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 

Abstract— The accuracy of the magnetic resonance (MR) image 

diagnosis depends on the quality of the image, which degrades 

mainly due to noise and artifacts. The noise is introduced because 

of erroneous imaging environment or distortion in the 

transmission system. Therefore, denoising methods play an 

important role in enhancing the image quality. However, a 

tradeoff between denoising and preserving the structural details is 

required. Most of the existing surveys are conducted on a specific 

MR image modality or on limited denoising schemes. In this 

context, a comprehensive review on different MR image denoising 

techniques is inevitable. This survey suggests a new direction in 

categorizing the MR image denoising techniques. The 

categorization of the different image models used in medical image 

processing serves as the basis of our classification. This study 

includes recent improvements on deep learning-based denoising 

methods alongwith important traditional MR image denoising 

methods. The major challenges and their scope of improvement 

are also discussed. Further, many more evaluation indices are 

considered for a fair comparison. An elaborate discussion on 

selecting appropriate method and evaluation metric as per the 

kind of data is presented. This study may encourage researchers 

for further work in this domain. 

 
Index Terms— Magnetic resonance imaging, biomedical image 

denoising, brain MRI. 

I. INTRODUCTION 

AGNETIC resonance (MR) imaging is a trusted modality 

in clinical image diagnosis. The flexibility in the imaging 

modality provides better structural features of an organ. MR 

imaging facilitates multi-modal projection views with sectional 

images of equivalent resolution. The fundamental steps in MR 

image processing includes enhancement, registration, 

segmentation, object recognition and so on. Many methods 

have been reported for each of the steps. One of the essential 

step in enhancement is denoising. In general, noise in the MR 

image is characterized in terms of Rician distribution. However, 

MR images with low and high SNR values are characterized by 

Rayleigh pdf and Gaussian pdf, respectively. Further, noise in 

complex MR images is expressed in terms of additive white 

Gaussian noise. Noise in MR image increases the complexity 

of the diagnosis process for distinguishing the features. The 

noise is introduced due to erroneous imaging environment or 

processing in noisy transmission systems [1]. The effect of 
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noise is observed as blurring regions, random variations, 

unrealistic edges and artifacts. Further, presence of 

indistinguishable anatomical boundaries possessing significant 

information and low spatial resolution degrades the 

performance of computer analysis [2]. Therefore, eliminating 

noise and preserving the edges without introducing artifacts are 

the basic requirements in any denoising procedure. There are 

many popular image denoising methods which can also be used 

for MR image denoising.  For instance, mean, median, wiener, 

diffusion, domain and range based filters, stochastic and graph 

based approaches in spatial domain as well as transform 

domain. In a broad sense, we can classify the MR image 

denoising methods into two approaches: A. Hardware 

approach, B. Software approach. In the first approach, the noise 

elimination is achieved by improving the performance of MR 

scanning device. The patient may be scanned iteratively and 

then the mean value is taken. However, the performance of this 

approach is limited due to its large time averaging over 

repetitive attainments and limitation in accessing the hardware 

of the device. Further, the acquisition time makes the patient’s 

comfort and imaging dynamic applications impracticable. 

In the second approach, the images are denoised with a 

suitable software based post-acquisition scheme on the 

recorded data. This is an effective alternative for denoising and 

improving the visual clarity of an MR image. In this survey, we 

focus on the software approaches. The software approaches are 

further classified based on the medical image modelling 

categorization. The main philosophy of the proposed 

categorization is to simplify the complex system into a 

systematic representation. Further, it may be helpful in 

formulating hypotheses, organizing critical experiments, and a 

precise way for investigating general or specific quantitative 

phenomena. To have a systematic representation, a tree 

structure of various methods used in MR image denoising is 

presented in Fig. 1. The methods are categorized into spatial 

domain and transform domain. In transform domain, the 

approaches are grouped into data adaptive and non-data 

adaptive techniques based on the choice of basis functions. The 

data-adaptive techniques use independent component analysis 

(ICA) for noise elimination. The non-data adaptive techniques 

are further grouped into frequency domain and time-scale 

(wavelet) domain. 
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Fig. 1. Classification of MR image denoising methods. 

A further classification into filtering methods, stochastic 

methods, partial differential equation (PDE) based methods and 

hybrid methods can be implemented in both spatial or transform 

domain. Although, the presentation is classifying the different 

methods, it is to be noted that they are not exclusively different. 

Further, some methods may have interrelation.  

It is observed from the study that most of the research work 

is confined to a very limited sphere of methods used for 

denoising. The focus of most of the surveys is either on a 

specific MR image modality or on limited techniques used in 

reducing the noise. Further, a few evaluation indices are used 

for comparing the different denoising methods. That’s why we 

are motivated to carry out yet another survey on the denoising 

schemes. The categorization of image models used in medical 

image processing serves as the basis of our classification 

scheme. This categorization may suggest a helpful way in 

further research formulation and conducting critical 

experiments. An elaborate discussion on the challenges and the 

future scope of different denoising schemes is incorporated in 

this study. The merits and demerits of the different denoising 

schemes are summarized in a tabular form. Many standard 

evaluation indices are included for quantifying the performance 

of different denoising techniques. Further, this survey may help 

readers in selecting appropriate method and evaluation metric 

as per the kind of data, and effect of noise levels in different 

denoising approaches. An elaborate detail on this aspect is 

presented in the discussion section. It is believed that, there is a 

lot of scope for improving the denoising performance. This may 

help researchers in solving the inherent problems of different 

schemes used in MR image denoising. The rest of this 

manuscript is organized as follows: The existing techniques on 

MR image denoising are discussed in Section II. In Section III, 

the validation measures used to evaluate the different denoising 

methods are discussed. Section IV presents a comprehensive 

discussion on comparison of the denoising schemes. Finally, 

the survey is concluded in Section V. 

II. MR IMAGE DENOISING TECHNIQUES 

In recent years, many researchers have presented survey on 

MR image denoising techniques [4]-[11]. Mohan et al. [4] in 

their study, categorized the denoising methods into three groups 

based on filtering approach, transform approach and statistical 

approach. The authors discussed comprehensively on the 

filtering approach. However, little discussion is done on the 

other two approaches. Further, recent techniques on deep 

learning based schemes are also not included in the study.  

Additionally, very few evaluation metrics are used while 

comparing the different denoising techniques. Bhujle and 

Vadavadagi [9] presented a survey on the denoising techniques 

using the nonlocal mean (NLM) filtering approach only. They 

did not consider any other approach in their study. Garg and 

Juneja [10] presented a survey on the denoising approaches for 

multi-parametric prostate MR images i.e. diffusion weighted 

and T2 weighted MR images with Gaussian noise. Their study 

concentrated only on the filtering approach of denoising. 

Further, their survey is more of application specific. Goyal et 

al. [11] presented a survey on the denoising techniques based 

on the noise models. The authors considered the Gaussian and 

the Rician noise model only, which is a very common noise in 

MR images. Further, they discussed primarily on the spatial 

filtering and wavelet domain filtering approaches of denoising 

with a single performance metric for comparison. The authors 

did not consider any other approach or metric for a fair 

comparison. The following sub-sections describe the various 

denoising schemes as shown in Fig. 1. 

A. Data Adaptive Transform 

The data-adaptive transform based approaches use ICA 

algorithm for noise elimination. The algorithm is used for 

revealing statistical independent factors and blind source 

separation. ICA is a computation method for denoising the 

multidimensional MR data. This is a self-adaptive higher order 

statistical tool for modeling a computer vision system. 

McKeown et al. [12] suggested the ICA based technique for 

denoising functional MR images. The method is an effective 

tool on denoising random noise, eliminating pulsation and 

breathing artifacts. Sukhatme and Shukla [13] suggested ICA 

as a pre-processing approach with Eigen value decomposition 

and dimensionality reduction. It maximizes the mutual 

information, while minimizing the non-Gaussian noise in MR 

images. Pignat et al. [14] suggested the ICA technique in 

wavelet transformed image for improvising denoising 

performance. The method decomposes the spatial image into its 

corresponding wavelet coefficients. Then, ICA is employed for 

eliminating Gaussian noise. The method is also effective in 

enhancing edges in the image. However, denoising 

performance and computational complexity are the limitation in 

these approaches. They can be improved by incorporating 

appropriate optimization algorithms. 

B. Non-data Adaptive Transform 

These approaches are formulated using the frequency 

transforms, wavelet transforms (WT). In this domain, the noise 

elimination and structural preservation are achieved 
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simultaneously. 

1) Frequency Domain 

Frequency domain representation of MR images is attained 

using Fourier transform (FT). It reduces the small structure at 

the edges. A trade-off between the spatial information 

preservation and noise reduction is reported in [15]. In [16], the 

authors suggested FT based filtering for denoising MR images. 

The method used power spectra for estimating noise and 

measuring the standard deviation. Luo et al. [17] suggested a 

singularity function based reconstruction approach for 

denoising MR images. In their method, the image is first 

divided into a number of spectral units. Then, the denoising 

mechanism is applied on each spectral unit using 2D singularity 

function analysis. The denoised image is obtained through 

averaging reconstruction. Mustafi and Ghorai [18] suggested 

fractional FT based technique for denoising the medical images. 

The technique shows suitable characteristic for denoising the 

images with highly sensitive edges. It is also useful for blind 

source separation. In future, the denoising performance and 

edge sensitivity can be enhanced using the multistate nature of 

fractional FT. 

2) Time-Scale (Wavelet) Domain 

A wide variety of time-scale (wavelet) based MR image 

denoising schemes are reported in several articles in scientific 

and engineering journals. This transform decomposes the MR 

image into sub-bands of wavelet coefficients ranging from the 

roughest to the fine details. The coefficients with small absolute 

magnitude are usually noise or small structures at the edges in 

an image. Removing such values reduce the noise as well as the 

fine details in the reconstructed image. However, the selection 

of an accurate threshold value preserves the fine details, while 

improving the denoising performance. Xu et al. [19] suggested 

a spatially correlated noise filtration technique in the WT 

domain for MR image denoising. The regions with higher 

spatial correlation are associated with several adjacent scaling 

coefficients. Nowak [20] suggested a WT based denoising 

scheme for Rician distributed noise in magnitude MR images. 

Zaroubi and Goelman [21] suggested a complex denoising 

scheme for denoising MR images. It is achieved by shrinking 

noisy discrete wavelet coefficients using soft thresholding. The 

noise elimination is carried out by decomposing the image into 

two sets of orthogonal wavelet coefficients. Bao and Zhang [22] 

suggested the multiscale thresholding of wavelet coefficients 

with Canny edge detector for noise elimination. Wink and 

Roerdink [23] suggested WT based denoising technique for 

functional MR images. The method used 1D WaveLab 

thresholding in 2D wavelet coefficients. 

Wu et al. [24] suggested WT based technique for removing 

the Rayleigh distributed background in MR images. The 

wavelet coefficients are represented as non-stationary data. The 

uncorrelated noisy background is separated by scaling the 

wavelet coefficients. In [25], the authors suggested AWT 

approach for denoising MR images. The methods are adaptive 

to noisy data and SNR variations in the MR images. The 

correlation among the resolution scale is used for estimating the 

noisy wavelet coefficients. In [26,27], the authors suggested the 

bilateral filter (BF) in the WT domain for denoising MR 

images. This filtering approach effectively eliminates Rician 

noise while preserving edge features. Bartusek et al. [28] 

suggested an optimized WT (OWT) based technique for MR 

image denoising. The approach is intended for optimizing the 

threshold levels and selecting the mother wavelet. Luisier et al. 

[29] suggested the undecimated filter bank in wavelet domain 

for estimating the noise in MR image as non-centrality 

differentiable chi-square random variable. 

Habiba and Raghu [30], suggested dual tree complex 

threshold function in WT for denoising random noise in MR 

images. The method is employed for denoising infinite 

dimensional objects, such as: lines, curves etc. Dual tree 

complex thresholding function and WT are combined for 

successful balancing of smoothness and accuracy. Agarwal et 

al. [31] provided a comprehensive comparison of different WT 

schemes with random noise in MR images. In [32], Naveed et 

al. suggested a goodness of fit test on the WT coefficients of 

the noisy MR image. It employs an Anderson Darling statistics 

in the goodness of fit test context for computing the noisy WT 

coefficients. However, use of local noise variance for 

optimizing the denoising performance can be taken as a future 

direction in this approach. Further, WT can be replaced with 

some other transform which is rotational, translational and shift 

invariant. 

The wavelet transforms are not suitable for analyzing images 

with high dimensional edge structures. Wiek and Figiel [33] 

suggested curvelet transform (CVT) for denoising the brain MR 

images with high dimensional information content. The edge 

information in this transform is represented using theory of 

multiscale geometry. The frame features are represented using 

the position and scaling of the edges. The sparse representation 

of confined CVT frames facilitates Fourier integration and 

virtual differentiation operator. Bhadauria and Dewal suggested 

[34] an approach by combining the CVT and total variation 

method for denoising brain MR images. The structural details 

in the MR image is extracted from the residual noise component 

using the CVT technique. Vanitha et al. [35] suggested CVT 

for reducing the fractional Brownian motion noise in medical 

images. The thresholding schemes, such as: BayesShrink, 

NeighShrink and VisuShrink in combination with the curvelet 

transforms were experimented for effectively denoise MR 

images. Biswas et al. [36] suggested a wiener filter based CVT 

technique. This transform decomposes the image into disjoint 

scaling using a local Ridgelet transform. The CVT based 

techniques with a suitable thresholding are found effective for 

eliminating Rician noise in MR images. However, finding 

optimal threshold values can be a future scope for improving 

the denoising performance of this approach.  

Contourlet transform (CNT) is an extension of CVT that 

represents the multi-dimensional multi-resolution features in an 

image. This transform uses Laplacian pyramid and directional 

filter bank for decomposing the contourlet in specific frequency 

bands. The directional decomposition facilitates the allocation 

of different orientations and scaling at various resolution in the 

image. Satheesh and Prasad [37] suggested different 

thresholding approaches with CNT for denoising MR images. 

The method is implemented with different soft and hard 

thresholding approaches removing the Gaussian noise. It also 

provides an effective representation of high directional 
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anisotropic textural features. Kazmi et al. [38] suggested 

thresholding based CNT techniques for brain MR image 

denoising. The transformation is accomplished by two 

successive decompositions, as: multi-scale and multi-

directional. A Laplacian pyramid is used for the multi-scale 

decomposition for generating a set of low-pass and band-pass 

images. Further, directional filter bank is used for multi-

directional decomposition of each band-pass image into critical 

sub-samples.   It is to be noted that finding optimal threshold 

values can be a future scope for this denoising approach also. 

In sparse representation, the actual values of data points are 

reconstructed from the linear combination of the basis functions 

i.e. the sparse representation of the data points. Grouping of 

similar data blocks into a stacked array is called block-matching 

3D (BM3D). It provides a collaborative nonlinear filtering 

approach for eliminating the noise from the complex MR 

images, while preserving the edge information. Lin and Qiu 

[39] suggested the sparse representation for noise removal in 

transform domain. In the process, similar 2D blocks are 

grouped to form the 3D data array for sparsity enhancement. 

Further, collaborative filtering is used for preserving the unique 

features of each block, while eliminating the spurious noise. In 

[40], the authors suggested a modified BM3D (BM4D) 

approach for eliminating noise in MR images. The conventional 

BM3D technique is employed with the wavelet shrinkage for 

improvising the denoising capability. However, these 

approaches can be improved by combining with the CVT and 

CNT methods for denoising multi-dimensional MR images. It 

may be concluded from the above discussion that the transform 

domain approaches are found to be effective for denoising 

Rician noise in MR images as compared to spatial domain 

methods. 

C. Filtering Methods 

Here, a weighted kernel is used for modifying the pixel 

intensities. The convolution of the noisy image with the 

weighted kernel reduces the noise by decreasing the variance in 

the image. The used kernel may be linear or non-linear. 

Accordingly, the filtering methods are further classified into 

linear and non-linear filtering as shown in Fig. 2. Linear 

filtering is implemented using smoothing and temporal filters 

[41]-[46] for removing uniformly distributed noise. On the 

other hand, nonlinear filters are used for denoising images with 

unevenly distributed noise. Among the nonlinear filtering 

approaches, the anisotropic diffusion (AD) [47]-[53], NLM 

[54]-[63], BF [64]-[69] are considered in this study. 
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Fig. 2. Classification of filtering methods. 

1) Linear Filtering 

The smoothing filter approach uses a smoothing function for 

denoising the Gaussian noise (uniformly distributed noise) in 

an image. The convolution of the noisy image with a smoothing 

kernel decreases the Gaussian noise effect by reducing the 

variance in the image. However, fine details in the image are 

blurred due to the weight factor associated with the parameters 

used in the filtering kernel. Such techniques are implemented 

for reducing the elevated spatial frequencies in an image. In 

general, the smoothing filtering is achieved using the mean, 

median, wiener filters and their modifications. McVeigh et al. 

[16] suggested the wiener filters (WF) for reducing the 

Gaussian noise in MR images. They assumed that the noisy 

image contains higher values of spatial frequencies. The 

denoising techniques using such filters improve the SNR value. 

However, the feature details at the image edges are eliminated 

due to the blurring effect resulting in reduced clarity of the MR 

image. 

 Coupe et al. [41] suggested adaptive median absolute 

deviation estimator for denoising Rician noise. Mohan et al. 

[42] proposed an extension of the median filter (MF) utilizing a 

directional window. The spatial structural characteristic is used 

for edge preservation from the max and min median values. 

Bin-Habtoor et al. [43] proposed a cascade of mean and 

adaptive median filtering (AMF) for denoising speckle noise. 

However, the authors focused only on the edge regions using 

their cascaded approach. Kadam and Borse [44] proposed a 

spatial adaptive filtering for denoising the MR images. 

However, the denoising performance of the technique is limited 

to salt and pepper noise only. Ali [45] suggested the adaptive 

median and WF for eliminating the additive Gaussian noise in 

MR images. Seetha and Raja [46] compared different filtering 

based methods used in denoising MR images. The quantitative 

analysis shows the superiority of the AMF to adaptive wiener 

filter (AWF) in eliminating the additive Gaussian noise. The 

performance of all the smoothing filters is limited due to the 

elimination of small features. However, the denoising 

performance can be improved using an edge-preserving tool. 

Temporal filters are designed for eliminating temporal 

variations in an image. The temporal variations in the image 

sequences, such as rapid variation, spin echo effects and object 

movement are reduced by filtering the sampling intervals. 

Moreover, the sampling intervals are intuitively chosen for 

eliminating the aliasing noise. McVeigh et al. [16] suggested 

temporal filtering the MR images with different sampling 

intervals. The filter eliminates the narrow frequency 

components in the image. In the process, the signal components 

are also lost in the same narrow band, i.e. from the edges in the 

image. This also introduces aliasing noise at the broader 

frequencies resulting in a smoothed image. However, the SNR 

remains unaffected, because the noise as well as the signal 

reduces by the same factor. However, the denoising 

performance of this filter can be improved by combining it with 

the parametric stochastic methods. 

2) Nonlinear Filtering 

AD filters use diffusion in homogeneous regions while 

preventing diffusion at the edges. It does not require the image 
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details prior to the denoising process. These criteria make such 

filters popular among the non-linear filters. These filters 

overcome the difficulties of smoothing filters used in denoising 

along with preserving the object boundaries. AD filters result in 

selective diffusion on the local information from the 

neighboring pixels. They compute the group diffusion as a 

single diffusion value of its neighborhood by summarizing 

diffusions in each time step. The filter is based on 2nd order PDE 

(2PDE). Gerig et al. [47] proposed a nonlinear AD filtering 

method for denoising the 2D dual echo spin and 3D gradient 

echo MR images. The method is implemented for minimizing 

the information loss by preserving object details. However, the 

model is piecewise persistent and gradually varying resulting in 

sharp edges with a steady intensity slope. 

Murase et al. [48] proposed diffusion filtering of dynamic 

susceptible MR images for eliminating the Rician noise. The 

method is experimented in highly noisy environment of 

dynamic susceptible MR image. Samsonov and Johnson [49] 

proposed a noise adaptive AD filter scheme for eliminating 

Rician noise in MR images. This approach extracts the 

information content present at the edges in the T2-w MR image. 

It also smooths the intra region of the MR image depending on 

the differential structure. The resulting image is a multi-scale 

smoothed image with preserved fine details. Further, the 

authors proposed a non-linear AD filtering approach for 

spatially changing noise levels in MR images. They introduced 

a spatial noise distribution factor for eliminating the spatially 

changing noise levels [50]. Krissian and Aja-Fernandez [51] 

suggested a noise-driven AD (NDAD) filter for denoising 

Rician noise from MR images. The filter is dependent on the 

estimation of the standard deviation of noise and PDE of the 

MR image. It leads to the development of a coherent diffusion 

matrix based on the structural property of the image. The 

resulting filter is experimented for improving the rate of 

convergence while preserving the information content at the 

edges. Pal et al. [52] suggested a moment based AD filter for 

eliminating the Rician noise in MR images. The AD filter is 

remodeled by incorporating a diffusion coefficient. This is 

computed from the 2nd order moment of the Rician noise. 

Cappabianco et al. [53] suggested an operational AD filter for 

MR image denoising. It is a modification of the standard AD 

filtering model by incorporating a diffusive conductance factor. 

The edge stopping function used in the process preserves the 

structural details in the edges of the image, while diffusive 

conductance factor makes it suitable for noise estimation and 

contrast enhancement. However, this filtering scheme can be 

developed in future for processing the multichannel diffusion 

tensor MR images. 

It is observed from the literature that the use of local filtering 

results in large-scale structural preservation but elimination of 

finer details. To overcome this problem, the NLM filtering is 

experimented to exploit the redundant information in an image. 

This is accomplished by incorporating the mean of all pixels of 

an image with similar weight into the target pixel. Manjon et al. 

suggested different NLM based filtering schemes for 

eliminating Rician noise in MR image [54]-[56]. In [54], the 

authors suggested an unbiased NLM filtering approach for 

finding the optimal parameter in denoising magnitude MR 

images, while keeping the structure distinguishable. Instead of 

the pixel similarity comparison, they introduced a region based 

similarity comparison.  This process makes it independent of 

the local pixels and more robust for denoising. Further, the 

authors also suggested an adaptive NLM filtering based 

approach for denoising the MR images with spatially 

fluctuating noise levels [55]. Then, the authors suggested 

denoising techniques using the sparseness and self-similarity 

behavior in the MR images. The techniques are formulated on 

3D moving window based on cosine transform and 3D 

rotational invariant form of NLM filters [56]. However, the 

performance of such approaches is limited due to their 

computational complexity. Coupe et al. [57] suggested a fast 

NLM (FNLM) scheme for reducing the computation time in 

denoising MR images. The authors extended their work towards 

automatic and optimized blockwise NLM (OBNLM) filtering 

scheme for denoising 3D MR images [58]. It is achieved by a 

block wise implementation in parallel computing mode. In 

comparison to the conventional approach, this filter reduces the 

execution time significantly. Further, the OBNLM filtering 

with wavelet-based thresholding is used for denoising 

multiresolution MR images [59]. However, the performance is 

limited due to redundant spatial information. Liu et al. [60] 

suggested a Gaussian based undecimated NLM (UNLM) 

filtering scheme for eliminating biased deviations in 3D MR 

images. The denoising is carried out using the weighted average 

of gray levels in the global area. Hu et al. [61] suggested a 

denoising mechanism using NLM filter based on the discrete 

cosine transform (DCT). The method computes similarity 

measures in DCT space. This is modeled for eliminating the 

distortions due to noise and improving the computational 

complexity. However, similar textures in brain MR image may 

have different information content. 

Chen et al. [62] suggested a repetitive structure of 

collaborative NLM filters for denoising MR images. The 

structures from multiple scans are aligned to provide better 

features than the single scan. Further, the block matching in 

NLM enhances the edge preservation. Yu et al. [63] suggested 

a Laplacian Eigen map network based NLM filtering for 

reducing the noise in MR images. It is achieved by computing 

the similarity in extracted features. However, in future, the 

NLM filtering technique can be improved using textural 

features and optimization algorithms for obtaining better 

denoising performance with mix noise. 

BF is a non-linear approach of combining the nearby gray 

levels based on their geometric and photometric similarity. This 

filtering approach is introduced by Walker et al. [64] for 

smoothing images with nonlinear combination of neighboring 

pixels. The method uses the photometric similarity property for 

combining the gray levels or color scale on their geometric 

nearness, preferably nearer to distant values in domain and 

range. It incorporates the perceptual metric by smoothing gray 

levels and preserving edges. Mustafa and Kadah [65] suggested 

multiresolution BF (MRBF) for approximating sub-band 

decomposition and reconstruction in wavelet domain. The sub-

band decomposition using wavelet thresholding flattens the 
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gray levels and eliminates high frequency noise. Lin and Chang 

[66] suggested a parametric optimization technique using 

backward propagated artificial neural network (ANN) for 

optimal performance of BF approach. The ANN based 

parameter optimization uses the statistical and gray level co-

occurrence matrix features. Phophalia and Mitra [67] suggested 

rough set based BF (RSBF) for denoising Gaussian noise from 

MR image. The filter introduces a boost-up parameter of spatial 

nearness. The parameter is adaptive in terms of rough class 

label and edge map of the noisy MR image.  

A modification on BF for identifying the non-homogeneous 

regions in the image is a trilateral filter (TF). The method 

integrates local structural similarity in addition to geometric 

and photometric similarities for smoothing images. The method 

uses a narrow spatial window and takes only one iteration for 

smoothing the images. It is also experimented on 

multidimensional signals. In this method, the pixel values are 

replaced with the average values of the weights from geometric, 

photometric and local structural similarity in the neighborhood 

[68]. Chang et al. [69] proposed a modified TF for removing 

the fluctuation due to Rician noise. The filter uses the rank 

ordered absolute difference statistics based on extreme 

compression for eliminating the Rician noise in MR images. 

However, the filter parameter selection and optimization are the 

scope of further improvement in this approach. Further, the 

method can be improved in the direction of adaptive 2D 

filtering for random noise types. 

D. Stochastic methods 

The methods are inherently random in nature. This makes the 

stochastic methods more rational for processing the MR images 

in the noisy environment. A set of initial conditions and 

parameter estimation is prepared for modelling various 

estimators. The methods are used to estimate the noise 

characteristics and their variance property prior to the denoising 

process. Using a nonlinear function, the data can be modelled 

as the sum of the clean data plus additive Gaussian or Rayleigh 

noise. The Laplacian probability density function can be used 

for the clean data in the transformed domain. A prior 

distribution accurately characterizes the heavy-tail distribution 

of clean images and exploits the interscale properties of the 

transform coefficients. In addition, the parameters of the model 

can be estimated by using local information, thus, making the 

denoising algorithms spatially adaptive. A suitable model is 

chosen as per the noise variance characteristics in the MR 

images. Based on their population estimation criteria, the 

stochastic methods are categorized as shown in Fig. 3. 

Stochastic Methods
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Fig. 3.  Classification of stochastic methods. 

1) Maximum Likelihood Estimation 

Maximum likelihood (ML) estimation is a method of 

computing the parameters from the probability distribution of a 

finite Gaussian model. This is the value that maximizes the 

likelihood function in the parameter space. Sijbers et al. [70] 

suggested different approaches using ML estimation for Rician 

noise removal and image reconstruction. The ML estimation is 

formulated using two-stage acquisition method for obtaining 

noise variations. The method computes the amount of noise by 

subtracting two successive acquisitions of the same object. It 

reduces the bias effects that appear in the conventional ML 

estimation. Further, in [71,72], the authors suggested parameter 

estimation for complex valued MR data using ML method. 

Here, the Gaussian noise distribution in the complex MR image 

is remodeled in Rician distribution using its magnitude 

components. He and Greenshields [73] suggested nonlocal ML 

(NLML) estimation for Rician noise in magnitude MR image. 

It has taken the assumption that the pixels having similar 

neighborhood are from the same distribution. This method uses 

ML estimator in the nonlocal neighboring pixels for predicting 

the underlying noise. In [74-77], Rajan et al. suggested different 

models for estimating the noise level in an MR image without 

background. The noise variance is computed using the ML 

estimation and the local skewness. The method gives an 

effective solution for denoising magnitude MR image in the 

absence of the background. In [74], the authors suggested local 

ML (LML) estimation for denoising Rician distributed 

magnitude MR images with restricted local neighboring pixels. 

In [75], the authors suggested NLML estimation for estimating 

true information from MR images obtained from phased array 

coils. The method estimates the true information from the root 

sum square of the non-centrally distributed data. In [76,77], the 

authors suggested a similarity based NLML estimation for 

denoising MR images. The gray level similarity is computed 

using the Kolmogorov-Smirnov approach. 

2) Expectation Maximization Estimation 

The parameter estimation using expectation maximization 

(EM) method estimates the ML of a Gaussian mixture model in 

presence of latent variables. This method computes the latent 

variables and optimizes the model iteratively. Therefore, the 

computation of noise variance is avoided in the parameter 

estimation process. Maitra and Faden [78] suggested the EM 

technique for parameter initialization and variance estimation 

in denoising magnitude MR images. The parameter estimation 

is independent of the number of background pixels in the noisy 

image.  Martin-Fernandez and Villullas [79] suggested a 

probabilistic wavelet transform based denoising scheme for 

brain MR images. The model helps in merging two Gaussian 

distributions without deviating from the actual distribution. 

Further, the computational complexity is reduced by the 

iterative learning process. 

3) Linear Minimum Mean Square Error Estimation 

Brain MR image denoising using LMMSE is a versatile 

approach of minimizing the mean square error using quadratic 

loss function. The approach is found to be effective in the 

regions of image having dependent pixels. Aja-Fernandez et al. 

[80,81] suggested the use of LMMSE estimation for 

minimizing Rician noise in the diffusion weighted MR images. 

These methods use the local statistical sample distribution for 

computing the noise power in an image. The actual value of 
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each pixel is estimated using the adaptive LMMSE (ALMMSE) 

estimation from its local neighboring spatial information. 

Further, the dynamic noise estimation using the local statistical 

sample distribution is found effective for denoising and feature 

preservation in noisy MR images. 

Golshan et al. [82] suggested a signal dependent biased 

LMMSE estimation method for eliminating Rician noise in 

magnitude MR image. The method is a nonlocal LMMSE 

estimation approach for computing controlling parameters with 

the use of hard thresholding. Further, they suggested a modified 

recursive LMMSE (RLMMSE) estimation for denoising 3D 

MR images [83]. The method incorporates nonlocal 

neighboring spatial information for estimating the samples from 

the MR image assuming a random field. The structural 

similarity measure of the model is improved by considering the 

degree of redundancy in the 3D MR image. 

4) Bayesian Estimation 

This is a stochastic approach of estimating the true value of 

a pixel from its neighborhood in the absence of supporting 

parameters. Therefore, the method is also called as 

nonparametric estimation technique. Awate and Whitaker [84] 

suggested a nonparametric estimation method for denoising 

MR images. Considering the images as random fields, the 

method computes the higher order coherent data from the noisy 

MR image using reduction coupled Rician noise model. The 

neighboring structure is characterized using nonparametric 

density estimation for Bayesian denoising of MR images. 

Further, they [85] suggested an extended nonparametric 

empirical Bayesian method for preserving features and 

denoising MR images. Their method computes the denoised 

image statistics from the MR image with Rician distributed 

noise. This prior is estimated by an optimized data metric using 

EM technique. The generality of the empirical Bayesian 

approach for the prior estimation provides fitting methods for 

denoising and feature preservation in MR images.  

Rubio and Nunez [86] suggested a general approach of kernel 

regression framework for denoising Rician noise in MR images. 

The method is a zeroth order kernel regression for computing a 

weighted average in a regression window. The weighted 

average values are computed from the similar feature vectors 

associated with each data point. These features are 

characterized as second order kernel regression of true data 

point and its gradient vectors. This directional information 

substantially enhances the filter performance for denoising and 

feature preservation. Wong and Mishra [87] suggested a 

stochastic approach using quasi-Monte Carlo technique for 

estimating noise free image. The statistical characteristic of the 

noise free image is expressed as Bayesian least square 

estimation problem. The regional statistics for noise estimation 

is obtained in a data adaptive method. Monir and Siyal [88] 

suggested an anisotropic spatial averaging based approach for 

denoising functional MR images. The smoothing function is 

computed for every pixel in time-series. The method is 

independent of the test hypothesis information, while it is found 

to be suitable as a pre-processing stage for both hypothesis and 

data driven analysis. These methods use different adaptive 

median absolute deviation estimation in the detailed 

components in the wavelet-transformed image for eliminating 

the Rician noise. 

5) Phase Error Estimation 

Phase error estimation is a model based iterative restoration 

procedure. It computes the maximum a posteriori (MAP) 

estimation of phase and reflectance of speckle free object. The 

phase estimation of the noisy image is computed using a series 

of non-linear filters. The phase correction of each data point is 

reconstructed using the estimated phase error. The imaginary 

component in the estimated phase error is the noise contaminant 

in a noisy image. This can be eliminated easily. This procedure 

indicates the effective preservation of edges in the MR images. 

Tisdall and Atkins [89] suggested a phase error estimation 

based method for denoising MR images with low SNR values. 

This shows better edge preservation in comparison to the other 

nonlinear filtering approaches, such as: AD, NLM filtering. 

This is a potential denoising method for complex valued MR 

images without the risk of over smoothing. 

E. PDE Based Methods 

The higher-order PDE (HPDE) filters are suggested for 

minimizing the absolute value of image intensity’s Laplacian 

function. The resulting images appear natural than the step 

images obtained using the 2PDE. Lysaker et al. [90] suggested 

smoothing based 4th order PDE filter for eliminating the 

artifacts due to the staircase effects in MR images. Their 

technique is experimented in both space and time domain. It 

shows better results for the blocky effects in the smoothly 

changing grey values. Jin et al. [91] suggested a modified 

HPDE filtering for denoising MR images using the consistency 

of a pixel with its neighborhood. The pixel similarity measures 

the belongingness of a pixel in its neighborhood, thereby 

reducing the noise. Rajan et al. [92] suggested nonlinear 

complex diffusion approach in HPDE filtering for noise 

elimination in MR images. The nonlinear complex diffusion 

approach makes it effective in reducing noise as well as 

preserving information details in edges. Khanian et al. [93] 

suggested an optimal PDE filtering technique for MR image 

denoising. The method is based on a new stopping criterion 

using the higher frequency relative difference factor in a region.  

Jansi and Subashini [94] suggested a PDE based on Rudin-

Osher-Fatemi filter for denoising Rician noise in MR images. 

The method also eliminates the speckles from the edge regions 

by discontinuity treatment. Heydari and Karami [95] suggested 

modified diffusive function using pixel similarity in the 

neighborhood. Kollem et al. [96] suggested an adaptive 4th 

order PDE filters for denoising Rician noise in MR images. The 

filter is designed to reduce the execution time of the PDE by 

using the gradient and Laplacian function. Considering the 

whole image to be planar, the PDE approach attempts to reduce 

the noise while preserving the edge regions. However, these 

techniques can be further improved in smoothing out the higher 

frequency components while retaining the structural details in 

the highly noisy images. 
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F. Hybrid Methods 

Besides the discussions presented above, few studies are 

reported in the literature that uses a hybrid approach for 

denoising. The hybrid approach suggested by Liu et al. [97] is 

a combination of fuzzy clustering and NLM filtering for 

denoising brain MR images. The method is a patch-based 

approach for denoising structural redundancy in MR image.  

Ma and Plonka [98] suggested the hybridization of nonlinear 

AD filtering with CVT for preserving the edge discontinuity 

while denoising. Aravindan and Seshasayanan [99] suggested 

discrete WT in combination with monarch butterfly 

optimization algorithm for MR image denoising. Coupe et al. 

[100] suggested an automated NLM filtering approach in 

combination with the wavelet sub-band mixing for image 

restoration while preserving relevant image information. The 

filtering is improved using the multi-resolution approach. This 

is to make the smoothing parameters adaptive along frequency 

variations. Rabbani et al. [101] suggested a Laplacian mixture 

model in WT domain for reducing the Rayleigh distributed 

noise in MR images. The used statistical model helps in 

reducing the distortion in the denoising process. Ashamol et al. 

[102] suggested a hybrid approach combining the stationary 

WT (SWT) and CVT with AD filtering for denoising Gaussian 

noise in MR images. The SWT is good at representing point 

singularity and small patches, while CVT are sparse 

representation based multiscale transforms. Thus, the combined 

effort of these two transforms preserves better information in 

comparison to the individual transform. Further, AD filtering is 

reducing the pseudo-Gibbs artifacts. Kala and Deepa [103] 

suggested a hybrid algorithm, combining a spatial domain BF 

and optimized thresholding in WT domain for denoising MR 

images. The first stage spatial BF is used for denoising the low 

frequency sub-band of the decomposed image. The second 

stage BF denoise the high frequency components present in the 

noisy image. 

Zeng et al. [104] suggested a sparsely denoted hybrid 

approach for denoising MR images. The first one is the 

morphological WT coefficients and second is the sparsely 

represented texture based residual component. However, the 

denoising performance is not worthy enough. Besides these, 

there are optimization algorithms widely used in combination 

with the denoising schemes. These hybrid algorithms are 

effective in comparison to the denoising techniques used alone. 

Further, denoising models with optimal parameter increases the 

linearity with noise variance in an image [105]. Manjon et al. 

[106] suggested a nonlocal principle component analysis (PCA) 

based thresholding approach for estimating the local noise in 

combination with the rotational invariant form of NLM filtering 

for denoising images with spatial changing noise levels. This 

technique is experimented for rectifying the effects of non- 

stationary Rician noise introduced locally in an MR image. 

Chang et al. [107] suggested parameter optimization of the 

NLM filtering technique using PCA for 3D MR images. The 

method rearranges the data points in a decreasing order of the 

variance in the image. This disassociates the signal components 

from the noisy MR image by eliminating the noise components. 

Sudeep et al. [108] suggested the LMMSE based NLM filtering 

for denoising MR images. The similarity weights in NLM are 

estimated from the Euclidean distance between the pixels in the 

spatial domain. The similarity weights in NLM are estimated 

from the Euclidean distance between the pixels in the spatial 

domain. Assuming the signal dependent components are 

correlated, the uncorrelated noise elements are suppressed in 

the image. In [109], the author suggested BF technique for 

eliminating Rician noise in an MR image, while preserving 

edges. Usually, the performance of the approach is limited due 

to non-optimal parameters. This is achieved using Genetic 

Algorithm (GA). Jiang et al. [110] suggested a feed forward 

neural network based learning approach for denoising non-

stationary Rician noise in brain MR images. This is employed 

for reducing the computational complexity in parameter 

estimation using optimization algorithms. Ran et al. [111], 

suggested a Wasserstein generative adversarial network based 

approach for denoising MR images. Benou et al. [112] 

suggested a spatio-temporal approach for denoising dynamic 

contrast enhanced MR images. The method uses a deep neural 

network for establishing a deep auto encoder, where the training 

dataset is formed using different noise features. Xie et al. [113] 

suggested a deep learning based approach for denoising arterial 

spin labeling MR images. The method uses convolution neural 

network in combination with wide activation residual blocks for 

improving the denoising performance. Li et al. [114] suggested 

a distribution based neural network for eliminating Rician noise 

in MR image. The method consists of two residual blocks, one 

is for pixel domain fitting and the other is for feature domain 

matching. These blocks are used for formulating a progressive 

network learning procedure. However, these approaches 

increase the computational complexity and execution time in 

restoring the denoised image. 

Liu et al. [115,116] suggested a total variation based feature 

preserving denoising scheme for eliminating Rician noise in 

MR images. The method is a two-step WT domain approach for 

extracting spatially varying Rician noise map in the MR image.  

Further, the authors suggested a local variance estimation for 

computing the spatial adaptive regulating parameters. 

However, the computational cost of the non-local regulating 

parameters is a potential constraint in these methods. Pieciak et 

al. [117,118] suggested variance stabilized transformation 

approaches for denoising non-stationary Rician noise in MR 

images. These methods are analytically derived from the 

unbiased NLM filtering to a closed form of return to origin 

probability map. However, the methods are dependent on the 

initial values of the noise variance and SNR. Table I 

summarizes the merits and demerits of the various MR image 

denoising approaches along with the period of introduction and 

the relevant references. The method description could not be 

placed in the table and is elaborately discussed in this section. 
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TABLE   I 

SUMMARY OF DIFFERENT MR IMAGE DENOISING TECHNIQUES 

Methods Category Merits Demerits Ref. 

ICA based 

approaches 

Data 

adaptive 

transform 

The use of ICA algorithm eliminates the noise content in the image by 

decomposing the statistical independent and non-Gaussian data vectors. This 

approach of denoising enhances the edge sharpness while retaining the quality 
of the reconstructed MR image.  

The sliding windowing approach 

increases the computational complexity. 

Further, the need of noise free sample 
data or a minimum of two images of 

same scene, reduces the feasibility. 

[12]-

[14] 
2003 

FT based 
approaches 

Freq. 
domain 

 

 

These approaches are found effective for denoising MR images with higher 
value of SNR at low frequency by expressing the image as the combination of 

true MR image with some additive noise. The denoised image is reconstructed 

by thresholding the noise from its detailed information content. 

The denoising performance is limited to 
low noise images. Further, the efficiency 

of these methods is dependent on the 

threshold value selection 

[15]-

[17] 
1991 

WT based 

approaches 

Time- 

Scale 

(wavelet) 
domain 

This is a useful approach in representing image homogeneous regions 

separated by edges. The outlining ability of wavelet transform is utilized to 

decompose the MR image into definite sub-bands. The localization property of 
the approach makes it suitable for analyzing the nonstationary data points in a 

MR image.  

The information content at the smooth 

edges is also eliminated during the noise 

removal process. Further, the method is 
nominal in representing the images with 

high dimensional singularities. 

[18]-

[32] 
1991 

CVT based 
approaches 

This transform employs a phase space partitioning followed by Ridgelet 
transform, building the blocks of data in space and frequency. This opens up 

the possibility for analyzing an image with different block size using single 

transform. This makes the transform effective over the wide range of problems 
in analyzing the data for image denoising. 

The method is not effective for the 
images with smooth regions. This results 

in curvelet artifacts. Further, 

reconstruction using this transform is 
redundant, hence slower. 

[33]-

[36] 

2011 

CNT based 

approaches 

This transform is capable of exploring the two-dimensional geometric structure 

using sparse representation. The pyramidal directional filter bank structure 
helps in extracting contour and textural information in the image. The 

directional decomposition facilitates the allocation of different orientations and 
scaling for multi-resolution images.  

The translation invariance in the 

reconstructed image introduces Gibbs 
like artifacts. Further, obtaining contours 

from the smooth region in the image 
increases the computational complexity. 

[37]-
[38] 

2011 

Smoothing 

Filters  

Filtering 

methods 

These filters are effective in reducing the Gaussian noise in the high frequency 

spectrum of an image. This reduces the noise variance.  

The approach smoothens the sharp 

edges. This results in the loss of detailed 
information. 

[41]-

[46] 
1985 

Temporal 

Filters  

These filters are more suitable for eliminating temporal variations in an image, 

such as: rapid variation, spin echo effects and object movement.  

A major problem with this kind of 

filtering is that it reduces the noise as 
well as the image content, while spectral 

deviation is non-zero. 

[16] 
1985 

AD Filters This approach gives a single boundary solution for the complete image in 
spatial domain. Biased and modification of the conventional AD filters are 

effective in defining mathematical problems. This also gives a steady state 

solution.  

Small features at the edge regions are 
eliminated due to transformed image 

statistics. 

[47]-

[53] 
1992 

NLM 

Filters  

 

Here, the gray level similarity of a pixel value restores the redundancy in its 

neighborhood. The weight factor computed from the spatial similarity and 

mean differences is used for restoring the flat zones present in the similar 
regions. This also considers the geometrical configuration of a pixel in 

correlation with its neighboring pixels for preserving straight or curved edges.  

The filters need intensive computation of 

the Euclidean distance among the 

neighboring patches which increases the 
execution time. 

[54]-

[63] 
2008 

Bilateral 
Filters   

The use of photometric similarity property in bilateral filtering makes it 
effective in combining the gray levels to their geometrical similar neighboring 

pixels. The local and non-iterative approach ensures the edge preservation in 

the homogeneous regions of an image. The use of the perceptual metric for 
smoothing gray levels and preserving edges, makes it suitable for smart health 

care system.  

The denoising and edge preservation 
performance is dependent on the 

parameter setting. It is also observed that 

the filtering approach is not suitable in 
removing noise from lower spectral 

regions. 

[64]-
[69] 

2006 

ML 
estimation 

based 

approaches  

Stochastic 
methods 

The unbiased computational approach for parameter estimation over a large 
number of random samples makes it suitable for denoising images with random 

noise. The degree of freedom for the orientation and scaling vectors are 

computed from the correlation of pixels in the homogeneous region. This also 
makes the approach effective for denoising images with small data samples.  

Signal correlation in the image results in 
some biased data points in reconstructed 

image. Further, the parameter estimation 

of non-Gaussian data samples may be 
trapped in local optima. 

[70]-

[77] 

1998 

EM 

estimation 
based 

approaches 

This parameter estimation approach is independent of the number of 

background pixels in the noisy image. The computation of noise variance is 
avoided due to the latent variables in the parameter estimation process. The 

computational complexity is reduced due to the iterative learning process.  

The parameters may convergence to the 

local optima. Further, the convergence 
rate is slow due to the iterative learning. 

[78]-

[79] 

2009 

LMMSE 

estimation 

based 

approaches 

The method estimates the actual value of a pixel using the local statistical 

information. Considering the realization of noise free signal, the LMMSE 

estimation provides a closed form analytical solution. This makes the approach 

computationally effective for analyzing complex MR data.  

The parameter estimation is restricted to 

the samples from the local neighborhood 

only. Further, noise variance factor is 

prone to outlier due to the process of 
error value estimation. 

[80]-

[83] 

2008 

Bayesian 

estimation 
based 

approaches 

This stochastic approach does not use the supporting parameters for estimating 

the actual information content of a data point. The higher order coherent data 
are computed from the noisy MR images, assuming to be Markov random 

fields.  

The methods employ hypothesis testing 

rather than parameter estimation. The 
methods are computationally complex 

for the large volume of MR data. 

[84]-

[88] 

2005 

Phase Error 
based 

approaches 

This approach uses a series of nonlinear filtering for the phase estimation of 
the noisy image. This gives MAP estimation of phase and reflectance. The 

phase error component in the MR image is eliminated. The restoration 

procedure indicates the effective preservation of edges in the MR images. 

The accurate phase error estimation is 
highly essential. The process is also 

computationally complex. 

[89] 

2005 

HPDE 

based 

approaches 

PDE 

based 

methods 

These filters are very effective in eliminating the oscillations at higher 

frequencies, while preserving edges. They offer the flexibility in implementing 

various functions in reducing the different noises in MR images.  

The discretized application of the 

process converges to a constant after a 

few number of iterations. 

[90]-

[96] 

2003 
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TABLE II 

EVALUATION INDICES USED FOR VALIDATING DENOISING TECHNIQUES 

Indices Formula Description 

Mean square Error 
(MSE) [120] 

1 1
2

0 0

1
( , ) ( , )

M N

ref dno

m n

MSE X m n X m n
MN

 

 

      
This is a commonly used distortion measure. The parameter estimates the average of 
the square of errors. The parameter is nonnegative and values closer to zero are better. 

Peak Signal to 
Noise ratio 

(PSNR) [120] 

2

max

1010log
X

PSNR
MSE

   
This is extensively used for measuring the quality of the restored image. The parameter 
is defined as the ratio of peak signal power to the amount of noise in the denoised MR 

image. A higher PSNR value indicates better denoising ability of the scheme. 

Normalized 
Absolute Error 

(NAE) [121] 

1 1

0 0

1 1

0 0

( , ) ( , )

( , )

M N

ref dno

m n

M N

ref

m n

X m n X m n

NAE

X m n

 

 

 

 








 
This parameter shows the error value estimated from the intensity differences. A lower 
value approximating zero indicates lessor error in the restored image. 

Maximum 

Difference      

(MD) [121] 

 max ( , ) ( , )ref dnoMD X m n X m n   The parameter is a pixel difference based measure for evaluating the error value 

between the reference image and the denoised image. A lower value indicates better 

image quality. 
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The parameter is a correlation-based approach for measuring the structural similarity 

between the reference image and the denoised image. A lower value of the index shows 

better preservation of image quality. 

Normalized Cross 

Correlation  

(NCC) [121] 
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This parameter is used for computing the spectral feature similarity of the restored 

image with the reference image. A higher value approximating 1 is better. 

Structural 

Similarity Index 

(SSIM) [122] 
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  The parameter is computed for finding the similarity between the reference image and 

the denoised image. Its value should be within [0, 1]. A higher value indicates better-

restored image. 
Quality Index 

based on Local 

Var. (QILV) [123] 
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  This gives a comparison of local variance distribution of the restored image with respect 

to the reference image. A higher index value indicates better image quality. 

Image Quality 

Index (IQI) [124] 
2 2 2 2
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

 
  

This parameter indicates the accuracy of denoised image due to luminance and contrast 

distortion. This gives a weighted mixture of visually important qualities of an image. 

The index value approximating 1 indicates better image quality. 

Bhattacharya 

Coefficient       

(BC) [125] 
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This geometric similarity measure shows the probability of misinterpreted data points 

in the restored image. The values closer to 1 indicates better similarity in distribution. 

Mutual 

Information      

(MI) [61] 
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  The parameter shows the mutual dependency between the reference image and the 

denoised image. The higher value shows better registration of image. 

Relative Contrast 

(RC) [28] ref dno
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The parameter gives a quantitative value of object to background contrast ratio relating 

to the residual noise. A higher value of the metric indicates better denoising 

performance. 

Beta Metrics  

(BM) [47] 

1 1

0 0

1
2 2

0

[ ( , ) ( , )] [ ( , ) ( , )]

[ ( , ) ( , )] [ ( , ) ( , )]

M N

ref ref dno dno

m n

N

ref ref dno dno

n

X m n X m n X m n X m n

BM

X m n X m n X m n X m n

 

 





  



  





  The parameter is used for evaluating the structural preservation in the restored image. 

Its value lies in the range [0, 1]. A value close to 1 indicates better structural 

preservation.  

 

III. EVALUATION PARAMETERS AND DATABASES 

MR image denoising is a fundamental pre-processing 

requirement for the computerized analysis. This includes the 

process of estimating the noise content in an image while 

preserving the fine detailed information at the edges. The 

anatomical structure of brain is a critical issue for the processing 

and extracting information. As discussed in section II, there are 

several methods studied in the literature for denoising the brain 

MR images. The discussed schemes used different databases 

and evaluation indices for the validation. Therefore, a fair 

comparison among the techniques is quite difficult. 

The quantitative assessment of the algorithms is carried out 

using different denoising and structural evaluation indices. 

There are a large number of evaluation indices found in the 

literature for validating the denoising techniques. More 

specifically, SNR, MSE, structural similarity (SSIM), quality 

index based local variance (QILV) are the most used evaluation 

indices. A brief explanation of many other evaluation indices is 

presented in Table II. The symbol refX  represents the reference 

image and dnoX represents the denoised image. The other 

symbols used in the formulas carry the same meaning as 

specified in the corresponding literature. 

A. Brain MR Image Databases 

The performance evaluation of a denoising technique uses 

synthetic as well as clinical brain MR images. A large number 

of online databases are found that provide synthetic and clinical 

brain MR images. Table III gives a brief information about the 

publically available databases with their URLs and modalities. 

1) Synthetic image 

A synthetic MR image is produced using a computer system 

with advanced designing tools without an actual MRI scanner. 

The images are synthesized approximating the anatomical 

structure of the human brain using next generation techniques. 

It facilitates the researchers for generating a broad range of MR 

images with given specification. For instance, various 
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modalities of brain MR images are constructed by setting the 

echo time and repetition time. Further, it also allows 

customizing the image slice thickness, noise level, intensity 

inhomogeneity level etc. In addition, ground truth synthetic 

image is also available as the reference for evaluating the 

performance of a denoising technique. Fig. 4 shows the 

example of T1-w, T2-w and PD synthetic brain MR images 

taken from the BrainWeb database.  Each image volume 

contains 1mm slice thickness of size 181×217×181voxels. 

 

   
T1-w T2-w PD 

Fig. 4. Example synthetic image (with 9% noise) from BrainWeb database. 

 

2) Clinical image 

The performance evaluation of a medical image denoising 

technique also requires the use of clinical images. They are the 

real MR images obtained using an MR image scanner. The 

unavailability of a ground truth clinical image makes it difficult 

for validation purpose. Fig. 5 shows different modalities (T1-w, 

T2-w and PD) of clinical brain MR images taken from Allen 

brain atlas database. 

 

   
T1-w T2-w PD 

Fig. 5. Example Clinical images with noise from Allen brain atlas. 
 

 

TABLE III 
COMMONLY USED BRAIN MR IMAGE DATABASES 

Database URL Available image modality 

Brain 

Web 

https://brainweb.

bic.mni.mcgill.ca

/mri_sim.html 

Synthetic brain MR images with various 

modalities, percentage of noise, 

intensity inhomogeneity and slice 
thickness. 

IBSR https://www.nitrc

.org/projects/ibsr 

Clinical brain MR images with manually 

guided anatomical structures. This also 
provides the segmented ground truth 

images for the evaluation purpose. 

Harvard 
Whole 

Brain 

Atlas 

https://www.med
.harvard.edu/AA

NLIB/home.html 

Clinical brain MR images containing 
normal and diseased brain, such as: 

cerebrovascular, tumors, infectious 

disease images, etc. 
BITE: 

NIST 

Lab 

http://www.nist.

mni.mcgill.ca 

Vivo clinical images of patients with 

brain tumors. 

NBDC 

Human 

Data 

https://humandbs

.biosciencedbc.jp

/data-use 

Synthetic human anatomical data 

generated with advances in next 

generation sequencing for various 
modalities and artifacts. 

Allen 

brain 
atlas 

http://www.brain

-map.org 

Multimodal atlas of the integrated 

anatomic and genomic information 
contained brain data, such as: Under 

growing brain atlas, traumatic injuries, 

dementia and spinal cord atlas. 
QTIM 

Lab.  

http://martinos.or

g/qtim/miccai201

3/data.html 

Quantitative translational and multi-

contrast MR images with infectious 

diseases. 

IV. DISCUSSION 

Denoising is an essential pre-processing requirement for all 

MR image diagnosis procedures. Several techniques are 

discussed in detail in section II. A fair comparison of the 

discussed techniques is quite a tedious task. This is due to the 

use of distinct MR images from different databases. Further, the 

authors have used different evaluation indices for the validation 

purpose. For a fair comparison among the different methods, 

we have used the input and the output images given in the 

respective papers for computing the values of evaluation 

metrics. The denoising results are collected from the papers 

with (9%-12%) of Rician noise. The aim of this study is to 

assimilate the recent findings and present the new aspects on 

MR image denoising. The survey is conducted considering 

more than 100 number of research articles in the last two 

decades. The quantitative analysis of different methods is 

presented in Table IV-VIII. Note that the figures with bold faces 

in the tables show the best in class results. The ‘-’ in all the 

tables indicate unavailability of images/data in the respective 

papers. 

Preserving the structural details is an important concern in 

the process of MR image denoising. In spatial domain methods, 

preserving the edge details still remains a challenging factor. 

Table IV shows a quantitative comparison of different data 

adaptive and non-data adaptive approaches. Here, it is observed 

that the CVT approaches are found to be effective in denoising 

brain MR images. This is evident from the best values of MSE 

and PSNR. This may be due to the use of local Ridgelet 

transform in CVT domain for eliminating Rician noise in MR 

images. Further, restoration of multi-scale geometry 

components preserves most of the structural details. The 

directions of edges are obtained from the orientation and 

anisotropy information from its multi-scale geometry. The 

NCC and IQI values in the table show the performance of CVT 

in preserving structural details, while denoising. Although, the 

best denoising performance is observed with the CVT domain 

approaches, the MSE and PSNR evaluation indices with the 

BM4D approach are also close to the best values. Further, the 

best values of SSIM, QILV and BC indicate the efficacy of the 

approach in preserving the structural details. This may be due 

to the sparse representation of data points for obtaining the 

optimal thresholding values and multi-dimensional block 

matching in denoising. Further, the improved thresholding 

mechanism is automatic and adaptive to the statistical 

characteristic of random noise in the MR data. 

A comparison of different filtering methods as specified 

in Fig. 2 is presented in Table V. Among them, the performance 

of NLM based filtering approach is found to be effective. This 

is evident from the best values of MSE and PSNR in the table. 

These values are stated best in the OBNLM filtering technique. 

This may be due to the use of nonlocal pixel similarity in 

exploiting the redundant information in the image. Further, the 

evaluation indices NCC, BM, IQI and BC are showing the best 

values with this approach. This shows better preservation of 

image details, while denoising. Further, the evaluation indices 

SSIM and QILV are found to be better with the UNLM based 

techniques. This indicates the superiority of the approach in 

preserving structural details in MR images. In the meantime, 

their denoising performance is also closer to the NLM filtering
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TABLE IV 

COMPARISON OF DIFFERENT DATA ADAPTIVE AND NON-DATA ADAPTIVE METHODS USED IN DENOISING BRAIN MR IMAGES 

Approaches MSE PSNR SSIM QILV NCC BM IQI BC MI NAE 

WT [51] 38.18 30.56 0.8459 0.8718 0.9423 0.9025 0.9234 0.8819 2.001 0.2202 
SWT [102] 37.85 30.22 0.8718 0.8634 0.9275 0.9147 0.9027 0.8744 1.8742 0.1823 

CVT [36] 31.62 33.46 0.9573 0.8814 0.9752 0.9124 0.9441 0.8824 1.9241 0.1927 

CNT [37] 36.52 32.25 0.9438 - 0.9456 - 0.8528 - - - 
BM3D [39] 36.24 31.28 0.9457 0.9539 0.9417 0.9308 0.9119 0.8751 2.0132 0.1011 

BM4D [39] 35.23 32.32 0.9759 0.9872 0.9246 0.9142 0.9301 0.9078 2.2215 0.0857 

ICA [13] 30.34 25.82 0.9121 - - - - - - 0.1731 

 
TABLE V 

COMPARISON OF DIFFERENT FILTERING METHODS USED IN DENOISING BRAIN MR IMAGES 

Approaches MSE PSNR SSIM QILV NCC BM IQI BC MI NAE 

WF [91] 87.91 25.41 0.7592 0.7839 0.7028 0.7541 0.7423 0.7784 1.3451 0.1556 

MF [91] 53.71 25.99 0.7548 0.7823 0.7041 0.7624 0.7514 0.7851 1.4214 0.2673 
AMF [91] 44.33 27.18 0.7941 0.7951 0.7124 0.7628 0.7589 0.7891 1.5122 0.2475 

AD [51] 45.18 27.51 0.8027 0.8164 0.6841 0.7527 0.7432 0.7954 2.0241 0.2054 

NDAD [51] 44.24 30.8 0.8432 0.8893 0.8003 0.7788 0.7834 0.8624 2.7201 0.1151 
NLM [57] 40.21 32.04 0.8531 0.8956 0.9127 0.6899 0.8847 0.8834 1.9887 0.1034 

OBNLM [58] 31.35 35.64 0.9064 0.9112 0.9236 0.8314 0.8926 0.8756 2.2141 0.0998 

UNLM [60] 41.02 33.18 0.9131 0.9156 0.9221 0.7103 0.8882 0.8567 2.2582 0.1051 
BF [67] 44.53 28.77 0.8683 0.8966 0.8284 0.7485 0.7772 0.6959 2.1317 0.1763 

SBF [67] 51.31 28.45 0.8323 0.8695 0.8448 0.7721 0.8026 0.7264 2.0605 0.2041 

MRBF [67] 41.01 31.31 0.9008 0.8951 0.8754 0.8062 0.6995 0.8091 2.1846 0.1292 
RSBF [67] 42.44 31.13 0.8956 0.9092 0.8879 0.8021 0.7967 0.7628 2.0111 0.1955 

TF [68] 43.12 29.35 0.8547 - - - - - - - 

        
TABLE VI 

COMPARISON OF DIFFERENT STOCHASTIC METHODS USED IN DENOISING BRAIN MR IMAGES 

Approaches MSE PSNR SSIM QILV NCC BM IQI BC MI NAE 

ML [81] 51.25 28.27 0.8681 0.8019 0.8117 0.7541 0.7835 0.7547 1.9128 0.1339 
LML [83] 51.53 28.48 0.9101 0.8126 0.8234 0.7624 0.7935 0.8964 2.0124 0.1221 

NLML [83] 40.27 30.17 0.9145 0.8261 0.8361 0.7721 0.8127 0.9021 2.0342 0.1117 

EM [81] 44.11 22.18 0.8615 0.6516 0.8457 0.7442 0.8364 0.8842 1.9872 0.1242 
LMMSE [81] 38.61 29.17 0.8208 0.8325 0.8528 0.7029 0.8968 0.8479 2.1501 0.1037 

ALMMSE [83] 29.67 38.26 0.8949 0.8674 0.8625 0.7389 0.9168 0.8937 2.2379 0.1014 

RLMMSE [83] 44.05 32.42 0.9032 0.8793 0.8248 0.7841 0.8081 0.8651 2.4431 0.1121 

 

TABLE VII 

COMPARISON OF DIFFERENT PDE BASED METHODS USED IN DENOISING BRAIN MR IMAGES 

Approaches MSE PSNR SSIM QILV NCC BM IQI BC MI NAE 

PDE [90] 42.52 28.35 0.8521 0.7958 0.8035 0.7851 0.8015 0.8534 1.8954 0.1247 

Modified PDE [90] 40.12 30.25 0.8615 0.8392 0.8237 0.8102 0.8446 0.8872 1.6742 0.0987 
Adaptive PDE [95] 34.25 32.87 0.8787 0.8364 0.8482 0.7557 0.8115 0.8641 2.1002 0.0627 

 
TABLE VIII 

COMPARISON OF DIFFERENT HYBRID TECHNIQUES  

Methods MSE PSNR SSIM 

NLM-PCA [107] 32.26 31.71 0.8927 

NLM-FC [97] 29.14 35.90 0.8936 
UNLM-PCA [106] 28.61 38.64 0.9601 

WT-CVT [102] 33.54 30.20 0.8869 

WT-BF [27] 62.26 26.53 0.9080 
BF-GA [109] 33.59 30.13 0.8833 

LMMSE-PCA [108] 30.28 34.14 0.9190 

 

based approaches. They are specifically effective in eliminating 

blocky effects. The lowest value of NAE with this approach 

shows the least possible erroneous data in the restored image. 

However, their performance is not consistent with the 

multidimensional and multiresolution brain MR images. BF is 

found to be effective for these specific applications. The use of 

geometric and photometric features in the denoising process, 

makes it suitable for multidimensional and multiresolution MR 

images. The non-iterative mechanism makes it computationally 

effective in comparison to others. The best values of MI and 

NAE indicate the better registration of image details with lesser 

error. In addition to the discussed schemes, there are some 

hybrid approaches studied in the literature.  

From the literature, it is observed that the filtering methods 

are effective in denoising Gaussian noise in MR images. 

However, they introduce blurring in the edge regions, i.e. small 

details in the edge regions are eliminated. Table VI shows a 

comparative analysis of different stochastic methods as 

specified in Fig. 3. The ALMMSE estimation based approaches 

are found to be useful in denoising brain MR images. This is 

evident from the best in class values of MSE and PSNR in the 

table. This may be due to the inclusion of spatial information 

with acquired natural redundancy in computing the minimum 

MSE values. The adaptive nature of the approach towards the 

variation of local noise in the MR images makes it useful in 

preserving the structural details while denoising. This is evident 

from the best values of NCC and IQI parameters in the table. 

Further, the RLMMSE estimation based approaches effectively 

preserves the structural details. This is identified from the best 

values of QILV and BM parameters in the table. This may be 

due to the inclusion of diffusion weighted nonlinear 

information into the computation of minimum MSE value. 
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However, the approach is precisely effective for denoising 

Rician noise in MR images. The optimum value of MI with this 

approach indicates better registration of the image details. In 

combination with the LMMSE based approaches, the NLML 

estimation based approaches are also found to be effective for 

preserving the structural details. This is marked from the best 

values of SSIM and BC evaluation indices in Table VI. From 

the literature, it is also observed that the stochastic approaches 

in transform domain are effective in denoising non-stationary 

Rician noise in the clinical MR images. However, the 

computational efficiency is dependent on the population of MR 

data. 

A comparison of different PDE based MR image denoising 

methods as is shown in Table VII. From the study, it is observed 

that the PDE based methods are preserving edge details and the 

tissue regions in the non-homogeneous regions. However, the 

methods denoise the MR images at the cost of computational 

complexity. The adaptive PDE based method is found to be 

useful in denoising. This is evident from the best in class values 

of MSE and PSNR in the table. This may be due to the adaptive 

nature of the method towards the noise variation in the MR 

image. Further, modified PDE based method is effectively 

preserves the structural details. This is identified from the best 

values of SSIM, QILV, BM, IQI and BC parameters in the 

table. This may be due to the inclusion of diffusion weight in 

computation of nonlinear information. However, the method is 

used in denoising non-Gaussian noise with low SNR. The 

values of MI indicate better registration of the image details. 

From the literature, it is also observed that the PDE based 

methods are effective in denoising non-Gaussian noise in the 

MR images. However, the performance of the methods is 

limited due to their computational complexity. 

Table VIII presents the performance comparison of some of 

the hybrid approaches used in denoising brain MR images. The 

best values in the table show the hybridization of UNLM and 

PCA for denoising as well as preserving structural details. This 

may be due to the nonlocal PCA based thresholding of the 

images by automatic estimation of spatially varying local noise. 

Further, the use of UNLM filter makes it rotationally invariant. 

However, the efficacy of a particular method is dependent on 

the choice of imaging modality, level of noise and filter 

parameters. This opens the scope of research in this particular 

area.  

From the survey, it is found that the direction of the research 

is advancing towards automation of denoising techniques. 

Further, the recent trends show the use of artificial intelligence 

to make the schemes more feasible for clinical applications. A 

specific denoising scheme can be applicable for a particular 

modality of MR image with given noise. For instance, filtering 

methods are the simplest in implementation. They effectively 

denoise Gaussian noise in MR images. However, the 

performance is limited due to loss of structural details and 

creating blurred regions. Non-data adaptive approaches are 

providing better results for Rician and Rayleigh distributed 

noise in MR images. Stochastic methods are effective in 

denoising Gaussian and non-Gaussian noise in complex and 

real MR images. However, the computational efficiency is 

dependent on the population of MR data. PDE based methods 

are found to be effective in denoising non-Gaussian noise in the 

MR images. Hybridization of stochastic methods in transform 

domain or use of optimization tools or learning based methods 

is found to be effective for denoising non-stationary Rician 

noise in the clinical MR images. In MR imaging modalities, T1-

w images are preferably chosen for discriminating inter-tissue 

regions, whereas T2-w image are chosen for intra-tissue 

regions. Now a day, there are various MR modalities (FLAIR, 

dMRI) developed for more feasible clinical usage. 

V. CONCLUSION 

This paper provides a framework for categorizing the state-

of-the-art algorithms used in MR image denoising. The 

denoising techniques are grouped into spatial and transform 

domain based on the image model used for medical image 

processing. Further, they are categorized as filtering methods, 

stochastic methods, partial differential equation (PDE) based 

methods and hybrid methods. The proposed categorization is 

simplifying the complex system, helps in problem formulation 

and critical experimentation. A quantitative analysis is carried 

out using a wide range of evaluation indices, showing denoising 

and structural similarity in the restored images. This suggests 

the appropriate evaluation indices to be used in MR image 

denoising and the best method to denoise MR image with given 

noise. The findings of the study are – 1) Filtering methods are 

simpler and effective for eliminating Gaussian noise from the 

homogeneous regions. The potential drawback of the method is 

that they eliminate the small structures and the edge details by 

blurring the non-homogeneous regions. 2) Wavelet based 

transform domain approaches combined with stochastic 

methods are found to be effective in denoising and preserving 

edge details in the complex MR images. It is noteworthy to 

mention here that none of the methods discussed above is 

effective individually in solving the problem on hand. 

However, a justifiable combination of any of the approaches 

may bring fantastic results in denoising MR images. 3) 

Hybridizing the above two with stochastic approaches, 

optimization tools or the learning based methods gives better 

denoising performance. From this survey, the researchers may 

get knowledge about the most appropriate denoising technique 

for any specific MR image. The survey also highlights the 

challenges faced while using different denoising schemes and 

the inherent problems with various imaging modalities. In 

addition, many possible modifications are marked as the future 

direction for improving the performance of the existing MR 

image denoising techniques. 
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