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ABSTRACT Due to the high level of precision and remarkable capabilities to solve the intricate problems 

in industry and academia, convolutional neural networks (CNNs) are presented. Speech emotion 

recognition is an interesting application for CNNs in the field of audio processing. In this paper, a speech 

emotion recognition system based on a 3D CNN is suggested to analyze and classify the emotions. In the 

proposed method, the three-dimensional reconstructed phase spaces of the speech signals were calculated. 

Then, emotion-related patterns formed in these spaces were converted into 3D tensors. Accordingly, a 3D 

CNN for speech emotion recognition applied to two datasets, EMO-DB and eNTERFACE05, using a 

speaker-independent technique achieved 90.40% and 82.20% accuracy, respectively. By employing gender 

recognition, the accuracy rates on EMO-DB increased to 94.42% and on eNTERFACE05 rose to 88.47%. 

Realization of the introduced 3D CNN on both Intel CPU and NVIDIA GPU is also explored. The results of 

the implemented 3D CNN without and with regard to gender recognition show that GPU-based running is 

faster for the EMO-DB and eNTERFACE05 datasets than CPU-based executions (using Python). 

INDEX TERMS 3D Convolutional neural networks (3D CNNs), speech emotion recognition, reconstructed 

phase space, 3D tensor 

1. INTRODUCTION 

During the past years, because of the availability of big data 

including audio, video, image, text, etc. and progression in 

digital electronics devices, deep leaning has received 

increasing attention by researchers [1], [2], and [3]. 

Convolutional neural networks (CNNs) are one of the 

prominent and credible deep learning models due to its 

computational efficiency and high accuracy in comparison 

with other artificial intelligence algorithms. CNNs are 

heavy in computations and memory requirements. 

Therefore, running CNNs in embedded computing devices 

requires effective hardware/software co-design [4], [5]. The 

ability of CNNs in the comprehension of complex 

structures is an impressive feature in applications with 

high-dimensional data such as text processing [6], [7], face  

detection [8], [9], speech recognition [10], [11], character 

recognition [12], [13], image classification [14], [15], video 

classification [16], and gesture recognition [17]. Moreover, 

Microsoft, Instagram, Amazon, Google, and Facebook are 

examples of high-tech corporations which have applied 

CNNs in different types of services [18].  

   Speech emotion recognition is a challenging topic in the 

field of pattern recognition and processing the speech 

signals has received a great deal of research interest in the 

recent decades. The purpose of emotion recognition from 

speech is classifying the basic emotions including sadness, 

happiness, fear, anger, disgust, surprise, boredom, and 

neutral from speech signals and can be used in a variety of 

applications in human-computer interaction [19], [20], and 

[21].  
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   It is common to use 2D CNN models for visual tasks [22], 

[23], [24]. However, these networks have also been 

employed for audio-visual purposes. For example, in [25], a 

2D CNN have been proposed for emotion recognition from 

speech and visual information. Regarding the benefits of 

2D CNNs for image processing tasks, some research 

introduced feature engineering techniques to convert one-

dimensional speech signal to 2D images, which allow to 

benefit from 2D CNNs in speech processing tasks, and in 

particular emotion recognition applications. In this way, 

spectrogram [26] and CyTex [27] are two feature 

engineering-based methods that have been employed to 

convert speech signal to images as a compatible input for 

2D DCNNs. Moreover, in [28], the phase space 

reconstruction has been employed to represent the 

emotional speech in a 3D space. Then, a transformation 

technique has been used to convert the 3D speech patterns 

to 2D chaogram images for speech emotion recognition 

task.  

  3D CNNs have been successfully used for speaker 

verification [29], video scene understanding [30], action 

recognition [31], and also introduced as promising models 

to recognize the emotions on the base of feature extraction 

technique in the speech signals [32], [33]. Although feature 

extraction is a very common method, it still suffers from 

extracting of the ineffective features. Hereby, finding more 

practical ways is inevitable. Phase space reconstruction has 

been exposed to discussion for analyzing signals with 

nonlinear dynamics and presented as a meritorious 

alternative to conventional signal classification approaches 

[34]. It is also an effective tool for representing the one-

dimensional speech signal in a multidimensional space, that 

should be compatible to the employed model input [35]. It 

motivates to extract 3D tensors based on mutual 

information [36] from speech signals instead of extracting 

features. Two famous corpuses named EMO-DB [37] and 

eNTERFACE05 [38] are very common and popular to 

explore the performance of various algorithms in 

recognizing speech emotions [26], [32], [33], [39]-[47].  

   This work proposes a 3D CNN architecture to recognize 

various speech emotions and its realization on both Intel 

CPU and NVIDIA GPU. Experiments on two public 

datasets known EMO-DB and eNTERFACE05 have shown 

highly valuable results for investigating 3D tensors using a 

3D CNN model in speech emotion recognition application. 

To reach a better accuracy, gender recognition technique is 

added to the suggested method. As envisaged and on the 

mentioned corpuses, GPU implementations have less 

running times than CPU implementations.  

   The rest of the paper is organized as follows: Section 2 

explains the recommended 3D CNN model for speech 

emotion recognition. In section 3, the experimental 

outcomes are shown and compared with other related 

published works. Finally, section 4 concludes the paper. 

 

2. PROPOSED METHOD FOR SPEECH EMOTION 
RECOGNITION 

The presented method consists of two main stages. In the 

first stage, 3D tensors are provided using reconstructed phase 

space of speech signals, and in the second stage, a 3D CNN 

is trained based on the 3D tensors provided in the first stage 

and their corresponding emotion labels. As the speech signal 

has nonlinear and chaotic behavior, showing the correlation 

of the emotional speech parameters in one-dimensional space 

is not possible. Reconstruction of signal in the phase space is 

an appropriate method for studying signals in higher 

dimensions. In order to apply the compatible inputs for the 

3D CNN network and to study the relationship between 

emotional parameters, speech signals have been modeled and 

analyzed in a 3D space. Figure 1 shows a schematic diagram 

of the proposed method for speech emotion recognition. As 

displayed, by using the reconstructed phase space, the one-

dimensional signal is mapped to the three-dimensional space 

and then a 3D tensor is extracted to apply as the input of the 

3D CNN.  

 

 

FIGURE 1. The Schematic diagram of the proposed method.  

 

 
2.1. Reconstructed Phase Space and Creating a 3D 

Tensor of Speech 

Phase space reconstruction is a powerful technique for 

analyzing nonlinear dynamic systems with chaotic 

characteristics and has been presented as a pivotal alternative 

to conventional nonlinear signal classification methods [27]. 

The phase space reconstruction approach transforms a one-

dimensional signal known as a vector to a  -dimensional 

signal called a tensor. In order to reconstruct the phase space 

of a system, the output signal of the system is assumed as a 

time series               . Equation (1) shows a row 

vector that is a single point in the reconstructed phase space.  
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   Where   denotes the time delay and   indicates the 

dimension. All possible points of the system in the 

reconstructed phase space are defined by the following 

trajectory matrix:  
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    Each row vector    represents a speech element and its 

relation to the samples with   delay. Major methods 

determine optimum time delay, , and dimension,    based on 

mutual information and the false nearest neighbours, 

respectively [36]. Because the inputs to be compatible for the 

3D CNN, the false nearest neighbours method is chosen to 

set    . To compute the suitable value for    the mutual 

information approach is employed. The mutual information 

between two signals is obtained from the following equation: 
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   Where  (   ) is the joint probability distribution function 

and  ( ) and  ( ) are the marginal probability distribution 

functions. The first minimum of mutual information is 

optimal [36]. While computing the   parameter for each 

speech sample is time-consuming and imposes heavy 

computations, the first minimum of average mutual 

information as the optimum time delay is considered. Except 

the dependency of τ based on the time delay, sampling rates 

of the speech signals is another parameter that has effect on τ 

computing. By finding the appropriate values of   and  , the 

reconstructed phase spaces are modelled. Setting the optimal 

value of    is vital in reconstructed phase space analysis. As 

shown in Figure 2, the first minimum of average mutual 

information as the optimum time delays in the EMO-DB and 

eNTERFACE05 datasets are located on       and     , 

respectively. Figure 2 (a) displays 535 mutual information of 

speech samples from the EMO-DB dataset, and Figure 2 (b) 

depicts 1166 mutual information of speech samples from the 

eNTERFACE05 dataset. Figure 2 (c) and Figure 2 (d) show 

the first minimum of average mutual information for each 

dataset. Each speech sample has different first minimum 

value in mutual information.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. The mutual information of the speech signals for the EMO-DB 

and eNTERFACE05 datasets. (a) 535 mutual information of speech 

samples extracted from the EMO-DB dataset. (b) 1166 mutual information 

of speech samples extracted from the eNTERFACE05 dataset. (c) The first 

minimum of average mutual information for EMO-DB (     ). (d) The first 

minimum of average mutual information for eNTERFACE05 (     ).  

 

 

FIGURE 3. Reconstructed phase spaces of the speech signals 
expressed by a speaker in 7 different emotions from the EMO-DB 
dataset. (a) 11a01Aa (Fear), (b) 11a01Ld (Boredom), (c) 11a01Nd 
(Neutral), (d) 11a01Wc (Anger), (e) 11a02Ec (Disgust), (f) 11a04Fd 
(Happiness), and 11a02Tc (Sadness) with             . 

 

   For a better understanding, the reconstructed phase spaces 

from a speaker in 7 various emotions of the EMO-DB dataset 

have been shown in Figure 3. 

   The procedure of the creating 3D tensors from the 1D raw 

speech signals to be compatible with the suggested 3D CNN 

for speech emotion recognition has been displayed in Figure 

4. As shown in this figure, the appropriate values of time 

delays have been set to       for the EMO-DB dataset and 

      for the eNTERFACE05 dataset. 

 

 

 

 

 

(a) (b) (c) (d)

(e) (f) (g)

535 samples from the EMO-DB dataset

(a) (b)

The average of samples from the EMO-DB dataset
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FIGURE 4. The schematic of the proposed method for speech emotion 

recognition based on the average mutual information on the datasets.  

 

   Typically, the reconstructed phase space of a speech signal 

is presented in a multidimensional space. Since the goal is to 

create the compatible inputs for the 3D CNN using speech 

samples, the 3D reconstructed phase space of each speech 

signal is formed and then converted into a 3D tensor. To this 

end, each axis of the 3D space is split into 256 segments. 

Consequently, the space is converted to a 256×256×256 grid 

net. The frequency of points in each cell of the grid is 

calculated. Therefore, a 3D matrix considered as a 3D tensor. 

In other words, the output 3D tensor of this stage is a 3D 

histogram of points in the space. In summary, each 3D tensor 

can be considered as a new representation of the 

corresponding speech signal that is labeled with the 

corresponding emotion in the dataset. Finally, this 3D tensor 

would be applied to the 3D CNN model for training and 

testing. The number 256 is set arbitrarily, as it can be 

matched to the network input size via a resize procedure. 

However, it is preferable to choose a close value to the size 

of the network input to avoid additional computations. 

 
2. 2. Proposed 3D CNN for Emotions Classification 

The structure of the suggested 3D CNN model is displayed in 

Figure 5. This model has been inspired from the architecture 

of VGG16 [48], which have gained great achievements in 

classification of two-dimensional images. In this research, a 

similar architecture proposed in three-dimensional manner.  

Experiments have been done to check whether simplifying 

the model by removing some of the layers, or using 

additional layers, can improve the classification performance. 

To this end, first, a convolutional layer added before the first 

layer of the suggested model. This resulted in decreasing of 

the overall classification rate. Next, a convolutional layer 

added to the end of the model, just before the flatten layer. It 

also led to falling in the classification rate. In other 

experiments, the first and last convolutional layers of the 

model have been removed, respectively. These experiments 

also result in decrease in overall classification performance. 

Consequently, the proposed structure of the model is set 

similar to the VGG16 architecture [48].  

   This 3D CNN will train on 3D tensors obtained from 

reconstructed phase space representation of speech signals. In 

contrast to classical pattern recognition systems, CNNs 

usually combine the feature extraction and classification 

stages in an end-to-end model that perform both tasks. 

Hence, the 3D CNN can be considered as a model that can 

train the features of the 3D tensors (which are a new 

representation of the input speech signals) related to the 

target emotion labels. As shown in Figure 5, the 3D CNN 

uses 3D filters to analyze input data, which refers to feature 

extraction. Then, it assigns the weights to the outputs of the 

filters to emphasize or ignore informative or redundant 

features, respectively. These weights are computed through 

the training procedure by minimizing a loss function trying to 

link input data to the output target classes. 

 

 

FIGURE 5. The proposed 3D CNN architecture.  

 

   The input of the proposed network is a 3D tensor with the 

size of            . While the smaller size of input 

can reduce the resolution and consequently cause loss of 

useful information, larger size can complicate computations. 

The 3D CNN consists of three types of layers, including the 

convolution, pooling, and fully connected layers, where each 

layer performs its particular task. The proposed 3D CNN 

architecture consists of five convolutional layers with 64, 

128, 256, 512, and 512 3D filters. The kernel size of 

convolutional layers is       with the stride size of 1. 

There is a max pooling layer with a kernel size of       

and the stride size of 2 after each convolutional layer. This 

max pooling layer is not only responsible for sampling but 

also reduces the features dimensions. Finally, a flattening and 

two fully connected layers are located afterwards. The 

flattening layer converts the 3D tensor into a vector. The first 

fully connected layer (FC1) consists of 1000 neurons and the 

last fully connected layer (FC2) is a classifier layer with 6 or 

7 neurons corresponding to 6 or 7 emotions. The number of 

emotions in the EMO-DB and eNTERFACE05 datasets is 7 

and 6, respectively. In the first fully connected layer and 

convolutional layers, rectified linear unit (ReLU) activation 

function is used as follows:  
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                                             (4) 

Where,    is the     input to the convolutional layer. Also, in 

the classifier layer or the last fully connected layer, softmax 

activation function is employed as follows:  
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Where,    and   refer to the values and total number of the 

neurons from the last layer in the 3D CNN model. The 

parameters of the proposed 3D CNN model are shown in 

Table I. 
 

TABLE I 

The details of each layer parameters of the proposed 3D CNN model 

Layer Feature 

Map 

Size Kernel 

Size 

Stride Activation 

Function 

Input 1 256×256×256 - - - 

Conv3D_1 64 256×256×256×64 3×3×3 1 ReLU 

Max 

Pooling3D_1 

64 128×128×128×64 2×2×2 2 - 

Conv3D_2 128 128×128×128×128 3×3×3 1 ReLU 

Max 

Pooling3D_2 

128 64×64×64×128 2×2×2 2 - 

Conv3D_3 256 64×64×64×256 3×3×3 1 ReLU 

Max 

Pooling3D_3 

256 32×32×32×256 2×2×2 2 - 

Conv3D_4 512 32×32×32×512 3×3×3 1 ReLU 

Max 

Pooling3D_4 

512 16×16×16×512 2×2×2 2 - 

Conv3D_5 512 16×16×16×512 3×3×3 1 ReLU 

Max 

Pooling3D_5 

512 8×8×8×512 2×2×2 2 - 

Fully 

Connected_1 

- 1000 - - ReLU 

Fully 

Connected_2 

- 6 OR 7  - - Softmax 

 

  
2. 3. Speech Emotion Recognition Based on Gender 

   Because of the key role of   in reconstructed phase spaces 

and mutual information analysis, an interesting idea to obtain 

a better accuracy lead us to compute   based on the gender 

recognition. To that end, the speech signals from men and 

women are independently modelled in each dataset. The 

results show that there is a considerable difference between 

average of   for men and women in the EMO-DB and 

eNTERFACE05 datasets. Figure 6 proposes the structure of 

a schematic diagram for speech emotion recognition based 

on gender recognition. As depicted, gender recognition has 

been added to the proposed method. To this end, the 

proposed 3D CNN should classify the input speech signals 

based on genders into two categories, including female and 

male. Then, the reconstructed phase spaces and 3D tensors 

have been extracted from females‟ and males‟ speech signals, 

separately.  

 

 
 

FIGURE 6. The Schematic diagram of the proposed method with 

considering gender recognition.  

 

   As illustrated in Figure 7, a 3D tensor made from a 1D raw 

speech signal has been applied to the 3D CNN for classifying 

females or males. In this stage, the optimal time delays have 

been put on       for the EMO-DB dataset and       

for the eNTERFACE05 dataset similar to the same way used 

in this work for emotion recognition without considering 

genders.  

 

 

FIGURE 7. The schematic of the proposed method for gender recognition 

based on the average mutual information on the datasets. 

 

The block diagram of the proposed 3D CNN model for 

gender recognition is shown in Figure 8. The parameters of 

this 3D CNN are the same described in Table I. The first 

fully connected layer (FC1) consists of 1000 neurons and the 

last fully connected layer (FC2) is a classifier layer with 2 

neurons corresponding to female or male. 

 

 

FIGURE 8. The proposed 3D CNN architecture for gender recognition. 

 

   The first minimum of overall mutual information as the 

optimum time delay for female and male speech samples in 

the EMO-DB and eNTERFACE05 datasets are shown in 

Figure 9. Figure 9 (a) exhibits 302 mutual information of 

speech samples from females in the EMO-DB dataset, and 

Figure 9 (b) shows the corresponding first minimum of 

average mutual information     . Figure 9 (c) displays 

233 mutual information of speech samples from males in the 

EMO-DB dataset, and Figure 9 (d) shows the 

corresponding     . By the similar way and as illustrated 

in Figure 9 (e)-(h), the first minimum of average mutual 

information for females and males in the eNTERFACE05 

dataset are located on     25 and     33, respectively. In 

this dataset, 264 mutual information of speech samples from 

women and 902 mutual information of speech samples from 

men are considered.  

 

 

 

 

 

3D Reconstructed Phase 

Space (3D RPS) 

Extraction

3D Tensor
3D CNN

Gender 

Recognition

Male

Female RPS_Female

RPS_Male

3D Tensor_Female

3D Tensor_Male

3D CNN
Emotion 

Recognition

Emotions

1D Raw Speech 

Signal

1D Raw Speech 

Signal

 3D tensor of 

speech 
3D RPS of Speech

(d=3,τ=17 or 31)

Creating a 3D Tensor Compatible with 3D CNN  

3D CNN
Gender

Recognition

Classification (Female or Male )

X Y

Z

 Mutual Information

 (τ=17 or 31)

256× 256× 256 

Conv3D & Max Pooling3D

Classification

Input

256× 256× 256×64 

128× 128× 128×128 

64× 64× 64×256 

32× 32× 32×512 16× 16× 16×512 

F
latten

Female

Or 

Male

C
lassificatio

n

Dropout = 50%

FC1 FC2



 

  

 

 

FIGURE 9. The mutual information of the speech signals for females and 

males in the EMO-DB and eNTERFACE05 datasets. (a), (b) 302 mutual 

information of speech samples for females from EMO-DB with the first 

minimum of average mutual information     . (c), (d) 233 mutual 

information of speech samples for males from EMO-DB with the first 

minimum of average mutual information     . (e), (f) 264 mutual 

information of speech samples for females from eNTERFACE05 with the 

first minimum of average mutual information     . (g), (h) 902 mutual 

information of speech samples for males from eNTERFACE05 with the 

first minimum of average mutual information     .  

  

   Figure 10 shows a general overview of the suggested 3D 

CNN for the speech emotion recognition with gender 

designation. By obtaining the optimal time delays based on 

the gender recognition, the 3D tensors from females and 

males are employed to the propounded 3D CNN as inputs to 

classify various emotions in each dataset. 

 

FIGURE 10. The overview of the proposed 3D CNN based on gender  
recognition for speech emotion recognition. 

  

3. Experimental Results and Comparison   

   The recommended approach has been evaluated on two 

public datasets titled EMO-DB [37] and eNTERFACE05 

[38]. The EMO-DB database is an emotional speech dataset 

contains 535 utterances by 10 German actors (5 women and 

5 men) in 7 emotions (sadness, fear, happiness, boredom, 

anger, disgust, and neutral). The eNTERFACE05 database is 

an emotional audio-visual dataset which is created by 42 

people from 14 different nationalities. All the participants 

spoke English and most of them were male (19% women and 

81% men). It includes 6 basic emotions (surprise, fear, 

happiness, disgust, sadness, and anger). This dataset contains 

1166 video samples. 

   In this work, workstation hardware with specifications of 

Intel Core i7-7500U CPU, NVIDIA GeForce GTX 960M 

(4GB) GPU, and RAM-16GB DDR4 is used to design and 

evaluate the proposed 3D CNN model. Python was utilized 

for all implementations which are conducted in the Spyder 

platform under the Anaconda environment. Skedm library 

was applied for creating phase space reconstruction. Keras 

library that is running on the top of TensorFlow framework 

was employed to design the 3D CNN model. CUDA Toolkit 

v8 and cuDNN v6 were utilized libraries for GPU executions 

in the TensorFlow framework. A dropout technique with a 

rate of 0.5 has been adopted to the fully connected layers. 

This technique avoids the risk of overfitting by temporarily 

removing the neurons from each layer. The choice of which 

neurons to drop is random. The proposed 3D CNN was 

trained on the training set, with categorical cross-entropy as 

the loss function and Adam as the optimizer algorithm with 

learning rate of 1e-4 (                            
     ). Our tests are performed on EMO-DB and 

eNTERFACE05 datasets based on the 3D CNN architecture 

using cross-validation strategy titled speaker-independent. In 

speaker-independent strategy, the test-runs are executed by 

applying leave-one-speaker-out (LOSO) and leave-one-

speakers-group-out (LOSGO) schemes. When there are a few 

people in a dataset, the LOSO technique is chosen and if 

there are many people in a dataset, the LOSGO technique is 

selected. Thus, the LOSO scheme is applied for EMO-DB 

and the LOSGO scheme is employed for eNTERFACE05 

[41].  

  As discussed, the gender recognition has been used in this 

research. For evaluating the accuracy of recognizing females 

302 samples for females from the EMO-DB dataset The average of samples for females from the EMO-DB dataset 
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and males, k-fold cross-validation technique has been 

employed. In this technique, the database is divided into   

sections and in each iteration,     sections are selected for 

training and one section is chosen as a test. This process is 

repeated until all samples participate in the training and 

testing. Although defining   parameter is arbitrary, it is 

commonly considered to 10 in which 9 parts of the datasets 

are given for training and 1 remained part is assigned for 

testing. Table II and Table III show the average accuracy of 

gender recognition for       and different time delays  . 

The highest accuracy is available on      for EMO-DB by 

99.06% and      for eNTERFACE05 by 98.28%, as 

indicated in both tables. These results have been attained in 

10 iterations by randomizing the datasets and prove that the 

presented method for females‟ and males‟ speech signals 

recognition is remarkably reliable. The symbols ± refer to the 

standard deviation.  
TABLE II 

 Accuracy of the gender recognition for EMO-DB (535 Samples) 
Time 

Delay 
                                 

Average 

Error 

16 ± 1 15 ± 1 11 ± 1 8 ± 1 5 ± 1 22 ± 1 47 ± 1 

Average 

Accuracy 

97.01% 

 ±  0.2 

97.20% 

± 0.2 

97.94% 

± 0.2 

98.50% 

± 0.2 

99.06% 

± 0.2 

95.89% 

± 0.2 

91.21% 

± 0.2 

 
 

TABLE III 

    Accuracy of the gender recognition for eNTERFACE05 (1166 Samples) 
Time 

Delay 
                                 

Average 

Error 

42 ± 3 38 ± 2 35 ± 2 25 ± 2 27 ± 2 22±2 120 ± 7 

Average 

Accuracy 

96.74% 

± 0.3 

97.05% 

± 0.2 

97.27% 

± 0.2 

98.06% 

± 0.2 

97.90% 

± 0.2 

98.28% 

± 0.3 

90.70% 

± 0.5 

 

The average accuracy of the speech emotion recognition 

employing speaker-independent without and with gender 

recognition explained in the proposed method section has 

been demonstrated in Table IV. The used optimizer was 

stochastic gradient descent (SGD).  

 
TABLE IV  

Speaker-independent average speech emotion recognition accuracy with 

the SGD optimizer  
Method Without Gender Recognition With Gender Recognition 

EMO-DB 76.81% ± 0.6 87.79% ± 0.5 

eNTERFACE05 71.48% ± 0.8 80.38% ± 0.6 

 

The datasets used in this research contain a limited number of 

samples, far fewer than the minimum requirements for a 

desirable training of a CNN, making it necessary to increase 

the number of samples. To address this problem, it is 

common to employ data augmentation techniques to increase 

the size of the dataset [26]. Data augmentation refers to any 

technique that increases the amount of data using original 

data. In speech emotion recognition, it can be performed by 

splitting each speech sample into several shorter segments. In 

the data augmentation procedure, all samples were split into 

315   segments [26], which are greater than the minimum 

required length of 250   for emotion recognition, 

recommended by [40]. All new samples were labeled as the 

corresponding emotion of the original sample. These result in   

11629 segments obtained from 535 EMO-DB utterances and 

25712 segments achieved from 1166 video samples of 

eNTERFACE05. This data augmentation approach, in 

addition to a dropout procedure, can effectively increase the 

test accuracy rate by reducing the risk of overfitting. 

Furthermore, a proper optimization technique helps to gain 

the highest possible accuracy rate using the proposed 3D 

model. Accordingly, the average recognition accuracy has 

considerably risen on the presented datasets for speaker-

independent strategy. Table V demonstrates the average 

accuracy of the speech emotion recognition with the SGD 

optimizer and data augmentation.     

 
TABLE V  

Speaker-independent average speech emotion recognition accuracy with 

the SGD optimizer and data augmentation 
Method Without Gender Recognition + Data 

Augmentation 

With Gender Recognition + Data 

Augmentation 

EMO-DB 87.13% ± 0.6 92.68% ± 0.5 

eNTERFACE05 80.46% ± 0.8 86.73% ± 0.6 

 

There are various algorithms such as SGD [49], RMSprop 

[50], Adam [51], Adamax [51], Adadelta [52], Adagrad [53], 

and Ftrl [54] are used to minimize and optimize errors. All 

the mentioned algorithms are evaluated in the proposed 

method with data augmentation technique. As shown in 

Table VI and Table VII, the average recognition accuracy of 

the speech emotions without and with considering gender 

recognition has been compared by employing different 

optimizers with data augmentation. The results prove the best 

possible solution is achieved by the Adam optimizer.   
 

TABLE VI 

Speaker-independent average speech emotion recognition accuracy by 
various optimizers and data augmentation without gender recognition 

Optimizer SGD RMSprop Adam Adadelta Adagrad Adamax Ftrl 

EMO-DB 87.13% 

± 0.6 

88.11% ± 

0.6 

89.34% 

± 0.6 

87.35% ± 

0.6 

87.46% 

± 0.6 

87.23% 

± 0.6 

89.01% 

± 0.6 

eNTERFACE05 80.46% 

± 0.8 

80.91% ± 

0.8 

81.48% 

± 0.8 

80.90% ± 

0.8 

80.97% 

± 0.8 

80.44% 

± 0.8 

81.14% 

± 0.8 

 

TABLE VII 
Speaker-independent average speech emotion recognition accuracy by 

various optimizers and data augmentation with gender recognition 
Optimizer SGD RMSprop Adam Adadelta Adagrad Adamax Ftrl 

EMO-DB 92.68% 

± 0.5 

93.58% ± 

0.5 

94.19% 

± 0.5 

92.91% ± 

0.5 

93.15% 

± 0.5 

93.08% 

± 0.5 

93.92% 

± 0.5 

eNTERFACE05 86.73% 

± 0.6 

87.35% ± 

0.6 

88.24% 

± 0.6 

87.80% ± 

0.6 

87.91% 

± 0.6 

87.65% 

± 0.6 

87.94% 

± 0.6 

 

 

   Finally, the dropout technique is used for reaching a better 

training, avoids overfitting, and increases the recognition 

rates. Table VIII and Table IX represent the average accuracy 

rates of the speech emotion recognition when dropout 

technique is employed. These tables show the highest 

recognition accuracy rates with the lowest tolerance have 

been obtained just after applying dropout in the fully 

connected layers.  

 

 

 



 

  

TABLE VIII 

Speaker-independent average speech emotion recognition accuracy 

by employing dropout technique without gender recognition 
Method No 

Technique 

Data 

Augmentation 

Adam 

optimizer 

Dropout 

Technique 

EMO-DB 76.81% ± 0.6 87.13% ± 0.6 89.34% ± 0.6 90.40% ± 0.2 

eNTERFACE05 71.48% ± 0.8 80.46% ± 0.8 81.48% ± 0.8 82.20% ± 0.2 

 
TABLE IX 

Speaker-independent average speech emotion recognition accuracy  

by employing dropout technique with gender recognition 
Method No 

Technique 

Data 

Augmentation 

Adam 

optimizer 

Dropout 

Technique 

EMO-DB 87.79% ± 0.5 92.68% ± 0.5 94.19% ± 0.5 94.42% ± 0.2 

eNTERFACE05 80.38% ± 0.6 86.73% ± 0.6 88.24% ± 0.6 88.47% ± 0.2 

 

   Figure 11 shows the confusion matrixes of the presented 

3D CNN for speech emotion recognition experiments on 

the datasets without specifying gender recognition. In the 

confusion matrix, while each row represents the goal 

emotion, columns demonstrate the recognized emotions. 

The diagonal line of the matrix shows the recognition rate 

of each emotion. It is clear from Figure 11 (a) that 

happiness with the recognition accuracy of 94.56% has the 

highest accuracy and disgust with the recognition accuracy 

of 86.23% has the lowest accuracy. The average 

recognition accuracy of 90.40% has been achieved on 

EMO-DB dataset. Similarly, and as understood from Figure 

11 (b), sadness has the best recognition accuracy of 84.89% 

and surprise has the worst recognition accuracy of 78.48%. 

The average recognition rate of 82.20% was obtained on 

eNTERFACE05 dataset. Comparing Figure 11 (a) and 

Figure 11 (b) reveals that the most emotional 

misclassification rates are 8.69% between disgust and 

boredom for the EMO-DB dataset and 10.20% between 

surprise and disgust for the eNTERFACE05 dataset.   

 

FIGURE 11. Confusion matrixes of the proposed 3D CNN without gender 

recognition. (a) An average accuracy of 90.40% on the EMO-DB dataset. 

(b) An average accuracy of 82.20% on the eNTERFACE05 dataset. 

 

   Figure 12 demonstrates the confusion matrixes of the 

presented 3D CNN for speech emotion recognition 

experiments on the datasets with specifying gender 

recognition. As realized from Figure 12 (a), the maximum 

recognition accuracy of 95.48% has been dedicated to disgust 

and the minimum recognition accuracy of 92.43% has been 

allocated to anger. The average recognition accuracy of 

94.42% has been obtained on the EMO-DB dataset. By 

similar way from Figure 12 (b), the most recognition 

accuracy of 90.61% is devoted to sadness and the least 

recognition accuracy of 86.18% is allotted to happiness. The 

average recognition rate of 88.47% has been obtained on 

eNTERFACE05 dataset. As can be seen from Figure 12 (a) 

and Figure 12 (b), the foremost emotional misclassification 

rates are 3.50% between boredom and disgust for the EMO-

DB database and 8.01% between disgust and surprise for the 

eNTERFACE05 database. 

 

FIGURE 12. Confusion matrixes of the proposed 3D CNN with gender 

recognition. (a) An average accuracy of 94.42% on the EMO-DB dataset. 

(b) An average accuracy of 88.47% on the eNTERFACE05 dataset.  

 

    Concerning Figure 11 and Figure 12, the number of zero 

values for gender-based speech emotion recognition is higher 

than the one for speech emotion recognition without 

considering gender. Hence, the larger number of zero value 

cells in the matrixes from Figure 12, proves that the 

classification task has been more accurately done. The 

accuracy and loss factors help to authenticate the 

consequences of our work. The superb training and 

validation accuracy are acquired when converging upwards, 

and the supreme training and validation loss are gained while 

converging downwards. Figure 13 describes the accuracy and 

loss parameters for speech emotion recognition on the EMO-

DB database in speaker-independent experiments without 

defining gender recognition over 200 iterations. The rise in 

training and validation accuracy has been presented in Figure 

13 (a). The fall in training and validation loss has been shown  

in Figure 13 (b). Figure 14 demonstrates the accuracy and 

loss parameters for speech emotion recognition on the 

eNTERFAC05 database in speaker-independent experiments 

without determining gender recognition over 200 iterations. 

Figure 14 (a) shows the training and validation accuracy 

increasing, while Figure 14 (b) exhibits the training and 

validation loss decreasing. The analogous analysis is 

expected for explaining Figure 15 and Figure 16 which 

illustrates the accuracy and loss parameters with considering 

gender recognition. As comprehended from Figure 13, 

Figure 14, Figure 15, and Figure 16, the training and 

validation accuracy of the proposed 3D CNN with regard to 

genders for EMO-DB and eNTERFAC05 are superior to the 

state without regard to genders. Furthermore, the training and 

validation loss from the datasets in the suggested gender-
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based 3D CNN are notably lower than the status without 

gender consideration.  

 

FIGURE 13. Accuracy and loss parameters on the EMO-DB database 

without gender recognition. (a) Training and validation accuracy per 

epoch. (b) Training and validation loss per epoch. 

 

FIGURE 14. Accuracy and loss parameters on the eNTERFACE05 
database without gender recognition. (a) Training and validation 
accuracy per epoch. (b) Training and validation loss per epoch.  

 

FIGURE 15. Accuracy and loss parameters on the EMO-DB database 
with gender recognition. (a) Training and validation accuracy per epoch. 
(b) Training and validation loss per epoch.  

 

FIGURE 16. Accuracy and loss parameters on the eNTERFACE05 
database with gender recognition. (a) Training and validation accuracy 
per epoch. (b) Training and validation loss per epoch.  

    

   For showing the differences when gender recognition is 

added to the proposed method, two bar charts have been 

drawn. The graphs have categorized the average accuracy of 

the speech emotion recognition without and with considering 

gender recognition on each dataset. Figure 17 depicts the 

average rate for EMO-DB and Figure 18 illustrates the 

average rate for eNTERFACE05. In Figure 17, the magenta 

colour is specified to the average rate without gender 

recognition orientation and the cyan colour is defined to the 

average rate with gender recognition direction. In Figure 18, 

the green colour shows the average rate without recognizing 

genders and the blue colour displays the average rate with 

recognizing genders. As perceived from comparing Figure 17 

and Figure 18, the improvements of average accuracy by 

employing gender recognition technique on the 

eNTERFACE05 dataset are more sensible than the effects on 

the EMO-DB dataset. For example, the amelioration of 

average accuracy for happiness and sadness emotions on 

EMO-DB is negligible; however, the enhancements of 

average accuracy for those emotions on eNTERFACE05 are 

completely visible.  

 

FIGURE 17. Average accuracy of the speech emotions on EMO-DB. The 

magenta colour refers to the average rate without gender recognition and 

the cyan colour refers to the average rate with gender recognition. 

 

 

FIGURE 18. Average accuracy of the speech emotions on eNTERFACE05. 

The green colour refers to the average rate without recognizing genders 

and blue colour refers to the average rate with recognizing genders.  
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   Table X compares the speaker-independent average speech 

emotion recognition accuracy of the proposed 3D CNN 

without and with designating gender recognition technique in 

this work with the related publications and proves that our 

results are greatly substantial. [26] discussed an approach 

comprising a combination of a deep convolutional neural 

network with a discriminant temporal pyramid matching 

strategy for automatic affective feature learning to recognize 

speech emotions with the accuracy rates of 87.31% on EMO-

DB and 79.25% on eNTERFACE05. [32] presents a 3DCNN 

including two convolutional layers and one fully connected 

layer applying k-means clustering and spectrograms 

techniques in parallel for speech emotion recognition on the 

eNTERFACE05 dataset, obtaining the accuracy rate of 

72.33%. In [33], a 3D attention-based convolutional 

recurrent neural network for speech emotion recognition on 

the EMO-DB database with the accuracy rate of 82.82% by 

extracting features known static, deltas, and delta-deltas from 

the speech signals employing as the input to the 3D 

convolutional network has been introduced. [39] suggested a 

hybrid CNN involving 1D CNN and 2D CNN. In this 

method, a 1D CNN and a 2D CNN were designed and then 

merged together. Moreover, transfer learning was employed 

to speed up the training process in the merged CNN. The 

emotion recognition rate on the EMO-DB was 91.78%. In 

[40], a generalized discriminant analysis (GerDA) on the 

base of deep neural networks was recommended for acoustic 

emotion recognition. The accuracy rates on the EMO-DB 

and eNTERFACE05 corpuses were obtained 81.90% and 

61.10%, respectively. As explained from [41], two standard 

toolkits, frame-level by means of hidden Markov model and 

supra-segmental modeling using openEAR, have been 

applied for emotion recognition task. The accuracy of 

85.60% for EMO-DB and 72.40% for eNTERFACE05 in 

supra-segmental modeling was much better than the accuracy 

rates on the both corpora in frame-level modeling. In [42], 

BAUM-1 was presented as a new spontaneous audio-visual 

Turkish database and a multi-modal affective recognition 

algorithm according to apex frame selection was utilized. 

The experiments on the BAUM-1s and eNTERFACE05 

datasets for audio emotion recognition were 29.41% and 

72.95%. [43] proposed to learn emotion-salient features 

using semi-CNN with the recognition accuracy of 85.20% on 

the EMO-DB database. [44] introduced a method to 

utilization of the shuffle box cryptographic structure for 

feature generation and iterative neighborhood component 

analysis for feature selection to recognize the emotions from 

speech with the accuracy rate of 90.09% on the EMO-DB 

dataset.  [45] discussed  a bagged ensemble of support vector 

machines with a Gaussian kernel for the purpose of 

recognizing speech emotions. The accuracy rate on the 

EMO-DB corpus was 92.45%. [46] explained an approach 

for speech emotion recognition that combines attention-based 

long short-term memory (LSTM) recurrent neural networks 

with frame-level speech features. The accuracy rate of the 

emotion recognition on the eNTERFACE05 database was 

89.60%. Due to the complexity of the method used in [46], 

its accuracy is slightly better than our work. Finally, [47] 

described a deep neural network trained by multi-

conditioning and data augmentation employing Generative 

noise model to address the resilience of the speech emotion 

recognition with the accuracy rate of 82.73% on the EMO-

DB dataset. According to the comparison of this research 

with the state of the arts as understood from Table X, our 

suggested methods are remarkably worthwhile.   
 

TABLE X  

Comparison of the speaker-independent average emotion recognition  

accuracy (%) of the proposed 3D CNN models with other published works 
 

References 
Average Recognition Accuracy (%) 

EMO-DB eNTERFACE05 

[26] 87.31 79.25 

[32] Not Reported 72.33 

[33] 82.82 Not Reported 

[39] 91.78 Not Reported 

[40] 81.90 61.10 

[41] 85.60 72.40 

[42] Not Reported 72.95 

[43] 85.20 Not Reported 

[44] 90.09 Not Reported 

[45] 92.45 Not Reported 

[46] Not Reported 89.60 

[47] 82.73 Not Reported 

Proposed 3D CNN without Gender Recognition 90.40 82.20 

Proposed 3D CNN with Gender Recognition 94.42 88.47 

 

   The comparison of the speedups between CPU- and GPU-

based 3D CNN model executions is presented in Table XI. It 

shows the GPU speeds up the 3D CNN model without 

gender recognition by  1.33× and  1.30× faster for the 

EMO-DB and eNTERFACE05 datasets than the CPU-based 

running in our work. Besides and for the 3D CNN with 

gender recognition, the GPU implementations present shorter 

execution times by  1.31× and  1.30× faster for the EMO-

DB and eNTERFACE05 databases than the CPU-based 

implementations.  
Table XI  

Comparison of the speedups of the CPU and GPU executions 
Hardware Platform Model Dataset Runtime 

Intel CPU    

 

3D CNN without Gender 

Recognition 

EMO-DB 8:03   

Hours 

NVIDIA GPU EMO-DB 6:04   

Hours 

Intel CPU   eNTERFACE05 9:31   

Hours 

NVIDIA GPU eNTERFACE05 7:14   

Hours  

Intel CPU    

 

3D CNN with Gender Recognition 

EMO-DB 12:20 

Hours 

NVIDIA GPU EMO-DB 9:30   

Hours 

Intel CPU   eNTERFACE05 14:30 

Hours 

NVIDIA GPU eNTERFACE05 11:03 

Hours 

 

4. Conclusion 

This research presents a 3D CNN for speech emotion 

recognition application. The suggested 3D CNN directly 

employ the generated 3D tensors from the reconstructed 

phase space of speech signals. The results on EMO-DB and 



 

  

eNTERFACE05 datasets show that the proposed 3D tensors 

contain essential emotional cues of the speakers and 

consequently the 3D CNN can effectively and accurately 

classify the corresponding emotions. Employing gender 

recognition technique to the proposed 3D CNN conducts to 

the noteworthy accuracy rates on the datasets. Finally, a GPU 

has been applied to expedite the 3D CNN on the datasets by 

providing lower runtimes than the CPU executions.  
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