
Heliyon 9 (2023) e16777

Available online 5 June 2023
2405-8440/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Adaptive variable sampling model for performance analysis in 
high cache-performance computing environments 

Mincheol Shin a, Mucheol Kim a,*, Geunchul Park b, Ajith Abraham c 

a Department of Computer Science and Engineering, Chung-Ang University, Seoul, South Korea 
b Division of Supercomputing, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea 
c Faculty of Computing and Data Science, FLAME University, Lavale, Pune, Maharashtra, India   

A R T I C L E  I N F O   

Keywords: 
High performance computing 
Data science 
Decision support 
Performance prediction 
Machine learning 

A B S T R A C T   

High-performance computing provides computing power for a variety of scientific disciplines, 
supporting advancements by offering insights beyond metacognition. Maximizing computing 
performance without wasting resources is a major research issue. Predicting the performance of a 
computer’s next state is effective for scheduling. However, hardware performance monitors 
representing the computer’s state require high expert knowledge, and there is no standardized 
model. In this paper, we propose an adaptive variable sampling model for performance analysis in 
high-performance computing environments. Our method automatically classifies the optimal 
variables from numerous variables related to performance prediction and predicts performance 
using the sampled variables. The optimal variables for performance analysis do not require expert 
knowledge during the sampling process. We conducted experiments in various architectures and 
applications to validate this method. This model performed at least 24.25% and up to 58.75% 
faster without any loss in accuracy.   

1. Introduction 

Due to population growth and infrastructure development, the requirements and complexity of smart cities are increasing, 
requiring the ability to solve various city problems (population, economy, health, energy, climate, etc.) [1–3]. High-performance 
computing (HPC) is an essential technology in solving not only real-world problems such as logistics and energy, but also science 
and engineering problems of hyper-cognition in the realization of smart cities. With the increase in the amount of data produced in 
modern cities, applications in various areas such as population, environment, and climate that are difficult to derive with existing 
computing capabilities are being improved and expanded [4,5]. 

Meanwhile, to realize the exascale Computing era, the development of energy efficiency as well as the performance improvement of 
sustainable HPC must be prioritized. Energy consumed by HPC systems accounted for 1.5% of total electrical energy usage in 2010, 
and since then, it has continued to increase as the demand for computing power grows [6]. In addition, HPC energy efficiency 
improvement (i.e. energy saving policy, scheduling) is required to achieve the 20 MW target, which is an exascale performance 
condition, but it is not consistent with the rate of increase in demand for large scale computing [7]. 

In order to effectively use computer resources, it is important to predict their state. In the absence of a standard model for hardware 
performance monitors (HPM) in the analysis of HPC systems, identifying and selecting the optimal variables for analysis proves to be a 

* Corresponding author. 
E-mail address: mucheol.kim@gmail.com (M. Kim).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2023.e16777 
Received 14 April 2023; Received in revised form 24 May 2023; Accepted 26 May 2023   

mailto:mucheol.kim@gmail.com
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2023.e16777
https://doi.org/10.1016/j.heliyon.2023.e16777
https://doi.org/10.1016/j.heliyon.2023.e16777
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 9 (2023) e16777

2

considerable challenge [41–44]. The study by Roundtree et al. [8] emphasizes the importance of CPU frequency and memory access for 
performance prediction in HPC environments. Even though performance can be improved through various indicators (CPU load, 
memory usage, I/O activity, network bandwidth) [46], an approach that considers HPM at the operating system (OS) level is not likely 
to reflect the characteristics of the architecture (Zhang et al. [9]). To configure HPM in a highly interactive and complex HPC envi-
ronment, it is necessary to use hardware events that require a high level of computer science knowledge; correlation analysis between 
performance indicators through data mining is also required. In spite of the difficulty of analyzing many variables, the improvement in 
performance and prediction from using various HPM will provide new insights [45]. 

In this paper, we propose an adaptive variable sampling model for performance analysis in high-performance computing envi-
ronments. Our method automatically classifies numerous variables involved in HPC performance prediction and effectively predicts 
performance using these variables. The optimal variables for performance analysis are determined without requiring expert knowledge 
during the sampling process. The predictive model is trained using an efficient support vector machine (SVM) for high-dimensional 
data. As minimizing the overhead is crucial when making decisions in HPC based on prediction results, we have chosen SVM as 
our prediction model. Experiments are conducted using eight benchmarks specified from NAS Parallel Benchmarks (NPB) to validate 
our approach. To evaluate the proposed model, we predict the behavior of untrained applications and investigate whether our 
approach can effectively predict performance for new tasks [10]. The contributions of the proposed approach can be summarized as 
follows.  

• Our sampling strategy identifies the optimal variables required for performance prediction without the need for HPC domain 
knowledge, depending on the set parameter values.  

• The proposed model enables efficient performance prediction in various application and architecture environments with optimal 
variables for performance prediction. 

The paper is organized as follows. Section 2 describes related work. In Section 3, we propose an adaptive performance prediction 
model for effective resource management. Section 4 presents an evaluation of our proposed method using several applications and 
benchmarks. Section 5 summarizes the contributions. 

2. Related work 

In HPC, system profiling data provides insights into performing in a variety of task environments, such as computing optimization, 
performance prediction, computing design, and failure prediction. Furthermore, there are diverse monitoring and performance 
measurement tools available for aggregating system profiling data [11–13]. 

Many researchers have suggested system performance profiling-based approaches for system optimization [14–19,41–43]. Due to 
the development of the architecture and the complexity of the composition, as shown in (Fig. 1), the variable representing the state of 
the resource in the HPC environment has been increasing continuously. However, Modern processors typically provide 4–8 hardware 
counters to measure hundreds of events (i.e. cache and translation lookaside buffer misses) [20]. Existing techniques for measuring 
events are inadequate for data profiling due to the small number of counters. To improve accuracy and to solve omission problems that 
occur in the multiplexer [20,21], In Ref. [20], the authors have presented a method that replaces outliers after multiplexer sampling, 
fills in the missing values, improves the quality of data, and designates the interaction and ranking of events. In Ref. [21], the authors 
have presented NeoMPX for Performance Application Programming Interface using a divided curved-area method and curved-area 

Fig. 1. Number of events according to architecture development.  

M. Shin et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e16777

3

method to improve the accuracy of the multiplexer. In Ref. [22], the authors have presented a set of profiling tools designed to 
integrate with a field programmable gate array accelerated simulation platform. However, it was too slow to observe end-to-end 
system-level level operation in a multi-cluster environment and is at an inadequate level of abstraction to diagnose performance. 

In addition, there have been many studies on the characterization of applications in HPC. Many researchers have conducted work to 
improve job scheduling, resource management, and performance optimization based on application program characterization [23,24]. 
In Ref. [25], the authors have presented a method of classifying the characteristics of application programs considering EM(expec-
tation maximization) clustering-based resource interference. In Ref. [24], the authors have presented application characterization 
through micro-architecture metrics and OS-level metrics. They have done a top-down analysis method to classify bottlenecks through a 
drill-down structured in a hierarchical manner. In Ref. [25], the authors have presented an ASTPI(Average Stall Time Per Instruction) 
based workload classifier to distinguish between CPU-intensive and memory-intensive workloads. 

[41] proposed an analysis of machine learning (ML) algorithms to collect knowledge about the performance of these applications 
through hardware events and derived performance metrics [42]. raised the issue of it usually taking a long time to profile and train the 
model, especially for the cost-expensive applications. Consequently, they proposed APMT, an offline performance modeling tool with 
hardware counter-supported profiling, to overcome the drawbacks of manual work (analytical model) and unguaranteed model ac-
curacy (empirical model) [43]. presented significant performance overhead or performance deviation problems that occur during the 
collection process using multiplexing methods and proposed a systematic performance diagnosis method focused on building accurate 
and interpretable performance models using performance counters. 

3. An adaptive variable sampling model for performance analysis in high-performance computing environments 

In this paper, we propose an adaptive variable sampling model for performance analysis in high-performance computing envi-
ronments (Fig. 2). The proposed model proceeds in two stages. First, our sampling strategy can solve the multiplexing-based collection 
problem by using fewer variables without domain knowledge. Second, the training set generated using the profiling data predicts the 
future state of the computer using an SVM-based performance prediction model. 

3.1. Data collection and data-driven feature sampling strategy 

In previous performance prediction approaches, variable selections were performed through domain knowledge. Domain-based 
prediction research has difficulty reflecting the HPC environment, GPUs, computational accelerators, and so on. There are three 
difficulties in predicting performance through performance monitoring events (PMU). First, the Perf tool provides little guidance on 
how to interpret the results [27]. Because modern processors generate hundreds to thousands of events representing the current state 
of a computer [20,27], it is difficult to select the type and amount of data necessary to grasp the characteristics of applications [28]. 
Therefore, selecting variables and interpreting results require considerable domain knowledge and an understanding of the archi-
tecture. Second, it is known that collecting a large number of variables using multiplexers results in the loss of collected variables [20, 
29,30]. Using the limited number of built-in counters in computers to gather multiple variables increases the uncertainty of the 
collected variables. Moreover, in the prediction model, there are complexity issues [31] and the curse of dimensionality problems 
[32–34] during the computational process. Third, collecting a lot of events comes with energy consumption. The change in power 
consumption as the number of instructions increases shows that event collection is influencing energy efficiency (Table 1). Therefore, 
extraction of effective essential performance indicators can reduce HPC power consumption. 

The proposed method collects the state information of various HPC applications through NPB. We select NPB benchmark classes as 
D class for performance analysis [10]. Because the proposed model collects data every second, it cannot collect enough data for a 
problem size smaller than class D. Data collected using Perf [13] is expressed as a time series (Equation (1)). 

Data=

⎧
⎪⎪⎨

⎪⎪⎩

T1{E1,E2,E3,⋯En}

T2{E1,E2,E3,⋯En}

⋮
Tn{E1,E2,E3,⋯En}

⎫
⎪⎪⎬

⎪⎪⎭

(1) 

Fig. 2. Adaptive variable sampling model for performance analysis in high-performance computing environments process.  

M. Shin et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e16777

4

Fig. 3. Labeling flow chart.  

Fig. 4. Data interval example.  

Table 1 
Power value according to the number of instructions.  

Command Command count Power(W) Command Command count Power(W) 

NULL 0 33.2 skb:* 3 34.27 
H/w + S/w + PMU event 40 116.42 workqueue:* 4 34.22 
block:* 19 44.63 task:* 2 32.38 
net:* 9 38.4 timer:* 13 39.78 
sock:* 2 32.27 syscalls:* 592 422.09 
writeback:* 25 49.42 sched:* 23 51.74 
kmem:* 12 40.57 signal:* 2 33.8 
vmscan:* 15 42.05     

Table 2 
Event items collected by Perf.  

Event branch-load-misses, branch-misses, bus-cycles, cache-misses, cache-references, CPU-clock, CPU-cycles, dTLB (data Translation Lookaside Buffer)-load- 
misses, iTLB (instruction Translation Lookaside Buffer)-loads, L1-icache-load-misses, msr/aperf/,msr/mperf/, 
page-faultstask-clock  

M. Shin et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e16777

5

T represents a certain collection interval, and En refers to the nth hardware/software event of Perf. Perf collects events consisting of 
H/W (hard-ware event), S/W (soft-ware event), and Trace Point. Because Perf provides different items for each architecture, the events 
for each architecture are classified and collected (Table 2). 

The proposed feature selection method finds the most characteristic variable in the entire dataset by the principal component (PC) 
matrix and the cumulative sum of variances. 

The variable with the important feature represents the largest data variance among the data (Equation (2)). The elements are 
defined as follows.  

• Cov(X,Y): It represents Var(X), the distribution of data X at Cov(X,X), whereas Cov(X,Y) refers to the relevance between element X 
and Y.  

• Xi,Yi: ith element of X and Y  
• X, Y: Means of element X and Y  

• n: n raw data 

Cov(X,Y)=

∑n

i
(Xi − X)(Yi − Y)

n − 1
(2) 

The purpose of PCA is to find and project an axis that maximizes the variance in the original data (Table 3). When PCA uses the 
Lagrange multiplier method to project data X onto an arbitrary axis P, which is a unit vector V, the variance is as follows (Equation (3)).  

• C: Eigenvector  
• λ: Eigenvalue of C variance when projected by eigenvector 

L(XV⇀, λ)=XV⇀
T CXV⇀ − λ

(
XV⇀

T XV⇀ − 1
)

(3) 

C is calculated through the partial differentiation of XV⇀, using the Lagrange function L. (Equation (4)): 

C=XV⇀λXV⇀
T (4) 

The PC, the column vector of the eigenvector, maximizes the variance in the process of projecting the eigenvector. To determine the 
dimensions, the variance cumulative sum ratio of each PC is calculated (line 3, equation (5)).  

• CPn: Cumulative sum of n-dimensional variance  
• Mn,i: Eigenvector of ith N-dimensional data 

Table 3 
Dimensionality reduction algorithm.  

Algorithm 1. Dimensionality Reduction (D, V, R) 

Input: D ← Collected raw data list 
V ← Cumulative sum of variance 
R ← Ratio of eigenvector selection 
Output:F ← Feature selection list 
/* 
M : Principal component matrix 
Mn: N-dimensional principal component 
M(n,i) : Eigenvector of ith N-dimensional data 
CPn: Cumulative sum of n-dimensional variance 
A : Selected dimension 
variables matrix list : A list of the variable matrix selected through the PCA 
Result L: key variable list 
*/ 

1. D ←Normalization(D)
2. (M,CP) ← PCA(D)
3. A ←CPn > V 
for n in range(A) 
for i in range (len(Mn))

4. variables matrix list ←R ∗ list.Max(|Mn|) <
⃒
⃒M(n,i)

⃒
⃒ < list.Max(|Mn|)

for n in range (len (variables matrix list).columns) 
For i in range (len (variables matrix list) 
5. if 

⃒
⃒Pearson Correlation Coefficient(L(n,1),L(n,i+1))

⃒
⃒ < 0.7 

Result L.append(L(i))

6. else 
pass 
7. return Result L  

M. Shin et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e16777

6

• V: Cumulative sum of variance  
• n: N-dimension  
• A: Variable saved after deciding the dimension of the PC 

∑n

1
CPn

{ A = i if CPn > V

Pass otherwise
(5) 

To extract the representative variables in the PC dimensions (line 4), it is necessary to select the highest eigenvector (Equation (6)) 
and M(n,i) within the range through repetition up to the selected A-dimensions, save and return it in L (Equation (7), line 5). The el-
ements are defined as follows:  

• P: Eigenvector of ith N-dimensional data in the PC matrix M  
• R: Ratio of eigenvector selection  
• L: A list of the variables selected through the PCA  
• List M: PC matrix M in which the n-value remains unchanged when the equation is repeated from 1 to i 

∑i

1
List M(n,i)

{ Max = |P| if |P| > Max

Pass otherwise
(6)  

∑i

1
List M(n,i)

{ L ←P if R ∗ Max < M(n,i) < Max

Pass otherwise
(7) 

The key variable has the greatest influence on each eigenvector (line 4). If there is a correlation between the key variables, the 
complexity is improved during the performance prediction process, but the accuracy is not greatly affected. Therefore, Pearson’s 
correlation coefficiency [35] is used to remove variables having high correlation. The first value of each L should be included in 
Result L (line5). To remove the highly correlated variables, we calculate the Pearson correlation coefficient between the key variables 
and remove those whose value is 0.7 or greater (line 5, 6). Finally, the derived variables of Result L are applied to the model (line 7). 

This strategy is a method for sampling columns necessary for prediction, so it does not create new variables compared to feature 
selection. This allows for analyzing the relationships, associations, and important factors beyond the cognitive scope among the 
variables during the prediction process. 

3.2. Machine learning-based performance prediction model 

The variety of applications running on HPC systems is highly diverse. Therefore, to achieve effective scheduling, it is necessary to 
perform effective predictions even for new forms of data that have not been previously learned. Another challenge can arise when 
using predictive models that require more resources to achieve high performance predictive accuracy. Therefore, we predict the next 
state of the computer system using an SVM model that solves the hyperplane problem that maximizes the margin in the classification of 
performance metrics. 

3.2.1. Generate training data based on data profiling 
SVM, a supervised learning model, performs training based on the labels in the data. However, separate labeling work is required 

for the data analysis because attribute information for each application task does not exist. Depending on the HPC environment, the 
bandwidth and resource values of the idle state and the maximum load state are different. Using the absolute values of resources for 
labeling is not appropriate since it varies depending on the computer environment (architecture, node connection). We generate data 
labels for each resource through their usage and calculate high and low usage situations relative to the specific computer environment 
for labeling (Table 4). shows a method for creating data labels by comparing the overall usage of resources (CPU, Memory). 

3.2.2. SVM-based performance prediction model 
Kernel SVM makes it possible to classify hyperplanes that cannot be linearly classified by increasing the dimensions of the data. Due 

to a soft margin from some noise, generalization is guaranteed for both noisy and untrained data. “Kernel trick” during the process of 
the SVM approach is a mathematical technique that can achieve the same result as adding multiple polynomial features, even without 

Table 4 
Workload calculation algorithm.  

Algorithm 2 Workload calculation algorithm  

1. Perform normalization on data D.  
2. Create and initialize resource variables for each attribute.  
3. Add the normalized value corresponding to the resource (CPU, Memory) of each attribute.  
4. End the algorithm and return the variable LD. 

(Fig. 3) shows the labeling flow chart. We sort the profiling data processed in Algorithm 1 and present the data as a frequency distribution. The data 
interval that defines the range from the minimum to the maximum determine the classification model in the histogram data (Fig. 4). 

M. Shin et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e16777

7

calculating the actual value of the feature function that maps the data to a high-dimensional space. We define the hyperplane in 
equation (8). 

f (x)=Φ(x)T w + b (8) 

Φ(x) is a basis function that maps the p-dimensional x data to a higher m-dimension. The optimal hyperplane is calculated using the 
Wolfe duality theorem (Equation (9)) [36]. 

Max LD =
∑N

i=1
ai −

1
2
∑N

i=1

∑N

j=1
aiajyiyjΦ(xi)

′

Φ
(
xj
)

subject to
∑N

i=1
aiyi = 0 (9)  

0≤ a ≤ C, i = 1⋯N 

The inner product of the quadratic polynomial x from Equation (9) can be expressed as follows (Equations 10 and 11). 

Φ(x)=Φ
((

x1
x2

))

=

⎛

⎜
⎜
⎝

x2
1

̅̅̅
2

√
x1x2

x2
2

⎞

⎟
⎟
⎠ (10)  

Φ(a)T Φ(b)=

⎛

⎜
⎜
⎝

a2
1

̅̅̅
2

√
a1a2

a2
2

⎞

⎟
⎟
⎠

T

•

⎛

⎜
⎜
⎝

b2
1

̅̅̅
2

√
b1b2

b2
2

⎞

⎟
⎟
⎠= a2

1b2
1 + 2a1b1a2b2 + a2

2b2
2 =(a1b1 + a2b2)

2
=

((
a1
a2

)

•

(
b1
b2

))2

(11) 

The two-dimensional inner product of a and b is calculated in Equation (12). 

aT • b=
((

a1
a2

)

•

(
b1
b2

))2

(12) 

We can confirm that the inner product calculation using the kernel trick and the general inner product calculation value are the 
same (Equations 11 and 12). Well-known cases that satisfy the kernel trick are the Gaussian Radial Basis Function (RBF) (Equation 
(13)), r-order polynomial kernel (Equation (14)), and sigmoid kernel (Equation (15)) [37–40]. We have shown the best performance 
using the RBF kernel. 

K(a, b)= exp
(
− γ||a − b||2

)
(13)  

K(a, b)=
(
aT b + 1

)r (14)  

Table 5 
Specifications for each node.  

Node Information 

Master Node OS CentOS Linux release June 7, 1810 (Core) 
CPU Intel® Xeon® CPU E5-2620 0 @ 2.00 GHz 
Core 24 total, 6 cores for each CPU, 4 CPUs 
Memory 31 GiB 

Slave Node KNL aNode OS CentOS Linux release June 7, 1810 (Core) 
CPU Intel® Xeon Phi™ CPU 7290 @ 1.50 GHz 
Core 288 total, 72 cores for each CPU, 4 CPUs 
Memory 188 GiB 

SLXb Node OS CentOS Linux release March 7, 1611 (Core) 
CPU Intel® Xeon® Gold 6152 CPU @ 2.10 GHz 
Core 88 total, 22 cores for each CPU, 4 CPUs 
Memory 188 GiB 

EPYCc Node OS CentOS Linux release August 7, 2003 (Core) 
CPU AMD EPYC 7451 24-Core Processor 
Core Total 96, 24 Cores for each CPU, 4 CPUs 
Memory 251 GiB  

a Knights Landing. 
b Skylake 
c AMD EPYC. 

M. Shin et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e16777

8

K(a, b)= tanh
(
kaT b − δ

)r (15)  

4. Experimental environment and results 

Our paper evaluates the accuracy of prediction by performing the proposed approach on various HPC architectures and benchmark 
applications. 

4.1. Experimental setup 

We construct the experimental environment with consisting of one master node and two slave nodes for each architecture. The 
specifications for each node and the software version used in the OS environment for each model implementation are as (Table 5) and 
(Table 6). Cross-validation is a method that divides the data into equally K fold data and the model is trained using a differently 
partitioned datasets (E(i)) in each task (Fig. 5) [37]. To evaluate the accuracy of the proposed approach, we divide the training and test 
data for eight NPB applications (BT, CG, EP, FT, IS, MG, LU, SP) (See in Table 7). 

4.2. Experimental results 

The data profiling process serves two purposes. The first objective is to avoid the accuracy and resource efficiency issues caused by 
multiplexers. Second, we find the optimal variable for prediction in the variable list without a high-level understanding of HPC. 

To test whether the data profiling process is effective in predicting the next task state, we predicted the accuracy by comparing the 
original data with 30, 50, 70, 80, where the ratio of eigenvector selection is sharply distinct (Figs. 6 and 7). We conduct the experiment 
except for the case where the ratio of eigenvector selection value is 90, because data reduction hardly occurred. The experimental 
results display improved accuracy or similar results in most conditions. We carry out the event list for our experiments to intel ar-
chitecture. Therefore, our experimental data learned with Intel-based architecture shows relatively low accuracy in AMD’s EPYC 
architecture because performance variables between architectures are different. 

Different architectures have different performance variables. We carry out the event list for our experiments to intel architecture 
which most of our experimental environments are based on. Therefore, experimental data trained with Intel-based architectures show 
relatively low accuracy on AMD’s EPYC architecture. 

Experimental results show a valid range of accuracy even when making predictions with data reduced by 15%–70%. It provides 
insight that a lot of data causes a dimensional curse, or that there are key variables in predicting the next state. In addition, it shows 
that the proposed method effectively predicts the resource utilization status only with profiling data composed of a small amount of 
performance indicators. 

Our proposed method reduces the execution time by 24–58% (See Tables 8–11). This demonstrates that our model is a more 
efficient method than using all variables. The fact that it performs quickly without sacrificing accuracy suggests that it has little impact 
on the operating state of the HPC and presents potential for practical application. It shows that our model can make predictions faster 
and more accurately than using all the data. In most cases, it was confirmed that the ratio of eigenvector selection was performed faster 
when the selection was small, and it can be seen that the performance prediction time decreases linearly according to the number of 
variables. 

Our experiments perform multiple applications on different architectures to test whether our model exhibits generalizable per-
formance. We handle ratio of eigenvector selection parameters to generate dimension-reduced data to predict performance, without 
having to understand each hardware event. The experimental results show a 24–59% improvement in execution speed compared 
without loss of accuracy. Our approach represents consistent accuracy regardless of the various applications (eight NPB states), ar-
chitectures (KNL, SLX, EPYC), and node environments (single, multi). Therefore, when applied to the scheduling model, there is little 
loss of accuracy, but it shows the possibility of significant time-saving effects. 

5. Conclusions 

Due to the outstanding performance of HPC, the demand to solve various real-world problems such as logistics and energy con-
tinues to increase. Analyzing the state of a computer is critical to implementing an effective HPC operating method, however it is a 
difficult problem because it requires very high domain knowledge. In this paper, we proposed an adaptive variable sampling model for 
performance analysis in high-performance computing environments. The proposed model can obtain key variables required for 
performance analysis through sampling strategies without domain knowledge such as frequency control, power capping, perf. In 
addition, it is unnecessary to continuously collect all variables in the process of exploring variables used for performance prediction. 

We predict performance on minimal resources using a kernel svm model. By utilizing the proposed model to perform performance 
predictions, we achieved performance predictions at least 24.25% and up to 58.75% faster than methods using all data, without any 
loss in performance. This result demonstrates that our method appropriately samples the necessary variables for performance pre-
diction and reduces the model’s complexity. Experimental results show that the proposed model generates performance predictions 
about 24%–58% faster without performance loss compared to the case of using all performance indicators. It results demonstrates that 
our model not only effectively samples the variables, but also is a lightweight performance prediction model. 

In a future work, we should expand the scope of variable exploration in the performance prediction process and provide practical 

M. Shin et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e16777

9

Table 6 
Software version.  

Software Version 

Perf KNL Perf version 3.10.0–1062.18.1.el7.x86_64.debug 
SLX Perf version 3.10.0–1062.12.1.el7.x86_64.debug 
EPYC Perf version 3.10.0–1127.8.2.el7.x86_64.debug  

Fig. 5. Model evaluation method (cross validation).  

Table 7 
Benchmark specificationsa [10].  

Kernels IS Integer sort, random memory access 
EP Embarrassingly parallel 
CG Conjugate gradient, irregular memory access and communication 
MG Multi-grid on a sequence of meshes, long- and short-distance communication, memory intensive 
FT Discrete 3D fast Fourier transform, all-to-all communication 

Pseudo Applications BT Block tri-diagonal solver 
SP Scalar penta-diagonal solver 
LU Lower-upper Gauss-Seidel solver  

a https://www.nas.nasa.gov/software/npb.html. 

Fig. 6. Next state accuracy prediction (CPU).  

M. Shin et al.                                                                                                                                                                                                           

https://www.nas.nasa.gov/software/npb.html


Heliyon 9 (2023) e16777

10

Fig. 7. Next state accuracy prediction (Memory).  

Table 8 
Ratio of reduction in execution time in KNL_Cache.  

Architecture KNL_Cache 

Ratio of eigenvector selection 30 50 60 70 80 
CPU Multi 36% 33% 35% 29% 24% 

Single 45% 40% 38% 32% 23% 
Memory Multi 44% 37% 42% 33% 26% 

single 37% 39% 31% 31% 24% 
Average 40.50% 37.25% 36.50% 31.25% 24.25%  

Table 9 
Ratio of reduction in execution time in KNL_Flat.  

Architecture KNL_Flat 

Ratio of eigenvector selection 30 50 60 70 80 
CPU Multi 41% 37% 35% 37% 26% 

Single 31% 42% 32% 40% 21% 
Memory Multi 44% 38% 37% 34% 31% 

Single 40% 41% 34% 34% 29% 
Average 39.00% 39.50% 34.50% 36.25% 26.75%  

Table 10 
Ratio of reduction in execution time in EPYC.  

Architecture EPYC 

Ratio of eigenvector selection 30 50 60 70 80 
CPU Multi 39% 33% 34% 34% 24% 

Single 93% 92% 33% 31% 26% 
Memory Multi 37% 36% 32% 29% 26% 

Single 65% 74% 32% 28% 24% 
Average 58.50% 58.75% 32.75% 30.50% 25.00%  

M. Shin et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e16777

11

insights in combination with HPC power consumption. 

Declaration of competing interest 

The authors declare that they have no financial or personal interests that could potentially influence or bias the research reported in 
this paper. 

Acknowledgments 

This research was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government 
(MSIT) (No. 2021R1A2C109550811) and part by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea 
Government (MOTIE) (P0012724, The Competency Development Program for Industry Specialist). 

References 

[1] S.E. Bibri, A foundational framework for smart sustainable city development: theoretical, disciplinary, and discursive dimensions and their synergies, Sustain. 
Cities Soc. 38 (2018) 758–794, https://doi.org/10.1016/j.scs.2017.12.032. 

[2] P. Duan, M. Askari, K. Hemat, Z.M. Ali, Optimal operation and simultaneous analysis of the electric transport systems and distributed energy resources in the 
smart city, Sustain. Cities Soc. 75 (2021), https://doi.org/10.1016/j.scs.2021.103306. 

[3] J. Colding, M. Colding, S. Barthel, The smart city model: a new panacea for urban sustainability or unmanageable complexity? Environ. Plan. B Urban Anal. City 
Sci. 47 (1) (2020) 179–187, https://doi.org/10.1177/2399808318763164. 

[4] C. Silvano, G. Agosta, A. Bartolini, A.R. Beccari, L. Benini, J. Bispo, R. Cmar, J.M.P. Cardoso, C. Cavazzoni, J. Martinovič, G. Palermo, M. Palkovič, P. Pinto, 
E. Rohou, N. Sanna, K. Slaninová, Autotuning and Adaptivity Approach for Energy Efficient Exascale HPC Systems: the ANTAREX Approach. 2016 Design, 
Automation & Test in Europe Conference & Exhibition (DATE), 2016, 708–713. 

[5] M.M. Rathore, A. Paul, W.H. Hong, H.C. Seo, I. Awan, S. Saeed, Exploiting IoT and big data analytics: defining Smart Digital City using real-time urban data, 
Sustain. Cities Soc. 40 (2018) 600–610, https://doi.org/10.1016/j.scs.2017.12.022. 

[6] P. Arabas, E. Niewiadomska-Szynkiewicz, Energy-efficient workload allocation in distributed HPC system, in: International Conference on High Performance 
Computing & Simulation (HPCS), 2019, pp. 747–753, https://doi.org/10.1109/HPCS48598.2019.9188240. 

[7] C. Silvano, G. Agosta, A. Bartolini, A.R. Beccari, L. Benini, J. Bispo, R. Cmar, J.M.P. Cardoso, C. Cavazzoni, J. Martinovič, G. Palermo, M. Palkovič, P. Pinto, 
E. Rohou, N. Sanna, K. Slaninová, Autotuning and Adaptivity Approach for Energy Efficient Exascale HPC Systems: the ANTAREX Approach. 2016 Design, 
Automation & Test in Europe Conference & Exhibition (DATE), 2016, 708–713. 

[8] B. Rountree, D.K. Lowenthal, M. Schulz, B.R. de Supinski, Practical performance prediction under dynamic Voltage frequency scaling, in: International Green 
Computing Conference and Workshops, IGCC 2011, 2011, https://doi.org/10.1109/IGCC.2011.6008553. 

[9] J. Zhang, R.J. Figueiredo, Application classification through monitoring and learning of resource consumption patterns, in: 20th International Parallel and 
Distributed Processing Symposium, IPDPS 2006, IEEE Computer Society, 2006, https://doi.org/10.1109/IPDPS.2006.1639378. 

[10] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, M. Yarrow, The NAS Parallel Benchmarks 2.0, 1995. 
[11] S. Mark, Collectl, http://collectl.sourceforge.net/. Accessed on 2018-10-31. 
[12] D. Wieers, Dstat, http://dag.wiee.rs/home-made/dstat/dstat.1.html. Accessed on 2009-11-25. 
[13] Multiple Authors, perf: Linux profiling with performance counters. https://perf.wiki.kernel.org/index.php/Main_Page. Accessed on 2018-05-18. 
[14] S. Wang, B. Luo, W. Shi, D. Tiwari, Application configuration selection for energy-efficient execution on multicore systems, J. Parallel Distr. Comput. 87 (2016) 

43–54, https://doi.org/10.1016/j.jpdc.2015.09.003. 
[15] A. Shahid, M. Fahad, R.R. Manumachu, A. Lastovetsky, Improving the accuracy of energy predictive models for multicore CPUs by combining utilization and 

performance events model variables, J. Parallel Distr. Comput. 151 (2021) 38–51, https://doi.org/10.1016/j.jpdc.2021.01.007. 
[16] F. Liang, C. Feng, X. Lu, Z. Xu, Performance characterization of hadoop and data MPI based on amdahl’s second law, in: Proceedings - 9th IEEE International 

Conference on Networking, Architecture, and Storage, NAS 2014, Institute of Electrical and Electronics Engineers Inc., 2014, pp. 207–215, https://doi.org/ 
10.1109/NAS.2014.39. 

[17] S. Eyerman, L. Eeckhout, T. Karkhanis, J.E. Smith, A performance counter architecture for computing accurate CPI components, ACM SIGPLAN Not. 41 (2006) 
175–184, https://doi.org/10.1145/1168918.1168880. 

[18] M. Jarus, A. Oleksiak, T. Piontek, J. Weglarz, Runtime power usage estimation of HPC servers for various classes of real-life applications, Future Generat. 
Comput. Syst. 36 (2014) 299–310, https://doi.org/10.1016/j.future.2013.07.012. 

[19] M. Witkowski, A. Oleksiak, T. Piontek, J. Weoglarz, Practical power consumption estimation for real life HPC applications, Future Generat. Comput. Syst. 29 
(2013) 208–217, https://doi.org/10.1016/j.future.2012.06.003. 

[20] Y. Lv, B. Sun, Q. Luo, J. Wang, Z. Yu, X. Qian, Counterminer: mining big performance data from hardware counters, in: Proceedings of the Annual International 
Symposium on Microarchitecture, MICRO, IEEE Computer Society, 2018, pp. 613–626, https://doi.org/10.1109/MICRO.2018.00056. 

[21] Y.C. Wang, J. Wang, J.K. Chen, S.C. Zuo, X.M. Su, J. Lin, NeoMPX: characterizing and improving estimation of multiplexing hardware counters for PAPI, in: 
Proceedings - IEEE International Conference on Cluster Computing, ICCC, Institute of Electrical and Electronics Engineers Inc., 2020, pp. 47–56, https://doi. 
org/10.1109/CLUSTER49012.2020.00015. 

[22] S. Karandikar, A. Ou, A. Amid, H. Mao, R. Katz, B. Nikolic, K. Asanovic, FirePerf: FPGA-accelerated full-system hardware/software performance profiling and 
co-design, in: International Conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS, Association for Computing 
Machinery, 2020, pp. 715–731, https://doi.org/10.1145/3373376.3378455. 

[23] J. Choi, G. Park, D. Nam, Interference-aware co-scheduling method based on classification of application characteristics from hardware performance counter 
using data mining, Cluster Comput. 23 (2020) 57–69, https://doi.org/10.1007/s10586-019-02949-7. 

Table 11 
Ratio of reduction in execution time in SLX.  

Architecture SLX 

Ratio of eigenvector selection 30 50 60 70 80 
CPU Multi 40% 34% 33% 33% 26% 

Single 40% 40% 33% 28% 24% 
Memory Multi 42% 36% 37% 31% 24% 

Single 37% 40% 34% 32% 23% 
Average 39.75% 37.50% 34.25% 31.00% 24.25%  

M. Shin et al.                                                                                                                                                                                                           

https://doi.org/10.1016/j.scs.2017.12.032
https://doi.org/10.1016/j.scs.2021.103306
https://doi.org/10.1177/2399808318763164
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref4
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref4
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref4
https://doi.org/10.1016/j.scs.2017.12.022
https://doi.org/10.1109/HPCS48598.2019.9188240
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref7
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref7
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref7
https://doi.org/10.1109/IGCC.2011.6008553
https://doi.org/10.1109/IPDPS.2006.1639378
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref10
http://collectl.sourceforge.net/
http://dag.wiee.rs/home-made/dstat/dstat.1.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://doi.org/10.1016/j.jpdc.2015.09.003
https://doi.org/10.1016/j.jpdc.2021.01.007
https://doi.org/10.1109/NAS.2014.39
https://doi.org/10.1109/NAS.2014.39
https://doi.org/10.1145/1168918.1168880
https://doi.org/10.1016/j.future.2013.07.012
https://doi.org/10.1016/j.future.2012.06.003
https://doi.org/10.1109/MICRO.2018.00056
https://doi.org/10.1109/CLUSTER49012.2020.00015
https://doi.org/10.1109/CLUSTER49012.2020.00015
https://doi.org/10.1145/3373376.3378455
https://doi.org/10.1007/s10586-019-02949-7


Heliyon 9 (2023) e16777

12

[24] A. Yasin, A Top-Down method for performance analysis and counters architecture, in: ISPASS 2014 - IEEE International Symposium on Performance Analysis of 
Systems and Software, IEEE Computer Society, 2014, pp. 35–44, https://doi.org/10.1109/ISPASS.2014.6844459. 

[25] M. Stillwell, F. Vivien, H. Casanova, Dynamic fractional resource scheduling for HPC workloads, in: Proceedings of the 2010 IEEE International Symposium on 
Parallel and Distributed Processing, IPDPS, 2010, https://doi.org/10.1109/IPDPS.2010.5470356. 

[27] M. Burtscher, B.-D. Kim, J. Diamond, J. Mccalpin, L. Koesterke, J. Browne, PerfExpert, An Easy-To-Use Performance Diagnosis Tool for HPC Applications, 2010. 
[28] J. Zhang, R.J. Figueiredo, Application classification through monitoring and learning of resource consumption patterns, in: 20th International Parallel and 

Distributed Processing Symposium, IPDPS 2006, IEEE Computer Society, 2006, https://doi.org/10.1109/IPDPS.2006.1639378. 
[29] M. Dimakopoulou, S. Eranian, N. Koziris, N. Bambos, Reliable and efficient performance monitoring in linux, in: International Conference for High Performance 

Computing, Networking, Storage and Analysis, SC, IEEE Computer Society, 2016, pp. 396–408, https://doi.org/10.1109/SC.2016.33. 
[30] R. v Lim, D. Carrillo-Cisneros, W. Alkowaileet, I. Scherson, Computationally efficient multiplexing of events on hardware counters, in: Linux Symposium, 

Citeseer, 2014, pp. 101–110. 
[31] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, R. Hundt, Google-Wide Profiling: a continuous profiling infrastructure for data centers, IEEE Micro 30 (2010) 65–78, 

https://doi.org/10.1109/MM.2010.68. 
[32] A. Hinneburg, D.A. Keim, Optimal Grid-Clustering : towards Breaking the Curse of Dimensionality in High-Dimensional Clustering, 1999. http://www.ub.uni- 

konstanz.de/kops/volltexte/2008/7041/. 
[33] D.L. Donoho, High-dimensional data analysis: the curses and blessings of dimensionality, AMS Math Challenges Lecture 1 (2000) 32. 
[34] O.O. Aremu, D. Hyland-Wood, P.R. McAree, A machine learning approach to circumventing the curse of dimensionality in discontinuous time series machine 

data, Reliab. Eng. Syst. Saf. (2020) 195, https://doi.org/10.1016/j.ress.2019.106706. 
[35] H. Zhou, Z. Deng, Y. Xia, M. Fu, A new sampling method in particle filter based on Pearson correlation coefficient, Neurocomputing 216 (2016) 208–215, 

https://doi.org/10.1016/j.neucom.2016.07.036. 
[36] P. Wolfe, A duality theorem for non-linear programming, Q. Appl. Math. 19 (1961) 239–244. 
[37] J.P. Vert, K. Tsuda, B. Scholkopf, A primer on kernel methods, Kernel methods in computational biology 47 (2004) 35–70. 
[38] Y. Goldberg, M. Elhadad, splitSVM: fast, space-efficient, non-heuristic, polynomial kernel computation for NLP applications, in: Proceedings of the 46th Annual 

Meeting of the Association for Computational Linguistics on Human Language Technologies: Short Papers, 2008, pp. 237–240. 
[39] H.-T. Lin, C.-J. Lin, A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods, n.d, https://www.researchgate.net/ 

publication/2478380. 
[40] S. An, W. Liu, S. Venkatesh, Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression, Pattern Recogn. 40 (2007) 

2154–2162. 
[41] M. Ferro, V.P. Kloh, M. Gritz, V. de Sá, B. Schulze, Predicting runtime in HPC environments for an efficient use of computational resources, in: Anais do XXII 

Simpósio em Sistemas Computacionais de Alto Desempenho, SBC, 2021, October, pp. 72–83. 
[42] N. Ding, V.W. Lee, W. Xue, W. Zheng, APMT: an automatic hardware counter-based performance modeling tool for HPC applications, CCF Transac. High 

Perform. Comput. 2 (2020) 135–148. 
[43] N. Ding, S. Xu, Z. Song, B. Zhang, J. Li, Z. Zheng, Using hardware counter-based performance model to diagnose scaling issues of HPC applications, Neural 

Comput. Appl. 31 (2019) 1563–1575. 
[44] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, F. Monrose, SoK: the challenges, pitfalls, and perils of using hardware performance counters for security, 

in: 2019 IEEE Symposium on Security and Privacy (SP), IEEE, 2019, May, pp. 20–38. 
[45] L.L. Woo, Hardware performance counters (HPCs) for anomaly detection, Hardware Supply Chain Security: Threat Modelling, Emerging Attacks and 

Countermeasures (2021) 147–165. 
[46] C. Woralert, J. Bruska, C. Liu, L. Yan, High frequency performance monitoring via architectural event measurement, in: 2020 IEEE International Symposium on 

Workload Characterization (IISWC), IEEE, 2020, October, pp. 114–122. 

M. Shin et al.                                                                                                                                                                                                           

https://doi.org/10.1109/ISPASS.2014.6844459
https://doi.org/10.1109/IPDPS.2010.5470356
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref27
https://doi.org/10.1109/IPDPS.2006.1639378
https://doi.org/10.1109/SC.2016.33
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref30
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref30
https://doi.org/10.1109/MM.2010.68
http://www.ub.uni-konstanz.de/kops/volltexte/2008/7041/
http://www.ub.uni-konstanz.de/kops/volltexte/2008/7041/
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref33
https://doi.org/10.1016/j.ress.2019.106706
https://doi.org/10.1016/j.neucom.2016.07.036
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref36
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref37
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref38
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref38
https://www.researchgate.net/publication/2478380
https://www.researchgate.net/publication/2478380
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref40
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref40
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref41
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref41
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref42
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref42
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref43
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref43
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref44
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref44
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref45
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref45
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref46
http://refhub.elsevier.com/S2405-8440(23)03984-1/sref46

	Adaptive variable sampling model for performance analysis in high cache-performance computing environments
	1 Introduction
	2 Related work
	3 An adaptive variable sampling model for performance analysis in high-performance computing environments
	3.1 Data collection and data-driven feature sampling strategy
	3.2 Machine learning-based performance prediction model
	3.2.1 Generate training data based on data profiling
	3.2.2 SVM-based performance prediction model


	4 Experimental environment and results
	4.1 Experimental setup
	4.2 Experimental results

	5 Conclusions
	Declaration of competing interest
	Acknowledgments
	References


