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The existing methodologies used for multilevel thresholding are not efficient in terms of both accuracy
and computation time. Two-dimensional histogram-based techniques are better in terms of accuracy
while they are computation intensive. The slime mould algorithm used for optimization mainly depends
on the best leader and two randomly pooled slime moulds from the population, which leads to poor
exploitation with more iteration to converge. These problems are solved in this paper by introducing a
novel normalized square difference (NSD) based multilevel thresholding technique using a leader slime
mould algorithm (LSMA). The contributions are many fold – i) a NSD based multilevel thresholding
method is proposed using the gray level and normalized square difference (GLNSD) 2-D histogram with
reduced computation; ii) LSMA is suggested; iii) 23 classical and 6 modern composition test functions
from the IEEE CEC 2014 test suite are considered for evaluation of LSMA; iv) experiments on multispectral
images are presented. The benefits are – i) reduces computations, ii) improves accuracy. The qualitative
metrics used for analysis include – search history, trajectory, and average fitness history. Scalability anal-
ysis and statistical analysis (using Friedman’s mean rank test) are presented. The proposal is compared
with state-of-the-art techniques and found better.
� 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Thresholding is the popular methodology of image segmenta-
tion. Based on the color information of the image, the thresholding
technique is classified as – gray level thresholding and color image
thresholding. As the gray level images are a compressed version of
color images, the former contains less information. The color
images contain extra information, hue, and saturation (Haindl
and Mikeš, 2016). This emphasizes the researcher to bend towards
the color image thresholding nowadays. The color image thresh-
olding has played a vital role in geographic information system
(GIS), earth science research, and astronomy, where needs are to
locate objects and boundaries in high dimensional multispectral
satellite images. Therefore, the multispectral satellite image seg-
mentation problem is crucial and interesting (Bhandari, 2015;
Bhandari et al., 2014; Jia et al., 2019a).

The image thresholding is broadly classified as bi-level and
multilevel based on the number of thresholds used to divide the
image, to get a region of interest. The bi-level thresholding uses
only one threshold value to divide the image into two classes –
foreground and background class. However, the multilevel thresh-
olding is an extension of bi-level thresholding, where more than
one threshold values are used to divide the image into multiclass.
The histogram-based approach of an image using statistical per-
ception (entropy) is simple and practical to implement (Sezgin
and Sankur, 2004). The first of the histogram-based thresholding
approach is Otsu’s method (Bhandari et al., 2016; Otsu, 1979),
the threshold value is obtained by maximizing the between-class
variance. The statistical perception called entropy is often used
for the image thresholding. The popular entropy-based threshold-
ing techniques based on 1-D histogram found in the literature are
Kapur’s entropy (Bhandari et al., 2016; Kapur et al., 1985), mini-
mum cross-entropy (Li and Lee, 1993; Xu et al., 2019), Tsallis
entropy (Agrawal et al., 2013; Portes de Albuquerque et al.,
images
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2004), Renyi entropy (Sarkar et al., 2013) and Masi entropy (Jia
et al., 2019b; Nie et al., 2017). The multilevel thresholding over
the bi-level thresholding is recommended for better performance
despite an increase in the computational complexity, because k

threshold levels require a simple exhaustive search of O Lk
� �

com-

putation (Yin, 1999) for the gray scale image while O 3Lk
� �

for the

multispectral image having 3 planes. Can thresholding methods
based on 1-D histograms justify the thresholded image with the
same threshold values, if two images of the similar histogram with
different spatial locations are considered? This is the major draw-
back in 1-D histogram based thresholding approaches.

To overcome the drawback, a 2-D histogram is constructed to
provide the spatial correlation information along with the gray
level information. The 2-D histogram is formed by taking a corre-
lation among the original gray level values and the local average
gray level around the neighborhood. Some earlier thresholding
on a 2-D histogram-based approaches are reported in (Abutaleb,
1989; Brink, 1992), at a cost of the computational complexity,
the 2-D histogram-based approaches showed superior perfor-
mance. Further, researchers proposed 2-D Otsu’s method (Liu
et al., 1991), 2-D Renyi’s entropy (Sahoo and Arora, 2004), 2-D
Tsaliis-Havrda-Charvát entropy (Sahoo and Arora, 2006), 2D Tsallis
entropy (Sarkar and Das, 2013) and 2-D practical Masi entropy
(Wunnava et al., 2020) based multilevel thresholding methods.
The 2-D entropy based thresholding methods show superior per-
formance as compared to 1-D entropy thresholding. However,
the computational complexity for a k-level thresholded image,

the exhaustive search increases from O Lk
� �

to O L2k
� �

for the gray

scale image while O 3Lk
� �

to O 3L2k
� �

for the color image.

There are twomajor disadvantages arising in 2-D entropy-based
multilevel thresholding, although it shows superior performance to
1-D entropy-based bi-level thresholding. The first disadvantage is
that the computational cost exponentially increases with threshold
levels. To overcome this, many researchers suggested recursive pro-
cedures (Liao et al., 2001; Yin and Chen, 1997) based on lookup
tables. However, when the threshold level k increases, computation
cost also increases. The second demerit is the exhaustive search
process. This can be resolved by a good optimizer, more specifically,
nature inspired optimization algorithm. It inherits the natural phe-
nomenon to solve the problem. In this context, some recent
advancements on reducing the computational complexity of multi-
level thresholding using nature inspired algorithms are – krill herd
optimization (Baby Resma and Nair, 2018), crow search algorithm
(CSA) (Upadhyay and Chhabra, 2019), gray wolf optimization
(GWO) (Khairuzzaman and Chaudhury, 2017), whale optimization
algorithm (WOA) (El Aziz et al., 2018) and Harris hawks optimiza-
tion (HHO) (Bao et al., 2019).

The motivation of the paper is primarily to propose a 2-D mul-
tilevel thresholding technique, to conserve the contextual informa-
tion with reduced computational complexity. We introduce a
normalized square difference (NSD) based multilevel thresholding
method using the gray level & normalized square difference
(GLNSD) 2-D histogram. The NSD based (k-level) multilevel thresh-

olding requires only O Lkþ1
� �

computations for gray-level thresh-

olding and O 3Lkþ1
� �

for color image thresholding. This reduces

the computational complexity by ðk� 1Þ times, which is a signifi-
cant achievement. The second prime motivation is to use an effi-
cient optimizer to obtain the optimal threshold values for
multilevel thresholding. Recently, a slime mould algorithm (SMA)
(Li et al., 2020) is proposed using the mathematical modeling of
attacking behavior and morphological divergences of the slime
mould Physarum polycephalum for foraging. It shows quite impres-
2

sive results on function optimization and engineering design prob-
lems. This inspired us to investigate the searching pattern of slime
mould, the updating of search agents in SMA depends on the best
candidate solution together with another two random candidates
solutions. This may lead to an unexpected search space. Hence,
we propose a leader slime mould algorithm (LSMA) by incorporat-
ing the three best-so-far candidates as a leader to guide the search
process. The results of LSMA is compared with state-of-the-art
optimizers – slime mould algorithm (SMA) (Li et al., 2020), equilib-
rium optimizer (EO) (Faramarzi et al., 2020), Harris hawks opti-
mization (HHO) (Heidari et al., 2019), whale optimization
algorithm (WOA) (Mirjalili and Lewis, 2016) and gray wolf opti-
mizer GWO (Mirjalili et al., 2014) using 23 classical benchmark test
functions from (Naik and Panda, 2016) and 6 composition func-
tions frommodern IEEE CEC2014 test suite (Liang et al., 2013). Fur-
ther, the LSMA is utilized in NSD based multilevel thresholding for
multispectral images, to obtain the optimal threshold values. The
NSD based multilevel thresholding on high dimensional multispec-
tral satellite images from Landsat image gallery (‘‘Landsat Image
Gallery”, n.d.) using the LSMA is also compared with the SMA,
EO, HHO, WOA, and GWO.

The main goals of this work are as follows:

I. A normalized square difference (NSD) based multilevel
thresholding method is proposed using gray level and nor-
malized square difference (GLNSD) 2-D histogram.

II. A leader slime mould algorithm (LSMA) is suggested by
incorporating the leader (best-so-far candidates) in guiding
the search process of the SMA. The LSMA evolves as 1st rank
on Friedman’s mean rank test when compared with recently
developed nature inspire algorithms SMA, EO, HHO, WOA,
and GWO. The proposed algorithm is evaluated by taking
23 classical test functions and 6 composition functions from
IEEE CEC2014 test suite.

III. The proposed NSD-LSMA based multilevel thresholding
technique is evaluated using some high dimensional multi-
spectral images from the Landsat image gallery. It reveals that
the LSMA based thresholding is evolved as a better method,
when compared with SMA, EO, HHO, WOA, and GWO based
thresholding.

The rest of this article is as follows. The proposed normalized
square difference (NSD) based multilevel thresholding using gray
level & normalized square difference (GLNSD) 2-D histogram is
presented in Section 2. A leader slime mould algorithm (LSMA) is
proposed, evaluated, and ranked with respect to the function opti-
mization, in Section 3. A proposal of NSD-LSMA based multilevel
thresholding method for multispectral images is presented in Sec-
tion 4. The experimental results and discussions of the suggested
multilevel thresholding are presented in Section 5. Finally, the con-
clusion is presented in Section 6.
2. Proposed objective function

In this section, one of the main contributions of the work is pro-
vided. A new objective function is introduced.

Let us assume an image I of dimension M � N with L gray level
in the range 0; L� 1½ �, which has the pixel intensity value at the
coordinate ðx; yÞ as I x; yð Þjx 2 1;2; � � � ;Mf g; y 2 1;2; � � � ;Nf g. The
color (RGB) image is defined as:

I x; yð Þ½ � ¼ IR x; yð Þ; IG x; yð Þ; IB x; yð Þ½ � ð1Þ

where IR x; yð Þ; IG x; yð Þ; IB x; yð Þ are the red, green, and blue compo-
nents whose blend generates the color image. Let Ic x; yð Þ represents
a dummy component for red or green or blue color. Let hðx; yÞ be the
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local average gray level values of Icðx; yÞ at coordinate ðx; yÞ for a
w�w neighborhood and is calculated as (Sahoo and Arora, 2004):

hðx; yÞ ¼ b 1
w�w

Xg

m¼�g

Xg

n¼�g
Ic xþm; yþ nð Þc ð2Þ

where g = [W/2] and b�c signifies the integer part of ‘‘�”. The w is an
odd number w < min m; nð Þ.

We propose the normalized square difference (of Ic x; yð Þ and
hðx; yÞ) based 2-D histogram for multilevel thresholding technique.
The square difference (SD x; yð Þ) is evaluated.

SD x; yð Þ ¼ Ic x; yð Þ � h x; yð Þð Þ2 ð3Þ
The normalized square difference (NSD x; yð Þ) is computed as:

NSDðx; yÞ ¼ b SD x; yð Þ � SDminð Þ � G
SDmax � SDmin

c ð4Þ

where G ¼ max Ic x; yð Þjx 2 1;2; � � � ;Mf g; y 2 1;2; � � � ;Nf gð Þ is the
maximum gray level value in Ic , the minimum and maximum value
of SD x; yð Þ are SDmin and SDmax , respectively and the b�c signifies the
integer part of ‘‘�”.

The gray level & normalized square difference (GLNSD) 2-D his-
togram is constructed as

pij ¼
1

MN
qijjI x; yð Þ ¼ i;NSD x; yð Þ ¼ j; i; j 2 0; L� 1ð Þ� � ð5Þ

where the qij is the occurrence times of pair i; jð Þ . Matrix represen-
tation of the GLNSD 2-D histogram plane is shown in Fig. 1. Fig. 1(a)
shows a 2-D histogram plane for the threshold pair ðS; TÞ. It divides
the plane into four quadrants {Q1, Q2, Q3, Q4}, where S is the thresh-
old value from NSD x; yð Þ value and T is the threshold value from
intensity value Icðx; yÞ. The Q1 and Q2 consist of most of the informa-
tion needed for the thresholding compared to Q3 and Q4 because
they have edge or noise information. So, first row quadrants Q1

and Q2 are meaningful for the thresholding application; classified
as the foreground class Cf and the background class Cb.

The foreground and background class probabilities are given as:

Pf ¼
XS�1

i¼0

XT�1

j¼0
pij ð6Þ

and

Pb ¼
XS�1

i¼0

XL�1

j¼T
pij ð7Þ

where S; T 2 0;1; � � � ; L� 1f g. As the contribution quadrants Q3 and
Q4 are insignificant, then Pf � 1� Pb (Sahoo and Arora, 2006).

The entropy dependent of a threshold value S; Tð Þ are estimates
for Cf using Eq. (8) and Cb using Eq. (9).

Ef ¼ �
XS�1

i¼0

XT�1

j¼0

pij

Pf

� �
ln

pij

Pf

� �
ð8Þ
Fig. 1. GLNSD 2-D histogram plane. (a) Bi-leve

3

Eb ¼ �
XS�1

i¼0

XL�1

j¼T

pij

Pb

� �
ln

pij

Pb

� �
ð9Þ

Then the optimal threshold value for bi-level thresholding is
obtained by:

Sopt ; Topt
� 	 ¼ argmax Ef þ Eb

� � ð10Þ
subject to the conditions 0 < S < L� 1 and 0 < T < L� 1.

Let us consider the multilevel thresholding which divides the
image into a set of K different classes such as C1;C2; � � � ;CKf g using
kð¼ K � 1Þ threshold values S; T1ð Þ; S; T2ð Þ; � � � ; S; Tkð Þf g, which con-
veyed more meaningful information than bi-level thresholding.
The 2-D histogram plane for multilevel thresholding is shown in
Fig. 1(b), in which only the first row K quadrants Q1-QK are consid-
ered for the thresholding problem because they hold almost all
information.

The classes C1;C2; � � � ;CKf g probability is evaluated as:

P1 ¼ PS�1
i¼0

PT1�1
j¼0 pij

P2 ¼ PS�1
i¼0

PT2�1
j¼T1

pij

..

.

PK ¼ PS�1
i¼0

PL�1
j¼Tk

pij

ð11Þ

where 0 < S < L� 1 and 0 < T1 < T2 < � � � < Tk < L� 1. The second
row K quadrants consist of the information related to the noise,
and hence, are negligible. So, the summation of the probability of
classes C1;C2; � � � ;CKf g related to the first row K quadrants Q1-QK

are approximated as:

XK
i¼1

Pi � 1 ð12Þ

The entropy dependent on the threshold value
S; T1ð Þ; S; T2ð Þ; � � � ; S; Tkð Þf g for various classes C1;C2; � � � ; CKf g are

estimated as:

E1 ¼ �PS�1
i¼0

PT1�1
j¼0

pij
P1

� �
ln pij

P1

� �

E2 ¼ �PS�1
i¼0

PT2�1
j¼T1

pij
P2

� �
ln pij

P2

� �

..

.

EK ¼ �PS�1
i¼0

PL�1
j¼Tk

pij
PK

� �
ln pij

PK

� �
ð13Þ

Then the optimal threshold value for the multilevel threshold-
ing is obtained as:

Sopt; T1opt

� 	
; Sopt ; T2opt

� 	
; � � � ; Sopt; Tkopt

� 	� �
¼ argmax E1 þ E2 þ � � � þ EKf g ð14Þ

subject to the conditions 0 < S < L� 1 and
0 < T1 < T2 < � � � < Tk < L� 1.
l thresholding (b) Multilevel thresholding.
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The Eq. (14) is a maximization problem and served to get the
optimal threshold values by an exhaustive search. One can find
remarkable differences here. Fig. 1(b) shows its worthiness over
earlier approaches discussed in the introduction section. The
entropic information is obtained by computing row-wise quad-

rants Q1, Q2, ���, QK, only. Interestingly, O Lkþ1
� �

computations are

needed for multilevel thresholding of gray images while

O 3Lkþ1
� �

for color images. Whereas, for the existing methodolo-

gies, the number of computations required is O L2k
� �

and

O 3L2k
� �

, respectively. Thus, computations are reduced by a factor

of (k-1) in our case. Therefore, the significance of the proposal is
explicit and it may enrich the image processing literature.
3. The proposed leader slime mould algorithm (LSMA)

At this moment, we need a good optimizer to obtain the optimal
threshold values by utilizing the Eq. (14) as an objective function.
In this context, here we introduce an efficient optimizer. The devel-
opment of our leader slime mould algorithm (LSMA) is based on
the modeling of approaching behavior of the slime mould algo-
rithm (SMA) (Li et al., 2020) with leaders of the slime mould con-
centration. The SMA simulates the attacking behavior and
morphological divergences of the slime mould Physarum poly-
cephalum for foraging, which mainly depends on the best leader
Fig. 2. Qualitative analysis for fun

Table 1
Parameter setting for various algorithms.

Algorithm Parameters

LSMA / SMA N ¼ 20 and z ¼ 0:03
EO N ¼ 20, a1 ¼ 2, a2 ¼ 1 and GP ¼ 0:5
HHO N ¼ 20 and b ¼ 1:5
WOA N ¼ 20, a ¼ 0;2½ � and b ¼ 1, l ¼ �1;1½ �
GWO N ¼ 20and a ¼ 20½ �

4

together with two slime mould randomly pooled from the overall
populations.

The updating rule of the SMA concentration for the ith slime
mould Xi ¼ x1i ; x

2
i ; � � � ; xki

� �� 	
for a k dimensional problem from N

slime mould is modeled in (Li et al., 2020) as:

Xi t þ 1ð Þ ¼
r1 � UB� LBð Þ þ LB r1 < z

XGlobalBest tð Þ þ Va � W � XR1 � XR2ð Þ r1 � z and r2 < p

Vb � Xi tð Þ r1 � z and r2 � p

8><
>:

ð15Þ
and

Xi 1ð Þ ¼ r1 � UB� LBð Þ þ LB ð16Þ
The r1 and r2 are random values in 0;1½ �, t is the current itera-

tion, UB is the upper boundary of the search space, LB is the lower
boundary of the search space,Va is the uniformly distributed veloc-
ity in a range of �a; a½ �, Vbis the linearly decreasing velocity from 1
to 0, W is the weight of slime mould, p is the probability to deter-
mine the trajectory of the slime mould, XGlobalBest is the global best
concentration current iteration t, XR1 and XR2are the two slime
mould randomly pooled from the N population, z is the
elimination-and-dispersal rate of the slime mould which is fixed
at 0:03 and i 2 1;2; � � � ;N.

The p of the ith slime mould depends on its current fitness f Xið Þ
and fitness of the global best concentration f XL1ð Þ, which is formu-
lated as:

p ¼ tanh f Xið Þ � f XL1ð Þj j ð17Þ
The velocity Va is uniformly distributed in the range �a; a½ � and

Vb is uniformly distributed in the range �b; b½ �. The a and b are
determined as:

a ¼ arctanh � t
tmax

� �
þ 1

� �
ð18Þ

and
ctions F1, F10, and F25(CF2).
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b ¼ 1� t
tmax

ð19Þ

where tmax represent the maximum iteration.
The W is determined from the local fitness value of slime

mould. Let us sort the fitness value of the N slime mould in itera-
tion t in ascending order for the minimization problem (or
descending order for the maximization problem).

sorted fitness; sort Index½ � ¼ sort fð Þ ð20Þ

where f ¼ f X1ð Þ; f X2ð Þ; � � � ; f XNð Þð Þ
Table 2
Statistical results for test functions (Best value indicated by bold face).

Function Metric LSMA

Unimodal (scalable dimension) F1 Ave 0
Std 0

F2 Ave 8.75E�247
Std 0

F3 Ave 0
Std 0

F4 Ave 3.08E�267
Std 0

F5 Ave 9.39E + 00
Std 1.28E + 01

F6 Ave 3.70E�03
Std 1.69E�03

F7 Ave 1.44E�04
Std 1.44E�04

Multimodal (scalable dimension) F8 Ave �12569.31
Std 1.29E�01

F9 Ave 0
Std 0

F10 Ave 8.88E�16
Std 0

F11 Ave 0
Std 0

F12 Ave 3.64E�03
Std 6.43E�03

F13 Ave 6.98E�02
Std 1.32E�01

Multimodal (fixed dimension) F14 Ave 0.9980
Std 1.43E�11

F15 Ave 6.19E�04
Std 1.76E�04

F16 Ave �1.0316
Std 5.54E�08

F17 Ave 0.3979
Std 1.04E�06

F18 Ave 3.0000
Std 1.41E�06

F19 Ave �3.8628
Std 3.65E�05

F20 Ave �3.2285
Std 5.88E�02

F21 Ave �10.1529
Std 2.52E�04

F22 Ave �10.4027
Std 2.02E�04

F23 Ave �10.5361
Std 2.67E�04

Composition F24 (CF1) Ave 2500
Std 0

F25 (CF2) Ave 2600
Std 0

F26 (CF3) Ave 2700
Std 0

F27 (CF4) Ave 2700.70
Std 1.72E�01

F28 (CF5) Ave 2900
Std 6.64E�13

F29 (CF6) Ave 3000
Std 0

Friedman’s mean rank 2.02
Rank 1

5

Then the W is determined as follows:

W sort Index lð Þð Þ ¼
1þ r3 � log f LocalBest�sortf lð Þ

f LocalBest�f LocalWorst
þ 1

� �
1 � l � N

2

1� r3 � log f LocalBest�sortf lð Þ
f LocalBest�f LocalWorst

þ 1
� �

N
2 < l � N

8><
>:

ð21Þ

f LocalBest ¼ sorted fitnessð1Þ ð22Þ

f LocalWorst ¼ sorted fitnessðNÞ ð23Þ
SMA EO HHO GWO WOA

3.68E�244 6.07E�35 3.38E�92 1.61E�08 9.82E�17
0 1.20E�34 1.22E�91 3.00E�08 1.32E�16
3.52E�138 1.06E�20 1.56E�47 2.85E�05 3.64E�10
1.96E�137 1.04E�20 6.50E�47 1.78E�05 3.00E�10
1.09E�261 7.45E�07 6.89E�69 3.85E�01 6.14E�04
0 2.91E�06 2.65E�68 4.38E�01 1.00E�03
8.74E�135 2.85E�08 1.30E�45 1.42E�01 3.35E�04
3.81E�134 7.03E�08 5.36E�45 1.20E�01 3.42E�04
1.40E + 01 2.59E + 01 3.04E�02 2.87E + 01 2.71E + 01
1.32E + 01 1.55E�01 3.67E�02 2.93E�01 8.12E�01
8.74E�03 3.65E�04 4.36E�04 3.42E + 00 1.06E + 00
7.43E�03 1.20E�03 8.17E�04 5.09E�01 4.25E�01
3.07E�04 1.59E�03 1.99E�04 6.35E�03 1.11E�02
3.46E�04 7.83E�04 1.64E�04 4.07E�03 6.91E�03
�12568.70 �8708.23 �12503.96 �38.42 �7669.29
6.23E�01 5.92E + 02 3.58E + 02 5.93E + 00 4.93E + 02
0 0 0 2.64E + 01 2.56E + 01
0 0 0 2.75E + 01 1.66E + 01
8.88E�16 1.33E�14 8.88E�16 7.50E�05 4.14E�09
0 3.02E�15 0 1.70E�04 3.61E�09
0 2.39E�04 0 1.75E�09 2.18E�16
0 1.33E�03 0 3.69E�09 2.90E�16
1.03E�02 6.70E�03 1.54E�05 3.36E�01 4.72E�02
1.13E�02 2.59E�02 1.65E�05 9.22E�02 1.95E�02
1.24E�02 1.07E�01 1.53E�04 2.20E + 00 9.65E�01
1.94E�02 1.05E�01 3.21E�04 2.79E�01 2.62E�01
0.9980 1.0620 1.5726 12.6705 1.1260
5.65E�12 3.56E�01 1.24E + 00 1.58E�13 4.95E�01
5.77E�04 2.38E�03 3.42E�04 7.11E�04 5.10E�04
2.58E�04 5.99E�03 3.82E�05 4.49E�04 3.39E�04
�1.0316 �1.0316 �1.0316 �1.0265 �1.0316
1.78E�09 5.65E�16 5.72E�09 1.13E�02 3.08E�10
0.3979 0.3979 0.3979 0.7117 0.5476
1.43E�07 0.00E + 00 8.07E�05 1.16E + 00 8.34E�01
3.0000 3.0000 3.0000 4.7600 3.0000
3.12E�10 1.85E�15 2.37E�06 6.74E + 00 3.04E�08
�3.8628 �3.8625 �3.8586 �3.5582 �3.8569
3.05E�06 1.42E�03 5.66E�03 9.14E�01 3.51E�03
�3.2754 �3.2695 �3.0408 �2.3015 �2.7239
5.95E�02 6.38E�02 1.30E�01 9.57E�01 6.34E�01
�10.1527 �8.2805 �5.4129 �3.9771 �4.7859
4.02E�04 2.83E + 00 1.48E + 00 1.85E + 00 1.04E + 00
�10.4025 �8.6220 �5.8416 �4.4123 �4.8181
3.86E�04 2.88E + 00 1.78E + 00 1.56E + 00 1.04E + 00
�10.5358 �9.1134 �5.1154 �4.1578 �5.1285
7.21E�04 2.73E + 00 1.38E�02 1.83E + 00 1.45E�05
2500 2615.87 2500 2500.00 2500
0 4.73E�01 0 3.01E�03 4.70E�07
2600 2600.03 2600.0003 2601.59 2600.45
0 1.38E�02 9.58E�04 6.21E�01 2.49E�01
2700 2701.66 2700 2700.0001 2700
0 4.38E + 00 0 5.58E�05 5.04E�09
2700.82 2742.19 2771.40 2800.0001 2710.42
1.49E�01 4.99E + 01 4.55E + 01 2.16E�04 2.98E + 01
2900 3358.14 2900 2900.00 2900
1.08E�12 1.03E + 02 0 9.08E�04 3.69E�08
3000 3836.14 3000 3000.00 3000
1.72E�12 1.86E + 02 0 1.30E�03 7.47E�08
2.21 3.67 2.90 5.76 4.45
2 4 3 6 5
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The SMA shows promising results on the function optimization
and engineering design problems. Still there is a hope of improve-
ment in the search process given in Eq. (15). The updating of the ith
slime mould concentration at iteration ðt þ 1Þ mainly depends on
Fig. 3. Boxplot of 18

Fig. 4. Scalability results of 12 unimodal a
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the global best slime mould concentration XGlobalBestð Þ of the current
iteration t and a deviation determined by the two random slime
mould concentration XR1andXR2ð Þ pooled from the N population
X ¼ X1;X2; � � � ;XNð Þð Þ. When the random slime mould is far from
test functions.

nd multimodal scalable test functions.
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the solution space, the randomization may take longer to reach an
optimum solution. As inspired by GWO (Mirjalili et al., 2014), uti-
lize three best-so-far candidates (alpha, beta, and gamma) to
update the search positions of the wolves. EO (Faramarzi et al.,
2020) utilizes the four best-so-far candidates as equilibrium candi-
dates to reach the equilibrium state. We use three best-so-far can-
didates as the leader to update positions of the slime mould. So, we
have coined as the leader slimemould algorithm (LSMA), that asso-
ciate the thee best-so-far candidates as the leader with the random
slime mould concentration XR1andXR2ð Þ pooled from the N popula-
tion. The global best concentration as the leader1 (L1), the second
and third best concentrations are named as the leader2 (L2) and
leader3 (L3), respectively. Interestingly, this modeling makes the
algorithm efficient enough to trade-off between the exploitation
and the exploration more efficiently than before, which can
achieve the optimal solutions.

The new updating rule of ith slime mould at iteration ðt þ 1Þ in
LSMA is modeled as:

Xi t þ 1ð Þ ¼ r1 � UB� LBð Þ þ LB; when r1 < z ð24:aÞ
Xi t þ 1ð Þ ¼ XL1 tð Þ þ Va � W � XL2 � XR1ð Þ þ W � XL3 � XR2ð Þð Þ;
r1 � z and r2 < p ð24:bÞ
Xi t þ 1ð Þ ¼ Vb � Xi tð Þ; when r1 � z and r2 � p ð24:cÞ
3.1. Pseudocode of LSMA

In the beginning, identify the objective function fð Þ, a dimension
of the problem kð Þ, the boundary of the search space LB;UBð Þ, a
population size of the slime mould Nð Þwithin a search space, max-
imum iteration tmaxð Þ and elimination-and-dispersal rate zð Þ which
is determined experimentally beforehand.
Fig. 5. Convergence curve o
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Begin:
Input: N, LB, UB, tmax and z.
Initialization: Initialize the N slime mould

X ¼ X1;X2; � � � ;XNð Þ using the Eq. (16) for a k dimensional
problem and current iteration t as 1.

While t � tmaxð Þ
Evaluate the fitness of N slime mould using the objective
function f :
Update the best-so-far candidate leader’s concentrations
XL1, XL2 and XL3.
Estimate the a using Eq. (18), b using Eq. (19) and W using
Eq. (21).
For (each slime mould Xi)
Evaluate the p using the Eq. (17).
Generate the velocity Va and Vb.
Randomly chose two slime mould XR1 and XR2 from the N

slime mould present in search space.
Update the concentration of slime mould using Eq. (24).

End For
t ¼ t þ 1

End While
Output: Global best slime mould concentration XL1 and

fitness of global best concertation f XL1ð Þ.
3.2. Performance evaluation of LSMA

The performance evaluation of the proposed LSMA is carried out
with the help of a set of 23 classical test functions (Naik and Panda,
2016) and 6 modern composition test functions from the IEEE CEC
2014 test suite (Liang et al., 2013). The test functions are classified
into four categories as unimodal (F1-F7), multimodal with scalable
dimensions (F8-F13), multimodal with fixed dimensions (F14-F23),
f some test functions.
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and composition test functions (F24-F29). The unimodal test func-
tions are best described for a single optimal solution and help to
understand the exploitative behavior of the optimization algo-
rithm. However, the multimodal test functions have more than
one optimal solution; therefore it helps to understand the explo-
ration capability of the optimization algorithm. However, to mimic
the real search problem, we take the composition test functions, a
hybridization of unimodal and multimodal test functions, which
are non-separable, multimodal, a variety of shapes in different
regions and a large number of different local minima with different
properties.

A results comparison of our proposed LSMA with some
recently-developed optimizers SMA (Li et al., 2020), EO
(Faramarzi et al., 2020), HHO (Heidari et al., 2019), WOA
(Mirjalili and Lewis, 2016) and GWO (Mirjalili et al., 2014) algo-
rithms based on an average value of the results ‘Ave’ and standard
deviation ‘Std’ among the 31 independent runs are considered. The
Fig. 6. Flowchart of the NSD-LSMA based
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parameter settings are same as recommended by the original
works of SMA (Li et al., 2020), EO (Faramarzi et al., 2020), HHO
(Heidari et al., 2019), WOA (Mirjalili and Lewis, 2016) and GWO
(Mirjalili et al., 2014), presented in Table 1. All algorithms are eval-
uated with the same population (N ¼ 20) and the maximum itera-
tion (tmax ¼ 500) to maintain the uniformity in function
evaluations as 10,000.

A qualitative analysis of LSMA for one function each from uni-
modal, multimodal, and composition test functions are presented
in Fig. 2. The qualitative metric includes search history, trajectory,
and average fitness history. The search history diagram presents
the history of the slime mould positions in the search space as pre-
sented in the second column of Fig. 2, a higher concentration of
slime mould positions are found near to the optimal solution.
The next qualitative metric is the trajectory of the first slimemould
for k dimension during the complete life cycle (i.e t ¼ 1 to t¼ tmax),
presented in the 3rd column of Fig. 2. The trajectory diagram
multispectral multilevel thresholding.
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reveals that during the initial generation slime moulds are widely
dispersed in the search space. However, as the life cycle (iteration)
goes on, they quickly converge to the optimal solution space. The
last metric used for a qualitative analysis is an average fitness his-
tory of N slime mould during the complete life cycle, which is pre-
sented in the last column of Fig. 2. It reveals that a decreasing trend
of the average fitness shows the collaborative effort of the slime
mould to reach the optimal solution space.

Statistical results are presented in Table 2. The performance on
the first category of unimodal functions (F1-F7) is quite encourag-
ing; LSMA obtains the better optimal solutions in most of the test
functions except F5 and F6, where it is just behind the HHO and EO.
For the second category multimodal test functions with scalable
dimensions (F8-F13), LSMA performs better for F8, performs the
same as SMA, and HHO for F9-F11, lagged than HHO in F12 and
F13. Mixed response for the third category multimodal test func-
tions with fixed dimensions (F14-F23) is achieved. However, LSMA
shows a better consistency to obtain the optimal solution. Finally,
in the fourth category composition functions, LSMA performance is
commendable and comparable with the SMA and HHO. The statis-
tical analysis based on Friedman’s mean rank (Derrac et al., 2011)
is performed, considering the average value of all 29 test functions.
Based on Friedman’s mean rank of statistical results, the LSMA
ranked one among other optimization algorithms.

A boxplot is presented in Fig. 3 to understand how the optimal
solution is obtained during the 31 independent runs of the various
optimization algorithms. LSMA showed better consistency among
other optimization algorithms to obtain the optimal value. The
impact of dimensions on optimization algorithm performance
can be analyzed with a scalability analysis. For this purpose, we
have taken varied dimensions as k ¼ 10;30;50;100;300 for the
experiments with N ¼ 20 and tmax ¼ 500. The unimodal and multi-
modal scalable test functions (F1-F13) are considered and average
value results are compared in Fig. 4. From Fig. 4, it is evident that
LSMA performance is better in the majority of test functions and
just lagging behind HHO on test functions F5, F6, F12, and F13. This
test reveals that LSMAmay be used for high dimensional optimiza-
tion problems.

The convergence curve of 12 test functions is presented in Fig. 5,
to support how quickly the LSMA tracks the optimal solution dur-
ing its lifetime. The first row of Fig. 5 shows the convergence curve
Fig. 7. The satellite test images and
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of unimodal test functions, which reveals that the LSMA outper-
forms in test functions F1-F4 and F7. However, HHO has commend-
able convergence in F6. The second row of Fig. 5 presents the
convergence curve of multimodal and composition test functions,
which reveal that the LSMA has a mixed response with SMA, EO,
and HHO. The study indicates that the LSMA may be utilized for
both low/high dimensional optimization problems. This motivates
us to use LSMA as both a low/high dimensional optimizer for the
multispectral satellite image thresholding application.
4. The proposed NSD-LSMA based multilevel thresholding
technique

In this section, we propose how to use the LSMA to obtain the
optimal thresholds using NSD based objective function explained
in section 2. For k threshold components on each color component
Ic x; yð Þ 2 IR x; yð Þ; IG x; yð Þ; IB x; yð Þf g, each slime mould in the LSMA is
a (kþ 1) dimensional thresholding vector of Xi tð Þ ¼ ri; sið Þ. Note
thati ¼ 1;2; � � � ;N, N is the population size, ri represents one
threshold component from the NSD x; yð Þ, si ¼ s1i ; s2i ; � � � ; ski

� 	
repre-

sents the k number of threshold components for Ic x; yð Þ. The LSMA
is used to obtain the threshold values of each color component
using the NSD based multilevel thresholding objective function
described in Eq. (14). After thresholding of each color component,
we get ðkþ 1Þ gray levels for each red, green and blue component
thresholded image TIR, TIG and TIB, respectively. The red, green, and
blue thresholded images are combined to get RGB thresholded
image as:

TI x; yð Þ½ � ¼ TIR x; yð Þ; TIG x; yð Þ; TIB x; yð Þ½ � ð25Þ
Each color component thresholded image TIcð Þ has at most

K ¼ kþ 1ð Þ number of gray levels. So, RGB thresholded image
TI x; yð Þð Þ has a maximum number of K3 gray levels, which is much
smaller than the original RGB image. The process of the NSD-LSMA
based multilevel thresholding is presented in Fig. 6.
5. Results and discussions

The performance of the NSD-LSMA based multilevel threshold-
ing is demonstrated in this section. The simulation of the
their corresponding histograms.
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experiment is performed in MATLAB R2018b supported by Intel
Core i3-6100U 2.3 GHz processor with 8 GB RAM running on Win-
dows 10 environment. The experiments are carried out with high
dimensional multispectral satellite images from the Landsat image
gallery (‘‘Landsat Image Gallery”, n.d.). The satellite image features
are condensed, rapidly varying from one zone to another zone. The
satellite image is of high dimensions. This warrants us to use an
efficient thresholding technique. This instigates us to choose the
most recent efficient optimizers such as SMA (Li et al., 2020), EO
(Faramarzi et al., 2020), HHO (Heidari et al., 2019), WOA
(Mirjalili and Lewis, 2016) and GWO (Mirjalili et al., 2014) for a
comparative analysis. All the algorithms SMA, EO, HHO, WOA
and GWO are implemented using the proposed objective function.
Table 3
Optimal PSNR, FSIM, and SSIM.

Test Images K Metric LSMA SMA

Image1 4 PSNR 27.1253 27.1235
FSIM 0.9626 0.9625
SSIM 0.9294 0.9287

8 PSNR 31.9431 31.9375
FSIM 0.9880 0.9866
SSIM 0.9718 0.9714

12 PSNR 34.8121 34.4649
FSIM 0.9938 0.9928
SSIM 0.9835 0.9825

Image2 4 PSNR 27.1274 27.1294
FSIM 0.9941 0.9940
SSIM 0.9416 0.9390

8 PSNR 32.2726 32.2607
FSIM 0.9987 0.9985
SSIM 0.9783 0.9775

12 PSNR 35.1047 35.3238
FSIM 0.9993 0.9989
SSIM 0.9867 0.9857

Image3 4 PSNR 28.6963 28.6915
FSIM 0.9592 0.9587
SSIM 0.9260 0.9260

8 PSNR 33.1539 33.1356
FSIM 0.9884 0.9878
SSIM 0.9647 0.9651

12 PSNR 35.9055 35.9637
FSIM 0.9935 0.9952
SSIM 0.9796 0.9795

Image4 4 PSNR 26.4247 26.4237
FSIM 0.9034 0.9032
SSIM 0.9329 0.9330

8 PSNR 31.2264 31.2821
FSIM 0.9547 0.9552
SSIM 0.9734 0.9732

12 PSNR 34.4007 34.0473
FSIM 0.9801 0.9790
SSIM 0.9856 0.9848

Image5 4 PSNR 28.0560 28.0519
FSIM 0.9737 0.9731
SSIM 0.9432 0.9431

8 PSNR 32.8669 32.8002
FSIM 0.9921 0.9927
SSIM 0.9777 0.9767

12 PSNR 35.7464 35.5937
FSIM 0.9972 0.9974
SSIM 0.9873 0.9862

Image6 4 PSNR 26.7158 26.7134
FSIM 0.9621 0.9634
SSIM 0.8890 0.8875

8 PSNR 31.5393 31.5267
FSIM 0.9921 0.9929
SSIM 0.9515 0.9517

12 PSNR 34.4919 34.4280
FSIM 0.9973 0.9979
SSIM 0.9739 0.9728

Friedman’s mean rank 4.7778 3.8981
Rank 1 4
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A set of six selected test images from the Landsat image gallery
are considered for the experiments, which are displayed in Fig. 7
with the place of imaging, size, and the corresponding histograms
of RGB color components. All algorithms are run independently 31
times with a population size of 20 and a maximum iteration of 100
to maintain the consistency for the performance evaluation. The
threshold dimensions are taken ðk ¼ 4;8Þ as a low dimensional,
and ðk ¼ 12Þ as a high dimensional experimental study. The
parameters for the optimization algorithms are taken same as
the simulations performed in Section 3.2 (see Table 1). For a com-
parative analysis, the well-known performance metrics of segmen-
tation peak signal to noise ratio (PSNR) (Jia et al., 2019b), feature
similarity (FSIM) (Zhang et al., 2011) and structural similarity
EO HHO WOA GWO

27.1152 27.1233 27.1209 27.0711
0.9624 0.9621 0.9622 0.9608
0.9293 0.9286 0.9292 0.9251
31.7870 31.9136 31.9457 30.9170
0.9892 0.9877 0.9871 0.9839
0.9688 0.9721 0.9714 0.9638
34.5641 34.8096 34.5571 33.1779
0.9930 0.9961 0.9950 0.9921
0.9834 0.9824 0.9841 0.9767
27.1232 27.1289 27.1286 27.0436
0.9937 0.9940 0.9940 0.9927
0.9399 0.9392 0.9391 0.9433
32.0626 32.3081 32.3054 31.8053
0.9983 0.9985 0.9986 0.9981
0.9769 0.9763 0.9771 0.9720
34.7567 35.2951 35.2162 34.1196
0.9985 0.9989 0.9987 0.9988
0.9837 0.9838 0.9839 0.9811
28.6707 28.6971 28.6966 28.6897
0.9570 0.9590 0.9604 0.9497
0.9257 0.9260 0.9255 0.9266
32.9699 33.1004 33.1014 32.1498
0.9870 0.9863 0.9893 0.9856
0.9633 0.9643 0.9646 0.9580
35.5257 35.7094 35.8112 34.6154
0.9937 0.9936 0.9937 0.9961
0.9771 0.9784 0.9788 0.9727
26.3996 26.4249 26.4236 26.3524
0.9036 0.9032 0.9028 0.9042
0.9338 0.9329 0.9329 0.9316
31.1964 31.2418 31.2736 30.2136
0.9560 0.9547 0.9556 0.9519
0.9710 0.9741 0.9738 0.9608
33.6997 34.3080 34.0099 32.3060
0.9756 0.9785 0.9791 0.9689
0.9824 0.9849 0.9827 0.9733
28.0299 28.0563 28.0559 28.0521
0.9736 0.9736 0.9738 0.9738
0.9415 0.9433 0.9434 0.9429
32.7167 32.8759 32.8484 32.5101
0.9911 0.9925 0.9931 0.9915
0.9771 0.9774 0.9775 0.9750
35.3063 35.7413 35.6511 34.6219
0.9969 0.9963 0.9973 0.9966
0.9855 0.9868 0.9870 0.9828
26.7037 26.7157 26.7117 26.7076
0.9608 0.9622 0.9637 0.9634
0.8884 0.8887 0.8888 0.8894
31.3615 31.5503 31.5296 30.7903
0.9910 0.9922 0.9918 0.9889
0.9515 0.9513 0.9512 0.9435
33.8199 34.5092 34.2597 33.3243
0.9954 0.9975 0.9972 0.9967
0.9700 0.9733 0.9729 0.9656
2.5093 3.9907 4.0278 1.7963
5 3 2 6
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(SSIM) (Zhou et al., 2004) are estimated. A higher PSNR, a value
nearer to 1 for FSIM and SSIM means a better-thresholded image.

The statistical performance PSNR, FSIM, and SSIM based on the
optimal threshold values of the test images (Image1 to Image 6)
are presented in Table 3, the bold faces are the best results. From
Table 3, it is evident that in the majority of the cases the NSD-
LSMA based multilevel thresholding outperforms other optimiza-
tion algorithms. From the Friedman mean rank (Derrac et al.,
Fig. 8. For Image1, 4-level thresholded imag

Fig. 9. For Image2, 4-level thresholded imag

Fig. 10. For Image3, 8-level thresholded ima
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2011) statistical analysis considering the optimal PSNR, FSIM,
and SSIM values of the test images (Image1-Image6), it is found
that LSMA based approach ranked first in obtaining the optimal
threshold values. Figs. 8–13 show the thresholded images and their
corresponding histograms (test images are shown in Fig. 7). For an
illustration, two from each threshold level 4, 8, and 12 are dis-
played. Our optimizer LSMA also enforces the thresholded image
histogram to remain very close to the original one. Therefore, the
es, and their corresponding histograms.

es, and their corresponding histograms.

ges, and their corresponding histograms.



Fig. 11. For Image4, 8-level thresholded images, and their corresponding histograms.

Fig. 12. For Image5, 12-level thresholded images, and their corresponding histograms.

Fig. 13. For Image6, 12-level thresholded images, and their corresponding histograms.
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NSD-LSMA based approach is competent for multilevel
thresholding.

6. Conclusions

In this study, an efficient methodology in terms of both multi-
level thresholding accuracy and time is fostered. It inherently
includes the features for both exploration and exploitations with
12
reduced computations. Profound differences are seen from a com-
putation point of view. Even more interesting is its capability to
handle both low/high dimension problems. Exemplar solutions
are embodied in this paper to attract more readers. For complete-
ness, both the statistical and numerical analysis is provided. From
the results, it is revealed that the method also retains the contex-
tual information; because the idea of squared difference based
two-dimensional histogram takes care of this feature. The
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proposed method is well suited for the multiclass segmentation of
satellite images. The reason may be due to its capability to handle
high dimensional color images. To figure out, the method is ranked
first while conducting the Friedman mean rank statistical analysis.
Most of the PSNR, FSIM, and SSIM values are found optimal
because it produced the best multiclass segmented outputs. Espe-
cially, it is quite efficient for computations, as opposed to the exist-
ing methods. The number of computations is reduced drastically
by a factor of (k-1), where k is the number of threshold levels.
Therefore, it would be more beneficial for high threshold levels.
It means, realistically, our method would be very useful for multi-
spectral color image analysis. Other future applications include –
breast color thermogram analysis, brain MR image analysis, color
image segmentation, etc.
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