkers but also achieves a higher accuracy of 0.712 ± 0.048.

3.4. Gene set analysis and trustworthiness of the biomarkers

In this section, we analyze the role of the set of 44 CNV biomarkers
discovered by the proposed framework XAI-CNVMarker in breast cancer
classification.

Visual analysis of CNV biomarkers
For visualizing the differential capability of the identified CNV

biomarkers, we plotted heatmap and T-SNE (plotted using PROMO
tool [41]). The heatmap in Fig. 8(a), shows the segregation of the
instances of different breast cancer types on the basis of these biomark-
ers. Further, T-SNE visualization (Fig. 8(b)) shows the overall aggre-
gated capacity of the selected CNV biomarkers in segregating Basal,
LumA, and Her2 subtypes, even though Normal-like and LumB samples
somewhat overlap with LumA.

Pathways enriched by CNV biomarkers
Using an over-representation test on the set of discovered 44 CNV

Biomarkers, we identified 37 enriched Reactome and KEGG pathways
(FDR corrected p-values less than 0.05, please see Figs. 9(a) and 9(b)).
It is pertinent to note that the enriched pathways are related to breast
cancer. Further, most of these pathways are enriched by eleven genes
namely, GRB7, ERBB2, ELIN2, FGF4, FGFR1, FGF19, ATAD2, PSMB4,
CCND1, FADD, and GADD45A. On closer scrutiny, we find that several
pathways are closely related to different breast cancer subtypes. For
example, GRB7 events in ERBB2 signaling pathway is known to be
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Fig. 6. Summary Plot: Genes ordered with respect to their average impact on model output.
associated with proliferation in HER2 breast tumor cells [42] caused by
co-amplification of GRB7 and ERBB2 oncogenes. Signaling by activated
point mutants of FGFR1 pathway, enriched by FGF4 and FGFR1 tumor
suppressor gene, is responsible for the development of Luminal A/B
subtype linked with the over-representation of these genes resulting
8

in cell proliferation and metastatic spread of this cancer subtype [43].
Similarly, PI3K Cascade pathway is known to be associated with onco-
genic aberrations in Basal subtype [44,45]. RAF/MAP kinase cascade
pathway is another pathway playing a critical role in the Basal subtype.
This pathway is enriched by ERBB2, FGF19, FGF4, FGFR1, and PSMB
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Fig. 7. Beeswarm Plot: Genes ordered with respect to SHAP values for each of the five breast cancer subtypes.



Biomedical Signal Processing and Control 84 (2023) 104979S. Rajpal et al.
Fig. 8. Heatmap and T-SNE Visualization using proposed 44 CNV Biomarkers.
genes and is accountable for elevation of MEK1 and MEK2 proteins
playing the role of tumor initiation and progression [46]. For the Lumi-
nal breast cancer subtype, enriched pathway, namely, Transcriptional
regulation by the AP-2 (TFAP2) family of transcription factors plays a
significant role in its progress [47].

Druggability of CNV biomarkers
We also evaluated the discovered biomarkers for their possible

use in devising treatment strategies. For this purpose, we used the
Drug Gene Interaction Database (DGIdb). The CNV biomarkers discov-
ered using the proposed framework include 21 potentially druggable
genes, namely, ANKRD11, ANO1, ATAD2, CCND1, CDK12, CTSF, DDR2,
ERBB2, ERLIN2, FGF19, FGFR1, GADD45A, GPR124, GRB7, IKZF3,
LCAT, PNMT, POU5F1B, PSMB4, TPCN2, and TXNIP. For example,
Ankyrin repeat domain 11 (ANKRD11)—a breast cancer tumor sup-
pressor gene, is a p53-interacting protein that has the capability to
enhance the transcriptional activity of p53 [48]. [49] noted that the
downregulation of Ankyrin repeats domain 11 (ANKRD11) gene leads
to the progression of Luminal A breast cancer. So, this gene may
be targeted to act as a p53 co-activator. Similarly, Calcium-activated
10
chloride channel anoctamin 1 (ANO1) is a gene that acts as a catalyst in
breast cancer progression by activating EGFR and CAMK signaling [50].
It is located in 11q13 amplicon, a region amplified in approximately
15% of breast cancer. The study showed that if amplification of ANO1
is suppressed, it would inhibit proliferation, aid induced apoptosis, and
ultimately lead to a reduction in tumor growth.

According to a study, conducted by [51], ATAD2 or ANCCA is an
overexpressed gene in around 70% of breast cancers, and its high level
is associated with Basal subtype. As the gene is associated with various
oncogenic pathways, it may be targeted for breast cancer treatment.
Also, amplification of copy number of oncogene Cyclin D1 (CCND1)
gene encoding cyclin D1 protein in luminal B breast cancer is linked
with immuno-suppression. So, drug therapy that suppresses the activity
of CCND1 gene at the protein level would prevent the progression of
breast cancer (luminal B) [52,53]. Cyclin-dependent kinase (CDK12)
acts as a tumor suppressor gene for the basal subtype, however, the
gene plays the role of tumor progression for the Her2 subtype. The
critical role of the gene gives direction towards using it as a poten-
tial biomarker not only for breast cancer identification but also as a
therapeutic target in basal and Her2 breast carcinoma, as suggested in
several studies [54,55]
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Fig. 9. Reactome and Kegg Pathways enriched using proposed 44 CNV Biomarkers.
Discoidin domain receptor 2 (DDR2), a collagen-binding receptor,
has a key role in hypoxia-induced breast cancer metastasis [56]. Studies
have established that inhibiting the gene can assist in preventing tu-
morigenesis, thus, DDR2 may be used for targeting medication. ERBB2
is associated with tyrosine kinase inhibitors (TKI) and variation in
the number of copies of this gene is associated with variation in an
individual’s reaction towards the drug. Knowing the copy number
variation of this gene in a patient sample can help to choose an efficient
TKI drug against the tumor to enhance the chances of survival for
Her2 subtype patients [57]. GRB7, PNMT, and STARD3 genes, often co-
amplified with ERBB2 [58,59], are also associated with progression of
the Her2 subtype and could be therapeutic targets for this subtype. [60]
state that in breast cancer, particularly in HER2-positive patients, over-
amplification of ERBB2 is quite common. They also show that PPP1R1B
and IKZF3 genes are genomic neighbors of ERBB2 gene, and they get
fused with ERBB2, suggesting this fusion as a result of local instability.
Further, the endoplasmic reticulum lipid raft-associated 2 (ERLIN2)
gene has been found responsible for oncogenic behavior in luminal
breast cancer subtype [61,62]. So, therapy that targets the downreg-
ulation of the gene will assist in reduced de novo lipogenesis, thereby
preventing cancer cell proliferation.
11
Porta et al. [63] found Fibroblast Growth Factor Receptor (FGFR)
as a promising druggable target for breast cancer. This family of
genes consists of tyrosine kinase receptor (TKR) which is involved in
several biological processes. Lang and Teng [64], Brady et al. [65]
point out that the high activation of FGF4 is strongly linked with
amplification of other FGF ligands FGF19 as well as FGFR1. These genes
are co-amplified in Luminal B, Her2, and Basal subtypes. Thus, being
oncogenes aiding in cancer development and progression, these genes
could be significant therapeutic targets. Along with FGFR1, GPR124
is also amplified in basal subtype patients in the chromosome region
between 8p11 and 8p12 and can be targeted for devising drug therapy
for the basal subtype [66–68]. GADD45A (growth arrest and DNA-
damage-inducible protein 45 alpha) genes have been found as the
downstream targets for p53 and BRCA1 genes which are critical in
preserving genome stability and preventing tumor growth [69,70].

Similarly, recent studies suggest that POU5F1 gene belonging to
POU transcription factor family [71] and Two-pore channel 2 (TPCN2
gene) [72] gene are also expressed in breast cancer patients and can
be used as candidates for the treatment of breast cancer. Another
biomarker Proteasome Subunit 𝛽4 (PSMB4), a member of the ubiquitin–
proteasome family, is an overexpressed gene accelerating breast cancer
cell proliferation. Its use has also been suggested as a therapeutic
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Fig. 10. Kaplan–Meier curve of top 13 survival-related genes plotted using Kaplan–Meier plotter tool.
target [73,74]. Finally, Thioredoxin-interacting protein (TXNIP) is a
tumor suppressor gene that is downregulated in Basal patients. So,
it may also be used for devising drug therapy for basal type breast
cancer [75].

Prognostic analysis of CNV biomarkers
To study the role of the discovered biomarkers in prognostic eval-

uation, we used Kaplan–Meier (KM) plotter tool [76]. It enabled us to
12
segregate the patients into two groups based on the CNV count. The KM
plotter tool applies the best cutoff criterion to determine the split point.
The tool plots Kaplan–Meier curves that depict the overall survival
probabilities for each group. As 13 out of 44 genes have FDR-corrected
log-rank 𝑝-value less than 0.05, it indicates that these genes are linked
with survival. It is evident from Fig. 10 that thirteen genes, namely,
ANO1 [77], CCND1 [78], ERLIN2 [61], FADD [79], FGFF4, FGF19,
FGFR1, GPR124 [65,68], KRT6C [80], ORAOV1 [81], PPFIA1 [82],
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Fig. 11. Experimental results on independent cohort.

SNOU109 [83], and TPCN2 [72] have log-rank 𝑝-value less than 0.05
and clearly separates the prognostic outcomes of the two groups. A
hazard ratio of more than two in Kaplan–Meier curves in Figs. 10
indicates that the patients in the negative copy number variation group
who are alive at any point in time, have at least twice the probability
of having died as compared to patients in other positive copy number
variation group.

Thus, the present algorithm has brought focus onto marker genes
with prognostic and druggability potential. This could be helpful in de-
veloping clinically accepted tests for early detection and better clinical
management of breast cancer patients.

3.5. Validation on independent cohort

To validate the efficacy of the proposed 44 CNV Biomarkers in
breast cancer classification, we used these genes to classify the patients
in the METABRIC dataset into the five breast cancer subtypes. Using the
Catboost classifier, we have achieved a classification accuracy of 0.571.
Fig. 11 depicts the confusion matrix for this classifier. It is evident
from this figure that while the classifier achieves better accuracy for
LumA and Basal subtypes, several instances of LumB and Normal-like
are misclassified as LumA. This may be attributed to the fact that
the Normal-like subtype-specific biomarkers have been identified using
only 22 instances present in the TCGA dataset. Another group, El-
Bendary et al. [84], has also experimented with the METABRIC dataset.
Based on a statistical analysis of CNV data, they extracted 276 CNV fea-
tures and achieved a classification accuracy of 0.534 using linear SVM
and 0.549 using SVM radial. Using the same classifiers, we obtained
classification accuracy of 0.537 and 0.553 respectively.

4. Conclusion

Molecular classification is an established approach for devising a
subtype-specific clinical strategy. Copy number variation being more
stable than other omics data leads to robust biomarkers. So, in this
work, we have analyzed the variations in copy number of genes to
dissect the heterogeneity of breast cancer subtypes. Towards this end,
we have proposed XAI-CNVMarker—an explainable AI-based biomarker
discovery framework. To the best of our knowledge, the proposed
framework is the first attempt that exploits the power of explainable
AI for discovering a small set of biomarkers, capable of differentiating
amongst different breast cancer subtypes. Towards this end, we have
developed DLmodel—a deep learning-based model for breast cancer
classification which is analyzed using the proposed CNV Biomarker
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Discovery Algorithm (CBDA) that incorporates different explainable
AI methods to mark the relative relevance of the genes. To ensure
coherence amongst different interpretation methods, we consider only
those genes that are marked relevant by all the explainable AI meth-
ods. Thereby, XAI-CNVMarker led to the discovery of 44 biomark-
ers. Subsequently, we used the Shapley Additive exPlanation (SHAP)
method to rank the contribution of the selected 44 biomarkers in
breast cancer classification. Using the CatBoost classifier, we obtained
5-fold cross-validation classification accuracy of 0.712 ± 0.048 at a
95% confidence interval. To establish the efficacy of the set of 44
CNV biomarkers in dissecting the heterogeneity of breast cancer, we
validated their distinguishing capability on an independent cohort
(METABRIC dataset).

Gene set analysis revealed 37 enriched Reactome and Kegg path-
ways, such as GRB7 events in ERBB2, Signaling by FGFR1 in disease,
MAPK1/MAPK2 signaling pathway, and, PI3K-Akt signaling pathway,
known to be closely linked with different Breast Cancer subtypes.
Heatmap and t-SNE visualizations demonstrate the distinguishing ca-
pability of identified biomarkers. Survival analysis using the Kaplan–
Meier plots revealed that most of the discovered biomarkers (13 genes
out of 44) are linked with the prognostic outcome. Also, the presence
of 21 druggable genes in the set of biomarkers namely ANKRD11,
ANO1, ATAD2, CCND1, CDK12, CTSF, DDR2, ERBB2, ERLIN2, FGF19,
FGFR1, GADD45A, GPR124, GRB7, IKZF3, LCAT, PNMT, POU5F1B,
PSMB4, TPCN2, and TXNIP reveals potential targets for therapeutic
intervention.

In summary, the explainable AI approach has enabled us to discover
a small set of 44 biomarker genes (based on copy number variation)
that exhibit variations at copy number (genomic) level across different
breast cancer subtypes. We have established the clinical relevance of
the identified biomarkers using gene set analysis, survival analysis, and
druggability analysis. The discovery of concise and clinically relevant
CNV Biomarkers for breast cancer classification gives direction for the
applicability of Explainable AI in biomarker discovery in oncology. In
the future, we aim to provide a better understanding of mechanisms
for clinicians to manage the disease efficiently. In follow-up work, we
intend to incorporate multi-omic data for breast cancer classification to
build upon effective and individualized clinical cancer care.
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Appendix. Background

Machine learning has been extensively used for constructing models
that identify useful patterns from data and output decisions/predictions
with minimum human intervention. However, the models so con-
structed have traditionally operated like black boxes and do not indi-
cate the rationale behind their decisions to the end user. Fortunately, in
recent years, several model-specific and model-agnostic explainable AI
methods have been developed that aid in interpreting the outcome of
the machine learning models. These methods attempt to answer why a
model is making a given prediction and when to trust a model. Answers
to such questions assist in understanding the model’s behavior. One
approach towards developing interpretable ML solutions could be to
deploy inherently interpretable models such as a sparse decision tree
or a sparse linear regression model. However, inherently interpretable
models are often too simple to solve complex problems. Fortunately,
there has been significant progress in recent years in the direction of
making the machine learning models interpretable, resulting in the
emergence of a new discipline of Explainable AI (abbreviated as X-
AI or simply XAI) [85–87]. The Explainable AI methods fall into two
categories, namely, model-specific and model-agnostic. Model-Specific
Methods can be used for explaining the behavior of a particular type
of machine learning model, while Model-agnostic Methods can be
used for explaining the behavior of an arbitrary machine learning
model. The following listed are four neural network-specific methods
(Gradient *Input, Integrated Gradient, Epsilon Layerwise Relevance
Propagation, and DeepLIFT methods) and one model-agnostic method,
namely, SHAP.

• Gradient*Input: The gradient method [88] employs backward
propagation on the trained network to identify which input fea-
tures will trigger the weights and activation of the output layer.
Given a prediction of the neural network model at the out-
put layer, the gradient method backpropagates the gradients at
each layer to quantify the contribution (also called attribution
or relevance score) of each input feature in the prediction. The
attributions produced by the gradient method are collectively
known as the saliency maps. In other words, the saliency maps
highlight the most important features which assist the proposed
network in predicting a class. For a given layer 𝑙, the partial
derivative of its output with respect to the previous layer is
computed using the following equation:

𝛿𝐴𝑙

𝛿𝐴𝑙−1
(1)

Back propagating the partial derivatives in this manner, 𝛿𝐴𝑙

𝛿𝑋 (par-
tial derivative with respect to input 𝑋) yields the gradients or the
saliency map. Gradient*input is a variant of the basic gradient
method that computes the feature attributions by multiplying the
gradient by the input feature. Thus, it is able to avoid the problem
of saturating gradients.

• Integrated Gradient: Integrated gradient method [89] deals with
the problem of noisy gradients by computing the integral of
gradients of several instances generated through linear interpo-
lation between the baseline input (𝑋′) and original input (X).
For example, for images, considering the baseline image to be
an image with all pixels set to black, interpolated images are
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generated between this baseline and input image in small steps of
𝛼 that steadily rise with the intensity of each interpolated image.
Thereafter, for the 𝑖th feature in consideration, the integrated
gradient may be computed using the following Eq. (2):

𝐼𝑛𝑡𝐺𝑟𝑎𝑑𝑖(𝑋) = (𝑋𝑖 −𝑋′
𝑖 )∫

1

𝛼=0

𝛿(𝐹 (𝑋′ + 𝛼(𝑋 −𝑋′
𝑖 )))

𝛿(𝑋𝑖)
𝛿𝛼 (2)

• Layerwise Relevance Propagation: During the forward propaga-
tion, the activations in each layer are computed using the inputs
from the previous layer. The Layerwise Relevance Propagation
(LRP) method [90] back propagates the relevance (activation) of
the output layer neurons by redistributing the output (relevance)
to neurons in the previous layers, layer by layer, up to the input
layer. The contribution a neuron 𝑖 (𝑅𝑖) at a layer to neuron 𝑗 (𝑅𝑗)
in the previous layer is computed as follows:

𝑅𝑗 =
∑

𝑖
(𝛼

𝑎𝑗𝑤+
𝑗𝑖

∑

𝑗 (𝑎𝑗𝑤
+
𝑗𝑖)

− 𝛾
𝑎𝑗𝑤−

𝑗𝑖
∑

𝑗 (𝑎𝑗𝑤
−
𝑗𝑖)

𝑅𝑖) (3)

Here 𝛼 and 𝛾 denote the weight that may be assigned to positive
and negative influences marked by neurons with positive and
negative weights i.e. 𝑤+

𝑗𝑖 and 𝑤−
𝑗𝑖 respectively with activation of

neurons denoted by 𝑎𝑗 . In another variant of simple LRP, termed
epsilon LRP, a small positive term 𝜖 is added to the denominator
in the above expression to compensate for a weak or conflicting
contribution.

• DeepLIFT: DeepLIFT (Deep Learning Important FeaTures) method
[91] deconstructs the output of a neural network for a specific
input, by back-propagating the relevance scores of all neurons
from the output layer to the input layer. For achieving this,
DeepLIFT evaluates the activation of each neuron and compares it
with the ‘‘reference activation’’ to finally compute the relevance
scores based on the difference. As compared to other methods,
DeepLIFT can uncover dependencies that other techniques over-
look by taking into account positive and negative contributions
separately. The relevance scores are effectively computed in a
single backward pass.

• SHAP: Lundberg and Lee proposed the Shapley Additive exPlana-
tion (SHAP) method [92]—a model-agnostic tool for explaining
predictions of machine learning models. It operates by quantify-
ing the overall contribution (marginal contribution quantified by
SHAPley/SHAP values) of different features in a post-hoc manner.
It can be used to describe the summarized behavior of a model in
terms of the input features as well as explain the contribution of
different features in making predictions for a specific instance.
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