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ABSTRACT Parkinson’s disease (PD) is a rapidly growing neurodegenerative disorder that primarily affects
the elderly population. Until now, there has been no antidote for PD. However, diagnosing Parkinson’s
disease in its early stages is difficult. Early treatment will help people with Parkinson’s disease improve
their quality of life. The primary goal of this work is to increase the early diagnostic accuracy of Parkinson’s
disease using deep learning models and to make the models more transparent and trustworthy. It proved
challenging to comprehend the methods by which the classifiers made predictions about Parkinson’s
disease. It would be valuable if the outcomes generated by these classifiers could be clarified in a reliable
and trustworthy manner. Explainable Artificial Intelligence (EXAI) focuses on enhancing clinical health
practises and bringing transparency to predictive analysis, both of which are critical in the healthcare arena.
We proposed a new hybrid deep transfer learning model to distinguish PD patients from healthy individuals.
The proposed architecture combines the advantages of both VGG19 Net and Google Net. This study also
shows the experimental outcomes of various pre-trained models such as Alex Net, DenseNet-201, VGG-19
Net, Squeeze Net1.1, and ResNet-50. The VGG19-INC model predicts PD with an accuracy of 98.45%,
which is greater than other state-of-the-art approaches, demonstrating the proposed work’s superiority and
robustness. To demystify the VGG19-INC model, explainable AI approaches such as LIME are used to
identify the specific parts of the spiral and wave drawings that contribute most to the model’s prediction.
These methods provide local interpretation, making it easier to understand how the model arrives at its
conclusions.

INDEX TERMS Explainable artificial intelligence, Parkinson’s disease, deep learning, Google net, LIME,
spiral and wave drawings.

I. INTRODUCTION
Parkinson’s disease (PD) is a chronic neurodegenerative dis-
ease that primarily affects the central nervous system of
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the body. The body’s motor function suffers as a result of
a shortage of dopamine [1]. Dopamine is a chemical sub-
stance produced by neurons in the substantial nigra pars
compacta, which is responsible formotor actions. Parkinson’s
disease predominantly impacts the motor system, resulting in
movement difficulties such as tremors, stiffness, and slowed
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movements known as bradykinesia. Tasks involving draw-
ing spirals and waves necessitate precise coordination and
fine motor control. Clinicians can evaluate the motor control
skills of individuals with Parkinson’s disease and detect any
irregularities or fluctuations in motor function by examining
the quality of their drawings. The prevalence rate of PD
increases with the ageing population in males and females
over 60. PD can be characterised by motor and non-motor
symptoms [2], [3]. As the disease progresses, it is essential
to identify the disease early to keep the symptoms under
control. The severity of Parkinson’s disease can be measured
in various stages by the Unified Parkinson’s Disease Rating
Scale (UPDRS) and the Hoehn and Yahr (H-Y) rating scales.
The variation in scores takes years based on the progression of
the disease [4]. The International Classification of Diseases,
11th Revision (ICD-11), is a robust system used worldwide to
categorize and diagnose various diseases, including Parkin-
son’s disease (PD). Within the ICD-11, specific diagnostic
criteria have been established for PD, outlining the key indi-
cators necessary for its identification. These criteria serve
as a standardized framework for healthcare professionals to
accurately diagnose individuals with PD.

Currently, the diagnosis of PD is based on clinical assess-
ments, a time-consuming process, and a need for more
human experts. The direct and indirect costs of treating
PD patients will be approximately $23,000, burdening the
elderly. Thus, the automatic early diagnosis of PD is needed in
healthcare [5]. The scientific community shows considerable
interest in medical-assisted diagnosis [6], [7]. However, it is
quite challenging to achieve better classification accuracy.
The proposed method’s main advantage over the traditional
PD diagnosis is fast and accurate decision-making. In recent
years, there have been notable advancements in our knowl-
edge of Parkinson’s disease and how to manage it. Progress
in early detection, treatment choices, and research focused
on altering the progression of the disease offer hope for
enhancing the well-being of individuals with PD and even-
tually discovering a cure for this intricate neurodegenerative
condition.

PD is often misdiagnosed as the symptoms are like those
of other diseases like multiple system atrophy (MSA), pro-
gressive supranuclear palsy (PSP), Huntington’s disease,
etc. [8]. Convolutional neural networks (CNNs) are well-
liked in deep learning techniques, particularly in overcoming
the challenges of the classical ML approaches [9], [10]. The
exploration of drawings has confirmed their usefulness in
diagnosing PD patients. Digital techniques predominantly
depend on the model’s accuracy, so it is crucial to execute
deep learning-based algorithms to achieve better accuracy for
PD detection and accelerate the diagnosis process to improve
the patient’s quality of life [11], [12]. Deep learning is an
effective method for processing huge volumes of data since
the models get more accurate as more data is applied into
them. On the other hand, in the existing body of research,
a deep neural classifier is frequently referred to as a ‘‘black

box’’ technique. Since the process is not transparent, and
the researchers are unable to obtain information regarding
the specific way in which the input is associated with the
output. Because of the nature of the application in many
different fields, such as medicine, interpretability is of the
utmost importance. Through the implementation of Local
Interpretable Model-agnostic Explanation (LIME) into the
image classification pipeline, the primary goal of our research
is to make the proposed PD prediction model more inter-
pretable. This paper investigates early diagnosis of PD over
drawing datasets acquired from PD patients using various
pre-trained CNNmodels with Explainable AI. The significant
contributions of this proposed work summary are as follows:

• Constructing a precise deep learning algorithm to detect
Parkinson’s disease in its early stages by analyzing spiral
and wave drawings.

• Develop an understandable approach utilizing LIME to
solve the classification problem.

• Assist healthcare professionals in identifying Parkin-
son’s disease at an early stage by displaying visual
indicators produced by the model during its predictions.

• In addition, this article performs an extensive compara-
tive study by validating that ResNet-50 with a dynamic
learning rate performs well compared with the current
state-of-the-art techniques.

The remainder of this manuscript is organized as follows.
Section II analyses the present related works on PD recogni-
tion. Section III introduces the collection of dataset descrip-
tion and data augmentation techniques, and this section
primarily reviews the different CNN architectures used to
achieve the task of PD classification. Section IV is dedicated
to evaluating the multiple experimental results and compar-
ative assessment. Section V discusses the outcomes of XAI
framework. Finally, Section VI summarizes this work.

II. RELATED WORK
Artificial intelligence in health care has gained increasing
popularity in this growing era. Over a period, much research
has been conducted previously related to PD’s early diag-
nosis. For example, in recent years, handwriting has been
considered a promising biomarker for diagnosing PD at an
earlier stage. This is because handwriting can assess an indi-
vidual’s cognitive and motor functions, and the graphical
characteristics of handwriting can recognize the uncertainty
of strokes produced by tremor movements.

Predictable metrics include changes in the size of the
written characters, the height of loop patterns, text blocks
region, pixel density deviations originating due to ink content,
density and height ratios, and spiral precision index [13], [14].
Apart from evaluating the severity of Parkinson’s disease
(PD), these studies also facilitate monitoring the disease
progression over time and detecting early symptoms. For
example, a research study investigated the feasibility of ana-
lyzing handwriting samples based on handwriting history via
static analysis to establish the severity of PD in 10 Patients.
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Multiple machine learning algorithms were employed to dif-
ferentiate between PD and healthy. In several handwriting
tasks, Drotar et al., [15] employed SVM and obtained an
accuracy rate of 81.3% on the PaHaW database, which con-
sists of 37 PD patients and 38 HC, using kinematic and
pressure features. In their study, Pereira et al. [16] Utilized
cutting-edge deep learning techniques, opting for a convo-
lutional neural network to differentiate between changing
aspects of handwritten samples from the HandPD dataset,
which included 74 individuals diagnosed with Parkinson’s
disease and 18 healthy controls. Das et al. [17] proposed
a prediction model for the early diagnosis of PD using
various classification techniques, and finally, Neural Net-
works outperform other classifiers, with 92.2% accuracy
in classification. Akyol et al. [18] aimed to improve the
diagnostic accuracy of automatic PD identification using
several classifiers over the hand PD dataset. It is evident
from the results that the ANN classifier algorithm outper-
forms well compared to Random Forest (RF) and Linear
Regression (LR) classifiers. Afonso et al. [19] applied the
deep Optimum-Path Forest (OPF) clustering for the PD
classification using a dynamic handwritten dataset. Later,
Kotsavasiloglou et al. [20] presented a PD prediction model
using a normalised variable velocity of the drawing dataset;
the authors explored the features composed of twenty healthy
subjects and twenty-four PD patients. On the other hand,
Gil-Martin et al. [21] developed a convolutional neural
network to separate the hand drawings’ features for PD
classification. The prediction model achieved an accuracy
of 96.5%. Naseer et al. [22] implemented transfer learning
through Alex Net using the PaHaW dataset to classify the
PD patients from healthy. The authors achieved a clas-
sification accuracy of 98.28% using fine-tuned ImageNet
features. In another work, Meghakamble et al. [23] pointed
out that digitalized spiral drawings will be a promising
biomarker for PD prediction. With the assistance of four
machine learning classifiers implemented on the mathemat-
ically processed dataset with feature engineering, they also
summarized results with an accuracy of 91% and an AUC
of 98.1%. Goyal et al. [24] applied an adjusting learning
rate as a function of minibatch size in the training phase
of the ImageNet dataset to achieve excellent performance
by overcoming the optimization challenges. Akter et al. [25]
discovered an approach to identifying PD-affected patients
early using hand-drawn wave and spiral images. Several
machine learning classifier algorithms are proposed with
HOG feature descriptors in that KNN outperforms well with
an accuracy of 89.33%. Canturk et al. [26] applied trans-
fer learning through popular CNN architectures like Alex
Net and Google Net models to analyse the performance of
PD classification using dynamic spiral tests and achieved
an accuracy of 94%. Loschilov et al. [27] investigated the
stochastic gradient descent with warm restarts (SGDR) by
scheduling the learning rates during the training phase to
achieve better results on ImageNet datasets. Alissa et al. [28]

FIGURE 1. (a) Spiral images of healthy subjects (b) Spiral images of PD
patients (c) Wave images of healthy subjects (d) Wave images of PD
patients. [31].

examined the spiral pentagon drawings in the discrimination
process of PD patients from healthy subjects. The author
has achieved an accuracy of 93.5% by using the convo-
lutional classifier. Riberio et al. [29] developed the LIME
approach, which offers a reliable and easy-to-understand way
of explaining classifier predictions. LIME leverages local
interpretation and explanation by simplification techniques to
construct an interpretable model specific to each prediction.
Das et al. [30] provided a comprehensive overview of the cur-
rent state of explainable artificial intelligence (XAI) within
the context of deep learning, highlighting different algorith-
mic approaches and categorizing them in detail. The authors
also discussed potential future directions for improving XAI
evaluation.

III. MATERIALS AND METHODS
This section discusses the collection of datasets and data
preprocessing techniques. We also see the proposed approach
to the early diagnosis of PD using various pre-trained models.

A. DATASET DESCRIPTION
The drawing dataset contains spiral and wave drawing sam-
ples of 102 subjects, i.e., 51 PD patients and 51 healthy
subjects, downloaded from Kaggle. The dataset provided
by the authors [31] comprises two distinct types of images
intensely, 102 spiral drawings and 102 wave drawings.
Recordings from each subject were performed by drawing
a spiral and a wave image. The Dataset 2 comprises spi-
ral drawings contributed by a total of 124 PD patients and
141 healthy subjects, generously provided by the authors [32]
The dataset1 and dataset2 is parted into a training set and the
validation set as the proportion of 70/30. Therefore, only a
few sample images of spiral and wave patterns drawn by the
subjects with PD / without PD are displayed in Fig. 1.

B. DATA AUGMENTATION
The key challenge in deep learning is the need for better
data quality within datasets or the imbalance of data within
the datasets. Specifically, collecting the PD patient datasets
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is challenging as PD symptoms may vary from person to
person. Usually, a data augmentation technique is adopted
to overcome this issue. In this study, data augmentation is
used to enrich the data samples so that the model can learn
very well during training. In this proposed work to enrich
the drawing dataset, some image preprocessing techniques
were implemented using python script during test-time. As a
result, the original image’s brightness is enhanced through
max lighting, and the original image’s size is enlarged using
vertical flipping.

1) FLIPPING
Flipping is a widely employed method of data augmentation
in computer vision applications, particularly in tasks like
image classification. It entails the horizontal mirroring of an
image to generate an augmented variant. This technique oper-
ates under the assumption that the visual characteristics of an
object are typically maintained even when it is horizontally
flipped.

2) ROTATION
Rotation involves the process of applying a specific angle
of rotation to an image, resulting in the creation of diverse
versions of the original image. This application of rotation
aids in training the model to identify objects from various
orientations, thereby enhancing its capacity to generalize
effectively to unfamiliar data.

3) SHEARING
Shearing technique presents an opportunity to increase
the variety of training data by introducing geometric
transformation.

Additionally, to prevent the images from distortion and
retain the original information, we implemented a preprocess-
ing technique that maintains the same proportion and darkens
the shorter portions. In that fashion, new augmented samples
are generated to increase the size of the original dataset.
Fig. 2. displays the sample augmented images of spiral and
wave drawings.

C. DEEP TRANSFER LEARNING
Transfer learning transfers knowledge from the pre-trained
models by fine-tuning it with the exact domain data [33].
Despite training the prediction model from scratch by assign-
ing random weights, it is better to initialize the pre-trained
model weights to enhance the network’s performance on large
public datasets [34], [35]. Deep transfer learning discovers
the suitable base networks, and the weights of the pre-trained
models are assigned to the bottom layers of CNN [36]. Fig.3.
Shows the transfer learning process of CNN architecture,
which includes convolutional, ReLU, Max Pooling layer and
fully connected layer. In this proposed work, we modified the
neural networks by inserting and deleting the fully connected
layers and then training the model with the newly created
deep networks using drawing datasets.

FIGURE 2. Augmented images of spiral and wave pattern drawings.

D. PROPOSED METHODOLOGY
In this study, we examined that the VGG19 Net performed
admirably in the 2014 Large-Scale Visual Recognition com-
petition. The proposed architecture of the VGG19 Net-INC
new deep transfer fusion model is depicted in Fig.4. In this
proposed method, the VGG19 Net and Inception modules are
used to develop a new deep transfer fusion learning model
for PD classification. VGG19 Net extracts the basic features
from spiral and wave drawings, but Inceptionmodules extract
the high-dimensional features. Deep transfer learning models
are preferred over starting from scratch with a limited dataset
to distinguish PD patients from healthy individuals in order to
reduce overfitting. One of the biggest challenges with many
deep learning models is that they are often ‘‘black boxes’’
it can be difficult to understand how they arrive at their
predictions or decisions. This lack of transparency can make
it difficult for practitioners to trust the model. To overcome
this, we explored Explainable Artificial Intelligence (XAI).

The main goal of XAI is to address the challenge in black
box model by developing methods and tools to make AI
models are interpretable and transparent. In this study, LIME
operates by locally approximating a black-box machine
learning model with a straightforward, interpretable model
that is simple enough for people to understand. To do this,
a set of disturbed samples surrounding a certain data point
are generated, and a local, understandable model is trained
using these perturbed samples. The predictions of the original
black-box model for that data point may then be explained
using this local model. The main benefit of LIME is that it
is model-agnostic, which means that it may be used with any
machine learning model, independent of the underlying tech-
nique or architecture [37]. This makes it an effective tool for
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FIGURE 3. Transfer learning process of general CNN architecture.

FIGURE 4. Proposed architecture of hybrid deep transfer learning VGG19-INC model.

illuminating complicated models like deep neural networks.
we will look at some of the most popular CNN architectures,
like Alex Net, ResNet-50, DenseNet-201, VGGNet-19, and
Squeeze Net 1.1, used for deep transfer learning by replacing
the network’s bottom layers. In addition, we presented a
comprehensive examination of the early diagnosis of PD by
extracting drawing samples from the PD patients. One of the
most crucial hyperparameters to adjust is called the Learning
Rate (LR), and it controls the rate at which the weights are
updated. we explored the deep transfer CNN models with a
differential rate as opposed to a single common learning rate
in order to increase the diagnostic accuracy of PD detection.
The differential learning rate improves the diagnostic accu-
racy of Parkinson’s disease. Fig.5 represents the overall flow
of the proposed approach for the early diagnosis of PD based
on drawing datasets using deep neural networks. At first,
however, we presented a comparative analysis of various
pre-trained models for diagnosing PD over the original and
augmented dataset. Nevertheless, there are certain disadvan-
tages to augmenting medical datasets under inappropriate
situations that may affect the network’s performance. To cope

with this challenge, in this work, we examined the various
pre-trained CNN models through deep transfer learning for
PD identification, and we trained the deep neural networks
with differential learning rates on the original dataset. The
limitations of constant learning rate approaches during the
training phase are overfitting problems, considerable exe-
cution time and loss of the model [47]. Therefore, it is
always critical to discover the optimal learning rate for CNN
faster convergence using the trial-and-error method. The idea
behind the differential learning rate is to divide the network
into cluster layers. Then, during training, apply different
learning rates to the various layers by freezing and unfreezing
cluster layers as an alternative to the constant learning rate
across the pre-trained network to obtain the optimum learning
rate.

IV. RESULTS AND ANALYSIS
In this section, we provide a thorough account of our exper-
imental setup, performance metrics, and outcomes for the
deep learning models used in classification. Additionally,
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FIGURE 5. VGG19-INC, left is the accuracy and right shows the loss of the model.

TABLE 1. Demographic details of the participants.

we deliberate on the findings of the interpretability model we
employed and exhibit the marked regions.

This section discusses the PD classification prediction
results using several pre-trained models with the differential
learning rate method. Table 1 present a comparative assess-
ment of various pre-trained models for PD diagnosis. The
diagnostic accuracy of the models with and without differ-
ent learning rates are tabulated, with bold text indicating
parameters, outperforming the other state-of- the-art meth-
ods experimented on the drawing dataset. It can be seen
from the performance graph Fig.5 that the proposed method
experimented on the publicly available drawing dataset out-
performs well with the other different pre-trained models.
The key intention of the proposed method is to combine the
advantages of VGG19 Net and Google Net to improve the
classification performance significantly. It has been observed
from fig.5. that the training loss and validation loss both
decrease and stabilise at a particular point and proving that
it is an optimal model for PD classification. According to the
experimental results of the pre-trained models with differen-
tial learning rates, it is revealed that ResNet-50 outperforms
well compared to the other CNN models in the task of PD
diagnosis using drawing datasets. In this study, we considered
aminimum number of epochs for training themodel from end
to end.

Fig.11. illustrates the confusion matrix of various pre-
trained models for the early diagnosis of PD. It summarises
the number of True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN) used to com-
pute the performance metrics of accuracy, sensitivity, and
specificity. The impression of FP and FN rates in models
can be observed with the assistance of a confusion matrix.
Additionally, based on the TP, TN, FP, and FN, we may
calculate the other performance metrices of the model like
precision, Recall, F1-score etc., Table 3. Shows the summary
of the evaluation of performance metrices. ResNet-50 model
provides less FP and FN rates than the other pre-trained
models. We computed classification accuracy, error rate, and
area under receiver operating characteristics to evaluate the
proposed model’s performance. As a result, we can conclude
that the proposed (VGG19-INC) classification model outper-
forms well with the other state-of-art techniques.

A. PERFORMANCE EVALUATION METRICS
This proposed work incorporates several performance met-
rics to evaluate its effectiveness, including accuracy, speci-
ficity, sensitivity, precision, recall and F1 score. These
metrics play a vital role in assessing the performance and
overall quality of the approach.
(1) Accuracy is a metric that quantifies the proportion

of accurately classified data instances out of the total
number of data instances.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

(2) Specificity is a performance metric that assesses a
model capacity to accurately predict the true negatives
for each available category.

Specificity =
TN

TN + FP
(2)
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FIGURE 6. DenseNet-201, left is the accuracy and right shows the area under ROC of the model.

FIGURE 7. AlexNet, left is the accuracy and right shows the area under ROC of the model.

FIGURE 8. VGG-19 Net, left is the accuracy and right shows the area under ROC of the model.

(3) Sensitivity can be defined as the metric employed to
evaluate a model’s effectiveness in predicting the true
positives available category.

Sensitivity =
TP

TP+ FN
(3)

(4) Precision can be defined as the ratio between the num-
ber of True Positives and the total number of positive
predictions. It represents the measure of correctly iden-
tifying patients with PD out of all the patients who are
diagnosed with it. Mathematically

Precision =
TP

TP+ FP
(4)

B. BASELINE MODEL COMPARISON
1) ALEX NET
Alex Net is a classical conventional neural network. It con-
sists of eight layers: five convolutional layers and three
fully-connected dense layers [38]. It enriches the learn-
ing capacity of CNN by building it deeper than LeNet.
By increasing the depth of the network, there is a possibility
of overfitting. It can be overcome by using dropout layers, and
to compute the non-linearity function, ReLU is used instead
of the sigmoid function [39].

2) VGG19 NET
VGG19Net consists of 19 layers that are used to simu-
late the large-scale image classification. VGG19 has some
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TABLE 2. Summary of different pre-trained CNN models experimental results.

TABLE 3. Performance evaluation metrics of PD classification.

FIGURE 9. ResNet50, left is the accuracy and right shows the area under ROC of the model.

FIGURE 10. SqueezeNet, left is the accuracy and right shows the area under ROC of the model.

extra convolution layers in the middle of the architec-
ture to enhance the model’s accuracy [40]. The small size

(3 × 3) kernel filters could induce the same effect as the
large size filter (5 × 5 and 7 × 7) was experimentally
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FIGURE 11. The confusion matrix obtained by the deep neural networks in the classification of
PD.

proved [41]. Also, the small-size kernel filters provide
less

3) ResNet50
Typically, increasing the neural networks’ depth decreases
the model accuracy, whereas ResNet modernised the CNN
architecture by familiarizing the concept of residual learning
in CNNs and increasing the model accuracy by increas-
ing the networks’ depth [42]. It has a significantly less
error rate on image classification tasks than 34 layers direct
Net.ResNet101can be made by adding more three-layer
blocks [43].

4) DenseNet201
Dense Net presents a powerful architecture to resolve the van-
ishing gradient problem in ResNet by modifying the layers in
that architecture [44]. The main drawback with the ResNet
was that it could provide very little information from many
layers. It can be overcome by efficiently using cross-layer
connectivity. However, DenseNet is quite expensive due to
an increase in the feature maps.

5) SqueezeNet1_1
Squeeze Net is one of the famous lightweight CNN archi-
tectures which comprises fire modules and pooling layers.
Each fire module consists of a squeeze layer and an expanded
layer. The squeeze layer aims to reduce the feature map size
while the expanded layer increases the featuremap’s size. The
performance of the squeeze net is excellent when compared
with Alex Net [45].

FIGURE 12. Block diagram of proposed model using LIME.

C. NEED FOR EXPLAINABLE AI
Healthcare-related applications of artificial intelligence (AI)
face a huge issue in explaining things. It is crucial for a
model to explain why it made certain predictions or recom-
mendations, even if it shows great accuracy. Although certain
models, such as decision trees, provide transparency, most
cutting-edge models now being employed in AI applications
in healthcare are neural networks, which are fundamentally
opaque and lack the ability to provide explanations for their
predictions.

Fig.12 Shows the block diagram of the proposed model
using LIME. In this work, we apply the input test images to
the proposed models, which then predict whether the subject
is PD or healthy. The LIME receives the expected output and,
using the top five attributes, provides an explanation for the
prediction.

D. MODEL INTERPRETABILITY USING LIME
The EXAI model classifies explanations as either ‘‘local’’
or ‘‘global,’’ depending on how much information is needed
to comprehend the idea in consideration. Whereas the local
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FIGURE 13. LIME explanation for PD prediction model based on spiral
drawing.

method simply necessitates an explanation of the specific
prediction at present, the global method necessitates an
explanation of the entire model. Local Interpretable Model-
Agnostic Explanation (LIME) is one of the most widely used
Explainable AI techniques due to its effectiveness, and thus,
in this research, we examined the explainable capability of the
LIME on the decisions of our proposed model in distinguish-
ing Parkinson’s diseases from healthy individuals. In this
work we evaluate our proposal using spiral and wave images
of PD and healthy individuals for PD prediction [46], [47].

Fig.13 showcases the performance of LIME on the pro-
posed model. LIME serves as an ‘‘explainer’’ by modifying
the features of a particular data point and examining the
resulting impact on the output. This approach provides local
interpretability and enables a more accurate approximation of
the data point [48]. The model is trained using data that has
undergone small perturbations, such as adding noise, hiding
parts of the image, or removing a few pixels. By doing so,
LIME produces an explanation of the prediction that is easily
comprehensible to humans.

The main goal of this work is to clarify the super pixels of
the spiral and wave drawings that contribute to PD prediction
and to identify the pixels that cause misclassification. The
study used LIME to methodically process the spiral and wave
images of a specific sample instance, as shown in Figure 13,
to accomplish this. The super pixels of the spiral drawings
that are responsible for the PD prediction are initially shown
in this picture, followed by the borders of the super pixels.
Finally, the red highlighted region displays the pixels that
result in misclassification, whereas the green highlighted area
displays the super pixel based on the top five features of the
test image used for PD prediction.

V. DISCUSSIONS
In this study, we presented several deep transfer learning
models for the early diagnosis of PD. The main objective
of this work, to previous works, is to reduce the losses
and improve the neural network performance by employing
a new hybrid deep transfer learning model (VGG19-INC).
Moreover, the pre-trained models with Explainable AI frame-
work increases the trustworthiness and transparent for the PD
predictive model. In comparison, it has been realised that
our recommended approach helps enhance the PD classifica-
tion’s performance. Among these various pre-trained models,

TABLE 4. Comparison of previous works related to early diagnosis of PD
based on handwriting biomarkers.

ResNet-50 has a classification performance of 98.3%, which
is extremely high compared with the other state-of-art mod-
els. After incorporating the additional database images into
the training and testing process, we have not seen any appre-
ciable improvements in accuracy. Following hyper parameter
adjustment and taking into account the new dataset, accu-
racy is improved by 0.08 percent. As shown in Table 3,
the proposed methods and the performance metrics obtained
from each model are represented. By comparing the other
performance evaluation metrices like precision, recall, and
F1-score, we can conclude that our proposed system enhances
classification performance and gives significantly better
accuracy.

However, one of the most important topics has also been
discussed. Deep transfer learning-based techniques are used
to discriminate PD patients from healthy subjects. The main
benefits of deep transfer learning are to utilise the resources
effectively and lower the volume of data required. Transfer
learning ismuch neededwhen data collection is too expensive
or rare to collect inaccessible data.

The Lime process involves generating super pixel bound-
aries in the input image, measuring the difference between
the predicted and actual feature maps, and producing a cor-
responding label. The resulting image displays the distance
with color patches highlighting the critical regions that con-
tributed to the classification come. These highlighted regions
represent the essential features that influenced the classifica-
tion results.

Training the new models using deep transfer learning-
based techniques helps us to improve accuracy. In this work,
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the proposed method for early PD recognition differs from
the literature in terms of trivial data preprocessing techniques
and the combined pre-trained models.

Table 4 compares the performance of early diagnosis of
PD based on handwriting biomarkers with previous studies.
The limitations of the present study include a smaller amount
of hand drawing dataset. The study of the severity level of
the disease and fine-tuning of the concatenated pre-trained
models for enhancing the model performance will be carried
out in our future work.

VI. CONCLUSION
The aim of this study is to develop a modified deep learning
models for detecting PD in its earliest stages that com-
bines the advantages of two deep transfer learning models.
To improve diagnostic accuracy and speed up convergence,
we fused the benefits of a pre-trained model with those of
a dynamically varying learning rate. Analyzing the various
performance measures allows one to verify the precision and
efficiency of the calculation. Our proposed model, VGG19-
INC, is shown to perform well in experiment results. When
compared to other cutting-edge methods, it provides the
greatest accuracy. Furthermore, we have utilized LIME to
comprehend and validate the predictions generated by our
model, which illustrates the superior performance of our pro-
posedmodel in detecting Parkinson’s disease. It is anticipated
that the findings of our study will offer future researchers
and practitioners’ valuable insights into the implementation
of transfer learningmodels and explainable AI for developing
reliable and secure Parkinson’s disease diagnosis models.
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