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Abstract
The speed and accuracy with which the patient affected with brain tumour is diagnosed and monitored, plays a very crucial

role in providing treatment to the patient. During the diagnosis of the diseased part, a constant demand is anticipated to

easily extract the specific region of interest within the complex medical image. This task of extracting only the diseased

portion amid the complex body parts in the complex medical image can be achieved by image segmentation. Accuracy and

speed of extracting the points or area of interest within the multipart medical image can be improved by using various

evolutionary techniques. Differential evolution (DE) is an efficient evolutionary technique that can be used for solving

optimisation problem like image segmentation. The main disadvantage of classical evolutionary technique is its inability to

adapt its solution algorithm to a given problem. Owing to this need, more adaptable and flexible algorithms are in demand.

Numerous variants of DE exist which differ in their solutions. Here, a variant of differential evolution named as trans-

formed differential evolution (TDE) is presented which has an improved mutation strategy that is optimised to fewer

function evaluations. This variant is combined with the Kapur’s multi-level thresholding for segmenting magnetic reso-

nance imaging (MRI) images and to extract only the regions of tumour. The results obtained using TDE with Kapur’s

multi-level thresholding were compared with the results using traditional Kapur’s technique and the new results improved

profoundly. By introducing TDE in multilevel thresholding, the computational time significantly reduced and the resultant

image quality improved greatly.
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1 Introduction

Magnetic resonance imaging (MRI) is an imaging device

that makes exhaustive, cross-sectional images within the

body. MRI plays a major part in cancer analysis, presen-

tation and cure preparation. With MRI, differentiation

between normal and unhealthy tissues is obtained accu-

rately to identify the tumourous cells inside the body. The

information given in the MRI images may be complex, and

the physicians can take a little longer time to detect the

regions of interest. So, to assist them, the technique of

image segmentation can be used to detect tumours clearly

and accurately.

Segmentation is a technique of grouping any image into

multiple regions where pixels in a region have similar

attributes. The quality of segmentation is the success of the

image analysis system. Segmentation is often needed as a

preliminary step for analysing the medical images. Due to

the complex nature of medical images, segmenting these

images is a challenging and complex task. Thresholding is

an effective method for segmenting complex images.

Thresholding considers an optimal threshold by which

pixels with intensity value higher than the optimal thresh-

old are grouped into one class and the rest into another

class. When image is segmented into two diverse type of

classes, the technique is called bi-level thresholding. When

images are segmented into more than two classes, it is

called multi-level thresholding. Image segmentation
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performed on the basis of multi-level thresholding is

widely used by researchers and scientist to segment com-

plex coloured images. Multi-level thresholding divides an

image into several groups by identifying more than one

threshold value. Ease of implementation, lesser storage

space, improved processing speed are some of the advan-

tages of using thresholding techniques.

Various algorithms are developed for finding optimal

threshold value for performing segmentation of images.

Thresholding is classified into parametric and nonpara-

metric method. In parametric method, value of probability

density function has to be calculated for each class. The

nonparametric method employs various methods for eval-

uating the quality of clusters formed. In this paper, the

nonparametric approach of Kapur’s technique is employed.

This technique is a popular histogram-based thresholding

technique where the optimal threshold is assigned by

maximising the between class variance. Kapur et al. [1]

developed a popular histogram-based thresholding tech-

nique for maximising the entropy value. Problems like

thresholding are named as unsupervised learning, and these

matters can be resolved by means of evolutionary algo-

rithm. Recent researches have used various evolutionary

procedures like genetic algorithm, particle swarm optimi-

sation, differential evolution algorithm, etc., to enhance the

outcome of thresholding method. Evolutionary algorithm

uses the biological procedures of reproduction, recombi-

nation, selection and mutation. Storn and Price [2] intro-

duced the differential evolution algorithm (DE) that traces

concepts of evolutionary techniques. DE is a simple, pop-

ulation-based algorithm that helps in resolving optimisa-

tion issues effectively. The performance and effectiveness

of differential evolution algorithm are determined on the

basis of control parameter in use and the trial vectors

generation strategy. Several variations of differential evo-

lution are considered by altering these parameters.

In this work, a variant of DE is introduced and is named

as transformed differential evolution algorithm (TDE).

TDE uses three control parameters in the mutation strategy.

This strategy is compared with the other traditional alter-

nates to authorise effectiveness of TDE. This strategy is

used in image thresholding for segmenting the MRI images

to extract regions of tumour. Based on Kapur’s technique,

multi-level image thresholding is then implemented toge-

ther with the TDE method to accomplish image segmen-

tation. The initial part of the work details the classical

approaches, the proposed variant that was created and

Kapur’s entropy-based thresholding. The remaining part

explains the execution of the variant in multilevel thresh-

olding and the outcomes that were obtained during the

study.

1.1 Related works

Tang et al. [3] devised machine vision-based detection

technology. Colour-based segmentation technique using

binary-coded genetic algorithm was implemented. The

results obtained using this technique showed substantial

performance. Vese and Tony [4] gave a new multiphase

level set framework for segmenting images. This technique

used the Mumford and Shah model. The model was vali-

dated using numerical results for image and signal

denoising. Tao et al. [5] projected a three-level threshold-

ing technique for segmenting images. This technique uses

fuzzy partitioning, entropy theory and probability partition.

The experiments performed show significant results for the

new technique. Kim et al. [6] devised an information-the-

oretic approach for image segmentation. This technique

does not necessitate the image sections to have a specific

type of probability distribution and use of particular

statistics. This technique does not require any training.

Omran et al. [7] created a technique built on dynamic

clustering approach with particle swarm optimisation

(DCPSO). This method is used for image segmentation.

This technique calculates the number of clusters and then

groups the dataset with limited user interface. Clustering

technique is performed by k-means approach. It was

applied on natural and synthetic images, and the results

obtained were effective.

Awad et al. [8] implemented a multi-component image

segmentation technique with hybrid genetic algorithm and

Kohonen’s self-organising map. Tests were conducted on

various satellite images and the efficacy and strength of the

technique was verified. Das et al. [9] describes the usage of

differential evolution for automatic clustering of unlabelled

dataset. This technique was tested on real-time dataset and

a comparative analysis was performed. Maitra et al. [10]

created a variant of PSO which was further enhanced by

cloning fitter particles. This technique was compared with

some of the existing techniques of evolutionary algorithm

on clustering data. It uses cooperative and comprehensive

learning methods. This method was used for multi-level

thresholding for histogram-based image segmentation. This

method used both cooperative and comprehensive learning

methods. Jin et al. [11] devised a fully automated respira-

tory phase segmentation technique using single channel

breath sound recording of numerous types. Maulik [12]

gave an in-depth review on the applications of Genetic

algorithm on medical image segmentation.

Ribeiro et al. [13] gave the application of genetic

algorithm for regulating the segmentation process of digital

images. Gulati and Panwar [14] implemented the genetic

algorithm with active contours for image segmentation.

Bhandari et al. [15] developed cuckoo search algorithm
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(CS) and wind driven optimisation (WDO) for multilevel

thresholding using Kapur’s entropy. The output obtained

shows that the technique developed was accurate and

efficient. Manikandan et al. [16] proposed real coded

algorithm with simulated binary crossover-based multi-

level thresholding. This technique was used for segmenting

MRI brain images. Results were compared with the exist-

ing techniques like DE, PSO, etc., and the efficiency of the

proposed technique was verified. Mesejo et al. [17]

developed a hybrid level set approach for medical image

segmentation. This approach displayed better performance

in comparison with other techniques. Ramadas et al. [18]

proposed a variant of differential evolution algorithm

named as forced strategy differential evolution (FSDE).

This variant was applied to data clustering, and the effi-

ciency of the technique was justified. Arora and Dhir [19]

developed a hybrid classification technique built on cor-

relation-based feature selection and classification through

regression approach. It classifies the segmented chromo-

somes into five categories, namely overlapping, bent,

touching, straight or noise.

Bermejo et al. [20] implemented Coral Reef Optimisa-

tion Algorithm with Substrate Layers (CRO-SL) to the

real-coding IR problem variant. The new technique was

benchmarked with existing evolutionary and non-evolu-

tionary IR methods. Naidu et al. [21] implemented a nat-

urally inspired firefly algorithm-based multilevel image

thresholding for image segmentation by maximising Fuzzy

entropy. It is verified that the proposed method displays

better performance and CPU time than traditional methods.

Scelsi et al. [22] implemented artificial bee colony (ABC)

algorithm to find optimal solution for image contrast

enhancement. Das et al. [23] devised a quantum-based

variant of classical modified genetic algorithm-based FCM

for colour MRI image segmentation. The proposed tech-

nique was verified to be superior to traditional techniques.

Rundo et al. [24] proposed a novel image enhancement

method based on genetic algorithm and verified the results

to be superior.

2 Methodology

2.1 Classical differential evolution

Differential evolution algorithm takes the input elements in

the form of vectors of real numbers. The designated

number of vectors is identified casually in an n-dimen-

sional search space. In every iteration, two or more vectors

are chosen arbitrarily from the population and are united to

form a new vector. Resultant vector is compared with pre-

decided target vector to create trial vector. If trial vector

provides a fitter objective function, then the trial vector is

accepted into next generation. Mutation, recombination

and selection are pursued till some stopping criteria are

attained. DE utilises NP candidate solutions of the popu-

lation indicated by Xi;G, in which index i ¼ 1; 2. . .NP

constitute population while G represents the generation of

population.

Mutation This type of operation makes DE unique in

comparison with other evolutionary technique. The

weighted difference of vectors in the generation is calcu-

lated. For any given variable Xi;G, arbitrarily choose three

vectors Xr1;G; Xr2;G and Xr3;G where r1; r2; r3 are diverse

from each other. Subsequently donor vector Vi;G is calcu-

lated as:

Vi;G ¼ Xr1;G þ F � ðXr2;G � Xr3;GÞ ð1Þ

The mutation factor F is a constant within (0, 2). The

above strategy is denoted as DE/rand/1. The mutation

function distinguishes one DE strategy from the other.

Crossover/recombination This operation uses prosper-

ous solutions in the population. For each target vector Xi;G,

a trial vector Ui;G is generated by using binomial crossover.

Using probability cr 2 ½0; 1�, the elements of donor vector

pass in as trial vector. Crossover probability cr is desig-

nated alongside population size NP.

Ui;G ¼ Vi;G if randi;j 0; 1½ � � cr or if j ¼ Irand
Xi;G if randi;j 0; 1½ �[ cr or if j 6¼ Irand

�
ð2Þ

where randi;j � [½0; 1� is an arbitrary index and Irand is an

arbitrary numeral from 1,2, …N.

Selection Target vector Xi;G is coupled with trial vector

Vi;G and lowest result from function is taken into suc-

ceeding generation.

Xi;Gþ1 ¼
Ui;G iff Ui;G

� �
� f Xi;G

� �
where i ¼ 1; 2; . . .N

Xi;G otherwise

�

ð3Þ

2.2 Transformed differential evolution

In TDE, we have used three control parameters. The

parameter F1 takes a varying value which lies between (0,

1), and F2 takes the complement of F1. The parameter F3

takes the product of F1 and F2. As three diverse control

parameters are considered, the donor vector value is

enhanced significantly and hence the effectiveness of TDE

algorithm is improved profoundly. As best solution vector

is used, this approach settles quicker in comparison with

the old approaches having random vectors only. The

variables Xr1;G, Xr2;G; Xr3;G are selected at random. The

anticipated approach is stated as:
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X0 ¼ Xr1;G þ F3
� F1 � Xbest;G � Xr2;G

� �
� F2 � Xbest;G � Xr3;G

� �� �
ð4Þ

2.3 Kapur’s multi-level image thresholding

Kapur’s entropy technique is an indeterminate probability

entropy technique for multilevel thresholding which was

introduced in 1985. Consider an image I with n pixels

which has to be segmented into k classes. Let the n optimal

threshold values t0; t1; t2. . .tkð Þ be denoted as Th. The

optimal threshold values are gained by maximising the

objective function. Kapur’s entropy is denoted as:

f Thð Þ ¼
Xk
i¼0

Hi ð5Þ

where Hi is the entropy of ith class. The entropies for each

class are denoted as:

H0 ¼ �
Xt0�1

i¼0

pi
w0

ln
pi
wo

;

H1 ¼ �
Xt1�1

i¼0

pi
w1

ln
pi
w1

; . . .Hk ¼ �
XL�1

i¼tk�1

pi
wk

ln
pi
wk

ð6Þ

where

w0 ¼
Xt0�1

i¼0

pi; w1 ¼
Xt1�1

i¼0

pi; . . .w0 ¼
XL�1

i¼tk�1

pi ð7Þ

pi is the probability distribution of the intensity level.

w0;w1; . . .wk is the probability occurrence of the intensity

levels.

2.4 Multi-level thresholding using TDE strategy

In this work, we have introduced the variant of differential

evolution approach to Kapur’s thresholding. This method

uses the TDE mutation approach as specified in Eq. 4. The

fitness function for the TDE algorithm is calculated using

Eq. 5. The flowchart for the anticipated work is illustrated

in Fig. 1.

3 Results and discussions

3.1 Experimental results of TDE algorithm

TDE is executed using MATLAB R2008b, and the relative

outcome attained was tabulated along with the results from

traditional mutation strategies. Here, we have taken five

traditional mutation strategy (DE/rand/1, DE/rand/2, DE/

best/1, DE/best/2, DE/rand-to-best/1) and the proposed

technique TDE. The values obtained were compared. The

traditional mutation strategies were replaced with the

proposed mutation strategy, and TDE was composed. In the

experiment conducted, mutation constant F is given the

value 0.6 and the crossover probability Cr is given the

value 0.8. Fifteen diverse functions were considered, and

the results were calculated by setting the value to reach and

number of iterations. We have also tested the strategy by

setting the dimension as 25 and 50. Few of the outcomes

acquired are given in Table 1.

Among each of the above methods, a relative study was

done. By fitting size as 25 and 50 and value to reach (VTR)

as e-015, the best value, number of function evaluation

(NFE) and the CPU time of diverse function approaches

are evaluated. Some of the functions achieved good output

for all cases of classical DE and TDE algorithm. The

outcomes attained reveal that the TDE technique performs

with an improved efficiency when compared to the clas-

sical DE approach.

Friedman statistical test runs are conducted on TDE

algorithms to validate the results. Based on the values from

Table 1, the statistical outcomes are tabulated in Table 2.

Ranks obtained after the Friedman test are tabulated in

Table 3.

Ini�alize TDE algorithm

Allocate the objec�ve func�on

Get the image and its histogram

Allocate threshold value

Start

Is op�mal threshold 
obtained

No

Exhibit the resul�ng image a�er performing
thresholding

Stop

Yes

Fig. 1 Flowchart for multi-level thresholding with TDE
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Table 1 Comparative results for different strategies of DE with TDE for vtr = 1.e-015

Function D DE TDE Significance

DE/best/1 DE/rand/1 DE/best-to-rand/

1

DE/best/2 DE/rand/2

Sphere 50 9.724e-016 6.912e-016 7.541e-016 9.663e-016 7.173e?0 8.623e-016 -

25 9.314e-015 9.325e-015 9.537e-015 9.421e-015 6.921e?000 8.75e-015 ?

Beale 50 3.286e-016 2.323e-016 3.712e-016 7.64e-016 7.731e-016 3.123e-016 -

25 4.216e-015 7.721e-015 1.128e-015 1.362e-017 7.54e-015 2.321e-015 -

Booth 50 3.52e-016 2.05e-016 6.078e-016 7.072e-016 8.34e-016 7.272e-015 ?

25 1.80e-015 7.552e-016 1.951e-015 2.751e-015 6.476e-015 2.124e-015 -

Schwefel 50 2 1.812e1003 2.253e1003 2 7.843e1001 2 1.383e1003 2 1.671e1003 2 1.57e1002 NA

25 2 4.2121002 2 4.84e1002 2 1.672e1003 2 4.472e1003 2 1.58e1003 2 2.321e1003 NA

Michlewicz 50 2 7.624e100 2 7.213e100 2 7.48e100 2 6.961e100 2 6.854e100 2 1.37e1002 NA

25 2 7.619e100 2 7.641e100 2 6.871e100 2 7.352e100 2 6.981e100 2 5.455e100 NA

Schaffer N.2 50 6.63e-016 8.882e-016 4.434e-016 6.551e-016 8.875e-016 2.223e-016

25 1.313e-015 1.331e-015 6.664e-016 5.34e-015 1.334e-015 1.125e-015 ?

Schaffer N.4 50 3.052e-015 2.98e-001 2.923-001 2.934e-001 2.891e-001 2.794e-001 ?

25 2.912e-001 2.921e-001 2.921e-001 2.921e-001 2.924e-001 2.923e-001 NA

HimmelBlau 50 1.63e-016 8.053e-016 3.835e-016 9.123e-016 1.461e-016 5.456e-016 -

25 4.813e-015 4.423e-015 1.906e-015 3.951e-015 5.145e-015 2.437e-015 ?

Bird 50 2 1.032e1002 2 1.063e1002 2 1.053e1002 2 1.064e1002 2 1.033e1002 2 1.067e1002 NA

25 2 9.30e1001 2 1.045e1002 2 1.068e1002 2 1.032e1002 2 1.046e1002 2 6.123e1002 NA

Extended cube 50 3.33e-015 4.982e-006 6.14e-008 1.931e-005 2.681e?00 3.298e-015 ?

25 5.70e-008 5.24e-005 7.10e-008 1.732e-005 2.923e?009 1.123e-008 ?

Ackeley 50 7.192e-015 6.461e-012 7.992e-015 3.633e-013 3.091e?00 4.211e-015 ?

25 7.991e-015 5.022e-015 7.993e-015 3.593e-015 3.218e?00 3.121e-017 ?

Gold 50 3.00e100 3.00e100 3.00e100 3.00e100 3.00e100 3.0e100 NA

25 3.00e100 3.00e100 3.00e100 3.00e100 3.00e100 3.00e100 NA

Griewank 50 9.985e-016 9.991e-016 1.68e-013 6.561e-013 1.076e?00 8.889e-016 ?

25 1.473e-002 9.23e-015 7.882e-015 5.072e-009 1.067e?00 1.897e-005 -

Rastrigin 50 1.791e1001 1.231e1002 7.472e1001 1.284e1002 1.523e1002 0 NA

25 3.612e1001 1.182e1002 8.171e1001 1.77e1002 1.678e1002 1.567e1002 NA

Rosenbrock 50 9.63e-016 1.071e-008 7.884e-016 3.93e-009 1.071e?005 2.25e1002 ?

25 3.982e?00 1.40e-008 6.91e-015 1.561e-011 7.156e?004 5.213e-015 -

Bold indicates the best values obtained for each benchmarked function

Table 2 Test statistics

Dimension 50

Chi sq 26.27

Degree of freedom 5

Asymptotic significance 0.00007

Table 3 Mean ranking of various techniques

Strategy Mean rank on best value Mean rank on CPU

DE/best/1 2.9 4.6

DE/rand/1 3.1 3.3

DE/best-to-rand/1 2.8 3.4

DE/best/2 4.4 3.5

DE/rand/2 5.1 3.8

TDE 2.4 2.1
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The above tabulation validates the fact that the mean

rank obtained by TDE for best value and CPU time are the

best in assessment to the traditional mutation techniques of

DE Algorithm.

3.2 Outcome on image segmentation

TDE approach was executed in MATLAB R2017a and

subsequently was merged with the Kapur’s technique to

perform multi-level image thresholding. This technique

was tested on three groups of MRI colour images. The

values for optimal threshold for each class of image were

calculated and are tabularized in Table 4. Outcomes

attained establish that the proposed TDE strategy gives

enhanced output for multi-level thresholding in assessment

with traditional DE method.

The results tabulated in Table 5 demonstrate improved

efficiency for the TDE technique with Kapur’s threshold-

ing. The multi-level Kapur’s thresholding was then per-

formed few of MRI sample images that were taken from

www.sciencephoto.com. The original MRI images along

with its histogram and segmented images based on Kapur’s

and TDE with Kapur’s are given in Figs. 2, 3, 4.

The performance of the algorithms used is verified using

the peak-to-signal ratio (PSNR) and CPU time. PSNR is

the measure of quality between the original image and the

segmented image based on mean square error (MSE). It is

defined as:

PSNR r; sð Þ ¼ 20 log10
255ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSE r; sð Þ
p

" #
ð8Þ

Table 4 Comparison of optimal

threshold value
Image Number of thresholds (m) Optimal threshold values

Kapur’s method TDE with Kapur’s

Image 1 1 127 128

2 52,153 52,154

3 47,104,184 47,100,189

4 39,100,175,200 40,102,180,210

Image 2 1 127 130

2 96,179 98,182

3 67,135,195 70,142,200

4 35,89,146,207 40,93,153,215

Image 3 1 125 135

2 64,188 70,196

3 85,154,204 85,156,208

4 56,109,147,214 57,109,150,221

Table 5 Comparison of PSNR value and CPU time

Image Number of thresholds (m) PSNR CPU time

Kapur’s method TDE with Kapur’s Kapur’s method TDE with Kapur’s

Image 1 2 15.67 15.89 2.4 2.1

3 16.03 16.12 4.7 4.2

4 17.12 17.23 6.2 5.8

Image 2 2 13.78 13.98 2.4 2.1

3 14.34 14.87 4.5 4.1

4 15.12 15.34 6.86 6.34

Image 3 2 13.54 13.76 2.36 2.13

3 14.23 14.56 4.3 4.21

4 15.21 15.34 6.86 5.4
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where r is the original image and s is the segmented image.

If the size of image is m� n, then the mean square error

(MSE) is defined as:

MSE ¼ 1

m � n
Xm�1

i¼0

Xn�1

j¼0

r m; nð Þ � s m; nð Þ½ � ð9Þ

Generally, for any MRI scan, the coloured MRI images

are introduced to get a detailed view of the tissues and cells

within the specific area of the body part that is to be

analysed. These images are quite complex in nature and

have some sense of difficulty in differentiating between the

healthy tissues and cells against the diseased once. The

differentiation is tough especially in cases where the

physician tries to interpret the severity of infection. How-

ever, by the way of segmenting these complex MRI image,

we can extract only those part on the image that has the

infection or tumours. This serves larger purpose for the

physician while analysing the patients MRI image reports,

improving the accuracy in judgement and reducing the time

spent on image analysis. The specific segmented portion of

tumours for the sample images is shown in Fig. 5.

From the above figure, it is clearly seen that the regions

of tumour from image 1 and 2 are segmented and are

shown separated in a different colour. Image 3 has no

tumour, and its tumour region is shown as blank in Fig. 5f.

Using TDE with Kapur’s technique, the tumour can be

extracted easily from a complex MRI coloured image. The

same technique can be applied to ordinary MRI scan

images too.

Fig. 2 Segmentation of

image 1. a Original image,

b histogram, c segmented image

using Kapur’s, d segmented

image using TDE with Kapur’s
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Fig. 3 Segmentation of

image 2. a Original image,

b histogram, c segmented image

using Kapur’s, d segmented

image using TDE with Kapur’s
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4 Conclusions

In this paper, TDE approach was executed and results were

compared to classical mutation approaches in DE. The

relative study showed improved outcomes for TDE with

respect to better NFE and CPU time utilisation. TDE was

then applied to Kapur’s multilevel thresholding technique.

The thresholding outcomes were proved to be improved for

TDE approach in judgement with traditional differential

evolution technique. The threshold image was then

segmented to display the regions of tumour. This study

shows that TDE strategy achieves improved results in

terms of image quality and CPU time when compared to

other state of art approaches. By using this technique, the

affected tumourous regions are displayed distinctly after

segmentation. Presently, the strategy has been tested for

segmenting MRI images. This technique can be extended

to be applied on various types of medical images for tex-

ture enhancement, image analysis and in other image

processing sections where it can add value to the end user.

Fig. 4 Segmentation of

image 3. a Original image,

b histogram, c segmented image

using Kapur’s, d segmented

image using TDE with Kapur’s
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Fig. 5 Segmented tumour

regions from Images
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