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Abstract
Parkinson’s disease is found as a progressive neurodegenerative condition which affects motor circuit by the loss of up
to 70% of dopaminergic neurons. Thus, diagnosing the early stages of incidence is of great importance. In this article, a
novel chaos-based stochastic model is proposed by combining the characteristics of chaotic firefly algorithm with
Kernel-based Naı̈ve Bayes (KNB) algorithm for diagnosis of Parkinson’s disease at an early stage. The efficiency of the
model is tested on a voice measurement dataset that is collected from ‘‘UC Irvine Machine Learning Repository.’’ The
dynamics of chaos optimization algorithm will enhance the firefly algorithm by introducing six types of chaotic maps
which will increase the diversification and intensification capability of chaos-based firefly algorithm. The objective of
chaos-based maps is to select initial values of the population of fireflies and change the value of absorption coefficient so
as to increase the diversity of populations and improve the search process to achieve global optima avoiding the local
optima. For selecting the most discriminant features from the search space, Naı̈ve Bayesian stochastic algorithm with
kernel density estimation as learning algorithm is applied to evaluate the discriminative features from different perspec-
tives, namely, subset size, accuracy, stability, and generalization. The experimental study of the problem established that
chaos-based logistic model overshadowed other chaotic models. In addition, four widely used classifiers such as Naı̈ve
Bayes classifier, k-nearest neighbor, decision tree, and radial basis function classifier are used to prove the generalization
and stability of the logistic chaotic model. As a result, the model identified as the best one and could be used as a deci-
sion making tool by clinicians to diagnose Parkinson’s disease patients.
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Introduction

Parkinson’s disease (PD) is a disorder of central ner-
vous system and was first identified as ‘‘shaking palsy’’1

by Doctor James Parkinson in 1817. It is a progressive
nervous system disorder caused by degeneration of
brain cells which controls movement of different parts
of the body and is the second most neurodegenerative
disease after Alzheimer disease.2 The first symptoms
which characterize this disease are the problems of
movement. The problems in movement include tremors
and stiffness of limbs, impaired postures, and
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bradykinesia, whereas the other symptoms include sleep
disorder, cognitive disorder, and neurobehavioral prob-
lems.3 The findings of earlier research say nearly 90%
of PD patients are affected with a motor-related symp-
toms called dysphonia and have been used for PD diag-
nosis.4 In fact, this symptom can be observed even
5 years before being the patient diagnosed clinically
with PD. Hence, this has been used as a reliable mea-
sure for detecting and monitoring PD.5

Many functional learning algorithms have been used
by researchers for diagnosing PD patients using dys-
phonic measurements as the symptoms. A Gaussian
radial basis kernel6 used as the learning function for
support vector machine (SVM) for predicting PD data-
set after applying search model to reduce the size of
search space. Hence, four different dysphonic features,
namely, ‘‘Recurrence Period Density Entropy,
Harmonics to Noise Ratio, Pitch Period Entropy, and
Detrended Fluctuation Analysis’’ were selected to iden-
tify PD patients. For early detection of PD, a hybrid
instance-based learning model has been proposed7 by
combining a ‘‘chaos-based bacterial foraging optimiza-
tion (CBFO)’’ with a ‘‘fuzzy-based k-nearest neighbor
(FKNN).’’ The model shows better performance than
other optimization methods when simulated with vocal
measurements of PD patients. A hybrid model combin-
ing an ‘‘enhanced chaos-based firefly algorithm
(ECFA)’’ with ‘‘radial basis function (RBF) kernel–
based SVM’’8 develops an efficient model by predicting
discriminant speech patterns from PD dataset and also
helps to develop telediagnosis and telemonitoring
models.

An efficient classification model is designed in Dash
et al.9 by identifying relevant features from microarray
dataset employing a hybrid model by combining a meta
search method based on information theory with chao-
tic firefly algorithm (CFA). The experimental outcomes
of the research prove the quality of the hybrid model.
It is observed so far from the literature that Naı̈ve
Bayes algorithm can predict the binding residues of
DNA/RNA, whereas Murakami and Mizuguchi10 have
reported a novel kernel density estimation (KDE)–
based Naı̈ve Bayes algorithm which can also predict
the residues for binding proteins in protein sequences.
An adaptive block-wise Naı̈ve Bayes kernel machine
model is discussed in Minnier et al.,11 which operates in
multistage to improve the estimation of genomic bio-
markers in a diseased dataset.

Smart algorithms and optimization techniques have
been used for a long time to diagnose diseases. Recent
examples of research12 include adaptive neural net for
diagnosing diabetes,12‘‘multi-stage classification of con-
gestive heart failure based on short-term heart rate
variability,’’13 and ‘‘early prediction of paroxysmal
atrial fibrillation based on short-term heart rate varia-
bility.’’14 Recently, metaheuristic search algorithms

have been used efficiently for solving optimization
problems of different domains. Mostly, the metaheuris-
tic algorithms mimic the characteristics of living and
nonliving things and are not dependent on the charac-
teristics of the given optimization problem. Therefore,
the above-mentioned characteristic helps to broaden15

the field applications. There are two types of metaheur-
istic search algorithms used for feature selection pro-
cess, namely, single solution–based metaheuristics
(SBM) and population-based metaheuristics (PBM).
The difference between these two methods is that the
former uses a single solution for manipulation during
the search, whereas a population of solutions is used
for searching operation. Hill climbing, Tabu search,
and simulated annealing are some of the representative
examples of SBM,16 which suffer local optimum.
Unlike SBM, PBM methods adopt an iterative
improvement of the population of solutions. Some of
the PBM algorithms are genetic algorithm (GA),16 par-
ticle swarm optimization (PSO),17 differential evolution
(DE),18 and bat algorithm (BA).19,20 All these algo-
rithms start with an initial population of random solu-
tions at the beginning of the computation and then use
iterations for subsequent evaluations.

Among them, the most important algorithm in the
family of swarm intelligence is FA, which has been used
in several areas of approximation problems including
engineering practice.15,21–23 The FA is conceived on the
‘‘idealized behavior of the flashing characteristic of fire-
flies.’’ The literature study shows that22 FA has sur-
passed the ‘‘GA’’ and ‘‘PSO.’’

The two important characteristics of metaheuristic
search algorithm which play a crucial role in achieving
global optima are exploitation and exploration. Many
researchers have proposed several methods24–28 to
equalize them to improve the performance of meta-
heuristic algorithms. Recently, a paradigm of mathe-
matics known as ‘‘chaos theory’’ is combined with the
domain of stochastic optimization algorithms to
increase the efficiency. The three dynamic characteris-
tics of chaos,29–31 such as (1) ‘‘quasi-stochastic prop-
erty,’’ (2) ‘‘sensitivity toward initial conditions,’’ and (3)
‘‘ergodicity,’’ are attributed as the key factors to be
dealt with the stochastic optimization algorithms.

The random parameters of the probabilistic algo-
rithms are replaced by chaotic maps.29–32 Different
types of chaotic maps are used for tuning the attractive-
ness parameter b in the FA to enhance the convergence
rate and accuracy and ‘‘a chaos-enhanced FA32 is intro-
duced to automate the tuning of parameters.’’ Yang21

developed a chaos-based FA applying a ‘‘logistic map
for attractiveness’’ and ‘‘absorption coefficient in place
of Gaussian or Lévy flight distributed random vari-
ables’’ and applied to a global optimization problem. A
novel metaheuristic algorithm ‘‘chaotic crow search
algorithm (CCSA) was developed by Sayed et al.33 to
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optimize the feature selection problems employing 10
different types of chaotic maps to enhance34 the classifi-
cation performance and identify a reduced feature set.’’
In Dos Santos Coelho et al.,15 ‘‘a modified FA is devel-
oped by combining chaotic map to solve reliability and
redundancy based optimization problem.’’ In this case,
the logistic map improves the quality of the absorption
coefficient as well as the randomized parameter and
moreover shows outstanding performance over other
optimization techniques, like dynamic programming,
integer programming, and mixed-integer programming.
A ‘‘Tinkerbell chaotic map’’23 was combined with the
chaotic firefly and was tested against a multi-loop pro-
portional–integral–derivative (PID) controller with pro-
mising results. The hybrid model was also compared
with GA, PSO, standard FA, and modified FA. The
randomizing and attractiveness parameters were
enhanced with tent chaotic map35 for solving the eco-
nomic load dispatch application, and the reported
results shown good convergence characteristics on test
cases when compared with other soft computing tech-
niques reported in literature. In Gandomi et al.,30 the
attractiveness and absorption coefficient parameters of
chaos-based FA were enhanced with chaotic maps of 12
different types and applied to a global optimization
problem. The result was promising and showed that
some of the chaotic maps have surpassed the results of
the standard FA. Similarly, a metaheuristic CFA36 was
proposed for finding optimal solutions for ‘‘support
vector regression (SVR) parameters’’ that was used to
forecast the pricing of stock market considering all three
parameters of FA, that is, ‘‘randomized parameter,
attractiveness and absorption coefficient’’ that were
augmented with ‘‘logistic chaotic map.’’ The efficiency
of the algorithm has beat the results obtained by ‘‘chao-
tic genetic algorithm–based SVR (SVR-GA),’’ ‘‘firefly-
based SVR (SVR-FA),’’ ‘‘artificial neural networks
(ANN),’’ and ‘‘adaptive neuro-fuzzy inference systems
(ANFIS).’’ In addition to this, the components of FA
which are responsible for the movement of FA that is,
‘‘attractiveness and absorption coefficient,’’ were aug-
mented with a ‘‘sinusoidal chaotic map’’37 for a parallel
calculating numerical integration in engineering prob-
lem. The simulation results showed a high convergence
rate, high accuracy, and robustness of the proposed
CFA. In Fister et al.,38 various probability distributions
like uniform, Gaussian, and Lévy flights as well as logis-
tic and Kent chaotic maps are used to develop a rando-
mized FA, wherein the randomized parameters were
enhanced with the probability distributions and chaotic
maps and also produced a promising solution. CFA
was adopted for optimization of skeletal structure
design.39

The applications of firefly metaheuristic algorithms
can be found in many advanced problems like multi-
lingual named entity recognition40 and financial option

pricing where parallelization of firefly technique41 is
applied.

Selection of most relevant features or the patterns
from the complex and large datasets is a challenging
task. The feature selection technique of data mining
and machine learning is the appropriate measure to
handle this task by removing irrelevant and redundant
features.42 This method has been employed very effec-
tively in many areas namely, cancer diagnosis and
prognosis,43 text categorization,44 genome project,43

and image retrieval. Basically, the feature selection
techniques are categorized based on the use of classifi-
cation algorithms for evaluation purpose. Two most
widely used feature selection algorithms are filter and
wrapper-based algorithms.42 Filter-based algorithms
use statistical methods for evaluating the feature sub-
sets which are efficient in terms of computing time than
wrapper algorithms as it evaluates the feature subsets
using classification algorithms. They provide better
results than filter methods, but are computationally
expensive. Therefore, to alleviate this deficiency of
wrapper methods, metaheuristic search methods are
required9 that could help to reduce computing time to
achieve optimal solution rather than stuck up at local
optima.

The adaptive searching characteristic of metaheuris-
tic search algorithms increases the possibility of finding
optimal solution from the feature space. Several meta-
heuristic algorithms have been employed effectively in
many complex optimization problems. Some of them
are PSO,18,45,46 crow search algorithm (CSA),32 Grey
Wolf Optimizer (GWO),33 teaching–learning–based
optimization (TLBO),47 harmony search (HS),48

BA,19,49 moth-flame optimization (MFO),50 and ani-
mal migration optimization (AMO).51

CFA literature indicates that enhancing the chaotic
maps in the CFA has achieved higher convergence rate,
higher accuracy, and robustness. This implicates that it
increases the explorative power in the search process
that helps to overcome local optima problem.
Therefore, finding the best feature subset with no loss
of classification accuracy in diseased datasets particu-
larly in small complex clinical datasets is a major chal-
lenge. The literature survey has shown that the
developments in addressing this issue with the help of
metaheuristic search algorithms9 on the basis of com-
parison of numerous features, classification accuracy,
and generalization of features are very limited.
However, there is further scope to improve the search
process to detect the significant markers and to develop
the generalized predictive models for disease diagnosis.
Such that our work is a continuous study of Dash
et al.31 in which we analyzed how firefly algorithm can
be implemented for diagnosing PD.

The main contributions of this research are
explained in the following: a comprehensive study is
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designed to assign the initial values to the population
of candidate solutions chosen for fireflies using six dif-
ferent chaotic search maps and also use the same to
update the value of absorption coefficient g. This work
introduces a hybrid algorithm that uses the functional-
ities of the Naı̈ve Bayes algorithm based on kernel esti-
mation approaches for assessing the quality of the
proposed objective function. Here, again objective
functions of six different types are considered by com-
bining six types of chaotic maps with standard firefly
algorithm (SFA). The efficiency of the chaotic search
models is evaluated in terms of PD dataset in view of
the length of subsets, light intensity, p values, and fit-
ness values. In the final step, the credibility of the
resulting subsets is tested applying five well-known
classification algorithms.

The organization of this article is as follows: an
overview of the functioning of kernel density
estimation–based Naı̈ve Bayes algorithm is presented
in section ‘‘Kernel density estimation function–based
probabilistic algorithm.’’ A description of the problem
methodology is given in section ‘‘Description of meth-
odologies used.’’ Section ‘‘Proposed kernel density
estimation–based probabilistic chaotic firefly algorithm
(CFA-KNB)’’ presents the proposed kernel density
estimation–based probabilistic chaotic firefly algorithm
(CFA-KNB) and the dataset and the environment of
experiment is explained in section ‘‘Settings of the
experiment.’’ The analysis of the experiment and dis-
cussion is explained in section ‘‘Results and discus-
sion.’’ Section ‘‘Conclusion’’ concludes the article with
future work followed by an exhaustive reference
section.

Kernel density estimation function–based
probabilistic algorithm

Naı̈ve Bayes is a probability-based learning algorithm
to be used in specific scenarios involving supervised
learning problems. Generally, it is a specialized form of
Bayes Rule called as Naı̈ve as it depends on two impor-
tant assumptions.52 In particular, for the given class,
the predictive features are conditionally independent
from each other and the second assumption asserts that
any hidden features cannot affect the prediction model.
The NB algorithm has proved its efficiency in variety
of application areas such as disease diagnosis,53 text
processing,54 and image processing.55 The core func-
tioning of Naı̈ve Bayes algorithm is exemplified as in
an instance, the class value is assigned as ‘‘C’’ and X is
a random variable representing the observed values of
the attributes. Let the observed feature values of the
training dataset (X, C) be vector X = (x1, x2, x3, ...,
xn) for C = (c1, c2, ..., cm). The predictive features of
the observed sample of a given vector and the

probability of each corresponding class values can be
evaluated with the help of equation (1)
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where j = 1, 2, ......, c.
P(Yj) is the prior probability of class Yj and P(Yj|X)

is the conditional probability density function of the
class Yj.

For the given dataset, it is assumed that each vari-
able has achieved conditional independency. Hence,
equation (2) can be applied to estimate the test dataset
using the training dataset
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where j is the class value that varies from 1 to c, Xi is
the value of ith attribute of vector X, and n is the total
number of attributes.

Moreover, equation (3) is used to calculate the prob-
ability distribution function over the set of observed
features
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where Ci is the ith class.
However, NB handles continuous and discrete attri-

butes in a different way. For each discrete attribute, the
probability that the attribute X will take a particular
value x when the class value c can be assigned by a sin-
gle real number either 0 or 1 and is represented as
p(X = x/C = c), whereas each continuous feature is
modeled by some continuous probability distribution
over the range of the values of the attribute. In Naı̈ve
Bayesian approach, often an assumption is made that
the values of the continuous features are normally dis-
tributed within each class which can be represented as
mean (mc) and standard deviation (sc). Hence, the
probability of an observed value can be efficiently com-
puted from the estimates. Therefore, the continuous
features can be written using equation (4)

P X = x C = cjð Þ= g X ; mc,scð Þ ð4Þ

where

g x; m,sð Þ= 1ffiffiffiffiffiffiffiffiffi
2ps
p e

� x�mð Þ2
2

s2 ð5Þ

Equation (5) represents the probability density function
(pdf) of a normal distribution function and the first
term is the conditional probability estimation. The
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drawback of it produces a small set of parameters for
estimating training data.

To overcome this issue, the density of each of the
continuous features56 of the PD dataset is estimated
using KDE function, and then, the calculated density
estimation is averaged over a large set of KDE for iden-
tifying PD patients from healthy one. Hence, the condi-
tional probability Pi(xi|C = c) can be estimated using
KDE for the training dataset applying equation (6)

Pi xi C = cjð Þ= nhð Þ�1
X

j

K
x� mi

h

� �
ð6Þ

where s and K are replaced by h and g (x, m, 1). The
advantage of kernel density estimator–based NB over
simple NB is that the former computes the pdf n times
and the later computes only once for each of the observed
values of X in the class c that indicates K as the possible
number of unique values of features of input X.

Description of methodologies used

In this section, firefly algorithm and the chaotic maps
are highlighted before being used to develop the pro-
posed model.

Firefly—a metaheuristic algorithm

Firefly algorithm is a member of the family of swarm
intelligence algorithms and was developed by Yang.22

The lighting bugs called fireflies generally seen flashing
their lights in the sky during summer nights. The signif-
icance of the flashing behavior of fireflies is either to
draw attention of a mating partner or to get shielded
from the exploiters. Another important characteristic
of fireflies is that not only the intensity of the light I
gets decreases when the firefly is away from the brighter
one but the air also affects the light intensity by absorb-
ing it when the distance increases. As a result, the value
intensity of light is directly corresponding to the fitness
value. However, the complexities of the natural beha-
viors of fireflies motivate to make three assumptions
for developing a working principle of the algorithm.
The suppositions are as follows:

1. All fireflies assumed to be unisex and attraction
happened among them regardless of their sex.

2. Attractiveness is relatively proportional to the
brightness of fireflies and it reduces as the dis-
tance increases between them.

3. The brightness or the light intensity is computed
by the feasible solutions of the objective
function.

It is very clear from the suppositions that the inten-
sity of light I(r) of fireflies is inversely related to the

distance r as it decreases when distance increases and
again light also gets absorbed when passes through the
air. The notation g is used as coefficient of light absorp-
tion. As a result, equation (7) shows the variation of
intensity of light I(r)22 of fireflies with respect to dis-
tance r

i rð Þ= I0e�yr2 ð7Þ

where I0 is the initial value of intensity at the source
and the attractiveness parameter b can be defined in
two different ways as shown in equations (8) and (9)

b rð Þ=b0e�yr2 ð8Þ

or

b rð Þ= b0

1+ yr2
ð9Þ

when distance r = 0, the attractiveness parameter is
denoted by b0.

The movement of fireflies is computed22 from the
following behavioral rule that is when the firefly at
position xi gets closer by the attractive power of a
brighter firefly at position xj, then the new positional
value is calculated following equation (10)

xi+ 1 = xi +b0e�yr2

xj � xi

� �
+ae ð10Þ

where a represents randomization parameter and e is
used as a vector of random numbers and both are
derived from Gaussian distribution. The xi term of
equation (10) denotes the position of ith firefly and sec-
ond term represents attraction between fireflies.

Characteristics of chaotic maps

The chaos optimization theory is a nonlinear phenom-
enon29,30,32 that develops the trajectories to traverse all
the states nonrepetitively in a certain range, hence
enabling to provide an optimal search configuration
for the problem. The chaos theory transforms the can-
didate variables from chaotic sequences to solution
space by strictly adhering to the initial condition. Three
of the characteristics of chaotic optimization theory,
namely, ‘‘randomness,’’ ‘‘ergodicity,’’ and ‘‘regularity,’’
of chaotic motion help to secure global optimal solu-
tion avoiding the limitation of local optima. Hence, the
integration of chaotic maps into the metaheuristic algo-
rithm enhances the efficiency of nature-inspired meta-
heuristics33,34,57 by using the deterministic chaotic maps
instead of the random variables. However, from the lit-
erature study, it can be surmised that sharpening the
chaotic maps in the CFA structures will lead to the fol-
lowing enhancements: ‘‘higher convergence rate, higher
accuracy, and higher robustness.’’ These introduce a
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higher diversity in the search process preventing it from
being localized. Retrospectively, Fister et al.38 indicate
the importance of the problem in the efficacy of the
algorithm.

In this research, chaotic maps of six different types
are used for initializing the population of firefly algo-
rithm and also used for varying the value of absorption
coefficient instead of maintaining a constant value
throughout the search process. This hypothesis helps to
identify most relevant subset of features from PD data-
set to optimize the predictive accuracy and generalize
the predictive model.

Six different chaotic mappings, namely, logistic
map, sine map, Chebyshev map, circle map, gauss/
mouse map, and piecewise map, are surveyed here to
generate chaotic sequences for the FA. The objective of
this problem is to select the best mapping of chaotic
map with FA after making a comprehensive compari-
son of all six chaotic mappings30,32 based on the basis
of length of the feature subset, accuracy, and
generalization.

Logistic map. Second-order polynomial function15 is
used to generate the chaotic sequence

xk + 1 = rxk 1� xkð Þ ð11Þ

where r denotes the control parameter. The range of
values assigned to x0 and r are as follows: 0 ł x0 ł 1
and 0 ł r ł 4. The logistic map, x0, should not take
the value from {0.0, 0.25, 0.75, 0.5, 1.0}. Equation (11)
indicates a deterministic dynamical system with discrete
time. When r = 4 and the values bounded within the
ergodic area, 0 ł x0 ł 1, the system enters to fully
chaotic state. This configuration of the map is adopted
in this article.

Sine map. The following discrete time dynamical sys-
tem29 is produced by sine map

xk + 1 = l sin pxkð Þ ð12Þ

where l is the control parameter in the range 0 ł l

ł 1 and the range of ergodic area is [0,1].

Chebyshev map. The following iteration function58 is
used to produce the Chebyshev chaotic sequence

xk + 1 = cos kcos�1 xkð Þ
� �

ð13Þ

where k represents the number of iteration, and the
range of ergodic area for the map is [0,1]. This map is
used to obtain the chaotic time series xk.

Circle map. The following iteration function is used to
generate the chaotic sequence xk in circle map using
a = 0.5 and b = 0.237

xk + 1 = xk + b� a� 2pð Þ sin 2pxkð Þmod ð14Þ

The range of the ergodic area of the map is [0,1].

Gauss/mouse map. The nonlinear iterated function given
in equation (15) is defined by Gaussian function32

xk + 1 = exp� axk
2 +b ð15Þ

The deterministic chaotic sequence is produced in
the interval xk = ½0, 1� using a = 4.9 and b = 20.58.

Piecewise map. The following iterated function33 is used
to evaluate the four linear pieces that generate the chao-
tic sequence for the map

xk + 1 =
xk

d
, 0 ł xk ł k; xk �

d

0:5

� �
� d, d ł xk\

1

2

1� xk

d
, 1� d ł xk\1

1� xk

d
, 1� d ł xk\1

ð16Þ

where the endpoints of the four subintervals are
denoted by d range of values set as de [0, 0, 5] and the
computed chaotic time series capture the interval xne
[0, 1].

Proposed kernel density estimation–based
probabilistic chaotic firefly algorithm
(CFA-KNB)

The proposed kernel-based metaheuristic model inte-
grates a chaos-based search algorithm for optimizing
the search operation and a kernel-based stochastic
learning algorithm to measure the fitness of the subsets
of feature obtained from each iteration.

In this model, the fireflies are represented as chaotic
variables rather than randomly distributed variables.
The initial population of the search algorithm is
selected using chaos-based firefly algorithm. The chao-
tic sequences xi developed by different chaotic maps
update the positions of fireflies and the absorption
coefficient g in the solution space. Even though, the
random initialization generates a homogeneously dis-
tributed fireflies in the solution space, but the conver-
gence to the optimal solution is not sure. On the
contrary, the chaotic mappings not only select37 impor-
tant fireflies from homogeneously distributed fireflies
but also enhance the precision and convergence rate of
the coupling metaheuristic algorithms. Since the
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random vector term e is being affected by the step size
of the random movement a, therefore, the third term
of equation (10) is substituted by chaotic time series
shown in equation (17). Similarly, the attractiveness
parameter b appears as second term in equation (10) is
being replaced by chaotic time series as shown in equa-
tion (18)

ei = ci
k ð17Þ

bi =b0ci
k ð18Þ

where ci
k represents the chaotic maps but the type of

maps being determined by the superscript k.
From equation (10), it is quite apparent that the

social movements of fireflies which play an important
role in finding most relevant candidates from the popu-
lation are regulated by the attractiveness parameter b

which in turn depends on the light absorption para-
meter g. Generally, it assumes a fixed value throughout
the optimization process. Though this parameter con-
trols the changes in the attractiveness, and its value
determines the speed of convergence and behavior of
FA algorithm, therefore, in this study six types of chao-
tic maps (ci

k) will be used to tune g to understand its
effect on the optimization process. While determining
the value of g, two limiting cases can be derived from
equation (10), namely, when g! 0, b tends to b0, so
that all fireflies can see each other and when g!N,
they move randomly

xi t+ 1ð Þ= xi tð Þ � bexp�gx tð Þ2 xi tð Þ ð19Þ

The parameter g now characterizes the variation in
the attractiveness, and its value is crucially important in
determining the speed of the convergence and how the
FA algorithm behaves. The chaotic map ci

k tunes this
term and computes the position of fireflies. Therefore,
to achieve the above-mentioned objectives, there is an
effort given in this work by coupling six different types
of chaotic mappings with the standard firefly for recog-
nizing the map, which shows strong impact on the
search process and develops a generalized feature selec-
tion model. The mathematical description of all the
mappings is given in section ‘‘Characteristics of chaotic
maps,’’ and the metrics to measure the performances of
all the chaotic maps of the model will be explained in
section ‘‘Performance metrics.’’ The chaotic maps are
integrated into a wrapper-based FA for selecting an
optimal subset of features that characterizes the whole
problem. The flow representation of the model is
depicted in Figure 1 and the functional model is
described in Algorithm 1, which will be executed in a
loop structure. The optimization of feature selection
process via 10-fold cross-validation (CV) is carried out
in the inner loop, and the outer loop performs the clas-
sification of PD using stratified 10-fold CV employing

the optimal feature subset obtained from inner loop
discussed in section ‘‘Comparison of classification per-
formance of (CFA-KNB) model with other models.’’
The framework of the model is illustrated in Figure 2.

Initialization of experimental parameters of CFA

The chaotic sequences generated by equations (11)–(16)
are being used by the population of fireflies to create
an initial mapping and also change the chaotic values
of absorption coefficient g during the iteration process.
The initialization of the remaining parameters is done
with the values following Goldberg16 with few excep-
tions described in section ‘‘Results and discussion’’ and
summarized in Table 1. The position of each of the fire-
fly in the population indicates a subset of features of
varying sizes.

Algorithm 1. Kernel-based chaotic firefly algorithm

Input: Population of fireflies x = (x1, x2, ..., xN);
Output: Best solution xbest and value of fmin = min(f(xbest))
Objective function f(xi); i = 1, 2, ..., .N
Begin
Set the initial values of Max-Gen, t
Initialize the position of fireflies xi using chaotic map
xi

0ð Þ ¼ x1
0ð Þ; x2

0ð Þ; . . . . . . ::; xn
0ð Þ� �

; i ¼ 1; 2; 3; . . . ;N
Compute the fitness value of each fireflies using fitness function
fn(xi

0ð Þ)
and formulate light intensity Ii so that it is associated with f(xi)

Set t = 0;
while (t \ Max-Gen)

Get value of chaotic map Ci(k)
Tune absorption coefficient g using Ci(k)
Define attraction parameter b
for i = 1: N (N = number of fireflies)

for j = N (N = number of fireflies)
if (Ii . Ij)

move firefly i toward j
end if
compute attractiveness parameter b which varies
with distance r via
exp(2g r2)

rij = xi � xj

		 		=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD
k= 1

xik � xjk

s
Evaluate new solutions and update light intensity of
fireflies and position of fireflies

xi
t+ 1ð Þ= xi

tð Þ � bexp�gx tð Þ2
xj

tð Þ � xi
tð Þ� �

+aei

Evaluate fitness function fn(xi
tð Þ) for new solutions

and update the corresponding light intensity I
endfor j

endfor i
Rank fireflies based on fitness value and find the current
xbest

t = t + 1;
end while

Post-processing the results and visualization
End
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Fitness evaluation function

The fitness function is used to evaluate the discrimina-
tive power of each of the candidate solutions (fireflies)
iteratively using 10-fold CV scheme. The stability of the
model could be achieved through 10-fold CV by ran-
domly splitting the dataset into two training and testing
datasets. The fitness function given in equation (20) is
designed by considering the objectives of the proposed
model, namely, optimizing the rate of accuracy and the
length of the subset. Both of them are assigned with
weight factor proportional to their contribution in the
process of optimization. A kernel density estimator–
based probabilistic supervised algorithm, that is, KNB,
is proposed to evaluate the efficiency of the feature sub-
sets in view of learning accuracy and mean squared
error (MSE). The advantage of KNB over standard
NB is each of the observed value of X in a class c is
computed n times, which is called the kernel (K): the
number of possible unique values of features in input X

Fn xið Þ= dp
Y

X

� �
+ 1� dð Þ 1� SF

TF

� �
ð20Þ

where P (Yj=X ) denotes the learning accuracy of the
evaluator and SF and TF represent the selected features
and the total features of the PD dataset, respectively.
The principle of a good learning model is to achieve
high accuracy and a small subset of potential discrimi-
nating features (low error). Usually, the weight factors
associated with accuracy and feature subset is set to
one.16 Therefore, in this work, the weight parameter
d = 0.9 is fixed to maximize accuracy and 1 2 d =
0.1 is fixed to minimize the size of the feature subset.

Termination criterion

Generally, the termination criterion for an optimization
algorithm is set to either maximum number of iterations
or the intended solution to be reached. In this problem,
maximum number of iterations is considered as the

termination criterion of the optimization algorithm.
The algorithm will terminate its operation when it
reaches to the maximum number of iteration which is
fixed to 20 for the whole experiment.

Settings of the experiment

Brief description of the Parkinson dataset

The symptoms, namely, trembling of legs, arms, hands
and postural instability, bradykinesia, and tremor are
quite reliable characteristics1–3 to diagnose Parkinson
disease. Besides, studies4,6 of many researchers showed
that voice measurement is one of the reliable techniques
for diagnosing PD patients. According to the published
literatures, more than 90% of PD patients show voice
deterioration4,5 of some kind. Parkinson’s dataset used
here is created by Max Little59 of University of Oxford,
in collaboration with the National Centre for Voice
and Speech, Colorado, who recorded the voice signals.
In this experiment, biomedical voice measurement data-
set submitted by Little et al.59 in UCI public domain
repository is used to conduct the experiment. The data
set contains the voice measurements of 31 participants,
23 with PD, and 8 healthy people. The age of the parti-
cipants ranged from 46 to 86 years. The PD dataset
shown in Table 2 comprises 195 voice recordings of 31
individuals recorded in rows and voice measures of 22
types recorded in columns of the table. There are
around six recordings per patients available in the data-
set. The disease status of each patient is represented in
a column which is added as the last column of the data
table.59 The status column is used to discriminate the
PD patients from healthy, where the status is set to 1
for PD and 0 for healthy people.

Experimental setup

The empirical study of the kernel-based probabilistic
model for predicting potential subset of features and
classification of the model CFA-KNB is implemented
in Java using Weka API and executed in Windows 10,
Intel(R), core-i7-7500U CPU at 2.70 GHz and 12.0 GB
RAM. Clinical dataset contains outliers and extreme
values which affect the overall performance of the
model. Here, the outliers of the PD dataset are removed
using a pre-processing tool called interquartile range
(IQR).

In this article, chaotic maps of six different types are
integrated into firefly algorithm, thus form six different
types of chaotic firefly search algorithms that are used
as search models. The chaotic mappings, namely, logis-
tic, sine, Gauss/mouse, Chebyshev, and piecewise, are
used to enhance the variability of the population by
increasing the randomness while generating the new
solutions. The execution of each of the chaos-based

Table 1. Values of the parameters used in the experiment.

Parameters of FA Experimental values

ci
k–chaotic map Logistic map, sine map,

gauss map, Chebyshev
map, piecewise map,
circle map

Cross-validation parameter K 10
Size of population of CFA 50
Number of generations of CFA 20
Problem dimensionality Total number of features

in the problem
(dimension)

Search space [0.0, 1.0]

FA: firefly algorithm; CFA: chaotic firefly algorithm.
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Firefly algorithms is fixed to 20 times as the generation
is fixed to 20 for a population of size 50 along with
other parameters which is given in Table 1, adapted
from Dash et al.9

The results were evaluated by k-fold CV60 to guar-
antee robustness and reliability of the selected feature
subset. Generally, k assumes value of 10. This method
splits the data into 10 folds and keeps nine folds to
form training set and the 10th fold to form test set.
Then, an average result is computed by averaging over
10 trials. The chaos-based hybrid firefly models and
other models used for comparison are tested by using a
stratified 10-fold CV that ensures to achieve stable and
generalized solutions by assuming all test sets to be
independent from one another. Stratified 10-fold CV
also tests the classification performance of the model.
The working principle of the validation scheme is it
divides the whole dataset into folds of samples of equal
proportion for a given class. Hence, by doing that the
proposed model could able to efficiently manage the
skewness of the PD dataset. Moreover, the final solu-
tions of the approximation model are obtained by aver-
aging over 10 independent iterations to select the best
configuration of the chaotic CFA-KNB model that
ensures best optimum solution.

Performance metrics

The best fitness and average fitness values are taken to
evaluate the effectiveness of the features selected from

PD dataset. These two measuring values are calculated
based on the accuracy and MSE of the classifier algo-
rithm KNB. The classification performance61 of the
model and other classification counterparts are evalu-
ated on accuracy (ACC), sensitivity, F-measure, confu-
sion matrix, MSE, false-positive rates (FPR), Mathew
correlation coefficient (MCC), area under receiver oper-
ating characteristic (AUC), and model building time.
Some of the metrics are defined as follows

ACC =
TP+ TN

TP+FP+FN + TNð Þ 3 100% ð21Þ

Sensitivity=
TP

TP+FNð Þ 3 100% ð22Þ

F � measure=
b2 + 1
� �

� Precision � Sensitivity
� �

b2 � Precision � Sensitivity

ð23Þ

MCC =
TP 3 TNð Þ � FP 3 FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP+FPð Þ TP+FNð Þ TN +FPð Þ TN +FNð Þ
p

ð24Þ

where TP is the ‘‘True Positive,’’ which specifies the
number of patients correctly classified as PD patients
by the model; TN is the ‘‘True Negative,’’ which speci-
fies the control observations identified as healthy; FN
is the ‘‘False-Negative,’’ which specifies the number of
patients falsely identified as healthy, and FP is the
‘‘False-Positive’’ that shows the number of healthy

Table 2. Features of Parkinson’s disease used in the experiment adapted from Little et al.59

Feature no. Voice features Description of features

F1 MDVP: Fo (Hz) Average vocal fundamental frequency
F2 MDVP: Fhi (Hz) Maximum vocal fundamental frequency
F3 MDVP: Flo (Hz) Minimum vocal fundamental frequency
F4 MDVP: Jitter (%) Key Pentax MDVP jitter as percentage
F5 MDVP: Jitter (Abs) Key Pentax MDVP absolute jitter in microseconds
F6 MDVP: RAP Key Pentax MDVP relative amplitude perturbation
F7 MDVP: PPQ Key Pentax MDVP five-point period perturbation quotient
F8 Jitter: DDP Average absolute difference of differences between cycles, divided by the average period
F9 MDVP: Shimmer Key Pentax MDVP local shimmer
F10 MDVP: Shimmer (dB) Key Pentax MDVP local shimmer in decibels
F11 Shimmer: APQ3 Three-point amplitude perturbation quotient
F12 Shimmer: APQ5 Five-point amplitude perturbation quotient
F13 MDVP: APQ Key Pentax MDVP 11-point amplitude perturbation quotient
F14 Shimmer: DDA Average absolute difference between consecutive differences between

the amplitude of consecutive periods
F15 NHR Noise-to-harmonic ratio
F16 HNR Harmonics-to-noise ratio
F17 RPDE Recurrence period density entropy
F18 D2 Correlation dimension
F19 DFA Detrended fluctuation analysis
F20 Spread1 Nonlinear measure of fundamental frequency
F21 Spread2 Nonlinear measure of fundamental frequency
F22 PPE Pitch period entropy
F23 Status 0–Healthy; 1–Parkinson
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patients incorrectly identified as PD by the induction
algorithm.

As the PD dataset is an imbalanced dataset, F-mea-
sure and MCC are more reliable metric than accuracy
measure for evaluating the performance of the model.
In F-measure, b is set to 1, which handles the weight
factor of sensitivity and precision that varies from 0 to
N in this experiment. MCC takes value between 21
and +1, and +1 indicates desired prediction and 21
shows a disagreement between actual and predicted and
0 as random predictions. In addition to the above mea-
sures, MSE, AUC,62 model building time, number of
kernels evaluated for each selected features for building
the classifier models and two visualization techniques,
namely, receiver operating characteristic (ROC) curve
and calibration curve, are used to evaluate the quality
of the model.

Results and discussion

The experimental results are analyzed and discussed in
two subsections supported with two types of graphs.

Analysis of the performance of kernel-based
probabilistic model (CFA-KNB) with respect to six
chaotic mappings

The pre-processing step of the experiment has reduced
the size of the instances from 195 to 178 by removing
outliers and extreme values of the dataset. As a result,
the skewness of the dataset increases from 32.65% to
33.83%. Then, the efficiency of the six different prob-
abilistic chaotic models (CFA-KNB) is compared with
respect to the least value of light intensity, best and
average fitness value, least Wilcoxon’s p value, and fea-
ture subset size. The results of the above parameters are
compiled in Table 3 for identifying the best mapping of
(CFA-KNB) feature selection model for the imbalanced
dataset9 like PD. The value of chaotic parameter is set
by trial and error within the range of 0.1–4.0 shown in
Table 1.

The comprehensive results achieved from six differ-
ent probabilistic chaotic models (CFA-KNB) mappings
and standard (FA-KNB) model are summarized in
Table 3 for best and average fitness, light intensity, and
Wilcoxon’s p value using 10-fold CV where each fold

Figure 1. Flow representation of CFA-KNB model.
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iterated 10 times. In this table, the chaotic sine mapping
of the probabilistic model (CFA-KNB) has achieved a
smallest subset of (F1, F22) as the discriminating fea-
tures. The best and average fitness obtained by the sine
model is 89% and 88%, respectively. Also, it has
obtained least light intensity of 1.0 and p value of 19%.
Then, the performance of the logistic chaotic mapping
that performs better with the (CFA-KNB) model in
terms of least p-value of 0.009, light intensity of 1.03,
best and average fitness value of 89%. The feature sub-
set selected by logistic mapping of the (CFA-KNB)
model is (F1, F8, F21, F22). Next is the circle mapping
which selects three features (F1, F8, F15) with best fit-
ness of 86%, average fitness of 77%, light intensity of
1.10, and p value of 0.159, followed by Chebyshev (F1,
F7, F18, F20) with best fitness of 87%, average fitness
of 77%, light intensity of 1.13, and p value of 0.151.
Piecewise mapping (F1, F15, F17, F20) selects four fea-
tures, whereas Gauss chaotic model selects highest five
features (F1, F2, F16, F20, F21). Comparing the per-
formance of these two models, no such significant
achievement is observed for the remaining parameters.

In this experiment, SFA is used only for computing
p values for six chaotic mappings. Although, logistic,
Chebyshev, and piecewise mappings have selected four
features each but logistic model has acquired the most
significant results on the basis of attaining best p value,
light intensity value, and best and average fitness value.
Hence, the analysis and comparison of results of Table
3 clearly indicate that the logistic mapping–based
model (CFA-KNB)8,9 has obtained significant solution
in the search domain with respect to all the measures,
that is, light intensity, p value, and best and average fit-
ness value which is considered as criteria of evaluation
of feature set except the size of the feature set. Even
though sine and circle mapping have selected small fea-
ture set, their performance in other three criteria of eva-
luation is insignificant.

The results of the above-mentioned chaotic map-
pings are also statistically tested using Wilcoxon’s rank
sum test which is a robust estimation tool that depends
on rank estimation.63 The p values are presented in

Table 3 for the standard FA-KNB versus six chaotic
mappings and that shows the p value \0.01 for logistic
mapping. Therefore, the performance of logistic chaotic
(CFA-KNB) model is highly significant in comparison
to other chaotic models. In addition to the above find-
ings, another important pattern is derived from the
occurrences of features in the feature subsets that help
to understand the diagnosis process of PD patients.
Analyzing the subsets given in Table 3, it is found that
11 features, that is, F1, F2, F7, F8, F15, F16, F17, F18,
F20, F21, and F22, are selected in different combina-
tions from the six different chaotic models. The first
feature F1 appears in all six chaotic models, F20
appears in three chaotic models, and each (F2, F15,
F21, and F22) appears twice in the computation of sub-
sets. However, the features (F7, F8, F16, F17, and F18)
appear once in the feature subsets. Finally, the most
interesting outcome from this analysis is that the group
of features (F1, F8, F21, and F22) selected by logistic
mapping have been repeatedly selected by other chaotic
models. Hence, this set of features can be recognized as
clinical biomarkers for PD diagnosis and prognosis.
Summing up the whole analysis of Table 3, it is quite
apparent that the logistic mapping29 has improved the
characteristic of diversity of the population of fireflies
and thereby helps in finding an optimal feature subset
to design the diagnostic model for PD. In addition, the
above findings can be interpreted as the length of the
feature subset cannot be considered as a strong evalua-
tor of optimal feature subset selection model for a small
clinical dataset like PD as argued with evidence.

To develop a diagnostic model for a clinical dataset,
a group of potential features of subset with high discri-
minating power which can improve the classification
accuracy is highly essential for quick decision mak-
ing.64 In this regard, the classification performance of
the kernel-based Naı̈ve Bayes (KNB) algorithm is
recorded in Table 4 for all six chaos-based (CFA-
KNB) model on the skewed PD dataset. The measures
used for studying the performance of the algorithm are
accuracy (ACC), F-measure, sensitivity, MSE, MCC,
AUC and model building time, which are measured

Table 3. Selected features by kernel-based search model (adapted from Dash et al.).31

Chaotic mappings and standard FA Features selected Best fitness
value

Average fitness
value

Light intensity p values

Standard FA F1, F2, F3, F9, F16, F20, F21 84% 77% 1.31
Logistic map F1, F8, F21, F22 89% 89% 1.03 0.009
Sine map F1, F22 89% 88% 1.00 0.187
Chebyshev map F1, F7, F18, F20 87% 77% 1.13 0.151
Circle map F1, F8, F15 86% 77% 1.10 0.159
Gauss map F1, F2,F16, F20, F21 85% 77% 1.55 0.276
Piecewise map F1, F15, F17, F20 86% 77% 1.51 0.353

FA: firefly algorithm.
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over 10 iterations of stratified 10-fold CV. The 33.83%
skewness of the PD dataset is handled effectively by the
stratified 10-fold CV.

The logistic chaotic kernel–based predictive model
(CFA-KNB) has outperformed all other models by effi-
ciently attaining best results for KNB classifier for all
measures, namely, 89.33% of accuracy (ACC), 89% of
sensitivity, 88% of F-measure, 29% of MSE, 30% of
FPR, 70% of MCC, 91% of AUC, and 7.14 s of model
building time. The best performance values of the logis-
tic model are highlighted in bold letters and the worst
performance of Gauss Chaotic Model is shown in italics
and bold in Table 4. However, the model building time
of worst model is the second lowest, that is, 11.79 s.
The poor performance of other models can be attrib-
uted to the selected features that are not adequate or
redundant to identify the PD patients from healthy per-
sons that is apparent from Table 6. Another four mod-
els such as (CFA-NB), (CFA-RBFC), (CFA-KNN),
and (CFA-J48) evaluated for all six chaotic mappings
and the results are displayed in Tables 7–10.

Further, a 2 3 2 confusion matrix is computed for
all the six chaotic models to find correct decisions and
error committed in the classification experiment. Table
5 summarizes the confusion matrices obtained from the
proposed model with six chaotic maps and the nonpar-
ametrical sign test for all models. The weighted average
FPR of logistic model is 30% as shown in Table 4, the
smallest among all the results of chaotic maps.
Piecewise model has got the highest FPR 34%. This
observation is fully supported by the results of Table 5.

The confusion matrix gives a comparative result of all
the models and that proves the diagnostic efficiency of
logistic (CFA-KNB) model over others.

In addition to the above analysis, two types of visual
presentations, namely, area under ROC and calibration
curves, depicted the quality of classification result of
six different chaos mapping of (CFA-KNB) model and
helped to find the optimal chaotic map of (CFA-KNB)
model.

Figures 2 and 3 show the calibration curve for the
healthy and a PD patient for all six chaotic models. The
curve is traced in both figures using estimated probabil-
ity against the observed probability for healthy and PD
patients based on 13 equal frequency bins. This curve
actually preserves the order of the samples to achieve a
well-calibrated model, which could distinguish the sam-
ples accurately, thereby attains higher accuracy, and the
curve generally represented by a diagonal on the graph.
Examining both Figures 2 and 3, it is summarized that
the calibration curve for PD and healthy patients are
well traced in (CFA-KNB) logistic-based model over
other models.

The ROC curves for all six chaotic (CFA-KNB)
models for PD and healthy patients shown in Figures 4
and 5 represent how well the models distinguish positive
and negative samples of the skewed PD dataset. It is
observed from all six ROC curves traced for all six
models for healthy and PD patients that a smooth curve
drawn for logistic (CFA-KNB) model goes smoothly
through the upper left corner and the area bounded by
the curve is 91% as reported in Table 4, which is a

Table 4. Classification performance of KNB on standard (FA-KNB) and (CFA-KNB) model using stratified 10-fold CV.

Chaotic
maps

Accuracy
rate

Sensitivity
rate

Rate of
F-measure

MCC MSE False-positive
rate

AUC Model building
time (in s)

Standard FA 79% 79% 79% 45% 37% 35% 85% 62.48
Logistic 89% 89% 88% 71% 30% 30% 91% 7.14
Sine 86% 86% 85% 59% 33% 32% 87% 58.19
Piecewise 85% 84% 84% 57% 32% 34% 90% 55.38
Chebyshev 87% 87% 86% 64% 32% 32% 90% 59.16
Circle 87% 87% 86% 59% 32% 34% 86% 56.91
Gauss 84% 84% 83% 52% 35% 32% 85% 11.79

KNB: kernel-based Naı̈ve Bayes; FA: firefly algorithm; CFA: chaotic firefly algorithm; MCC: Mathew correlation coefficient; MSE: mean squared error;

AUC: area under ROC curve.

Table 5. Confusion matrix with nonparametric sign test result of six different chaotic (CFA-KNB) classification models.

Logistic-based (CFA-KNB) vs Sine Chebyshev Circle Gauss Piecewise

Positive results 159 152 155 152 148 151
Negative results 19 26 23 26 30 27
Significance difference (p \ 0.05) Yes No No NO No No

CFA-KNB: chaotic firefly algorithm-Kernel-based Naı̈ve Bayes.
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Figure 2. Calibration curve of six chaotic mappings for healthy patients.

Figure 3. Calibration curve of six chaotic mappings for PD patients.
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significant achievement with respect to other five mod-
els. The empirical results establish that the integration
of chaotic sequences into the search model improves
the chances of attaining global optima faster.

Comparison of classification performance of (CFA-
KNB) model with other models

Tables 6–10 summarize the classification accuracies
obtained by the proposed chaos-based (CFA-KNB)
search model with six different mappings for five well-
known classifiers, namely, kernel-based Naı̈ve Bayes
(KNB), Naı̈ve Bayes (NB), radial basis function classi-
fier (RBFC), k-nearest neighbor (KNN), and decision
tree (J48). The study has already proved that logistic-
based (CFA-KNB) search model is one of the effective
models for disease diagnosis when compared with other
five models. The classification efficiency of logistic
chaotic model for all classifiers shown in Tables 6–10 is
far superior from other chaotic models except RBFC
and J48. Chebyshev model is performing relatively bet-
ter than logistic model for RBFC classifier in terms of
ACC, sensitivity, and F-measure, and for remaining

metrics, logistic model does better. For J48 classifier,
piecewise performs better for all the metrics except
model building time which is followed by sine,
Chebyshev, gauss, and circle chaotic models. The logis-
tic model achieves 90% accuracy for KNN, which is
the highest, 89% for KNB, and 84% for NB classifiers.
Therefore, the above arguments are sufficient enough
to select logistic (CFA-KNB) as the best predictive
model for all the classifiers as it achieves better general-
ization as compared to other combination of models.

Conclusion

In this proposed work, a new hybrid kernel-based prob-
abilistic chaotic metaheuristic feature selection model is
presented. Six different chaotic mappings have been
employed to develop chaos-based firefly algorithms
which in turn combined with a nonparametric kernel
density estimated Naı̈ve Bayes classifier for selecting
most discriminative features that could develop a
robust, reliable, and generalized diagnostic model for
PD patients. The performance of six chaotic mappings
was compared based on their best fitness values and p

Figure 4. ROC curve of six chaotic mappings of healthy patients.

Figure 5. ROC curve of six chaotic mappings of PD patients.

14 International Journal of Distributed Sensor Networks



values to find the best chaotic combination with the
CFA-KNB model which selects most reliable features
from PD dataset. The performances of all the six chao-
tic CFA-KNB models with respect to four perspectives
such as discriminative feature set, classification perfor-
mance, robustness, and generalization were measured
through five well-known classifiers. The experiment
here proved that for very small clinical data set, a good
set of discriminative features matter more than

considering a small set of features which could not able
to characterize the whole problem. Therefore, it can be
concluded that kernel-based Naı̈ve Bayes logistic firefly
search model surpassed the remaining five chaotic mod-
els with respect to the selection of most significant fea-
tures of PD set. In addition, the logistic-based (CFA-
KNB) model has achieved best results for all the metrics
for three listed classifiers: KNB, NB, and KNN and has
not performed relatively well for RBFC and J48. On

Table 6. Classification results of (CFA-KNB) model.

KNB classifier

Logistic Sine Piecewise Chebyshev Circle Gauss

ACC 89% 86% 85% 87% 87% 84%
Sensitivity 89% 86% 85% 87% 87% 84%
F-measure 88% 85% 84% 86% 86% 83%
MCC 70% 58% 57% 64% 59% 52%
MSE 30% 33% 32% 32% 33% 35%
False-positive 30% 33% 35% 32% 34% 32%
AUC 91% 87% 90% 90% 86% 84%
Model build time (s) 7.14 57.66 55.60 59.00 56.50 11.79

KNB: Kernel-based Naı̈ve Bayes; ACC: accuracy; MCC: Mathew correlation coefficient; MSE: mean squared error; AUC: area under ROC curve.

Table 7. Classification results of (CFA-NB) model.

NB classifier

Logistic Sine Piecewise Chebyshev Circle Gauss

ACC 84% 82% 82% 81% 82% 79%
Sensitivity 84% 82% 82% 81% 82% 79%
F-measure 83% 81% 82% 81% 81% 79%
MCC 58% 50% 51% 51% 55% 45%
MSE 34% 37% 35% 36% 35% 38%
False-positive 31% 33% 33% 31% 36% 32%
AUC 87% 84% 88% 85% 87% 85%
Model build time (s) 7.02 56.21 55.65 59.02 55.08 12.44

CFA-NB: chaotic firefly algorithm-Naı̈ve Bayes; ACC: accuracy; MCC: Mathew correlation coefficient; MSE: mean squared error; AUC: area under

ROC curve.

Table 8. Classification results of (CFA-RBFC) model.

RBFC classifier

Logistic Sine Piecewise Chebyshev Circle Gauss

ACC 86% 86% 86% 87% 86% 86%
Sensitivity 86% 86% 86% 87% 86% 86%
F-measure 85% 85% 85% 85% 85% 85%
MCC 69% 60% 60% 62% 60% 51%
MSE 31% 33% 33% 33% 32% 33%
False-positive 33% 36% 33% 34% 34% 33%
AUC 91% 88% 89% 90% 90% 0.883
Model build time (s) 7.08 56.45 55.45 60.27 57.09 12.22

CFA-RBFC: chaotic firefly algorithm-radial basis function classifier; ACC: accuracy; MCC: Mathew correlation coefficient; MSE: mean squared error;

AUC: area under ROC curve.
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the contrary, the convergence of the algorithm is very
fast comparing with other models. This proves the sta-
bility of the proposed model and hence can be used as a
diagnostic tool for small clinical datasets. As a future
research work, the same chaos-based algorithm can be
compared with other metaheuristic algorithms for
developing a more robust generalized optimal model
for feature selection and classification for small clinical
datasets.
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24. Brajević I and Ignjatović J. An upgraded firefly algo-

rithm with feasibility-based rules for constrained engi-

neering optimization problems. J Intell Manuf 2019; 30:

2545–2574.
25. Baykasolu A and Ozsoydan FB. Adaptive firefly algo-

rithm with chaos for mechanical design optimization

problems. Appl Soft Comput 2015; 36: 152–164.
26. Chou JS and Ngo NT. Modified firefly algorithm for

multidimensional optimization in structural design prob-

lems. Struct Multidiscip O 2017; 55(6): 2013–2028.
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