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Abstract: The milling machine serves an important role in manufacturing because of its versatility 
in machining. The cutting tool is a critical component of machining because it is responsible for 
machining accuracy and surface finishing, impacting industrial productivity. Monitoring the cut-
ting tool’s life is essential to avoid machining downtime caused due to tool wear. To prevent the 
unplanned downtime of the machine and to utilize the maximum life of the cutting tool, the accurate 
prediction of the remaining useful life (RUL) cutting tool is essential. Different artificial intelligence 
(AI) techniques estimate the RUL of cutting tools in milling operations with improved prediction 
accuracy. The IEEE NUAA Ideahouse dataset has been used in this paper for the RUL estimation of 
the milling cutter. The accuracy of the prediction is based on the quality of feature engineering per-
formed on the unprocessed data. Feature extraction is a crucial phase in RUL prediction. In this 
work, the authors considers the time–frequency domain (TFD) features such as short-time Fourier-
transform (STFT) and different wavelet transforms (WT) along with deep learning (DL) models such 
as long short-term memory (LSTM), different variants of LSTN, convolutional neural network 
(CNN), and hybrid models that are a combination of CCN with LSTM variants for RUL estimation. 
The TFD feature extraction with LSTM variants and hybrid models performs well for the milling 
cutting tool RUL estimation.  

Keywords: feature extraction; milling process; remaining useful life; time–frequency domain; tool 
wear 
 

1. Introduction 
Machining is an important process in the manufacturing industry [1]. Machining 

process monitoring plays a vital role in improving the industry’s productivity by reduc-
ing unscheduled downtime caused due to failure of the cutting tool [2]. A proper predic-
tive maintenance strategy must be defined to estimate the cutting tool’s life reduced due 
to tool wear caused during the machining operation [3]. With the evolving artificial intel-
ligence (AI) techniques and advancements in sensor technology, data-driven prediction 
models are widely used for tool wear and remaining useful life (RUL) prediction [4]. The 
RUL of a cutting tool is how long it can accomplish the function effectively before it begins 
considerably deteriorating to perform its purpose. Multiple factors, including the material 
being cut, the cutting speed, the tool geometry, and the cutting fluid, can affect the RUL 
of a cutting tool. This paper mainly focuses on the RUL of cutting tools caused by changes 
in tool geometry due to tool wear. There are numerous approaches for estimating the RUL 
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of a cutting tool, including physics-based models and machine learning (ML) or deep 
learning (DL)-based methods. Physics-based models, also known as mechanistic models, 
are based on fundamental physics principles and laws regulating the system. These mod-
els seek to describe the behavior of the system using mathematical equations that repre-
sent the physical processes involved. In ML/DL models, typically, these methods include 
monitoring the cutting tool’s condition and performance during use and utilizing this data 
to anticipate how long the tool can be used before it must be replaced. In the ML/DL-based 
method, the data-driven approach is an effective technique for forecasting the RUL of the 
equipment [5].  

To prevent the machine’s unplanned downtime and utilize the cutting tool’s maxi-
mum life, the accurate prediction of the RUL cutting tool plays an important role [6,7]. 
Sayyad et al. discussed the effect of unplanned downtime on the equipment cost and 
profit of the industries [4]. Accurate RUL prediction has the potential to considerably in-
crease the dependability and operational safety of industrial components or systems, 
thereby reducing the costs of maintenance and preventing severe breakdowns. Figure 1 
illustrates the generalized concept of RUL of the equipment. 

 
Figure 1. Concept of remaining useful life (RUL) of the equipment. 

The prediction accuracy of the RUL estimation plays an important role as accurate 
prediction helps to utilize the maximum life of the cutting tool. Many researchers aim to 
predict the tool wear instead of the RUL of the cutting tool. In the case of tool wear pre-
diction, the frequent measurements of the flank or crater wear values are pretty tricky. In 
manual tool measurement using a tool maker’s microscope, the cutting tool must fre-
quently remove for sensor data and wear mapping, which disturbs the machining process. 
In comparison, the RUL prediction provides continuous data mapping with sensor data 
in terms of time. As compared to tool wear as target output, a few research works on the 
RUL as a target variable in milling cutting tools. Additionally, consolidated comparative 
studies of the different time–frequency-based feature extraction techniques with various 
decision-making algorithms are not much addressed in previous works. So, the significant 
contribution of the work is as follows: 
1. To estimate the RUL of the milling cutting tool using the NUAA idea-house dataset 

[8]; 
2. To use the time–frequency feature extraction techniques such as STFT, CWT, and 

WPT to get useful insights from data with reduced data dimensions;  
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3. To use the different machine learning and deep learning decision-making algorithms 
for cutting tool RUL prediction and check the performance of each model using dif-
ferent evaluation parameters. 

2. Related Work 
This comprehensive literature analysis aims to investigate the present state of re-

search, various approaches used for RUL estimation in the context of cutting tools, and 
the different feature extraction and selection techniques used to improve the RUL estima-
tion accuracy. As the physics-based and data-driven driven models are widely used for 
tool wear and RUL predictions [9–11], this section discussed the physics-based and data-
driven approaches. Different feature extraction techniques, such as time, frequency, and 
time–frequency domain and various feature selection techniques, are discussed for RUL 
prediction. 

2.1. Physics-Based Model 
In physics-based modeling for prediction, fundamental principles and mathematical 

equations need to be considered to model the system’s behavior. For accurate predictions, 
a number of factors, such as understanding the system, formulating the equations based 
on the system’s behavior, assumptions for simplification, estimation of system parameters 
etc., need to be studied deeply.  

In the case of RUL prediction of the cutting tool, the tool geometry, cutting tool, and 
material materials must be considered. The cutting forces model, degradation mechanism, 
and wear rate estimation equations are required for estimation; based on this, the health 
indicators are developed. Model refinement and continuous improvement in the model 
are required in physics-based modeling to improve prediction accuracy. 

Physics-based techniques suffer from a scarcity of accurate analytical models to char-
acterize tool wear processes due to the cutting process’s intrinsic complexity and the ma-
chining process’s imperfect understanding [9]. The data-driven modeling approach is pre-
ferred in the tool wear and RUL predictions to avoid the modeling uncertainty in the 
physics-based model [12]. 

2.2. Data-Driven Model 
The data-driven makes use of machine learning and statistical approaches to extract 

patterns and relationships from accessible data. In a data-driven model, the sensor data is 
collected from the machine by mounting the sensors at the appropriate position to under-
stand the condition of the cutting tool. The dataset should encompass a wide range of tool 
life spans and operating conditions to capture the variation in tool deterioration patterns. 
The raw data need to be pre-processed before performing the feature extraction. The data 
pre-processing ensures the data’s integrity and suitability for modeling. This step entails 
dealing with missing values, anomalies, and data normalization or standardization to cre-
ate a consistent scale for the variables. The extracted features from the pre-processed data 
are provided to decision-making algorithms to get output as the desired RUL prediction 
value. Figure 2 shows the generalized data-driven model for RUL prediction.  
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Figure 2. Generalized data-driven model for RUL prediction. 

In a data-driven model, the machining signals are gathered using different sensors 
such as acoustic, dynamometer, current, vibration, etc., using the indirect sensing tech-
nique [13,14]. These collected signals are used for RUL prediction by applying feature ex-
traction, feature selection, and prediction algorithms on data.  

Many researchers used the data-driven modeling approach for the tool wear and 
RUL prediction using single or multi-sensors with different feature extraction approaches 
[15–17]. Feature extraction and selection play an essential role in the accuracy of the pre-
diction models in the data-driven models. 

2.3. Feature Extraction and Selection 
Proper feature extraction and selection are crucial in the training phase of any ma-

chine and deep learning model. Generally, features are extracted in the time domain (TD), 
frequency domain (FD), and time–frequency domains (TFD) [18]. TD features mainly rep-
resent the change in signal amplitude concerning time. Generally, signals are converted 
from the TD to the FD spectrum in the FD using the fast Fourier-transform (FFT) tech-
nique. The FFT is the sine wave function that provides the transient nature of spectral 
signal in terms of amplitude and frequency distribution [19]. In the frequency domain, 
FFT does not consider the abrupt change in the signal. The FD provides the time distribu-
tion information in the Fourier-transform (FT) phase characteristics. It is not easy to use 
this time distribution information of signal in the FD in signal processing [20]. The FFT 
lacks the ability to provide frequency information over the localized signal region in time. 
Both TD and FD-based feature extraction techniques are more suitable for stationary sig-
nals application where the spectral component of the signal does not change with time 
[21]. However, most real-time-generated signals are non-stationary types with varied 
spectral components with time [22]. The TFD feature extraction process is preferred for 
non-stationary signals generated in the machining process [23]. TFD-based feature extrac-
tion techniques mainly include STFT, WT, empirical mode decomposition (EMD), Hil-
bert–Huang transform (HHT), etc. The STFT and WT, TFD feature extraction techniques 
provide a good result for tool wear and RUL prediction [23–25].  

Rafezi et al. use vibration and sound signals to monitor the tool condition in CNC 
lathe drilling operations [26]. The author uses both TD and TFD features for tool condition 
monitoring and found that the TFD’s wavelet packet decomposition approach correlates 
better with tool conditions. Hong et al. use a dynamometer for gathering torque and forces 
generated during the micro-milling machine [24]. The WPT method extracts the features 
from the raw signals to monitor the tool wear in micro-milling. Xiang et al. used the 
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accelerometer to capture the vibration signals during milling [27]. To extract features from 
the input vibration data, the WPT is employed. The extracted WPT features are provided 
to the backpropagation neural network (BPNN) and LSTM to predict the tool wear class. 
LSTM shows a higher testing accuracy (up to 95.67%) than the BPNN model for estimating 
the type of tool wear. 

From the literature, it was found that the time–frequency domain feature extraction 
will provide better prediction results for the non-stationary signals generated during the 
machining. At the same time, deep learning models such as the LSTM show better predic-
tion results in the time-series data analysis. From the previous work, it was found that 
limited comparative research has been carried out in the RUL prediction using the TFD 
feature extraction technique with different feature selection and ML and DL decision-
making models. In this work, the time–frequency domain techniques are used for feature 
extraction with PCC and RF feature selection methods. The various predictions ML and 
DL models, including SVM, RFR, GBR, LSTM, CNN, LSTM variants, and hybrid models 
such as CNN with LSTM variants, are used to improve the prediction accuracy of the RUL 
estimation.  

3. Time–Frequency Domain Feature Extraction 
The non-stationary signals with different time-varying frequency characteristics 

show poor time-localization in the spectral domain. The TFD analysis is preferred to over-
come the TD and FD limitations. Figure 3 shows the signal windowing approach’s com-
parison of the TD, FD, STFT, and WT [28,29]. 

 

 
Figure 3. Comparison of windowing approach (a) Time-domain, (b) Frequency-domain (Fast Fou-
rier Transform) (c)Short Time Fourier Transform (STFT) (d) Wavelet Analysis 
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In this study, the author used the STFT and WT methods for feature extraction pur-
poses, as these methods show promising results in RUL prediction during machining. 

3.1. Short-Time Fourier-Transform (STFT) 
The poor time-localization problem of the spectral domain’s non-stationary signals 

is overcome by dividing the original signal into multiple short-duration windows in Fou-
rier-transform; this technique is called window Fourier-transform (WFT) or STFT. FFT 
does not use the windowing function for signal transformation, as shown in Equation (1). 
In contrast, for calculating the STFT of the signal, the windowing function is used that is 
mathematically expressed using Equation (2) [30]. F(τ, ω) = න f(t)eି୧ன୲dtାஶ

ିஶ  (1) 

S(τ, ω) = න f(t)w(t − τ)eି୧ன୲dtାஶ
ିஶ  (2) 

where ‘f(t)’ is the signal to be analyzed, ‘w(t-−τ)’ is the window function, ‘τ’ is the transla-
tion parameter for time localization, ‘ω’ is the frequency component of the signal. 

For computing STFT, different equal-length windowing functions, such as Hamming 
or Gaussian windows, are used. Discrete Fourier-transform (DFT) is performed on each 
section separately to form the time–frequency (TF) spectral signal. Reducing window size 
improves the time resolution resulting in more accurate TF resolution with increased com-
putation time. At the same time, a wide window size results in poor time resolution with 
good frequency resolutions. The windowing function used in STFT does not vary (not 
scalable and movable) as the window size chosen before STFT operation. 

3.2. Wavelet Transforms (WT) 
WT is an extension of the FT. WT is the type of TF feature extraction technique. WT 

uses the family of ‘wavelets’ to decompose the signal. The wavelet is used as a windowing 
function in WT. Selecting the wavelet family uses different windowing functions such as 
Symlets, Morlets, Daubechies, Harr, etc. The wavelet functions can be shifted and scaled 
according to signal requirements. Due to the property of scaling and shifting, WT is adapt-
able to a wide range of time and frequency resolutions, making it a better alternative to 
STFT in non-stationary signal analysis. Equation (3) shows the mother wavelet ψ(t) used 
to calculate the wavelet transform function [23]. Ѱz,τ(t) = 1√z  Ѱ ቀt − τz ቁ (3) 

ψ(t) = mother wavelet, τ = transformation parameter, z = scaling factor, t = time stamp of 
generated signal. In the original mother wavelet value of z = 1 and τ = 0. This WT is mainly 
divided into CWT, DWT, and WPT [31]. 

3.2.1. Continuous Wavelet Transform (CWT) 
CWT is an effective signal transformation technique in stationary and non-stationary 

signal analysis. The mathematical representation of the CWT of the signal is expressed by 
Equation (4) 𝐶𝑊(𝑧, 𝜏) = 1√z න 𝑓(𝑡)𝜓∗ ൬𝑡 − 𝜏𝑧 ൰ 𝑑𝑡ାஶ

ିஶ  (4) 

where ‘ 𝑓(𝑡)’ is the signal for wavelet transform, ‘ 𝜓∗’ is the complex conjugate of mother 
wavelet Ѱ(t), z is the scaling parameter used for zooming the wavelet, τ is the translation 
parameter used to define the location of the window. The integral compares the shape of 
the generated wavelet with the original signal. The equation generates the wavelet 
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coefficient, which shows the correlation between the waveform and generated wavelet 
used at various scaling and shifting values [32]. However, its computation time is slow 
and generates redundant signals during its transformation. 

3.2.2. Wavelet Packet Transform (WPT) 
WPT is an enhancement in DWT. In which both the detailed and approximate coef-

ficient obtained in the DWT is further decomposed at every stage [33]. 
Figure 4 shows the WPT with three levels of decomposition. Here, LP and HP are the 

low-pass and high-pass filters of the signals. The LP and HP are again divided into ap-
proximate and detailed coefficients. WPT uses Equation (3) to decompose the signal to 
calculate the wavelet transform function. WPT uses the two-scale difference to construct 
scaling and wavelet functions from a single scaling function. The coefficients related to 
the scaling function, also known as approximation coefficients, are linked with low-fre-
quency data. 

 
Figure 4. WPT with three levels of decomposition. 

In contrast, wavelet function coefficients are correlated with information with high 
frequency or detail coefficients. Figure 4 shows that 1st level of the decomposition signal 
is decomposed into D(HP) and A(LP). Similarly, in the second level of decomposition, the 
approximate signal is decomposed into (AA(LP) and DA(LP)), and the detailed coefficient 
decomposes into DD(HP) and AD(HP). 

4. Proposed Methodology 
The overall methodology section is divided into four sub-sections. As the online da-

taset is used in this work, the first section discusses the dataset description, the second 
section discusses the feature extraction and selection, and the third section discusses the 
models used for RUL prediction. Finally, evaluation parameters are discussed that are 
used for the model comparison. The detailed methodology for RUL prediction is shown 
in Figure 5. 
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Figure 5. Methodology for tool RUL prediction using different TFD feature extraction methods and 
LSTM variants. 

4.1. Dataset Description 
The IEEE NUAA Ideahouse [8] dataset is used to predict the RUL of the cutting tool. 

In this dataset, the vibration sensor (PCBTM-W356B11), sensory tool holder (SpikeTM sen-
sory tool holder), and PLC are used to collect the vibration, cutting forces, and cur-
rent/power from the milling machine (DMU™ 80P douBlock) during the machining of 
titanium alloy (TC4) with solid carbide and high-speed steel endmill cutters (12 mm di-
ameter and 75 mm length). Figure 6 shows the schematic representation test rig of the 
NUAA Ideahouse dataset. The sensory tool holder is connected to the milling machine’s 
spindle to collect the cutting forces. The vibration sensor is mounted near the workpiece 
to be machined to collect the vibration signals. 

 
Figure 6. The schematic diagram of the test rig setup for the NUAA Ideahouse dataset. 

Figure 7 shows the signal acquisition system for the NUAA Ideahouse milling da-
taset. Table 1 shows sampling frequencies for each acquisition equipment. The sampling 
rates were chosen based on the cutting and spindle speeds. The vibration, cutting forces, 
and spindle current/power are collected with the sampling rate of 400 Hz, 600 Hz, and 300 
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Hz, respectively. During the collection process, the low-frequency signals gathered by the 
software were autonomously interpolated, so the volume of data stored for each signal 
type is the same. Data synchronization software synchronizes the sampling frequencies at 
300 hertz for all the signals. 

 
Figure 7. Monitoring signals acquisition for NUAA Ideahouse milling dataset. 

Table 1. Signal acquisition equipment and sampling frequency. 

Signal Category  Acquisition Equipment Sample Frequency(/Hz) 
Spindle current and power  PLC 300 

Vibration PCBTM-W356B11 400 
Cutting force SpikeTM sensory tool holder 600 

In the IEEE NUAA Ideahouse [8] dataset, the experiment L9 orthogonal array is cre-
ated using the experiment design, as shown in Table 2. Out of nine cases, the first two 
cases, W1 and W2, are considered for the RUL prediction. 

Table 2. Details of the orthogonal experiment of IEEE NUAA Ideahouse. 

No. of Cases Feed per Tooth 
(mm/r) Spindle Speed (r/min) Axial Cutting 

Depth (mm) 
Tool 

Material 
Workpiece 

Material 
W1 0.045 1750 2.5 

Solid 
carbide 

TC4 

W2 0.045 1800 3 
W3 0.045 1850 3.5 
W4 0.05 1750 3 
W5 0.05 1800 3.5 
W6 0.05 1850 2.5 
W7 0.055 1750 3.5 
W8 0.055 1800 2.5 
W9 0.055 1850 3 

A total of thirty runs are taken in case-1 (W1), as shown in Table 3, and the flank wear 
of the tool is measured after each run. The maximum width of the flank wear is decided 
based on the ISO-8688 standards. In this dataset, the machining data is collected until the 
maximum value of the tool wear (maximum flank wear, i.e., VBmax) reaches up to 0.30 mm. 
The 0.30 mm is considered the cutting tool’s functional failure during machining in this 
dataset. The RUL of the cutting tool is estimated based on the value of flank wear. The 
additional time (in seconds) column is added to the sensor data based on the sampling 
rate of the data to generate the RUL column for each run. For the W1 run, the maximum 
value of flank wear is reached up to 0.27 mm. So, all 30 runs are considered for generating 
the RUL column based on the sampling frequency. 
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Table 3. Tool wear labels for W1 case. 

Sr. 
No 

Flank Wear (mm) Sr. 
No 

Flank Wear (mm) 
Flute-1 Flute-2 Flute-3 Flute-4 Flute-1 Flute-2 Flute-3 Flute-4 

1 0.05 0.12 0.1 0.05 16 0.17 0.23 0.21 0.14 
2 0.1 0.14 0.1 0.05 17 0.18 0.23 0.21 0.14 
3 0.12 0.14 0.11 0.09 18 0.18 0.23 0.21 0.15 
4 0.12 0.15 0.13 0.1 19 0.18 0.23 0.21 0.15 
5 0.13 0.16 0.15 0.1 20 0.19 0.23 0.21 0.15 
6 0.13 0.18 0.16 0.1 21 0.19 0.24 0.22 0.15 
7 0.14 0.18 0.16 0.1 22 0.19 0.24 0.22 0.15 
8 0.15 0.18 0.16 0.12 23 0.19 0.24 0.22 0.15 
9 0.16 0.19 0.17 0.12 24 0.19 0.24 0.22 0.15 

10 0.16 0.2 0.18 0.12 25 0.19 0.25 0.24 0.15 
11 0.16 0.21 0.18 0.12 26 0.19 0.25 0.25 0.15 
12 0.17 0.21 0.19 0.13 27 0.2 0.25 0.25 0.15 
13 0.17 0.22 0.2 0.13 28 0.2 0.26 0.26 0.15 
14 0.17 0.22 0.21 0.13 29 0.2 0.26 0.26 0.15 
15 0.17 0.22 0.21 0.14 30 0.2 0.27 0.26 0.15 

Figure 8 shows the raw data representation (scaled raw data between 0 to 1) of the 
individual sensor signal with respect to time. For raw data representation, all 30 runs of 
the W1 case are merged. The total time span to reach the maximum flank tool wear (VBmax) 
value from 0 mm to 0.27 mm is 3004 s. The TFD features are extracted from the raw data, 
and selected features are divided for the model training and testing. The data are split into  
70-30% for training and testing. The different ML and DL models are trained on the test 
data, and the model’s performance is evaluated based on the test data. Figure 9 shows the 
training and testing phases of the RUL prediction approach. 



Sensors 2023, 23, 5659 11 of 39 
 

 

 
Figure 8. Raw data representation of all the sensor signals to time for the W1 case. 

 
Figure 9. Flowchart of training and testing phases of the RUL prediction approach. 

4.2. Feature Extraction and Selection 
The raw data in the dataset are normalized and provided for time–frequency feature 

extraction. The data are extracted in different TFDs such as STFT, CWT, and WPT. The 
statistical features shown in Table 4 are extracted from the TFD features coefficients vec-
tors. 
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Table 4. The statistical features and their formulae. 

Sr. No. Statistical Features Formula 

1 Mean 𝑆ୀ 1𝑁  𝑠ே
ୀଵ  

2 Standard deviation 𝑆௦௧ௗ =  ඩ (𝑠 − 𝑠)(𝑛 − 1) ଶ
ୀଵ  

3 Variance 𝑆௩ =  (𝑠 − 𝑠)(𝑛 − 1) ଶ
ୀଵ  

4 Kurtosis 𝑆௨   =  ∑ (𝑠 − 𝑠)ସேୀଵ(𝑁 − 1)𝑆ఙସ  

5 Skewness 𝑆௦௪   =  ∑ (𝑠 − 𝑠)ଷୀଵ(𝑛 − 1)𝑆ఙଷ  

6 Root mean square 𝑆௦ =  ඩ1𝑛  𝑠ଶ
ୀଵ  

7 Peak to Peak 𝑆 = 𝑚𝑎𝑥(𝑠) − 𝑚𝑖𝑛 (𝑠) 

8 Peak amplitude 𝑆ி = 𝑚𝑎𝑥(𝑠) − (1𝑁  𝑥)ே
ୀଵ  

The extracted statistical TFD features are selected using Pearson’s correlation coeffi-
cient (PCC) and random forest regressor (RFR) methods. PCC [34] is extensively used in 
machining for feature selection in tool wear and RUL prediction. Equation (5) determines 
the linear correlations between signals and output variables. 𝑃𝐶𝐶 (𝑟) = ∑( 𝑎 − 𝑎ത )൫ 𝑏 − 𝑏ത ൯ඥ∑ ( 𝑎 − 𝑎ത  )ଶୀଵ  ට∑ ൫ 𝑏 − 𝑏ത ൯ଶୀଵ   (5) 

where 𝑎 = input feature, 𝑎ത = average of input feature, 𝑏 = target variable, 𝑏ത = average 
of the target variable. The value of “r” ” can range from −1 to 1, with −1 denoting a high 
degree of negative correlation and 1 denoting a high degree of positive correlation [35].  

Another method used for feature selection is the RF method. RF is the embedded 
feature selection method that lowers the danger of overfitting and performs quicker op-
erations by overcoming the limitations of wrapper and filter feature selection methods 
[36]. RF is made up of a number of decision trees that were created by randomly extracting 
characteristics from the data. The significance of a feature is determined by the decrease 
in impurity or the increase in node purity that results from dividing a specific feature. 
Whenever a division is made during the building of each decision tree, the decrease in 
impurity is noted. This decrease is accumulated for every feature across the entire forest. 
The final step is to normalize the accumulated diminution by dividing it by the total num-
ber of trees, providing the feature importance score. The model creates a set containing 
the necessary features by trimming trees below a given node. The selected features using 
PCC and RF methods are provided for different RUL prediction models.  

4.3. Models for RUL Prediction 
The different models are used for RUL prediction, including ML models such as 

SVM, RFR, and GBR and DL models such as LSTM, LSTM variants, CNN, and hybrid 
models, which combine CNN and LSTM variants. This section discussed the brief about 
the LSTM, LSTM variants, and CNN with the LSTM model. 
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The LSTM [37] shows promising performance in tool wear and RUL prediction [38–
40]. LSTM is an advancement of the recurrent neural network (RNN) [41]. The RNN’s 
gradient vanishing drawback was reduced in the LSTM structure [42]. The architecture of 
an LSTM unit is depicted in Figure 10. Long-range dependencies are exploited due to the 
improvements in the LSTM. 

 

 
Figure 10. The architecture of the LSTM unit. 

The LSTM modifies the memory at each step rather than overwriting it. The LSTM’s 
main component is the cell. To add or change cell memory, the LSTM employs sigmoidal 
gates. ‘Input gate-I’, ‘candidate gate-C’, ‘output gate -O’, and ‘forget gate F’ make up a 
sigmoidal gate. A(t − 1) and A(t) denote the memory of the previous and subsequent units, 
respectively. The previous and next cell is hidden state outputs represented by B(t) and 
B(t − 1). X(t) is the input value, whereas X is element-wise multiplication. The Y(t) indicates 
the output generated by the LSTM cell. The next unit cell is updated by the gate parame-
ters by modifying or adjusting the parameters and filtering the information. Le et al. [43] 
discussed the detailed working of the LSTM model. 

Figure 11 depicts several LSMT model versions. The vanilla LSTM comprises a single 
hidden layer of LSTM units that can only access sequential data in one way [44]. The stack 
LSTM model, on either hand, considers the many hidden LSTM layers. Whereas the for-
ward and backward LSTMs are combined to form the Bi-directional LSTM. The architec-
ture of different LSTM versions is also discussed by Kolekar et al., Chandra et al., and 
Zhao et al. [45–47]. 
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Figure 11. LSTM variants. (a) Normal (Vanilla), (b) Bi-Directional, and (c) Stack. 

Figure 12 shows the combination of the CNN-LSTM architecture [48] for the RUL 
prediction of the cutting tool. Zhang X et al. and Agga A et al. discussed the architecture 
of the CNN-LSTM in detailed [48,49]. In this work, along with the CNN-LSTM, the differ-
ent variants of the SLTM are combined with the CNN model, such as CNN-Vanilla LSTM, 
CNN-Bidirectional LSTM, and CNN-stack LSTM.  

 

 
Figure 12. Hybrid CNN-LSTM architecture for RUL prediction. 

4.4. Performance Evaluation Parameters 
Different performance measurement parameters, such as ‘R-squared score (R2)’, 

‘Root Mean Square Error (RMSE)’, and ‘Mean Absolute Percent Error (MAPE)’, are used 
to measure the extent to which these prediction models work. The R2 is a metric that as-
sesses the accuracy of a forecast based on real and predicted data [50]. 

It is used to evaluate the regression model performance by determining how far the 
predicted points are from the actual data points. Whereas the RMSE provides the square 
root of the average of predicted and actual values. Finally, MAPE is used to calculate the 
percentage prediction errors. The formulae for all the performance parameters are pro-
vided in Table 5, where n = number of data points, 𝑎ሷ  = predicted value, and 𝑎 = true or 
actual value.  

  



Sensors 2023, 23, 5659 15 of 39 
 

 

Table 5. Model performance parameters. 

Sr. No. Performance Parameters Formula 

1 R-squared (R2) 𝑅ଶ = 1 − ∑ (𝑎ሷ ୧ −   𝑎)ଶ୬୧ ∑ ( 𝑎)ଶ୬୧  

2 RMSE 𝑅𝑀𝑆𝐸 = ඩ 1𝑛 (𝑎ሷ  −   𝑎)ଶ୬
୧   

3 MAPE 𝑀𝐴𝑃𝐸 = 1𝑛  ቤ(  𝑎 − 𝑎ሷ ) 𝑎 ቤ୬
୧ୀଵ   

5. Results and Discussion 
The NUAA Ideahouse dataset is in raw signal format with eight incoming signals, 

including four cutting forces, two vibrations, and one current and power signal, as men-
tioned in Section 4. From the L9 orthogonal array, the first two cases, W1 and W2, are 
considered in this work. The results related to case W1 are thoroughly elaborated in this 
section, and the summarized results table is provided for the W2 case at the end of the 
result section. 

The time column is added to the dataset based on the sampling frequency (300 
Hz/per signal). The actual values of the RUL are calculated based on the time column. The 
features are extracted and selected based on the sensor data as input and RUL as a target 
feature for the RUL prediction models. The data are normalized using the z-score data 
normalization technique before passing them to the model. This result section is organized 
into three parts, i.e.:  
1. The feature extraction based on different TFD techniques such as CWT, STFT, and 

WPT and feature selection using PCC and RFR methods is discussed; 
2. Model performance for each TFD feature using PCC and RF feature selection tech-

niques using different ML (SVM, RFR, and GBR) and DL models (LSTM, LSTM var-
iants, CNN, and hybrid model consisting of CNN with LSTM variants) are evaluated; 

3. Finally, the graphs indicating the actual and predicted RUL of the cutting tool versus 
the actual machining time of milling are plotted for each condition, and a summary 
of all the obtained results is discussed. 

5.1. Feature Extraction and Selection 
The features are extracted in the TFD using STFT, CWT, and WPT. The statistical 

features are extracted from the generated time–frequency coefficient vectors. A total of 64 
features are extracted in STFT and CWT each, as the number of input signals is eight (Fig-
ure 5), and eight statistical features (Table 3) are generated from each signal. In the WPT, 
the extracted coefficients are divided into approximate and detailed coefficients, generat-
ing a total of 128 features (64 approximate and 64 detailed). The extracted features in each 
method are shown in Table 6. 

Table 6. Feature extraction and its feature count. 

Feature Extraction Method Feature Count 
STFT 64 
CWT 64 
WPT 128 

After feature extraction, the features are selected using PCC and RF methods. In PCC, 
features with a correlation greater than 0.2 are chosen, whereas in RF, features with a 
weightage greater than 0.5 are chosen. The selection of threshold values for PCC and RF 
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is finalized after many iterations. The threshold values are kept constant for all the feature 
extraction techniques to compare model performance. 

Figure 13 shows the change in the mean STFT representation of the individual sensor 
signal with respect to time. Table 7 shows the selected features using the PCC feature 
selection technique for extracted STFT-based features. The feature names are indicated by 
the type of feature extraction technique followed by the type of statistical feature consid-
ered and the signal considered for feature extraction. A total of twenty-one features are 
selected that are having correlation coefficient greater than 0.2. Similarly, Table 8 shows 
the selected features using RF for STFT feature extraction. Out of 64 features, 31 high-
weightage features are selected.  

 
Figure 13. Extracted mean STFT sensor signals representation with time. 

Table 7. Selected features using PCC from STFT feature extraction technique. 

Feature 
Count 

Feature PCC Feature 
Count 

Feature PCC 

1 stft_rms_Bending_Moment_Y 0.563 12 stft_p2p_vib_x 0.290 
2 stft_std_Bending_Moment_Y 0.500 13 stft_peak_amp_vib_x 0.290 
3 stft_mean_Bending_Moment_Y 0.499 14 stft_skew_Bending_Moment_Y 0.282 
4 stft_var_Bending_Moment_Y 0.498 15 stft_rms_vib_x 0.274 
5 stft_p2p_Bending_Moment_Y 0.493 16 stft_kurtosis_Bending_Moment_Y 0.270 
6 stft_peak_amp_Bending_Moment_Y 0.493 17 stft_std_Bending_Moment_X 0.256 
7 stft_mean_Torsion_Z 0.348 18 stft_var_Bending_Moment_X 0.255 
8 stft_skew_Torsion_Z 0.327 19 stft_peak_amp_Bending_Moment_X 0.253 
9 stft_kurtosis_Torsion_Z 0.317 20 stft_p2p_Bending_Moment_X 0.253 

10 stft_var_vib_x 0.300 21 stft_rms_Bending_Moment_X 0.243 
11 stft_std_vib_x 0.297    
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Table 8. Selected features using RF from STFT feature extraction technique. 

Feature 
Count Features Weight 

Feature 
Count Score Weight 

1 stft_rms_Bending_Moment_Y 32.87 17 stft_peak_amp_Torsion_Z 1.43 
2 stft_mean_Torsion_Z 7.13 18 stft_var_vib_x 1.39 
3 stft_skew_Torsion_Z 4.37 19 stft_var_vib_y 1.25 
4 stft_peak_amp_vib_x 4.15 20 stft_mean_Axial_Force 1.15 
5 stft_p2p_vib_x 4.01 21 stft_var_Torsion_Z 0.80 
6 stft_mean_Bending_Moment_Y 3.83 22 stft_std_Torsion_Z 0.74 
7 stft_std_vib_x 3.20 23 stft_var_Bending_Moment_Y 0.66 
8 stft_var_Axial_Force 2.78 24 stft_kurtosis_Bending_Moment_Y 0.65 
9 stft_rms_Axial_Force 2.76 25 stft_skew_Bending_Moment_Y 0.62 

10 stft_std_Axial_Force 2.70 26 stft_kurtosis_Torsion_Z 0.61 
11 stft_rms_vib_x 2.51 27 stft_mean_vib_y 0.59 
12 stft_peak_amp_Axial_Force 2.39 28 stft_rms_vib_y 0.58 
13 stft_p2p_vib_y 2.00 29 stft_std_Bending_Moment_Y 0.57 
14 stft_p2p_Torsion_Z 1.75 30 stft_std_vib_y 0.55 
15 stft_p2p_Axial_Force 1.72 31 stft_rms_Torsion_Z 0.54 
16 stft_peak_amp_vib_y 1.59    

Figure 14 shows the change in the mean CWT representation of the individual sensor 
signal with respect to time. Tables 9 and 10 indicate the feature selected using PCC and 
RF from extracted CWT features. The eleven features having a PCC value higher than 0.2 
are selected for prediction model training and testing. Forty-three features are selected 
based on RF weightage greater than 0.5.  

 
Figure 14. Extracted mean CWT sensor signals representation with time. 
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Table 9. Selected features using PCC from CWT feature extraction technique. 

Feature 
Count Features PCC 

Feature 
Count Features PCC 

1 cwt_rms_Bending_Moment_Y 0.372 7 cwt_p2p_Torsion_Z 0.326 
2 cwt_std_Bending_Moment_Y 0.372 8 cwt_var_Torsion_Z 0.322 

3 cwt_var_Bending_Moment_Y 0.370 9 cwt_peak_amp_Bending_Mo-
ment_Y 

0.306 

4 cwt_std_Torsion_Z 0.333 10 cwt_p2p_Bending_Moment_Y 0.306 
5 cwt_rms_Torsion_Z 0.333 11 cwt_skew_Torsion_Z 0.201 
6 cwt_peak_amp_Torsion_Z 0.326    

Table 10. Selected features using RF from CWT feature extraction technique. 

Feature 
Count Features Weight Feature 

Count Features Weight 

1 cwt_mean_Bending_Moment_Y 23.21 23 cwt_kurtosis_Spindle_current 0.93 
2 cwt_mean_Torsion_Z 12.49 24 cwt_skew_Axial_Force 0.92 
3 cwt_mean_Bending_Moment_X 7.28 25 cwt_kurtosis_Spindle_power 0.89 

4 cwt_rms_Torsion_Z 5.06 26 
cwt_peak_amp_Bending_Mo-

ment_X 0.89 

5 cwt_rms_Bending_Moment_Y 3.40 27 cwt_std_Bending_Moment_X 0.87 
6 cwt_skew_Bending_Moment_Y 2.64 28 cwt_kurtosis_Axial_Force 0.82 
7 cwt_rms_Bending_Moment_X 2.16 29 cwt_rms_Axial_Force 0.82 
8 cwt_skew_Torsion_Z 1.95 30 cwt_skew_Spindle_power 0.82 
9 cwt_kurtosis_Bending_Moment_X 1.76 31 cwt_var_Bending_Moment_X 0.80 

10 cwt_var_Bending_Moment_Y 1.62 32 cwt_skew_Spindle_current 0.73 
11 cwt_std_Torsion_Z 1.57 33 cwt_p2p_Bending_Moment_X 0.73 
12 cwt_std_Bending_Moment_Y 1.53 34 cwt_kurtosis_vib_x 0.71 
13 cwt_var_Torsion_Z 1.47 35 cwt_peak_amp_Axial_Force 0.69 
14 cwt_mean_Axial_Force 1.37 36 cwt_std_Axial_Force 0.69 
15 cwt_kurtosis_Torsion_Z 1.30 37 cwt_var_Axial_Force 0.69 
16 cwt_kurtosis_Bending_Moment_Y 1.27 38 cwt_skew_vib_y 0.67 
17 cwt_skew_Bending_Moment_X 1.16 39 cwt_mean_Spindle_current 0.67 

18 cwt_peak_amp_Bending_Mo-
ment_Y 

1.05 40 cwt_mean_Spindle_power 0.66 

19 cwt_p2p_Torsion_Z 1.04 41 cwt_p2p_Axial_Force 0.66 
20 cwt_skew_vib_x 1.02 42 cwt_mean_vib_y 0.59 
21 cwt_peak_amp_Torsion_Z 0.94 43 cwt_p2p_Spindle_current 0.51 
22 cwt_p2p_Bending_Moment_Y 0.93    

Figure 15 shows the change in the mean WPT representation of the individual sensor 
signal with respect to time. Table 11 indicates the selected 26 features using the PCC tech-
nique from the extracted 128 WPT features at the first level of decomposition. The ‘a’ and 
‘d’ indicate the extracted approximate and detailed feature coefficients, followed by the 
extracted statistical details and signal names.  
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Figure 15. Extracted mean WPT sensor signals representation with time. 

Table 11. Selected features using PCC from WPT feature extraction technique. 

Feature 
Count 

Features PCC Feature 
Count 

Features PCC 

1 a_rms_Bending_Moment_Y 0.66 14 a_peak_amp_Bending_Moment_Y 0.36 
2 a_skew_Torsion_Z 0.60 15 a_p2p_Bending_Moment_Y 0.36 
3 a_mean_Bending_Moment_Y 0.57 16 d_p2p_Torsion_Z 0.34 
4 a_std_Bending_Moment_Y 0.50 17 d_peak_amp_Torsion_Z 0.34 
5 a_var_Bending_Moment_Y 0.50 18 d_rms_Torsion_Z 0.34 
6 d_rms_Bending_Moment_Y 0.47 19 d_std_Torsion_Z 0.34 
7 d_std_Bending_Moment_Y 0.47 20 d_var_Torsion_Z 0.34 
8 d_var_Bending_Moment_Y 0.47 21 a_kurtosis_vib_x 0.31 
9 d_peak_amp_Bending_Moment_Y 0.40 22 a_kurtosis_vib_y 0.29 

10 d_p2p_Bending_Moment_Y 0.40 23 a_peak_amp_Torsion_Z 0.27 
11 a_std_Torsion_Z 0.37 24 a_p2p_Torsion_Z 0.27 
12 a_var_Torsion_Z 0.37 25 a_mean_Bending_Moment_X 0.25 
13 a_skew_Bending_Moment_Y 0.36 26 a_rms_Bending_Moment_X 0.25 

Table 12 indicates the selected features using the RF feature selection method from 
extracted WPT features. A total of 19 features are selected, with a weightage greater than 
0.5.  
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Table 12. Selected features using RF from WPT feature extraction technique. 

Feature 
Count Feature Weight 

Feature 
Count Feature Weight 

1 a_rms_Bending_Moment_Y 32.88 11 a_mean_vib_y 1.35 
2 a_skew_Bending_Moment_Y 23.38 12 a_p2p_Torsion_Z 1.30 
3 a_skew_Torsion_Z 4.60 13 a_peak_amp_Torsion_Z 1.26 
4 a_rms_vib_x 4.58 14 a_p2p_Bending_Moment_Y 0.74 
5 a_mean_vib_x 3.36 15 a_mean_Torsion_Z 0.72 
6 a_rms_Axial_Force 3.22 16 a_var_Bending_Moment_Y 0.67 
7 a_kurtosis_Torsion_Z 3.18 17 a_peak_amp_Bending_Moment_Y 0.65 
8 a_mean_Axial_Force 2.48 18 a_mean_Bending_Moment_Y 0.61 
9 a_kurtosis_Bending_Moment_Y 2.18 19 a_std_Bending_Moment_Y 0.59 

10 a_rms_vib_y 1.36    

5.2. Machine Learning Models Performance 
The extracted and selected features are initially provided to different machine learn-

ing (ML) algorithms to check each model’s performance for RUL prediction. Various ap-
proaches for selecting features, including PCC and RFR methods, are used to assess the 
efficacy of each prediction model. In ML models, support vector machine (SVM), random 
forest regressor (RFR), and gradient boosting regressor (GBR) are used for RUL predic-
tion. 

Table 13 shows the performance evaluation for the different ML models using the 
PCC feature selection technique. The RUL prediction based on the ML model performs 
poorly compared to DL algorithms. The maximum value of R2 is 0.366 for the PCC-based 
feature selection method given by the RFR model for WPT feature extraction. Whereas, 
for the same extracted feature, the features are selected using the RF, and the performance 
of the ML models is slightly improved, as shown in Table 14. The WPT shows the maxi-
mum R2 of 0.496 for the RFR model in the RF base features selection method. The different 
DL models, such as LSTM, LSTM variants, CNN, and a combination of CNN with differ-
ent LSTM variants, are used to improve the performance of the prediction models. 

Table 13. RUL prediction for PCC-based feature selection techniques using different ML models. 

Feature 
Extraction Tech-

niques 

Prediction Mod-
els 

RUL Prediction 
Performance Evaluation on Testing Data 

R2 RMSE MAPE 

STFT 
SVR 0.235 0.249 17.983 
RFR 0.363 0.227 16.001 
GBR 0.316 0.235 17.871 

CWT 
SVR 0.062 0.288 22.631 
RFR 0.100 0.270 20.900 
GBR 0.084 0.273 21.922 

WPT 
SVR 0.216 0.252 18.344 
RFR 0.366 0.227 15.933 
GBR 0.320 0.234 17.510 

Table 14. RUL prediction for RFR-based feature selection techniques using different ML models. 

Feature 
Extraction 

Techniques 

Prediction 
Models 

RUL Prediction 
Performance Evaluation on Testing Data 

R2 RMSE MAPE 
STFT SVR 0.241 0.248 18.447 
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RFR 0.383 0.224 16.001 
GBR 0.346 0.230 17.406 

CWT 
SVR 0.081 0.289 22.820 
RFR 0.102 0.270 21.111 
GBR 0.111 0.269 21.856 

WPT 
SVR 0.347 0.230 16.045 
RFR 0.496 0.2026 13.495 
GBR 0.452 0.211 15.194 

5.3. Deep Learning Model Performance 
In the DL models, the extracted and selected features are initially provided to the 

different LSTM variants, such as Vanilla, Bi-directional, and Stack LSTM models, to check 
each model’s performance for RUL prediction. Similarly, the selected features are passed 
to the CNN model along with the hybrid model of CNN with different LSTM variants. 

In this work, the call-backs and early-stopping approach are used to increase the per-
formance and efficiency of DL models. Call-backs are functions that can be set to execute 
at certain points during training, such as after each epoch or after a given number of 
batches have been processed. These capabilities can be utilized to carry out a range of 
operations, including altering the learning rate, tracking training progress, and preserving 
model checkpoints, whereas early stopping, on the other hand, is a technique that is used 
to prevent overfitting. A call-back that checks the validation performance at the end of 
each epoch and stops training if the performance has not increased for a given number of 
epochs can be used to enable early stopping in deep learning models. These two ap-
proaches increase the effectiveness of the training process by preventing overfitting, con-
serving time, and reducing the amount of computational resources needed.  

In this work, different performance evaluation parameters, such as R-squared (R2), 
RMSE, and MAPE, are considered to check the performance of each model. Generally, in 
regression, the R2 values above 0.90 and MAPE values below 10% are considered models 
showing good prediction values. 

5.3.1. RUL Prediction Using STFT Feature Extraction Technique 
The RUL of the cutting tool is predicted using the STFT feature extraction technique. 

Table 15 shows the performance evaluation parameters of the different LSTM variants 
model using STFT time–frequency-based feature extraction techniques for RUL predic-
tion. For the PCC-based feature selection technique, the stack LSTM shows the maximum 
testing accuracy of 0.802, with 0.125 and 7.372% as RMSE and MAPE values, respectively. 
In RFR feature selection, stack LSTM provides a maximum R2 score value of 0.782 as test-
ing accuracy with 0.131 RMSE value and 08.52% MAPE value. 

Table 15. STFT feature extraction-based RUL prediction for PCC and RFR feature selection tech-
niques using different LSTM variants. 

Feature Selection Tech-
niques Prediction Models 

RUL Prediction 
Performance Evaluation on 

Training Data 
Performance Evaluation on 

Testing Data 
R2 RMSE MAPE R2 RMSE MAPE 

Pearson’s Correlation Coef-
ficient (PCC) 

Vanilla LSTM 0.741 0.147 10.163 0.706 0.152 10.523 
Bi-direction LSTM 0.800 0.129 08.807 0.755 0.139 09.175 

Stack LSTM 0.865 0.106 06.743 0.802 0.125 07.372 

Random Forest Regressor 
(RFR) 

Vanilla LSTM 0.780 0.135 08.998 0.737 0.144 09.510 
Bi-direction LSTM 0.704 0.157 10.715 0.654 0.165 11.461 

Stack LSTM 0.809 0.126 08.138 0.782 0.131 08.520 
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Figure 16 shows the learning curves for the RUL prediction, indicating the loss vs. 
the number of epochs for each model using PCC and RFR feature extraction in the STFT 
feature extraction technique. The graph shows that the losses are minimum for the highest 
R2 and minimum RMSE or MAPE values. Stack LSTM model offers a minimum loss for 
the PCC and RFR-based feature selection. 

  

  
Figure 16. RUL prediction learning curves using STFT-based feature extraction for different LSTM 
variants. 

Figures 17 and 18 show the graphs of the actual and predicted RUL of the cutting 
tool concerning total machining time for PCC-based and RFR-based feature selection. The 
stack LSTM shows the minimum deviation in RUL prediction for both feature selection 
techniques. 
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Figure 17. The actual and predicted value of RUL versus machining time for STFT and PCC-based 
feature selection using different LSTM variants. (a) Vanilla. (b) Bi-directional, and (c) Stack. 
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Figure 18. The actual and predicted value of RUL versus machining time for STFT and RFR-based 
feature selection using different LSTM variants. (a) Vanilla, (b) Bi-directional, and (c) Stack. 

Similarly, Table 16 shows the performance evaluation parameters of the CNN and 
CNN-LSTM variants models using STFT time–frequency-based feature extraction tech-
niques for RUL prediction. For the PCC-based feature selection technique, the CNN-
LSTM shows the maximum testing accuracy of 0.881, with 0.097 and 6.877% as RMSE and 
MAPE values, respectively. In RFR feature selection, CNN-bidirectional LSTM provides 
a maximum R2 score of 0.951 as testing accuracy with 0.062 RMSE value and 04.161% 
MAPE value. 
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Table 16. STFT feature extraction-based RUL prediction for PCC and RFR feature selection tech-
niques using CNN and CNN-LSTM variants. 

Feature Selection 
Techniques 

Prediction 
Models 

RUL Prediction 
Performance Evaluation on 

Training Data 
Performance Evaluation on 

Testing Data 
R2 RMSE MAPE R2 RMSE MAPE 

Pearson’s 
Correlation 

Coefficient (PCC) 

CNN 0.878 0.101 07.057 0.775 0.133 08.946 
CNN-LSTM 0.934 0.074 05.426 0.881 0.097 06.877 

CNN-Bi-LSTM 0.788 0.133 08.605 0.753 0.140 09.090 
CNN-Stack-STM 0.870 0.104 06.842 0.833 0.115 07.421 

Random Forest 
Regressor (RFR) 

CNN 0.972 0.048 03.570 0.930 0.074 05.499 
CNN-LSTM 0.829 0.119 08.067 0.774 0.134 08.728 

CNN-Bi-LSTM 0.906 0.088 05.891 0.838 0.113 07.090 
CNN-Stack-LSTM 0.964 0.054 03.681 0.951 0.062 04.161 

Figures 19 and 20 show the actual and predicted values of the RUL for the PCC-based 
and RF-based feature selection techniques, respectively. In PCC-based feature selection, 
as the CNN-LSTM shows the maximum accuracy, Figure 19(b) shows the minimum de-
viation between the actual and predicted RUL values. Similarly, in RFR-based feature se-
lection, Figure 20(d), the CNN-Stack-LSTM shows the minimum deviation in actual and 
predicted RUL values with maximum accuracy. 

  
(a) (b) 

  
(c) (d) 

Figure 19. The actual and predicted values of RUL versus machining time for STFT and PCC-based 
feature selection using different models. (a) CCN, (b) CNN-LSTM, (c) CNN-bidirectional LSTM, 
and (d) CNN-Stack LSTM. 

  
(a) (b) 
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(c) (d) 

Figure 20. The actual and predicted value of RUL versus machining time for STFT and RF-based 
feature selection using different models. (a) CCN, (b) CNN-LSTM, (c) CNN-bidirectional LSTM, 
and (d) CNN-Stack LSTM. 

5.3.2. RUL Prediction Using CWT Feature Extraction Technique 
Table 17 shows the performance evaluation parameters of the different LSTM vari-

ants model using CWT time–frequency-based feature extraction techniques for RUL pre-
diction. In CWT, for vanilla LSTM, the maximum testing accuracy is 0.851, with 0.104 and 
7.359 as RMSE and MAPE values, respectively. In RFR feature selection, stack LSTM pro-
vides a maximum R2 score value of 0.927 as testing accuracy with 0.075 and 5.781 as RMSE 
and MAPE values, respectively. 

Table 17. CWT feature extraction-based RUL prediction for PCC and RFR feature selection tech-
niques using different LSTM variants. 

Feature Selection Tech-
niques Prediction Models 

RUL Prediction 
Performance Evaluation on 

Training Data 
Performance Evaluation on 

Testing Data 
R2 RMSE MAPE R2 RMSE MAPE 

Pearson’s Correlation Co-
efficient (PCC) 

Vanilla LSTM 0.907 0.087 06.503 0.851 0.104 07.359 
Bi-direction LSTM 0.864 0.106 07.505 0.818 0.120 08.446 

Stack LSTM 0.861 0.107 07.506 0.793 0.128 08.577 

Random Forest Regressor 
(RFR) 

Vanilla LSTM 0.882 0.099 07.176 0.838 0.113 08.369 
Bi-direction LSTM 0.909 0.087 06.582 0.881 0.097 07.274 

Stack LSTM 0.953 0.062 04.789 0.927 0.075 05.781 

Figure 21 shows the learning curves for all six conditions of the model.From the 
learning curves, it is clear that the model which shows maximum accuracy provides the 
minimum training and testing losses. 
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Figure 21. RUL prediction learning curves using CWT-based feature extraction for different LSTM vari-
ants. 

Figures 22 and 23 show the graphical representation that indicates the actual and 
predicted RUL of different LSTM models with respect to machining time. Models with 
the highest accuracies for both feature selection methods demonstrate the least deviation 
between the real and anticipated values of RUL concerning machining time.  

 
(a) 

 
(b) 
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Figure 22. The actual and predicted values of RUL versus machining time for CWT and PCC-based 
feature selection using different LSTM variants. (a) Vanilla, (b) Bi-directional, and (c) Stack. 

 
(a) 

 
(b) 
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(c) 

Figure 23. The actual and predicted value of RUL versus machining time for CWT and RFR-based 
feature selection using different LSTM variants. (a) Vanilla, (b) Bi-directional, and (c) Stack. 

Similarly, Table 18 shows the performance evaluation parameters of the CNN and 
CNN-LSTM variants models using CWT time–frequency-based feature extraction tech-
niques for RUL prediction. For the PCC-based feature selection technique, the CNN-Bidi-
rectional-LSTM shows the maximum testing accuracy of 0.960, with 0.051 and 3.576% as 
RMSE and MAPE values, respectively. In RFR feature selection, CNN-bidirectional LSTM 
provides a maximum R2 score of 0.971 as testing accuracy with 0.048 RMSE value and 
3.428% MAPE value. 

Table 18. CWT feature extraction-based RUL prediction for PCC and RFR feature selection tech-
niques using CNN and CNN-LSTM variants. 

Feature Selection 
Techniques 

Prediction 
Models 

RUL Prediction 
Performance Evaluation On 

Training Data 
Performance Evaluation on 

Testing Data 
R2 RMSE MAPE R2 RMSE MAPE 

Pearson’s Correlation 
Coefficient (PCC) 

CNN 0.981 0.039 03.157 0.934 0.072 05.301 
CNN-LSTM 0.937 0.072 05.236 0.858 0.106 06.922 

CNN-Bi-LSTM 0.987 0.0317 02.447 0.960 0.051 03.576 
CNN Stack LSTM 0.900 0.091 06.516 0.828 0.117 07.814 

Random Forest 
Regressor (RFR) 

CNN 0.962 0.055 04.415 0.919 0.080 06.177 
CNN-LSTM 0.935 0.075 05.729 0.890 0.093 06.880 

CNN-Bi-LSTM 0.992 0.025 01.95 0.971 0.048 03.428 
CNN-Stack-LSTM 0.976 0.044 03.418 0.953 0.059 04.354 

Figures 24 and 25 show the actual and predicted values of the RUL for the PCC-based 
and RF-based feature selection techniques, respectively, for extracted features using the 
CWT method. In PCC-based feature selection, Figure 24(c) shows the minimum deviation 
between the actual and predicted RUL values, as the CNN-bidirectional-LSTM shows the 
maximum accuracy. Similarly, in RFR-based feature selection, Figure 25(c), the CNN-bi-
directional-LSTM shows the minimum deviation in actual and predicted RUL values with 
a maximum R-squared value of 0.96. 
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Figure 24. The actual and predicted value of RUL versus machining time for CWT and PCC-based 
feature selection using different models. (a) CCN, (b) CNN-LSTM, (c) CNN-bidirectional LSTM, 
and (d) CNN-Stack LSTM. 

  
(a) (b) 

  
(c) (d) 

Figure 25. The actual and predicted value of RUL versus machining time for CWT and RFR-based 
feature selection using different models. (a) CCN, (b) CNN-LSTM, (c) CNN-bidirectional LSTM, 
and (d) CNN-Stack LSTM. 

5.3.3. RUL Prediction Using WPT Feature Extraction Technique 
The WPT is used to estimate the RUL of the cutting tool. Table 19 shows the perfor-

mance evaluation parameters of the different LSTM variants model using WPT time–fre-
quency-based feature extraction techniques for RUL prediction. For the PCC-based fea-
ture selection technique, the stack LSTM shows the maximum testing accuracy of 0.857, 
with 0.102 and 7.140% as RMSE and MAPE values, respectively. In RFR feature selection, 
stack LSTM provides a maximum R2 score value of 0.978 as train accuracy and 0.967 as 
testing accuracy with 0.051 RMSE value and 03.676% MAPE value. 
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Table 19. WPT feature extraction-based RUL prediction for PCC and RFR feature selection tech-
niques using different LSTM variants. 

Feature Selection Tech-
niques 

Prediction Models 

RUL Prediction 
Performance Evaluation on 

Training Data 
Performance Evaluation on 

Testing Data 
R2 RMSE MAPE R2 RMSE MAPE 

Pearson’s Correlation 
Coefficient (PCC) 

Vanilla LSTM 0.922 0.080 06.021 0.857 0.102 07.140 
Bi-direction LSTM 0.814 0.124 08.576 0.778 0.132 09.087 

Stack LSTM 0.828 0.119 07.698 0.771 0.134 08.134 

Random Forest Regres-
sor (RFR) 

Vanilla LSTM 0.937 0.072 04.914 0.901 0.088 05.721 
Bi-direction LSTM 0.897 0.092 05.966 0.873 0.100 06.533 

Stack LSTM 0.978 0.042 03.043 0.964 0.051 03.676 

Figure 26 indicates the training and validation loss learning curves for the prediction 
of RUL employing various LSTM variants for PCC and RFR-based feature selection tech-
niques. In PCC-based feature selection, vanilla LSTM shows minimum training losses at 
51 epochs. The model uses early stopping to avoid overfitting using a three-patient level 
in the call-back function. At the same time, in RFR based feature selection technique, the 
Stack LSTM shows minimum training losses at the 52 epochs and indicates the maximum 
accuracy for the same epochs. 

  

  

  
Figure 26. RUL prediction learning curves using WPT-based feature extraction for different LSTM 
variants. 
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Figures 27 and 28 show the actual and predicted RUL vs. machining time of the cut-
ting tool using the WPT feature extraction technique for PCC and RFR-based feature se-
lection, respectively, for different LSTM variants. From the graphical representation, it is 
clear that the model with the highest prediction accuracy shows a slight variation between 
the real and predicted RUL. Figure 14, vanilla LSTM, shows the minimum deviation be-
tween the actual and predicted RUL. Whereas, in Error! Reference source not found.15, 
stack LSTM shows the lowest variation between real and predicted RUL values.  

 
(a) 

 
(b) 

 
(c) 

Figure 27. The actual and predicted values of RUL versus machining time for WPT and PCC-based 
feature selection using different LSTM variants. (a) Vanilla, (b) Bi-directional, and (c) Stack. 
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Figure 28. The Actual and predicted values of RUL versus machining time for WPT and RFR-based 
feature selection using different LSTM variants. (a) Vanilla, (b) Bi-directional, and (c) Stack. 

Similarly, Table 20 shows the performance evaluation parameters of the CNN and 
CNN-LSTM variants models using WPT time–frequency-based feature extraction tech-
niques for RUL prediction. For the PCC-based feature selection technique, the CNN-Bidi-
rectional-LSTM shows the maximum testing accuracy of 0.908, with 0.086 and 5.90% as 
RMSE and MAPE values, respectively. In RFR feature selection, CNN-bidirectional-LSTM 
provides a maximum R2 score of 0.955 as testing accuracy with 0.056 RMSE value and 
03.59% MAPE value. 
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Table 20. WPT feature extraction-based RUL prediction for PCC and RFR feature selection tech-
niques using CNN and CNN-LSTM variants. 

Feature Selection 
Techniques 

Prediction Models 

RUL Prediction 
Performance Evaluation on 

Training Data 
Performance Evaluation on 

Testing Data 
R2 RMSE MAPE R2 RMSE MAPE 

Pearson’s  
Correlation  

Coefficient (PCC) 

CNN 0.979 0.041 03.192 0.941 0.068 04.943 
CNN-LSTM 0.946 0.066 05.023 0.903 0.087 05.925 

CNN -Bi-LSTM 0.950 0.064 04.700 0.908 0.086 05.905 
CNN-Stack-LSTM 0.878 0.100 06.915 0.827 0.117 07.630 

Random Forest 
Regressor (RFR) 

CNN 0.966 0.052 03.869 0.926 0.076 05.522 
CNN-LSTM 0.630 0.175 11.452 0.946 0.051 05.522 

CNN-Bi-LSTM 0.979 0.041 03.211 0.948 0.064 04.647 
CNN-Stack-LSTM 0.977 0.043 0.030 0.955 0.058 03.590 

Figures 29 and 30 show the graphical representation of actual and predicted values 
of the RUL for the PCC-based and RF-based feature selection techniques, respectively, for 
extracted features using the WPT method. In PCC-based feature selection, Figure 29c  
shows the minimum deviation between the actual and predicted RUL values, as the CNN-
bidirectional-LSTM shows the maximum accuracy. Similarly, as shown in Figure 30d , 
RFR-based feature selection, the CNN-bidirectional-LSTM, shows the minimum devia-
tion in actual and predicted RUL values. 

  
(a) (b) 

  
(c) (d) 

Figure 29. The actual and predicted value of RUL versus machining time for WPT and PCC-based 
feature selection using different models. (a) CCN, (b) CNN-LSTM, (c) CNN-bidirectional LSTM, 
and (d) CNN-Stack LSTM. 

  
(a) (b) 



Sensors 2023, 23, 5659 35 of 39 
 

 

  
(c) (d) 

Figure 30. The actual and predicted value of RUL versus machining time for WPT and RFR-based 
feature selection using different models. (a) CCN, (b) CNN-LSTM, (c) CNN-bidirectional LSTM, 
and (d) CNN-Stack LSTM. 

Table 21 summarizes all the results from the prediction models, including LSTM, 
LSTM variants, CNN, and CNN with LSTM variants for case W1. In the STFT feature 
extraction technique, the CNN-stack-LSTM provides the maximum R2 value of 0.951 us-
ing the RF feature selection technique. In CWT feature extraction, the CNN-bidirectional 
LSTM provides a maximum R2 value of 0.971. In the WPT feature extraction technique, 
stack-LSTM provides the maximum R2 value of 0.967.  

Table 21. Summarized performance evaluation for different feature extraction techniques and DL 
models for RUL prediction using PCC and RFR-based feature selection techniques (Case-W1). 

Feature 
Extraction 

Techniques 
Prediction Models 

RUL Prediction 
Feature Selection Using Pearson’s 

Correlation Coefficient (PCC) 
Feature Selection Using Random 

Forest (RF) 
R2 RMSE MAPE R2 RMSE MAPE 

STFT 

Vanilla LSTM 0.706 0.152 10.523 0.737 0.144 09.510 
Bi-direction LSTM 0.755 0.139 09.175 0.654 0.165 11.461 

Stack LSTM 0.802 0.125 07.372 0.782 0.131 08.520 
CNN 0.775 0.133 08.946 0.930 0.074 05.499 

CNN-LSTM 0.881 0.097 06.877 0.774 0.134 08.728 
CNN-Bi-LSTM 0.753 0.140 09.090 0.838 0.113 07.090 

CNN-Stack-LSTM 0.833 0.115 07.421 0.951 0.062 04.161 

CWT 

Vanilla LSTM 0.851 0.104 07.359 0.838 0.113 08.369 
Bi-direction LSTM 0.818 0.120 08.446 0.881 0.097 07.274 

Stack LSTM 0.793 0.128 08.577 0.927 0.075 05.781 
CNN 0.934 0.072 05.301 0.919 0.080 06.177 

CNN-LSTM 0.858 0.106 06.922 0.890 0.093 06.880 
CNN-Bi-LSTM 0.960 0.051 03.576 0.971 0.048 03.428 

CNN-Stack-LSTM 0.828 0.117 07.814 0.953 0.059 04.354 

WPT 

Vanilla LSTM 0.857 0.102 07.140 0.901 0.088 05.721 
Bi-direction LSTM 0.778 0.132 09.087 0.873 0.100 06.533 

Stack LSTM 0.771 0.134 08.134 0.964 0.051 03.676 
CNN 0.941 0.068 04.943 0.926 0.076 05.522 

CNN-LSTM 0.903 0.087 05.925 0.946 0.065 04.448 
CNN-Bi-LSTM 0.908 0.086 05.905 0.948 0.064 04.647 

CNN-Stack-LSTM 0.827 0.117 07.630 0.955 0.058 03.590 

Similarly, the model performance is verified on case W2. In the case of W2, 18 runs 
are required to reach the maximum tool wear value of 0.30 mm. The DL models for RUL 
predictions provide good results, as summarized in Table 22.  
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Table 22. Summarized performance evaluation for different feature extraction techniques and 
LSTM variants for RUL prediction using PCC and RFR-based feature selection techniques (Case-
W2). 

Feature 
Extraction 

Techniques 
Prediction Models 

RUL Prediction 
Feature Selection Using Pearson’s 

Correlation Coefficient (PCC) 
Feature Selection Using Random  

Forest Regressor (RFR) 
R2 RMSE MAPE R2 RMSE MAPE 

STFT 

Vanilla LSTM 0.949 0.064 04.647 0.946 0.066 04.780 
Bi-direction LSTM 0.954 0.062 04.652 0.926 0.079 05.767 

Stack LSTM 0.832 0.120 07.369 0.940 0.071 04.866 
CNN 0.962 0.057 03.972 0.956 0.061 04.367 

CNN-LSTM 0.898 0.094 05.803 0.891 0.096 06.967 
CNN-Bi-LSTM 0.904 0.087 05.975 0.967 0.044 03.256 

CNN-Stack-LSTM 0.812 0.127 08.412 0.886 0.099 06.263 

CWT 

Vanilla LSTM 0.883 0.100 06.506 0.965 0.054 03.867 
Bi-direction LSTM 0.788 0.135 09.306 0.900 0.926 05.950 

Stack LSTM 0.793 0.128 0.085 0.949 0.066 04.197 
CNN 0.927 0.079 05.264 0.929 0.078 05.103 

CNN-LSTM 0.928 0.078 05.684 0.810 0.128 08.679 
CNN-Bi-LSTM 0.972 0.048 03.123 0.979 0.042 02.965 

CNN-Stack-LSTM 0.963 0.056 03.984 0.910 0.087 04.969 

WPT 

Vanilla LSTM 0.979 0.0421 03.195 0.977 0.044 03.243 
Bi-direction LSTM 0.971 0.048 03.649 0.824 0.118 08.063 

Stack LSTM 0.965 0.054 04.043 0.985 0.034 02.728 
CNN 0.971 0.049 03.672 0.950 0.064 04.700 

CNN-LSTM 0.975 0.045 03.478 0.977 0.043 03.012 
CNN-Bi-LSTM 0.878 0.100 06.915 0.970 0.044 03.032 

CNN-Stack-LSTM 0.827 0.117 07.630 0.955 0.059 03.590 

The results show that the RF feature selection technique performs slightly better than 
the PCC-based feature selection technique. Tool wear, or RUL, is a non-linear and complex 
phenomenon. The PCC feature selection technique provides better results for linear rela-
tionships than non-linear ones. The RF feature selection technique gives better results for 
non-linear relationships and complex models. In the case of RUL prediction models, ML 
models show poor prediction performance as the model struggles to capture complex and 
non-linear relationships in the cutting tool RUL data. In comparison, the DL models show 
fairly good prediction results in RUL prediction. In this work, based on the results, it is 
observed that, compared to the normal CCN and LSTM models, LSTM variants and hy-
brid models (CNN with LSTM variants) provide better results. The LSTM variants and 
CNN with LSTM variants easily and more accurately understand the temporal or time-
related aspects of sequential or time series signals captured for RUL prediction of cutting 
tool. 

6. Conclusions 
In this work, the IEEE NUAA Ideahouse dataset is used for the cutting tool’s remain-

ing useful life (RUL) prediction. Time–frequency feature extraction techniques such as 
STFT and WT are used to avoid the limitations of TD and FD feature extraction. The model 
prediction results are verified using the two cases (W1 and W2) from the dataset. The 
following conclusions are drawn from the obtained results: 
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• The RF feature selection technique performs slightly better than the PCC-based fea-
ture selection technique. The RF feature selection technique gives better results for 
non-linear relationships and complex models;  

• The DL models such as LSTM, LSTM variants, CNN, and CNN with LSTM variants 
provide better prediction accuracies than ML models, as these models are effective 
for the time-series and complex non-linear cutting tool data for RUL estimation; 

• In STFT, CWT, and WPT feature extraction techniques, the highest value of R2 score 
is more than 0.95 for LSTM variants and hybrid (CNN with LSTM variants) predic-
tion models;  

• The result shows that the TFD feature extraction technique is effective for RUL pre-
diction with deep learning models such as LSTM, LSTM variants, CNN, and hybrid 
model CNN with LSTM variants. 
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